Properties

Label 570.2.q.c.349.10
Level $570$
Weight $2$
Character 570.349
Analytic conductor $4.551$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 570 = 2 \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 570.q (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.55147291521\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Defining polynomial: \(x^{20} - 49 x^{16} - 8 x^{15} + 72 x^{13} + 2145 x^{12} - 648 x^{11} + 32 x^{10} - 7056 x^{9} - 11968 x^{8} + 10368 x^{7} + 9344 x^{6} + 18176 x^{5} + 56320 x^{4} + 28160 x^{3} + 8192 x^{2} + 4096 x + 1024\)
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 349.10
Root \(0.320085 - 1.19457i\) of defining polynomial
Character \(\chi\) \(=\) 570.349
Dual form 570.2.q.c.49.10

$q$-expansion

\(f(q)\) \(=\) \(q+(0.866025 - 0.500000i) q^{2} +(-0.866025 + 0.500000i) q^{3} +(0.500000 - 0.866025i) q^{4} +(2.21950 - 0.271659i) q^{5} +(-0.500000 + 0.866025i) q^{6} +4.03495i q^{7} -1.00000i q^{8} +(0.500000 - 0.866025i) q^{9} +O(q^{10})\) \(q+(0.866025 - 0.500000i) q^{2} +(-0.866025 + 0.500000i) q^{3} +(0.500000 - 0.866025i) q^{4} +(2.21950 - 0.271659i) q^{5} +(-0.500000 + 0.866025i) q^{6} +4.03495i q^{7} -1.00000i q^{8} +(0.500000 - 0.866025i) q^{9} +(1.78632 - 1.34502i) q^{10} -1.47054 q^{11} +1.00000i q^{12} +(4.38320 + 2.53064i) q^{13} +(2.01747 + 3.49437i) q^{14} +(-1.78632 + 1.34502i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(0.0812933 - 0.0469347i) q^{17} -1.00000i q^{18} +(-4.00172 + 1.72807i) q^{19} +(0.874489 - 2.05798i) q^{20} +(-2.01747 - 3.49437i) q^{21} +(-1.27352 + 0.735269i) q^{22} +(2.22178 + 1.28274i) q^{23} +(0.500000 + 0.866025i) q^{24} +(4.85240 - 1.20590i) q^{25} +5.06128 q^{26} +1.00000i q^{27} +(3.49437 + 2.01747i) q^{28} +(2.10491 - 3.64581i) q^{29} +(-0.874489 + 2.05798i) q^{30} +4.26558 q^{31} +(-0.866025 - 0.500000i) q^{32} +(1.27352 - 0.735269i) q^{33} +(0.0469347 - 0.0812933i) q^{34} +(1.09613 + 8.95558i) q^{35} +(-0.500000 - 0.866025i) q^{36} +1.53807i q^{37} +(-2.60156 + 3.49741i) q^{38} -5.06128 q^{39} +(-0.271659 - 2.21950i) q^{40} +(-3.88123 - 6.72248i) q^{41} +(-3.49437 - 2.01747i) q^{42} +(3.97202 - 2.29325i) q^{43} +(-0.735269 + 1.27352i) q^{44} +(0.874489 - 2.05798i) q^{45} +2.56549 q^{46} +(-3.49530 - 2.01801i) q^{47} +(0.866025 + 0.500000i) q^{48} -9.28080 q^{49} +(3.59936 - 3.47054i) q^{50} +(-0.0469347 + 0.0812933i) q^{51} +(4.38320 - 2.53064i) q^{52} +(9.22964 + 5.32873i) q^{53} +(0.500000 + 0.866025i) q^{54} +(-3.26387 + 0.399485i) q^{55} +4.03495 q^{56} +(2.60156 - 3.49741i) q^{57} -4.20982i q^{58} +(-3.07599 - 5.32777i) q^{59} +(0.271659 + 2.21950i) q^{60} +(0.653722 - 1.13228i) q^{61} +(3.69410 - 2.13279i) q^{62} +(3.49437 + 2.01747i) q^{63} -1.00000 q^{64} +(10.4160 + 4.42603i) q^{65} +(0.735269 - 1.27352i) q^{66} +(-9.31187 - 5.37621i) q^{67} -0.0938694i q^{68} -2.56549 q^{69} +(5.42707 + 7.20770i) q^{70} +(4.33806 + 7.51373i) q^{71} +(-0.866025 - 0.500000i) q^{72} +(-11.0108 + 6.35711i) q^{73} +(0.769037 + 1.33201i) q^{74} +(-3.59936 + 3.47054i) q^{75} +(-0.504306 + 4.32963i) q^{76} -5.93355i q^{77} +(-4.38320 + 2.53064i) q^{78} +(-6.48112 - 11.2256i) q^{79} +(-1.34502 - 1.78632i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(-6.72248 - 3.88123i) q^{82} -2.06328i q^{83} -4.03495 q^{84} +(0.167681 - 0.126256i) q^{85} +(2.29325 - 3.97202i) q^{86} +4.20982i q^{87} +1.47054i q^{88} +(-0.813846 + 1.40962i) q^{89} +(-0.271659 - 2.21950i) q^{90} +(-10.2110 + 17.6860i) q^{91} +(2.22178 - 1.28274i) q^{92} +(-3.69410 + 2.13279i) q^{93} -4.03603 q^{94} +(-8.41239 + 4.92257i) q^{95} +1.00000 q^{96} +(-10.3479 + 5.97438i) q^{97} +(-8.03741 + 4.64040i) q^{98} +(-0.735269 + 1.27352i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20q + 10q^{4} - 10q^{6} + 10q^{9} + O(q^{10}) \) \( 20q + 10q^{4} - 10q^{6} + 10q^{9} - 2q^{10} + 12q^{11} + 10q^{14} + 2q^{15} - 10q^{16} + 6q^{19} - 10q^{21} + 10q^{24} + 14q^{25} + 8q^{29} + 40q^{31} + 12q^{34} + 2q^{35} - 10q^{36} + 2q^{40} - 14q^{41} + 6q^{44} + 44q^{46} - 8q^{49} - 8q^{50} - 12q^{51} + 10q^{54} + 20q^{56} + 8q^{59} - 2q^{60} + 16q^{61} - 20q^{64} + 40q^{65} - 6q^{66} - 44q^{69} + 8q^{70} - 4q^{71} + 26q^{74} + 8q^{75} + 8q^{79} - 10q^{81} - 20q^{84} - 16q^{85} - 20q^{86} - 2q^{89} + 2q^{90} - 44q^{91} - 32q^{94} - 80q^{95} + 20q^{96} + 6q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/570\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(211\) \(457\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 0.500000i 0.612372 0.353553i
\(3\) −0.866025 + 0.500000i −0.500000 + 0.288675i
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 2.21950 0.271659i 0.992593 0.121490i
\(6\) −0.500000 + 0.866025i −0.204124 + 0.353553i
\(7\) 4.03495i 1.52507i 0.646949 + 0.762533i \(0.276045\pi\)
−0.646949 + 0.762533i \(0.723955\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0.500000 0.866025i 0.166667 0.288675i
\(10\) 1.78632 1.34502i 0.564883 0.425331i
\(11\) −1.47054 −0.443384 −0.221692 0.975117i \(-0.571158\pi\)
−0.221692 + 0.975117i \(0.571158\pi\)
\(12\) 1.00000i 0.288675i
\(13\) 4.38320 + 2.53064i 1.21568 + 0.701874i 0.963991 0.265934i \(-0.0856805\pi\)
0.251690 + 0.967808i \(0.419014\pi\)
\(14\) 2.01747 + 3.49437i 0.539192 + 0.933909i
\(15\) −1.78632 + 1.34502i −0.461225 + 0.347282i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 0.0812933 0.0469347i 0.0197165 0.0113833i −0.490109 0.871661i \(-0.663043\pi\)
0.509826 + 0.860278i \(0.329710\pi\)
\(18\) 1.00000i 0.235702i
\(19\) −4.00172 + 1.72807i −0.918058 + 0.396447i
\(20\) 0.874489 2.05798i 0.195542 0.460178i
\(21\) −2.01747 3.49437i −0.440249 0.762533i
\(22\) −1.27352 + 0.735269i −0.271516 + 0.156760i
\(23\) 2.22178 + 1.28274i 0.463273 + 0.267471i 0.713419 0.700737i \(-0.247145\pi\)
−0.250147 + 0.968208i \(0.580479\pi\)
\(24\) 0.500000 + 0.866025i 0.102062 + 0.176777i
\(25\) 4.85240 1.20590i 0.970481 0.241179i
\(26\) 5.06128 0.992599
\(27\) 1.00000i 0.192450i
