Properties

Label 570.2.q.b.49.6
Level $570$
Weight $2$
Character 570.49
Analytic conductor $4.551$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 570 = 2 \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 570.q (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.55147291521\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.89539436150784.1
Defining polynomial: \(x^{12} - 2 x^{11} + 2 x^{10} - 8 x^{9} + 4 x^{8} + 16 x^{7} - 8 x^{6} + 20 x^{5} + 20 x^{4} - 24 x^{3} + 8 x^{2} - 8 x + 4\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 49.6
Root \(0.550552 - 0.147520i\) of defining polynomial
Character \(\chi\) \(=\) 570.49
Dual form 570.2.q.b.349.6

$q$-expansion

\(f(q)\) \(=\) \(q+(0.866025 + 0.500000i) q^{2} +(0.866025 + 0.500000i) q^{3} +(0.500000 + 0.866025i) q^{4} +(2.12032 - 0.710109i) q^{5} +(0.500000 + 0.866025i) q^{6} +4.67513i q^{7} +1.00000i q^{8} +(0.500000 + 0.866025i) q^{9} +O(q^{10})\) \(q+(0.866025 + 0.500000i) q^{2} +(0.866025 + 0.500000i) q^{3} +(0.500000 + 0.866025i) q^{4} +(2.12032 - 0.710109i) q^{5} +(0.500000 + 0.866025i) q^{6} +4.67513i q^{7} +1.00000i q^{8} +(0.500000 + 0.866025i) q^{9} +(2.19130 + 0.445186i) q^{10} -3.96239 q^{11} +1.00000i q^{12} +(-0.698071 + 0.403032i) q^{13} +(-2.33757 + 4.04878i) q^{14} +(2.19130 + 0.445186i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(-4.01621 - 2.31876i) q^{17} +1.00000i q^{18} +(3.01270 - 3.15018i) q^{19} +(1.67513 + 1.48119i) q^{20} +(-2.33757 + 4.04878i) q^{21} +(-3.43153 - 1.98119i) q^{22} +(5.52574 - 3.19029i) q^{23} +(-0.500000 + 0.866025i) q^{24} +(3.99149 - 3.01131i) q^{25} -0.806063 q^{26} +1.00000i q^{27} +(-4.04878 + 2.33757i) q^{28} +(-2.03150 - 3.51866i) q^{29} +(1.67513 + 1.48119i) q^{30} +3.35026 q^{31} +(-0.866025 + 0.500000i) q^{32} +(-3.43153 - 1.98119i) q^{33} +(-2.31876 - 4.01621i) q^{34} +(3.31985 + 9.91276i) q^{35} +(-0.500000 + 0.866025i) q^{36} -2.19394i q^{37} +(4.18416 - 1.22179i) q^{38} -0.806063 q^{39} +(0.710109 + 2.12032i) q^{40} +(-2.02785 + 3.51235i) q^{41} +(-4.04878 + 2.33757i) q^{42} +(6.36551 + 3.67513i) q^{43} +(-1.98119 - 3.43153i) q^{44} +(1.67513 + 1.48119i) q^{45} +6.38058 q^{46} +(8.12382 - 4.69029i) q^{47} +(-0.866025 + 0.500000i) q^{48} -14.8568 q^{49} +(4.96239 - 0.612127i) q^{50} +(-2.31876 - 4.01621i) q^{51} +(-0.698071 - 0.403032i) q^{52} +(1.34790 - 0.778209i) q^{53} +(-0.500000 + 0.866025i) q^{54} +(-8.40152 + 2.81373i) q^{55} -4.67513 q^{56} +(4.18416 - 1.22179i) q^{57} -4.06300i q^{58} +(3.94723 - 6.83680i) q^{59} +(0.710109 + 2.12032i) q^{60} +(2.20299 + 3.81568i) q^{61} +(2.90141 + 1.67513i) q^{62} +(-4.04878 + 2.33757i) q^{63} -1.00000 q^{64} +(-1.19394 + 1.35026i) q^{65} +(-1.98119 - 3.43153i) q^{66} +(-6.42008 + 3.70663i) q^{67} -4.63752i