\(28\) 3.49437 + 2.01747i 0.660373 + 0.381267i
\(29\) 2.10491 3.64581i 0.390872 0.677011i −0.601693 0.798728i \(-0.705507\pi\)
0.992565 + 0.121717i \(0.0388401\pi\)
\(30\) −0.874489 + 2.05798i −0.159659 + 0.375733i
\(31\) 4.26558 0.766120 0.383060 0.923723i \(-0.374870\pi\)
0.383060 + 0.923723i \(0.374870\pi\)
\(32\) −0.866025 0.500000i −0.153093 0.0883883i
\(33\) 1.27352 0.735269i 0.221692 0.127994i
\(34\) 0.0469347 0.0812933i 0.00804924 0.0139417i
\(35\) 1.09613 + 8.95558i 0.185280 + 1.51377i
\(36\) −0.500000 0.866025i −0.0833333 0.144338i
\(37\) 1.53807i 0.252858i 0.991976 + 0.126429i \(0.0403515\pi\)
−0.991976 + 0.126429i \(0.959648\pi\)
\(38\) −2.60156 + 3.49741i −0.422028 + 0.567356i
\(39\) −5.06128 −0.810454
\(40\) −0.271659 2.21950i −0.0429531 0.350935i
\(41\) −3.88123 6.72248i −0.606146 1.04987i −0.991869 0.127261i \(-0.959382\pi\)
0.385724 0.922614i \(-0.373952\pi\)
\(42\) −3.49437 2.01747i −0.539192 0.311303i
\(43\) 3.97202 2.29325i 0.605727 0.349717i −0.165564 0.986199i \(-0.552944\pi\)
0.771291 + 0.636482i \(0.219611\pi\)
\(44\) −0.735269 + 1.27352i −0.110846 + 0.191991i
\(45\) 0.874489 2.05798i 0.130361 0.306785i
\(46\) 2.56549 0.378261
\(47\) −3.49530 2.01801i −0.509842 0.294358i 0.222927 0.974835i \(-0.428439\pi\)
−0.732769 + 0.680478i \(0.761772\pi\)
\(48\) 0.866025 + 0.500000i 0.125000 + 0.0721688i
\(49\) −9.28080 −1.32583
\(50\) 3.59936 3.47054i 0.509026 0.490808i
\(51\) −0.0469347 + 0.0812933i −0.00657218 + 0.0113833i
\(52\) 4.38320 2.53064i 0.607840 0.350937i
\(53\) 9.22964 + 5.32873i 1.26779 + 0.731958i 0.974569 0.224087i \(-0.0719401\pi\)
0.293219 + 0.956045i \(0.405273\pi\)
\(54\) 0.500000 + 0.866025i 0.0680414 + 0.117851i
\(55\) −3.26387 + 0.399485i −0.440100 + 0.0538666i
\(56\) 4.03495 0.539192
\(57\) 2.60156 3.49741i 0.344584 0.463244i
\(58\) 4.20982i 0.552777i
\(59\) −3.07599 5.32777i −0.400460 0.693617i 0.593321 0.804966i \(-0.297816\pi\)
−0.993781 + 0.111349i \(0.964483\pi\)
\(60\) 0.271659 + 2.21950i 0.0350710 + 0.286537i
\(61\) 0.653722 1.13228i 0.0837005 0.144974i −0.821136 0.570732i \(-0.806659\pi\)
0.904837 + 0.425759i \(0.139993\pi\)
\(62\) 3.69410 2.13279i 0.469151 0.270864i
\(63\) 3.49437 + 2.01747i 0.440249 + 0.254178i
\(64\) −1.00000 −0.125000
\(65\) 10.4160 + 4.42603i 1.29195 + 0.548982i
\(66\) 0.735269 1.27352i 0.0905054 0.156760i
\(67\) −9.31187 5.37621i −1.13763 0.656808i −0.191784 0.981437i \(-0.561427\pi\)
−0.945842 + 0.324629i \(0.894761\pi\)
\(68\) 0.0938694i 0.0113833i
\(69\) −2.56549 −0.308849
\(70\) 5.42707 + 7.20770i 0.648659 + 0.861485i
\(71\) 4.33806 + 7.51373i 0.514833 + 0.891716i 0.999852 + 0.0172126i \(0.00547923\pi\)
−0.485019 + 0.874503i \(0.661187\pi\)
\(72\) −0.866025 0.500000i −0.102062 0.0589256i
\(73\) −11.0108 + 6.35711i −1.28872 + 0.744044i −0.978426 0.206596i \(-0.933761\pi\)
−0.310296 + 0.950640i \(0.600428\pi\)
\(74\) 0.769037 + 1.33201i 0.0893987 + 0.154843i
\(75\) −3.59936 + 3.47054i −0.415618 + 0.400743i
\(76\) −0.504306 + 4.32963i −0.0578479 + 0.496642i
\(77\) 5.93355i 0.676190i
\(78\) −4.38320 + 2.53064i −0.496300 + 0.286539i
\(79\) −6.48112 11.2256i −0.729183 1.26298i −0.957229 0.289332i \(-0.906567\pi\)
0.228046 0.973650i \(-0.426766\pi\)
\(80\) −1.34502 1.78632i −0.150377 0.199716i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) −6.72248 3.88123i −0.742374 0.428610i
\(83\) 2.06328i 0.226475i −0.993568 0.113237i \(-0.963878\pi\)
0.993568 0.113237i \(-0.0361221\pi\)
\(84\) −4.03495 −0.440249
\(85\) 0.167681 0.126256i 0.0181875 0.0136944i
\(86\) 2.29325 3.97202i 0.247287 0.428314i
\(87\) 4.20982i 0.451340i
\(88\) 1.47054i 0.156760i
\(89\) −0.813846 + 1.40962i −0.0862675 + 0.149420i −0.905931 0.423426i \(-0.860827\pi\)
0.819663 + 0.572846i \(0.194161\pi\)
\(90\) −0.271659 2.21950i −0.0286354 0.233956i
\(91\) −10.2110 + 17.6860i −1.07040 + 1.85399i
\(92\) 2.22178 1.28274i 0.231636 0.133735i
\(93\) −3.69410 + 2.13279i −0.383060 + 0.221160i
\(94\) −4.03603 −0.416285
\(95\) −8.41239 + 4.92257i −0.863093 + 0.505045i
\(96\) 1.00000 0.102062
\(97\) −10.3479 + 5.97438i −1.05067 + 0.606607i −0.922838 0.385188i \(-0.874136\pi\)
−0.127836 + 0.991795i \(0.540803\pi\)
\(98\) −8.03741 + 4.64040i −0.811901 + 0.468751i
\(99\) −0.735269 + 1.27352i −0.0738974 + 0.127994i
\(100\) 1.38186 4.80525i 0.138186 0.480525i
\(101\) −0.252103 + 0.436656i −0.0250852 + 0.0434489i −0.878295 0.478118i \(-0.841319\pi\)
0.853210 + 0.521567i \(0.174652\pi\)
\(102\) 0.0938694i 0.00929446i
\(103\) 5.33797i 0.525966i 0.964800 + 0.262983i \(0.0847063\pi\)
−0.964800 + 0.262983i \(0.915294\pi\)
\(104\) 2.53064 4.38320i 0.248150 0.429808i
\(105\) −5.42707 7.20770i −0.529628 0.703399i
\(106\) 10.6575 1.03514
\(107\) 17.9275i 1.73312i −0.499076 0.866558i \(-0.666327\pi\)
0.499076 0.866558i \(-0.333673\pi\)
\(108\) 0.866025 + 0.500000i 0.0833333 + 0.0481125i
\(109\) −4.43631 7.68392i −0.424922 0.735986i 0.571492 0.820608i \(-0.306365\pi\)
−0.996413 + 0.0846222i \(0.973032\pi\)
\(110\) −2.62685 + 1.97790i −0.250460 + 0.188585i
\(111\) −0.769037 1.33201i −0.0729937 0.126429i
\(112\) 3.49437 2.01747i 0.330187 0.190633i
\(113\) 15.8667i 1.49261i −0.665603 0.746306i \(-0.731826\pi\)
0.665603 0.746306i \(-0.268174\pi\)
\(114\) 0.504306 4.32963i 0.0472326 0.405507i
\(115\) 5.27972 + 2.24349i 0.492336 + 0.209207i
\(116\) −2.10491 3.64581i −0.195436 0.338505i
\(117\) 4.38320 2.53064i 0.405227 0.233958i
\(118\) −5.32777 3.07599i −0.490461 0.283168i
\(119\) 0.189379 + 0.328014i 0.0173604 + 0.0300690i
\(120\) 1.34502 + 1.78632i 0.122783 + 0.163068i
\(121\) −8.83752 −0.803410
\(122\) 1.30744i 0.118370i
\(123\) 6.72248 + 3.88123i 0.606146 + 0.349958i
\(124\) 2.13279 3.69410i 0.191530 0.331740i
\(125\) 10.4423 3.99469i 0.933991 0.357296i
\(126\) 4.03495 0.359462
\(127\) −5.77290 3.33298i −0.512262 0.295755i 0.221501 0.975160i \(-0.428904\pi\)
−0.733763 + 0.679406i \(0.762238\pi\)
\(128\) −0.866025 + 0.500000i −0.0765466 + 0.0441942i
\(129\) −2.29325 + 3.97202i −0.201909 + 0.349717i
\(130\) 11.2335 1.37494i 0.985247 0.120590i
\(131\) −3.53784 6.12771i −0.309102 0.535381i 0.669064 0.743205i \(-0.266695\pi\)
−0.978166 + 0.207824i \(0.933362\pi\)
\(132\) 1.47054i 0.127994i
\(133\) −6.97268 16.1467i −0.604608 1.40010i
\(134\) −10.7524 −0.928867
\(135\) 0.271659 + 2.21950i 0.0233807 + 0.191025i
\(136\) −0.0469347 0.0812933i −0.00402462 0.00697084i
\(137\) −16.3302 9.42826i −1.39519 0.805511i −0.401302 0.915946i \(-0.631442\pi\)
−0.993883 + 0.110435i \(0.964775\pi\)
\(138\) −2.22178 + 1.28274i −0.189130 + 0.109194i
\(139\) −9.99616 + 17.3139i −0.847864 + 1.46854i 0.0352474 + 0.999379i \(0.488778\pi\)
−0.883111 + 0.469164i \(0.844555\pi\)
\(140\) 8.30383 + 3.52852i 0.701802 + 0.298214i
\(141\) 4.03603 0.339895
\(142\) 7.51373 + 4.33806i 0.630538 + 0.364042i
\(143\) −6.44566 3.72141i −0.539014 0.311200i
\(144\) −1.00000 −0.0833333
\(145\) 3.68144 8.66372i 0.305727 0.719483i
\(146\) −6.35711 + 11.0108i −0.526119 + 0.911264i
\(147\) 8.03741 4.64040i 0.662914 0.382734i
\(148\) 1.33201 + 0.769037i 0.109491 + 0.0632144i
\(149\) 6.10397 + 10.5724i 0.500056 + 0.866123i 1.00000 6.51503e-5i \(2.07380e-5\pi\)
−0.499944 + 0.866058i \(0.666646\pi\)
\(150\) −1.38186 + 4.80525i −0.112829 + 0.392347i
\(151\) 19.9109 1.62032 0.810161 0.586207i \(-0.199380\pi\)
0.810161 + 0.586207i \(0.199380\pi\)
\(152\) 1.72807 + 4.00172i 0.140165 + 0.324582i
\(153\) 0.0938694i 0.00758889i
\(154\) −2.96677 5.13860i −0.239069 0.414080i
\(155\) 9.46747 1.15878i 0.760445 0.0930756i
\(156\) −2.53064 + 4.38320i −0.202613 + 0.350937i
\(157\) −14.0594 + 8.11721i −1.12206 + 0.647824i −0.941927 0.335817i \(-0.890988\pi\)
−0.180137 + 0.983641i \(0.557654\pi\)
\(158\) −11.2256 6.48112i −0.893063 0.515610i
\(159\) −10.6575 −0.845192
\(160\) −2.05798 0.874489i −0.162697 0.0691344i
\(161\) −5.17581 + 8.96476i −0.407911 + 0.706522i
\(162\) −0.866025 0.500000i −0.0680414 0.0392837i
\(163\) 2.05750i 0.161156i −0.996748 0.0805780i \(-0.974323\pi\)
0.996748 0.0805780i \(-0.0256766\pi\)
\(164\) −7.76245 −0.606146
\(165\) 2.62685 1.97790i 0.204500 0.153979i
\(166\) −1.03164 1.78686i −0.0800709 0.138687i
\(167\) 18.8169 + 10.8639i 1.45609 + 0.840676i 0.998816 0.0486476i \(-0.0154911\pi\)
0.457278 + 0.889324i \(0.348824\pi\)
\(168\) −3.49437 + 2.01747i −0.269596 + 0.155651i
\(169\) 6.30829 + 10.9263i 0.485253 + 0.840483i
\(170\) 0.0820878 0.193181i 0.00629584 0.0148163i
\(171\) −0.504306 + 4.32963i −0.0385652 + 0.331095i
\(172\) 4.58649i 0.349717i
\(173\) 20.0963 11.6026i 1.52790 0.882132i 0.528447 0.848966i \(-0.322774\pi\)
0.999450 0.0331655i \(-0.0105588\pi\)
\(174\) 2.10491 + 3.64581i 0.159573 + 0.276388i
\(175\) 4.86573 + 19.5792i 0.367815 + 1.48005i
\(176\) 0.735269 + 1.27352i 0.0554230 + 0.0959955i
\(177\) 5.32777 + 3.07599i 0.400460 + 0.231206i
\(178\) 1.62769i 0.122001i
\(179\) −6.37559 −0.476534 −0.238267 0.971200i \(-0.576579\pi\)
−0.238267 + 0.971200i \(0.576579\pi\)
\(180\) −1.34502 1.78632i −0.100252 0.133144i
\(181\) 4.39603 7.61415i 0.326755 0.565955i −0.655111 0.755532i \(-0.727378\pi\)
0.981866 + 0.189577i \(0.0607116\pi\)
\(182\) 20.4220i 1.51378i
\(183\) 1.30744i 0.0966491i
\(184\) 1.28274 2.22178i 0.0945652 0.163792i
\(185\) 0.417831 + 3.41376i 0.0307196 + 0.250985i
\(186\) −2.13279 + 3.69410i −0.156384 + 0.270864i
\(187\) −0.119545 + 0.0690193i −0.00874200 + 0.00504719i
\(188\) −3.49530 + 2.01801i −0.254921 + 0.147179i
\(189\) −4.03495 −0.293499
\(190\) −4.82406 + 8.46926i −0.349974 + 0.614425i
\(191\) 12.9659 0.938177 0.469088 0.883151i \(-0.344583\pi\)
0.469088 + 0.883151i \(0.344583\pi\)
\(192\) 0.866025 0.500000i 0.0625000 0.0360844i
\(193\) 5.29710 3.05828i 0.381294 0.220140i −0.297087 0.954850i \(-0.596015\pi\)
0.678381 + 0.734710i \(0.262682\pi\)
\(194\) −5.97438 + 10.3479i −0.428936 + 0.742939i
\(195\) −11.2335 + 1.37494i −0.804451 + 0.0984617i
\(196\) −4.64040 + 8.03741i −0.331457 + 0.574101i
\(197\) 7.34941i 0.523624i 0.965119 + 0.261812i \(0.0843200\pi\)
−0.965119 + 0.261812i \(0.915680\pi\)
\(198\) 1.47054i 0.104507i
\(199\) 1.71780 2.97531i 0.121771 0.210914i −0.798695 0.601736i \(-0.794476\pi\)
0.920466 + 0.390822i \(0.127809\pi\)
\(200\) −1.20590 4.85240i −0.0852698 0.343117i
\(201\) 10.7524 0.758417
\(202\) 0.504207i 0.0354759i
\(203\) 14.7107 + 8.49321i 1.03249 + 0.596106i
\(204\) 0.0469347 + 0.0812933i 0.00328609 + 0.00569167i
\(205\) −10.4406 13.8662i −0.729205 0.968458i
\(206\) 2.66899 + 4.62282i 0.185957 + 0.322087i
\(207\) 2.22178 1.28274i 0.154424 0.0891569i
\(208\) 5.06128i 0.350937i
\(209\) 5.88469 2.54120i 0.407052 0.175778i
\(210\) −8.30383 3.52852i −0.573019 0.243491i
\(211\) 2.01970 + 3.49822i 0.139042 + 0.240827i 0.927134 0.374730i \(-0.122264\pi\)
−0.788092 + 0.615557i \(0.788931\pi\)
\(212\) 9.22964 5.32873i 0.633894 0.365979i
\(213\) −7.51373 4.33806i −0.514833 0.297239i
\(214\) −8.96375 15.5257i −0.612749 1.06131i
\(215\) 8.19293 6.16891i 0.558754 0.420716i
\(216\) 1.00000 0.0680414
\(217\) 17.2114i 1.16838i
\(218\) −7.68392 4.43631i −0.520421 0.300465i
\(219\) 6.35711 11.0108i 0.429574 0.744044i
\(220\) −1.28597 + 3.02634i −0.0867001 + 0.204035i
\(221\) 0.475100 0.0319587
\(222\) −1.33201 0.769037i −0.0893987 0.0516144i
\(223\) 15.6334 9.02593i 1.04689 0.604421i 0.125111 0.992143i \(-0.460071\pi\)
0.921776 + 0.387722i \(0.126738\pi\)
\(224\) 2.01747 3.49437i 0.134798 0.233477i
\(225\) 1.38186 4.80525i 0.0921243 0.320350i
\(226\) −7.93334 13.7409i −0.527718 0.914034i
\(227\) 26.8513i 1.78219i 0.453820 + 0.891093i \(0.350061\pi\)
−0.453820 + 0.891093i \(0.649939\pi\)
\(228\) −1.72807 4.00172i −0.114444 0.265020i
\(229\) 13.7131 0.906190 0.453095 0.891462i \(-0.350320\pi\)
0.453095 + 0.891462i \(0.350320\pi\)
\(230\) 5.69412 0.696938i 0.375459 0.0459548i
\(231\) 2.96677 + 5.13860i 0.195199 + 0.338095i
\(232\) −3.64581 2.10491i −0.239359 0.138194i
\(233\) 0.00572506 0.00330537i 0.000375061 0.000216542i −0.499812 0.866134i \(-0.666598\pi\)