q^{68} +6.38058 q^{69} +(-2.08130 + 10.2446i) q^{70} +(1.08427 - 1.87801i) q^{71} +(-0.866025 + 0.500000i) q^{72} +(-10.2463 - 5.91573i) q^{73} +(1.09697 - 1.90000i) q^{74} +(4.96239 - 0.612127i) q^{75} +(4.23449 + 1.03398i) q^{76} -18.5247i q^{77} +(-0.698071 - 0.403032i) q^{78} +(-4.67513 + 8.09756i) q^{79} +(-0.445186 + 2.19130i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(-3.51235 + 2.02785i) q^{82} +9.92478i q^{83} -4.67513 q^{84} +(-10.1622 - 2.06456i) q^{85} +(3.67513 + 6.36551i) q^{86} -4.06300i q^{87} -3.96239i q^{88} +(-9.13141 - 15.8161i) q^{89} +(0.710109 + 2.12032i) q^{90} +(-1.88423 - 3.26358i) q^{91} +(5.52574 + 3.19029i) q^{92} +(2.90141 + 1.67513i) q^{93} +9.38058 q^{94} +(4.15090 - 8.81873i) q^{95} -1.00000 q^{96} +(10.7439 + 6.20299i) q^{97} +(-12.8664 - 7.42842i) q^{98} +(-1.98119 - 3.43153i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12q + 6q^{4} + 6q^{6} + 6q^{9} + O(q^{10}) \) \( 12q + 6q^{4} + 6q^{6} + 6q^{9} - 2q^{10} - 4q^{11} - 18q^{14} - 2q^{15} - 6q^{16} + 6q^{19} - 18q^{21} - 6q^{24} - 2q^{25} - 8q^{26} - 16q^{29} + 4q^{34} + 2q^{35} - 6q^{36} - 8q^{39} + 2q^{40} + 10q^{41} - 2q^{44} + 28q^{46} - 56q^{49} + 16q^{50} + 4q^{51} - 6q^{54} - 8q^{55} - 36q^{56} + 8q^{59} + 2q^{60} - 28q^{61} - 12q^{64} - 16q^{65} - 2q^{66} + 28q^{69} + 16q^{70} + 44q^{71} + 14q^{74} + 16q^{75} - 12q^{76} - 36q^{79} - 6q^{81} - 36q^{84} - 32q^{85} + 24q^{86} + 6q^{89} + 2q^{90} + 64q^{94} - 12q^{95} - 12q^{96} - 2q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/570\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(211\) \(457\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 + 0.500000i 0.612372 + 0.353553i
\(3\) 0.866025 + 0.500000i 0.500000 + 0.288675i
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) 2.12032 0.710109i 0.948235 0.317570i
\(6\) 0.500000 + 0.866025i 0.204124 + 0.353553i
\(7\) 4.67513i 1.76703i 0.468400 + 0.883517i \(0.344831\pi\)
−0.468400 + 0.883517i \(0.655169\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0.500000 + 0.866025i 0.166667 + 0.288675i
\(10\) 2.19130 + 0.445186i 0.692951 + 0.140780i
\(11\) −3.96239 −1.19471 −0.597353 0.801979i \(-0.703781\pi\)
−0.597353 + 0.801979i \(0.703781\pi\)
\(12\) 1.00000i 0.288675i
\(13\) −0.698071 + 0.403032i −0.193610 + 0.111781i −0.593672 0.804707i \(-0.702322\pi\)
0.400061 + 0.916488i \(0.368989\pi\)
\(14\) −2.33757 + 4.04878i −0.624741 + 1.08208i
\(15\) 2.19130 + 0.445186i 0.565792 + 0.114947i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −4.01621 2.31876i −0.974074 0.562382i −0.0735981 0.997288i \(-0.523448\pi\)
−0.900476 + 0.434906i \(0.856782\pi\)
\(18\) 1.00000i 0.235702i
\(19\) 3.01270 3.15018i 0.691160 0.722702i
\(20\) 1.67513 + 1.48119i 0.374571 + 0.331205i