0.500188 + 0.865917i \(0.333264\pi\)
\(234\) 2.53064 4.38320i 0.165433 0.286539i
\(235\) −8.30605 3.52946i −0.541827 0.230237i
\(236\) −6.15198 −0.400460
\(237\) 11.2256 + 6.48112i 0.729183 + 0.420994i
\(238\) 0.328014 + 0.189379i 0.0212620 + 0.0122756i
\(239\) 4.67499 0.302400 0.151200 0.988503i \(-0.451686\pi\)
0.151200 + 0.988503i \(0.451686\pi\)
\(240\) 2.05798 + 0.874489i 0.132842 + 0.0564480i
\(241\) 13.9044 24.0831i 0.895659 1.55133i 0.0626717 0.998034i \(-0.480038\pi\)
0.832987 0.553292i \(-0.186629\pi\)
\(242\) −7.65351 + 4.41876i −0.491986 + 0.284049i
\(243\) 0.866025 + 0.500000i 0.0555556 + 0.0320750i
\(244\) −0.653722 1.13228i −0.0418503 0.0724868i
\(245\) −20.5988 + 2.52121i −1.31601 + 0.161074i
\(246\) 7.76245 0.494916
\(247\) −21.9135 2.55244i −1.39432 0.162408i
\(248\) 4.26558i 0.270864i
\(249\) 1.03164 + 1.78686i 0.0653776 + 0.113237i
\(250\) 7.04598 8.68068i 0.445627 0.549014i
\(251\) 3.03259 5.25259i 0.191415 0.331541i −0.754304 0.656525i \(-0.772026\pi\)
0.945719 + 0.324984i \(0.105359\pi\)
\(252\) 3.49437 2.01747i 0.220124 0.127089i
\(253\) −3.26721 1.88633i −0.205408 0.118592i
\(254\) −6.66597 −0.418260
\(255\) −0.0820878 + 0.193181i −0.00514054 + 0.0120975i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 1.11707 + 0.644941i 0.0696809 + 0.0402303i 0.534436 0.845209i \(-0.320524\pi\)
−0.464755 + 0.885439i \(0.653858\pi\)
\(258\) 4.58649i 0.285543i
\(259\) −6.20604 −0.385625
\(260\) 9.04106 6.80751i 0.560703 0.422184i
\(261\) −2.10491 3.64581i −0.130291 0.225670i
\(262\) −6.12771 3.53784i −0.378571 0.218568i
\(263\) −24.4863 + 14.1372i −1.50989 + 0.871737i −0.509959 + 0.860199i \(0.670339\pi\)
−0.999933 + 0.0115378i \(0.996327\pi\)
\(264\) −0.735269 1.27352i −0.0452527 0.0783800i
\(265\) 21.9328 + 9.31984i 1.34732 + 0.572513i
\(266\) −14.1119 10.4971i −0.865255 0.643621i
\(267\) 1.62769i 0.0996131i
\(268\) −9.31187 + 5.37621i −0.568813 + 0.328404i
\(269\) −13.8782 24.0377i −0.846169 1.46561i −0.884602 0.466346i \(-0.845570\pi\)
0.0384337 0.999261i \(-0.487763\pi\)
\(270\) 1.34502 + 1.78632i 0.0818551 + 0.108712i
\(271\) −5.42826 9.40202i −0.329743 0.571132i 0.652718 0.757601i \(-0.273629\pi\)
−0.982461 + 0.186469i \(0.940296\pi\)
\(272\) −0.0812933 0.0469347i −0.00492913 0.00284584i
\(273\) 20.4220i 1.23600i
\(274\) −18.8565 −1.13916
\(275\) −7.13565 + 1.77332i −0.430296 + 0.106935i
\(276\) −1.28274 + 2.22178i −0.0772122 + 0.133735i
\(277\) 24.5237i 1.47349i 0.676173 + 0.736743i \(0.263637\pi\)
−0.676173 + 0.736743i \(0.736363\pi\)
\(278\) 19.9923i 1.19906i
\(279\) 2.13279 3.69410i 0.127687 0.221160i
\(280\) 8.95558 1.09613i 0.535199 0.0655063i
\(281\) 3.29709 5.71073i 0.196688 0.340674i −0.750765 0.660570i \(-0.770315\pi\)
0.947453 + 0.319896i \(0.103648\pi\)
\(282\) 3.49530 2.01801i 0.208142 0.120171i
\(283\) 20.4709 11.8189i 1.21687 0.702559i 0.252621 0.967565i \(-0.418707\pi\)
0.964247 + 0.265006i \(0.0853740\pi\)
\(284\) 8.67611 0.514833
\(285\) 4.82406 8.46926i 0.285753 0.501676i
\(286\) −7.44281 −0.440103
\(287\) 27.1248 15.6605i 1.60113 0.924412i
\(288\) −0.866025 + 0.500000i −0.0510310 + 0.0294628i
\(289\) −8.49559 + 14.7148i −0.499741 + 0.865577i
\(290\) −1.14364 9.34372i −0.0671567 0.548682i
\(291\) 5.97438 10.3479i 0.350225 0.606607i
\(292\) 12.7142i 0.744044i
\(293\) 23.0123i 1.34439i 0.740374 + 0.672195i \(0.234648\pi\)
−0.740374 + 0.672195i \(0.765352\pi\)
\(294\) 4.64040 8.03741i 0.270634 0.468751i
\(295\) −8.27451 10.9894i −0.481761 0.639827i
\(296\) 1.53807 0.0893987
\(297\) 1.47054i 0.0853293i
\(298\) 10.5724 + 6.10397i 0.612442 + 0.353593i
\(299\) 6.49233 + 11.2451i 0.375461 + 0.650318i
\(300\) 1.20590 + 4.85240i 0.0696225 + 0.280154i
\(301\) 9.25313 + 16.0269i 0.533341 + 0.923774i
\(302\) 17.2433 9.95543i 0.992241 0.572870i
\(303\) 0.504207i 0.0289659i
\(304\) 3.49741 + 2.60156i 0.200590 + 0.149209i
\(305\) 1.14335 2.69069i 0.0654678 0.154068i
\(306\) −0.0469347 0.0812933i −0.00268308 0.00464723i
\(307\) 22.0807 12.7483i 1.26021 0.727584i 0.287097 0.957902i \(-0.407310\pi\)
0.973116 + 0.230318i \(0.0739765\pi\)
\(308\) −5.13860 2.96677i −0.292799 0.169048i
\(309\) −2.66899 4.62282i −0.151833 0.262983i
\(310\) 7.61968 5.73727i 0.432768 0.325855i
\(311\) −30.3172 −1.71913 −0.859565 0.511027i \(-0.829265\pi\)
−0.859565 + 0.511027i \(0.829265\pi\)
\(312\) 5.06128i 0.286539i
\(313\) −6.54063 3.77623i −0.369698 0.213445i 0.303628 0.952791i \(-0.401802\pi\)
−0.673327 + 0.739345i \(0.735135\pi\)
\(314\) −8.11721 + 14.0594i −0.458081 + 0.793419i
\(315\) 8.30383 + 3.52852i 0.467868 + 0.198809i
\(316\) −12.9622 −0.729183
\(317\) 12.1344 + 7.00579i 0.681535 + 0.393484i 0.800433 0.599422i \(-0.204603\pi\)
−0.118898 + 0.992906i \(0.537936\pi\)
\(318\) −9.22964 + 5.32873i −0.517572 + 0.298821i
\(319\) −3.09535 + 5.36131i −0.173307 + 0.300176i
\(320\) −2.21950 + 0.271659i −0.124074 + 0.0151862i
\(321\) 8.96375 + 15.5257i 0.500308 + 0.866558i
\(322\) 10.3516i 0.576873i
\(323\) −0.244207 + 0.328300i −0.0135880 + 0.0182671i
\(324\) −1.00000 −0.0555556
\(325\) 24.3207 + 6.99400i 1.34907 + 0.387957i
\(326\) −1.02875 1.78185i −0.0569773 0.0986875i
\(327\) 7.68392 + 4.43631i 0.424922 + 0.245329i
\(328\) −6.72248 + 3.88123i −0.371187 + 0.214305i
\(329\) 8.14258 14.1034i 0.448915 0.777544i
\(330\) 1.28597 3.02634i 0.0707903 0.166594i
\(331\) −2.20541 −0.121220 −0.0606102 0.998162i \(-0.519305\pi\)
−0.0606102 + 0.998162i \(0.519305\pi\)
\(332\) −1.78686 1.03164i −0.0980665 0.0566187i
\(333\) 1.33201 + 0.769037i 0.0729937 + 0.0421429i
\(334\) 21.7279 1.18890
\(335\) −22.1282 9.40287i −1.20899 0.513734i
\(336\) −2.01747 + 3.49437i −0.110062 + 0.190633i
\(337\) 3.35026 1.93428i 0.182500 0.105367i −0.405966 0.913888i \(-0.633065\pi\)
0.588467 + 0.808521i \(0.299732\pi\)
\(338\) 10.9263 + 6.30829i 0.594311 + 0.343126i
\(339\) 7.93334 + 13.7409i 0.430880 + 0.746306i
\(340\) −0.0255005 0.208344i −0.00138296 0.0112990i
\(341\) −6.27270 −0.339685
\(342\) 1.72807 + 4.00172i 0.0934434 + 0.216388i
\(343\) 9.20290i 0.496910i
\(344\) −2.29325 3.97202i −0.123644 0.214157i
\(345\) −5.69412 + 0.696938i −0.306561 + 0.0375219i
\(346\) 11.6026 20.0963i 0.623761 1.08039i
\(347\) 10.6406 6.14337i 0.571219 0.329793i −0.186417 0.982471i \(-0.559688\pi\)
0.757636 + 0.652677i \(0.226354\pi\)
\(348\) 3.64581 + 2.10491i 0.195436 + 0.112835i
\(349\) 23.1329 1.23828 0.619139 0.785282i \(-0.287482\pi\)
0.619139 + 0.785282i \(0.287482\pi\)
\(350\) 14.0034 + 14.5232i 0.748515 + 0.776298i
\(351\) −2.53064 + 4.38320i −0.135076 + 0.233958i
\(352\) 1.27352 + 0.735269i 0.0678791 + 0.0391900i
\(353\) 2.27216i 0.120935i −0.998170 0.0604674i \(-0.980741\pi\)
0.998170 0.0604674i \(-0.0192591\pi\)
\(354\) 6.15198 0.326974
\(355\) 11.6695 + 15.4983i 0.619353 + 0.822564i
\(356\) 0.813846 + 1.40962i 0.0431338 + 0.0747098i
\(357\) −0.328014 0.189379i −0.0173604 0.0100230i
\(358\) −5.52142 + 3.18779i −0.291816 + 0.168480i
\(359\) −10.3404 17.9101i −0.545746 0.945260i −0.998560 0.0536549i \(-0.982913\pi\)
0.452813 0.891605i \(-0.350420\pi\)
\(360\) −2.05798 0.874489i −0.108465 0.0460896i
\(361\) 13.0275 13.8305i 0.685660 0.727922i
\(362\) 8.79207i 0.462101i
\(363\) 7.65351 4.41876i 0.401705 0.231925i
\(364\) 10.2110 + 17.6860i 0.535202 + 0.926997i
\(365\) −22.7117 + 17.1008i −1.18878 + 0.895099i
\(366\) 0.653722 + 1.13228i 0.0341706 + 0.0591852i
\(367\) −31.7744 18.3450i −1.65861 0.957600i −0.973357 0.229296i \(-0.926358\pi\)
−0.685255 0.728304i \(-0.740309\pi\)
\(368\) 2.56549i 0.133735i
\(369\) −7.76245 −0.404097
\(370\) 2.06873 + 2.74749i 0.107548 + 0.142835i
\(371\) −21.5012 + 37.2411i −1.11628 + 1.93346i
\(372\) 4.26558i 0.221160i
\(373\) 19.5380i 1.01164i 0.862640 + 0.505819i \(0.168810\pi\)
−0.862640 + 0.505819i \(0.831190\pi\)
\(374\) −0.0690193 + 0.119545i −0.00356890 + 0.00618152i
\(375\) −7.04598 + 8.68068i −0.363853 + 0.448268i
\(376\) −2.01801 + 3.49530i −0.104071 + 0.180256i
\(377\) 18.4525 10.6536i 0.950352 0.548686i
\(378\) −3.49437 + 2.01747i −0.179731 + 0.103768i
\(379\) −3.46802 −0.178140 −0.0890701 0.996025i \(-0.528390\pi\)
−0.0890701 + 0.996025i \(0.528390\pi\)
\(380\) 0.0568730 + 9.74663i 0.00291752 + 0.499991i
\(381\) 6.66597 0.341508
\(382\) 11.2288 6.48293i 0.574514 0.331696i
\(383\) −21.7388 + 12.5509i −1.11080 + 0.641322i −0.939037 0.343816i \(-0.888280\pi\)
−0.171765 + 0.985138i \(0.554947\pi\)
\(384\) 0.500000 0.866025i 0.0255155 0.0441942i
\(385\) −1.61190 13.1695i −0.0821501 0.671182i
\(386\) 3.05828 5.29710i 0.155662 0.269615i
\(387\) 4.58649i 0.233145i
\(388\) 11.9488i 0.606607i
\(389\) 7.02074 12.1603i 0.355965 0.616550i −0.631317 0.775525i \(-0.717485\pi\)
0.987283 + 0.158974i \(0.0508188\pi\)
\(390\) −9.04106 + 6.80751i −0.457812 + 0.344711i
\(391\) 0.240821 0.0121788
\(392\) 9.28080i 0.468751i
\(393\) 6.12771 + 3.53784i 0.309102 + 0.178460i
\(394\) 3.67471 + 6.36478i 0.185129 + 0.320653i
\(395\) −17.4344 23.1547i −0.877221 1.16504i
\(396\) 0.735269 + 1.27352i 0.0369487 + 0.0639970i
\(397\) −26.6267 + 15.3729i −1.33635 + 0.771544i −0.986265 0.165172i \(-0.947182\pi\)
−0.350089 + 0.936716i \(0.613849\pi\)
\(398\) 3.43559i 0.172211i
\(399\) 14.1119 + 10.4971i 0.706478 + 0.525514i
\(400\) −3.47054 3.59936i −0.173527 0.179968i
\(401\) −19.3518 33.5183i −0.966381 1.67382i −0.705857 0.708355i \(-0.749438\pi\)
−0.260525 0.965467i \(-0.583896\pi\)
\(402\) 9.31187 5.37621i 0.464434 0.268141i
\(403\) 18.6969 + 10.7946i 0.931357 + 0.537719i
\(404\) 0.252103 + 0.436656i 0.0125426 + 0.0217244i
\(405\) −1.34502 1.78632i −0.0668344 0.0887629i
\(406\) 16.9864 0.843022
\(407\) 2.26180i 0.112113i
\(408\) 0.0812933 + 0.0469347i 0.00402462 + 0.00232361i
\(409\) −10.3920 + 17.9994i −0.513850 + 0.890014i 0.486021 + 0.873947i \(0.338448\pi\)
−0.999871 + 0.0160671i \(0.994885\pi\)
\(410\) −15.9749 6.78818i −0.788946 0.335244i
\(411\) 18.8565 0.930123
\(412\) 4.62282 + 2.66899i 0.227750 + 0.131491i
\(413\) 21.4973 12.4115i 1.05781 0.610728i
\(414\) 1.28274 2.22178i 0.0630435 0.109194i
\(415\) −0.560510 4.57947i −0.0275143 0.224797i
\(416\) −2.53064 4.38320i −0.124075 0.214904i
\(417\) 19.9923i 0.979029i
\(418\) 3.82569 5.14308i 0.187121 0.251556i
\(419\) 36.2672 1.77177 0.885883 0.463908i \(-0.153553\pi\)
0.885883 + 0.463908i \(0.153553\pi\)
\(420\) −8.95558 + 1.09613i −0.436988 + 0.0534857i
\(421\) 10.7212 + 18.5697i 0.522519 + 0.905030i 0.999657 + 0.0262013i \(0.00834109\pi\)
−0.477137 + 0.878829i \(0.658326\pi\)
\(422\) 3.49822 + 2.01970i 0.170291 + 0.0983174i
\(423\) −3.49530 + 2.01801i −0.169947 + 0.0981192i
\(424\) 5.32873 9.22964i 0.258786 0.448231i
\(425\) 0.337869 0.325778i 0.0163891 0.0158025i
\(426\) −8.67611 −0.420359
\(427\) 4.56869 + 2.63773i 0.221094 + 0.127649i
\(428\) −15.5257 8.96375i −0.750461 0.433279i
\(429\) 7.44281 0.359342
\(430\) 4.01084 9.43890i 0.193420 0.455184i
\(431\) 2.91216 5.04400i 0.140274 0.242961i −0.787326 0.616537i \(-0.788535\pi\)
0.927600 + 0.373576i \(0.121868\pi\)
\(432\) 0.866025 0.500000i 0.0416667 0.0240563i
\(433\) 27.3690 + 15.8015i 1.31527 + 0.759371i 0.982963 0.183801i \(-0.0588403\pi\)
0.332305 + 0.943172i \(0.392174\pi\)
\(434\) 8.60569 + 14.9055i 0.413086 + 0.715486i
\(435\) 1.14364 + 9.34372i 0.0548332 + 0.447997i
\(436\) −8.87262 −0.424922
\(437\) −11.1076 1.29379i −0.531349 0.0618904i
\(438\) 12.7142i 0.607509i
\(439\) −0.932951 1.61592i −0.0445273 0.0771236i 0.842903 0.538066i \(-0.180845\pi\)
−0.887430 + 0.460942i \(0.847512\pi\)
\(440\) 0.399485 + 3.26387i 0.0190447 + 0.155599i
\(441\) −4.64040 + 8.03741i −0.220971 + 0.382734i
\(442\) 0.411448 0.237550i 0.0195706 0.0112991i
\(443\) −13.6368 7.87318i −0.647902 0.374066i 0.139750 0.990187i \(-0.455370\pi\)
−0.787652 + 0.616121i \(0.788703\pi\)
\(444\) −1.53807 −0.0729937
\(445\) −1.42340 + 3.34975i −0.0674755 + 0.158794i
\(446\) 9.02593 15.6334i 0.427390 0.740262i
\(447\) −10.5724 6.10397i −0.500056 0.288708i
\(448\) 4.03495i 0.190633i
\(449\) −29.7436 −1.40369 −0.701845 0.712330i \(-0.747640\pi\)
−0.701845 + 0.712330i \(0.747640\pi\)
\(450\) −1.20590 4.85240i −0.0568465 0.228744i
\(451\) 5.70749 + 9.88567i 0.268755 + 0.465498i
\(452\) −13.7409 7.93334i −0.646320 0.373153i
\(453\) −17.2433 + 9.95543i −0.810161 + 0.467747i
\(454\) 13.4257 + 23.2539i 0.630098 + 1.09136i
\(455\) −17.8588 + 42.0280i −0.837234 + 1.97030i
\(456\) −3.49741 2.60156i −0.163781 0.121829i
\(457\) 12.7891i 0.598250i −0.954214 0.299125i \(-0.903305\pi\)
0.954214 0.299125i \(-0.0966948\pi\)
\(458\) 11.8759 6.85657i 0.554926 0.320387i
\(459\) 0.0469347 + 0.0812933i 0.00219073 + 0.00379445i
\(460\) 4.58278 3.45062i 0.213673 0.160886i
\(461\) 5.96303 + 10.3283i 0.277726 + 0.481035i 0.970819 0.239813i \(-0.0770860\pi\)
−0.693093 + 0.720848i \(0.743753\pi\)
\(462\) 5.13860 + 2.96677i 0.239069 + 0.138027i
\(463\) 19.3208i 0.897913i −0.893554 0.448956i \(-0.851796\pi\)
0.893554 0.448956i \(-0.148204\pi\)
\(464\) −4.20982 −0.195436
\(465\) −7.61968 + 5.73727i −0.353354 + 0.266059i
\(466\) 0.00330537 0.00572506i 0.000153118 0.000265208i
\(467\) 26.7009i 1.23557i 0.786347 + 0.617785i \(0.211970\pi\)
−0.786347 + 0.617785i \(0.788030\pi\)
\(468\) 5.06128i 0.233958i
\(469\) 21.6927 37.5729i 1.00168 1.73496i
\(470\) −8.95798 + 1.09642i −0.413201 + 0.0505742i
\(471\) 8.11721 14.0594i 0.374021 0.647824i
\(472\) −5.32777 + 3.07599i −0.245231 + 0.141584i
\(473\) −5.84101 + 3.37231i −0.268570 + 0.155059i
\(474\) 12.9622 0.595375
\(475\) −17.3341 + 13.2110i −0.795342 + 0.606161i
\(476\) 0.378758 0.0173604
\(477\) 9.22964 5.32873i 0.422596 0.243986i
\(478\) 4.04866 2.33750i 0.185182 0.106915i
\(479\) −6.79124 + 11.7628i −0.310299 + 0.537454i −0.978427 0.206592i \(-0.933763\pi\)
0.668128 + 0.744047i \(0.267096\pi\)
\(480\) 2.21950 0.271659i 0.101306 0.0123995i
\(481\) −3.89231 + 6.74168i −0.177474 + 0.307394i
\(482\) 27.8087i 1.26665i
\(483\) 10.3516i 0.471015i
\(484\) −4.41876 + 7.65351i −0.200853 + 0.347887i
\(485\) −21.3443 + 16.0713i −0.969195 + 0.729760i
\(486\) 1.00000 0.0453609
\(487\) 8.03640i 0.364164i 0.983283 + 0.182082i \(0.0582837\pi\)
−0.983283 + 0.182082i \(0.941716\pi\)
\(488\) −1.13228 0.653722i −0.0512559 0.0295926i
\(489\) 1.02875 + 1.78185i 0.0465217 + 0.0805780i
\(490\) −16.5785 + 12.4828i −0.748938 + 0.563916i
\(491\) 10.3390 + 17.9077i 0.466593 + 0.808163i 0.999272 0.0381546i \(-0.0121479\pi\)
−0.532679 + 0.846317i \(0.678815\pi\)
\(492\) 6.72248 3.88123i 0.303073 0.174979i
\(493\) 0.395174i 0.0177977i
\(494\) −20.2538 + 8.74626i −0.911263 + 0.393513i
\(495\) −1.28597 + 3.02634i −0.0578000 + 0.136024i
\(496\) −2.13279 3.69410i −0.0957650 0.165870i
\(497\) −30.3175 + 17.5038i −1.35993 + 0.785154i
\(498\) 1.78686 + 1.03164i 0.0800709 + 0.0462290i
\(499\) −0.551160 0.954638i −0.0246733 0.0427355i 0.853425 0.521216i \(-0.174521\pi\)
−0.878098 + 0.478480i \(0.841188\pi\)
\(500\) 1.76166 11.0407i 0.0787840 0.493754i
\(501\) −21.7279 −0.970729
\(502\) 6.06517i 0.270702i
\(503\) 21.0518 + 12.1543i 0.938653 + 0.541932i 0.889538 0.456861i \(-0.151026\pi\)
0.0491154 + 0.998793i \(0.484360\pi\)
\(504\) 2.01747 3.49437i 0.0898654 0.155651i
\(505\) −0.440923 + 1.03765i −0.0196208 + 0.0461746i
\(506\) −3.77265 −0.167715
\(507\) −10.9263 6.30829i −0.485253 0.280161i
\(508\) −5.77290 + 3.33298i −0.256131 + 0.147877i
\(509\) −4.96728 + 8.60358i −0.220171 + 0.381347i −0.954860 0.297057i \(-0.903995\pi\)
0.734689 + 0.678404i \(0.237328\pi\)
\(510\) 0.0255005 + 0.208344i 0.00112918 + 0.00922561i
\(511\) −25.6506 44.4282i −1.13472 1.96539i
\(512\) 1.00000i 0.0441942i
\(513\) −1.72807 4.00172i −0.0762962 0.176680i
\(514\) 1.28988 0.0568942
\(515\) 1.45011 + 11.8477i 0.0638994 + 0.522070i
\(516\) 2.29325 + 3.97202i 0.100955 + 0.174858i
\(517\) 5.13998 + 2.96757i 0.226056 + 0.130513i
\(518\) −5.37459 + 3.10302i −0.236146 + 0.136339i
\(519\) −11.6026 + 20.0963i −0.509299 + 0.882132i
\(520\) 4.42603 10.4160i 0.194094 0.456772i
\(521\) −20.9057 −0.915895 −0.457947 0.888979i \(-0.651415\pi\)
−0.457947 + 0.888979i \(0.651415\pi\)
\(522\) −3.64581 2.10491i −0.159573 0.0921295i
\(523\) 27.3676 + 15.8007i 1.19670 + 0.690916i 0.959818 0.280622i \(-0.0905408\pi\)
0.236883 + 0.971538i \(0.423874\pi\)
\(524\) −7.07568 −0.309102
\(525\) −14.0034 14.5232i −0.611160 0.633845i
\(526\) −14.1372 + 24.4863i −0.616411 + 1.06766i
\(527\) 0.346763 0.200204i 0.0151052 0.00872101i
\(528\) −1.27352 0.735269i −0.0554230 0.0319985i
\(529\) −8.20913 14.2186i −0.356919 0.618202i
\(530\) 23.6543 2.89520i 1.02748 0.125759i
\(531\) −6.15198 −0.266973
\(532\) −17.4698 2.03485i −0.757413 0.0882218i
\(533\) 39.2880i 1.70175i
\(534\) −0.813846 1.40962i −0.0352186 0.0610003i
\(535\) −4.87017 39.7902i −0.210556 1.72028i
\(536\) −5.37621 + 9.31187i −0.232217 + 0.402211i
\(537\) 5.52142 3.18779i 0.238267 0.137563i
\(538\) −24.0377 13.8782i −1.03634 0.598332i
\(539\) 13.6478 0.587851
\(540\) 2.05798 + 0.874489i 0.0885612 + 0.0376320i
\(541\) −2.50615 + 4.34078i −0.107748 + 0.186625i −0.914858 0.403777i \(-0.867697\pi\)
0.807110 + 0.590402i \(0.201031\pi\)
\(542\) −9.40202 5.42826i −0.403851 0.233164i
\(543\) 8.79207i 0.377304i
\(544\) −0.0938694 −0.00402462
\(545\) −11.9338 15.8493i −0.511189 0.678911i
\(546\) −10.2110 17.6860i −0.436991 0.756890i
\(547\) −30.7554 17.7566i −1.31500 0.759218i −0.332084 0.943250i \(-0.607752\pi\)
−0.982920 + 0.184032i \(0.941085\pi\)
\(548\) −16.3302 + 9.42826i −0.697593 + 0.402755i
\(549\) −0.653722 1.13228i −0.0279002 0.0483245i
\(550\) −5.29299 + 5.10356i −0.225694 + 0.217617i
\(551\) −2.12304 + 18.2270i −0.0904445 + 0.776495i
\(552\) 2.56549i 0.109194i
\(553\) 45.2948 26.1510i 1.92613 1.11205i
\(554\) 12.2618 + 21.2381i 0.520956 + 0.902322i
\(555\) −2.06873 2.74749i −0.0878128 0.116624i
\(556\) 9.99616 + 17.3139i 0.423932 + 0.734271i
\(557\) −8.45640 4.88231i −0.358309 0.206870i 0.310030 0.950727i \(-0.399661\pi\)
−0.668339 + 0.743857i \(0.732994\pi\)
\(558\) 4.26558i 0.180576i
\(559\) 23.2135 0.981828
\(560\) 7.20770 5.42707i 0.304581 0.229336i
\(561\) 0.0690193 0.119545i 0.00291400 0.00504719i
\(562\) 6.59418i 0.278159i
\(563\) 11.5237i 0.485665i 0.970068 + 0.242833i \(0.0780766\pi\)
−0.970068 + 0.242833i \(0.921923\pi\)
\(564\) 2.01801 3.49530i 0.0849737 0.147179i
\(565\) −4.31033 35.2162i −0.181337 1.48156i
\(566\) 11.8189 20.4709i 0.496784 0.860456i
\(567\) 3.49437 2.01747i 0.146750 0.0847259i
\(568\) 7.51373 4.33806i 0.315269 0.182021i
\(569\) −1.93925 −0.0812978 −0.0406489 0.999173i \(-0.512943\pi\)
−0.0406489 + 0.999173i \(0.512943\pi\)
\(570\) −0.0568730 9.74663i −0.00238215 0.408241i
\(571\) −38.0052 −1.59047 −0.795235 0.606301i \(-0.792652\pi\)
−0.795235 + 0.606301i \(0.792652\pi\)
\(572\) −6.44566 + 3.72141i −0.269507 + 0.155600i
\(573\) −11.2288 + 6.48293i −0.469088 + 0.270828i
\(574\) 15.6605 27.1248i 0.653658 1.13217i
\(575\) 12.3278 + 3.54516i 0.514106 + 0.147843i
\(576\) −0.500000 + 0.866025i −0.0208333 + 0.0360844i
\(577\) 28.3094i 1.17854i 0.807938 + 0.589268i \(0.200584\pi\)
−0.807938 + 0.589268i \(0.799416\pi\)
\(578\) 16.9912i 0.706740i
\(579\) −3.05828 + 5.29710i −0.127098 + 0.220140i
\(580\) −5.66228 7.52008i −0.235113 0.312254i
\(581\) 8.32524 0.345389
\(582\) 11.9488i 0.495292i
\(583\) −13.5725 7.83611i −0.562117 0.324539i
\(584\) 6.35711 + 11.0108i 0.263059 + 0.455632i
\(585\) 9.04106 6.80751i 0.373802 0.281456i
\(586\) 11.5061 + 19.9292i 0.475314 + 0.823267i
\(587\) 9.39980 5.42698i 0.387971 0.223995i −0.293309 0.956018i \(-0.594757\pi\)
0.681281 + 0.732022i \(0.261423\pi\)
\(588\) 9.28080i 0.382734i
\(589\) −17.0696 + 7.37122i −0.703342 + 0.303726i
\(590\) −12.6606 5.37984i −0.521230 0.221484i
\(591\) −3.67471 6.36478i −0.151157 0.261812i
\(592\) 1.33201 0.769037i 0.0547453 0.0316072i
\(593\) −24.0190 13.8674i −0.986341 0.569464i −0.0821625 0.996619i \(-0.526183\pi\)
−0.904179 + 0.427155i \(0.859516\pi\)
\(594\) −0.735269 1.27352i −0.0301685 0.0522533i
\(595\) 0.509436 + 0.676583i 0.0208848 + 0.0277372i
\(596\) 12.2079 0.500056
\(597\) 3.43559i 0.140609i
\(598\) 11.2451 + 6.49233i 0.459844 + 0.265491i
\(599\) 15.6071 27.0323i 0.637690 1.10451i −0.348248 0.937402i \(-0.613223\pi\)
0.985938 0.167109i \(-0.0534433\pi\)
\(600\) 3.47054 + 3.59936i 0.141684 + 0.146943i
\(601\) 42.3271 1.72656 0.863280 0.504726i \(-0.168406\pi\)
0.863280 + 0.504726i \(0.168406\pi\)
\(602\) 16.0269 + 9.25313i 0.653207 + 0.377129i
\(603\) −9.31187 + 5.37621i −0.379209 + 0.218936i
\(604\) 9.95543 17.2433i 0.405081 0.701620i
\(605\) −19.6149 + 2.40079i −0.797459 + 0.0976060i
\(606\) −0.252103 0.436656i −0.0102410 0.0177379i
\(607\) 12.9882i 0.527176i 0.964635 + 0.263588i \(0.0849059\pi\)
−0.964635 + 0.263588i \(0.915094\pi\)
\(608\) 4.32963 + 0.504306i 0.175590 + 0.0204523i
\(609\) −16.9864 −0.688324
\(610\) −0.355179 2.90188i −0.0143808 0.117494i
\(611\) −10.2137 17.6907i −0.413204 0.715690i
\(612\) −0.0812933 0.0469347i −0.00328609 0.00189722i
\(613\) −23.2303 + 13.4120i −0.938264 + 0.541707i −0.889416 0.457099i \(-0.848888\pi\)
−0.0488484 + 0.998806i \(0.515555\pi\)
\(614\) 12.7483 22.0807i 0.514480 0.891105i
\(615\) 15.9749 + 6.78818i 0.644172 + 0.273726i
\(616\) −5.93355 −0.239069
\(617\) 11.9663 + 6.90877i 0.481747 + 0.278136i 0.721144 0.692785i \(-0.243617\pi\)
−0.239398 + 0.970922i \(0.576950\pi\)
\(618\) −4.62282 2.66899i −0.185957 0.107362i
\(619\) 36.2091 1.45537 0.727684 0.685912i \(-0.240597\pi\)
0.727684 + 0.685912i \(0.240597\pi\)
\(620\) 3.73020 8.77846i 0.149808 0.352551i
\(621\) −1.28274 + 2.22178i −0.0514748 + 0.0891569i
\(622\) −26.2555 + 15.1586i −1.05275 + 0.607804i
\(623\) −5.68775 3.28383i −0.227875 0.131564i
\(624\) 2.53064 + 4.38320i 0.101307 + 0.175468i
\(625\) 22.0916 11.7030i 0.883665 0.468120i
\(626\) −7.55247 −0.301857
\(627\) −3.82569 + 5.14308i −0.152783 + 0.205395i
\(628\) 16.2344i 0.647824i
\(629\) 0.0721890 + 0.125035i 0.00287837 + 0.00498547i
\(630\) 8.95558 1.09613i 0.356799 0.0436709i
\(631\) −1.00438 + 1.73963i −0.0399836 + 0.0692536i −0.885325 0.464973i \(-0.846064\pi\)
0.845341 + 0.534227i \(0.179397\pi\)
\(632\) −11.2256 + 6.48112i −0.446532 + 0.257805i
\(633\) −3.49822 2.01970i −0.139042 0.0802758i
\(634\) 14.0116 0.556471
\(635\) −13.7184 5.82932i −0.544399 0.231329i
\(636\) −5.32873 + 9.22964i −0.211298 + 0.365979i
\(637\) −40.6796 23.4864i −1.61178 0.930564i
\(638\) 6.19071i 0.245093i
\(639\) 8.67611 0.343222
\(640\) −1.78632 + 1.34502i −0.0706104 + 0.0531664i
\(641\) −8.04795 13.9395i −0.317875 0.550575i 0.662170 0.749354i \(-0.269636\pi\)
−0.980044 + 0.198779i \(0.936302\pi\)
\(642\) 15.5257 + 8.96375i 0.612749 + 0.353771i
\(643\) −34.6016 + 19.9773i −1.36455 + 0.787826i −0.990226 0.139470i \(-0.955460\pi\)
−0.374328 + 0.927296i \(0.622127\pi\)
\(644\) 5.17581 + 8.96476i 0.203955 + 0.353261i
\(645\) −4.01084 + 9.43890i −0.157927 + 0.371656i
\(646\) −0.0473389 + 0.406420i −0.00186252 + 0.0159904i
\(647\) 32.2985i 1.26979i −0.772600 0.634893i \(-0.781044\pi\)
0.772600 0.634893i \(-0.218956\pi\)
\(648\) −0.866025 + 0.500000i −0.0340207 + 0.0196419i
\(649\) 4.52336 + 7.83470i 0.177558 + 0.307539i
\(650\) 24.5594 6.10339i 0.963298 0.239394i
\(651\) −8.60569 14.9055i −0.337283 0.584192i
\(652\) −1.78185 1.02875i −0.0697826 0.0402890i
\(653\) 25.3382i 0.991559i −0.868448 0.495780i \(-0.834882\pi\)
0.868448 0.495780i \(-0.165118\pi\)
\(654\) 8.87262 0.346947
\(655\) −9.51690 12.6394i −0.371856 0.493862i
\(656\) −3.88123 + 6.72248i −0.151536 + 0.262469i
\(657\) 12.7142i 0.496029i
\(658\) 16.2852i 0.634862i
\(659\) 2.44914 4.24204i 0.0954051 0.165247i −0.814372 0.580343i \(-0.802919\pi\)
0.909778 + 0.415096i \(0.136252\pi\)
\(660\) −0.399485 3.26387i −0.0155499 0.127046i
\(661\) −24.1271 + 41.7893i −0.938435 + 1.62542i −0.170044 + 0.985437i \(0.554391\pi\)
−0.768391 + 0.639980i \(0.778942\pi\)
\(662\) −1.90994 + 1.10271i −0.0742320 + 0.0428579i
\(663\) −0.411448 + 0.237550i −0.0159793 + 0.00922567i
\(664\) −2.06328 −0.0800709
\(665\) −19.8623 33.9436i −0.770227 1.31627i
\(666\) 1.53807 0.0595991
\(667\) 9.35330 5.40013i 0.362161 0.209094i
\(668\) 18.8169 10.8639i 0.728047 0.420338i
\(669\) −9.02593 + 15.6334i −0.348963 + 0.604421i
\(670\) −23.8650 + 2.92099i −0.921987 + 0.112848i
\(671\) −0.961324 + 1.66506i −0.0371115 + 0.0642790i
\(672\) 4.03495i 0.155651i
\(673\) 11.3374i 0.437025i 0.975834 + 0.218512i \(0.0701204\pi\)
−0.975834 + 0.218512i \(0.929880\pi\)
\(674\) 1.93428 3.35026i 0.0745055 0.129047i
\(675\) 1.20590 + 4.85240i 0.0464150 + 0.186769i
\(676\) 12.6166 0.485253
\(677\) 30.8182i 1.18444i 0.805776 + 0.592220i \(0.201748\pi\)
−0.805776 + 0.592220i \(0.798252\pi\)
\(678\) 13.7409 + 7.93334i 0.527718 + 0.304678i
\(679\) −24.1063 41.7534i −0.925116 1.60235i
\(680\) −0.126256 0.167681i −0.00484169 0.00643026i
\(681\) −13.4257 23.2539i −0.514473 0.891093i
\(682\) −5.43231 + 3.13635i −0.208014 + 0.120097i
\(683\) 10.5683i 0.404386i −0.979346 0.202193i \(-0.935193\pi\)
0.979346 0.202193i \(-0.0648069\pi\)
\(684\) 3.49741 + 2.60156i 0.133727 + 0.0994730i
\(685\) −38.8063 16.4898i −1.48271 0.630043i
\(686\) −4.60145 7.96995i −0.175684 0.304294i
\(687\) −11.8759 + 6.85657i −0.453095 + 0.261595i
\(688\) −3.97202 2.29325i −0.151432 0.0874292i
\(689\) 26.9702 + 46.7138i 1.02748 + 1.77965i
\(690\) −4.58278 + 3.45062i −0.174463 + 0.131363i
\(691\) −0.570970 −0.0217207 −0.0108604 0.999941i \(-0.503457\pi\)
−0.0108604 + 0.999941i \(0.503457\pi\)
\(692\) 23.2053i 0.882132i
\(693\) −5.13860 2.96677i −0.195199 0.112698i
\(694\) 6.14337 10.6406i 0.233199 0.403913i
\(695\) −17.4831 + 41.1438i −0.663171 + 1.56067i
\(696\) 4.20982 0.159573
\(697\) −0.631035 0.364328i −0.0239022 0.0137999i
\(698\) 20.0337 11.5665i 0.758287 0.437797i
\(699\) −0.00330537 + 0.00572506i −0.000125020 + 0.000216542i
\(700\) 19.3889 + 5.57575i 0.732833 + 0.210743i
\(701\) 3.36247 + 5.82398i 0.126999 + 0.219969i 0.922513 0.385967i \(-0.126132\pi\)
−0.795514 + 0.605936i \(0.792799\pi\)
\(702\) 5.06128i 0.191026i
\(703\) −2.65790 6.15494i −0.100245 0.232138i
\(704\) 1.47054 0.0554230
\(705\) 8.95798 1.09642i 0.337377 0.0412937i
\(706\) −1.13608 1.96775i −0.0427569 0.0740571i
\(707\) −1.76188 1.01722i −0.0662625 0.0382566i
\(708\) 5.32777 3.07599i 0.200230 0.115603i
\(709\) −15.4517 + 26.7632i −0.580302 + 1.00511i 0.415141 + 0.909757i \(0.363732\pi\)
−0.995443 + 0.0953554i \(0.969601\pi\)
\(710\) 17.8552 + 7.58716i 0.670095 + 0.284741i
\(711\) −12.9622 −0.486122
\(712\) 1.40962 + 0.813846i 0.0528278 + 0.0305002i
\(713\) 9.47717 + 5.47164i 0.354923 + 0.204915i
\(714\) −0.378758 −0.0141747
\(715\) −15.3171 6.50866i −0.572828 0.243410i
\(716\) −3.18779 + 5.52142i −0.119133 + 0.206345i
\(717\) −4.04866 + 2.33750i −0.151200 + 0.0872954i
\(718\) −17.9101 10.3404i −0.668400 0.385901i
\(719\) −11.7185 20.2970i −0.437025 0.756949i 0.560434 0.828199i \(-0.310634\pi\)
−0.997458 + 0.0712504i \(0.977301\pi\)
\(720\) −2.21950 + 0.271659i −0.0827161 + 0.0101241i
\(721\) −21.5384 −0.802133
\(722\) 4.36691 18.4914i 0.162520 0.688177i
\(723\) 27.8087i 1.03422i
\(724\) −4.39603 7.61415i −0.163377 0.282978i
\(725\) 5.81740 20.2293i 0.216053 0.751296i
\(726\) 4.41876 7.65351i 0.163995 0.284049i
\(727\) 34.0238 19.6436i 1.26187 0.728543i 0.288436 0.957499i \(-0.406865\pi\)
0.973437 + 0.228957i \(0.0735314\pi\)
\(728\) 17.6860 + 10.2110i 0.655486 + 0.378445i
\(729\) −1.00000 −0.0370370
\(730\) −11.1184 + 26.1656i −0.411512 + 0.968432i
\(731\) 0.215266 0.372851i 0.00796189 0.0137904i
\(732\) 1.13228 + 0.653722i 0.0418503 + 0.0241623i
\(733\) 45.2875i 1.67273i 0.548171 + 0.836366i \(0.315324\pi\)
−0.548171 + 0.836366i \(0.684676\pi\)
\(734\) −36.6899 −1.35425
\(735\) 16.5785 12.4828i 0.611506 0.460436i
\(736\) −1.28274 2.22178i −0.0472826 0.0818959i
\(737\) 13.6935 + 7.90592i 0.504405 + 0.291218i
\(738\) −6.72248 + 3.88123i −0.247458 + 0.142870i
\(739\) 15.7422 + 27.2663i 0.579086 + 1.00301i 0.995585 + 0.0938695i \(0.0299237\pi\)
−0.416499 + 0.909136i \(0.636743\pi\)
\(740\) 3.16532 + 1.34503i 0.116359 + 0.0494442i
\(741\) 20.2538 8.74626i 0.744043 0.321302i
\(742\) 43.0023i 1.57866i
\(743\) −40.4415 + 23.3489i −1.48365 + 0.856587i −0.999827 0.0185770i \(-0.994086\pi\)
−0.483826 + 0.875164i \(0.660753\pi\)
\(744\) 2.13279 + 3.69410i 0.0781918 + 0.135432i
\(745\) 16.4199 + 21.8073i 0.601577 + 0.798956i
\(746\) 9.76898 + 16.9204i 0.357668 + 0.619499i
\(747\) −1.78686 1.03164i −0.0653776 0.0377458i
\(748\) 0.138039i 0.00504719i
\(749\) 72.3365 2.64312
\(750\) −1.76166 + 11.0407i −0.0643268 + 0.403149i
\(751\) −14.8807 + 25.7741i −0.543004 + 0.940510i 0.455726 + 0.890120i \(0.349380\pi\)
−0.998730 + 0.0503901i \(0.983954\pi\)
\(752\) 4.03603i 0.147179i
\(753\) 6.06517i 0.221027i
\(754\) 10.6536 18.4525i 0.387980 0.672000i
\(755\) 44.1922 5.40896i 1.60832 0.196852i
\(756\) −2.01747 + 3.49437i −0.0733748 + 0.127089i
\(757\) −11.2784 + 6.51161i −0.409922 + 0.236668i −0.690756 0.723088i \(-0.742722\pi\)
0.280834 + 0.959756i \(0.409389\pi\)
\(758\) −3.00339 + 1.73401i −0.109088 + 0.0629820i
\(759\) 3.77265 0.136939
\(760\) 4.92257 + 8.41239i 0.178560 + 0.305150i
\(761\) 43.4538 1.57520 0.787600 0.616187i \(-0.211324\pi\)
0.787600 + 0.616187i \(0.211324\pi\)
\(762\) 5.77290 3.33298i 0.209130 0.120741i
\(763\) 31.0042 17.9003i 1.12243 0.648034i
\(764\) 6.48293 11.2288i 0.234544 0.406242i
\(765\) −0.0255005 0.208344i −0.000921972 0.00753268i
\(766\) −12.5509 + 21.7388i −0.453483 + 0.785456i
\(767\) 31.1369i 1.12429i
\(768\) 1.00000i 0.0360844i
\(769\) −23.6418 + 40.9487i −0.852544 + 1.47665i 0.0263617 + 0.999652i \(0.491608\pi\)
−0.878905 + 0.476996i \(0.841725\pi\)
\(770\) −7.98072 10.5992i −0.287605 0.381969i
\(771\) −1.28988 −0.0464539
\(772\) 6.11656i 0.220140i
\(773\) 11.4692 + 6.62172i 0.412517 + 0.238167i 0.691871 0.722022i \(-0.256787\pi\)
−0.279354 + 0.960188i \(0.590120\pi\)
\(774\) −2.29325 3.97202i −0.0824290 0.142771i
\(775\) 20.6983