\(21\) −2.33757 + 4.04878i −0.510099 + 0.883517i
\(22\) −3.43153 1.98119i −0.731604 0.422392i
\(23\) 5.52574 3.19029i 1.15220 0.665221i 0.202775 0.979225i \(-0.435004\pi\)
0.949422 + 0.314004i \(0.101671\pi\)
\(24\) −0.500000 + 0.866025i −0.102062 + 0.176777i
\(25\) 3.99149 3.01131i 0.798298 0.602262i
\(26\) −0.806063 −0.158082
\(27\) 1.00000i 0.192450i
\(28\) −4.04878 + 2.33757i −0.765148 + 0.441758i
\(29\) −2.03150 3.51866i −0.377240 0.653400i 0.613419 0.789757i \(-0.289794\pi\)
−0.990660 + 0.136358i \(0.956460\pi\)
\(30\) 1.67513 + 1.48119i 0.305836 + 0.270428i
\(31\) 3.35026 0.601725 0.300862 0.953668i \(-0.402726\pi\)
0.300862 + 0.953668i \(0.402726\pi\)
\(32\) −0.866025 + 0.500000i −0.153093 + 0.0883883i
\(33\) −3.43153 1.98119i −0.597353 0.344882i
\(34\) −2.31876 4.01621i −0.397664 0.688774i
\(35\) 3.31985 + 9.91276i 0.561157 + 1.67556i
\(36\) −0.500000 + 0.866025i −0.0833333 + 0.144338i
\(37\) 2.19394i 0.360681i −0.983604 0.180340i \(-0.942280\pi\)
0.983604 0.180340i \(-0.0577200\pi\)
\(38\) 4.18416 1.22179i 0.678761 0.198201i
\(39\) −0.806063 −0.129073
\(40\) 0.710109 + 2.12032i 0.112278 + 0.335252i
\(41\) −2.02785 + 3.51235i −0.316698 + 0.548537i −0.979797 0.199995i \(-0.935907\pi\)
0.663099 + 0.748532i \(0.269241\pi\)
\(42\) −4.04878 + 2.33757i −0.624741 + 0.360694i
\(43\) 6.36551 + 3.67513i 0.970732 + 0.560452i 0.899459 0.437005i \(-0.143961\pi\)
0.0712725 + 0.997457i \(0.477294\pi\)
\(44\) −1.98119 3.43153i −0.298676 0.517322i
\(45\) 1.67513 + 1.48119i 0.249714 + 0.220803i
\(46\) 6.38058 0.940765
\(47\) 8.12382 4.69029i 1.18498 0.684149i 0.227819 0.973703i \(-0.426840\pi\)
0.957162 + 0.289554i \(0.0935071\pi\)
\(48\) −0.866025 + 0.500000i −0.125000 + 0.0721688i
\(49\) −14.8568 −2.12241
\(50\) 4.96239 0.612127i 0.701788 0.0865678i
\(51\) −2.31876 4.01621i −0.324691 0.562382i
\(52\) −0.698071 0.403032i −0.0968051 0.0558904i
\(53\) 1.34790 0.778209i 0.185148 0.106895i −0.404561 0.914511i \(-0.632576\pi\)
0.589709 + 0.807616i \(0.299242\pi\)
\(54\) −0.500000 + 0.866025i −0.0680414 + 0.117851i
\(55\) −8.40152 + 2.81373i −1.13286 + 0.379403i
\(56\) −4.67513 −0.624741
\(57\) 4.18416 1.22179i 0.554206 0.161830i
\(58\) 4.06300i 0.533499i
\(59\) 3.94723 6.83680i 0.513886 0.890076i −0.485985 0.873967i \(-0.661539\pi\)
0.999870 0.0161086i \(-0.00512775\pi\)
\(60\) 0.710109 + 2.12032i 0.0916746 + 0.273732i
\(61\) 2.20299 + 3.81568i 0.282063 + 0.488548i 0.971893 0.235424i \(-0.0756478\pi\)
−0.689829 + 0.723972i \(0.742314\pi\)
\(62\) 2.90141 + 1.67513i 0.368480 + 0.212742i
\(63\) −4.04878 + 2.33757i −0.510099 + 0.294506i
\(64\) −1.00000 −0.125000
\(65\) −1.19394 + 1.35026i −0.148090 + 0.167479i
\(66\) −1.98119 3.43153i −0.243868 0.422392i
\(67\) −6.42008 + 3.70663i −0.784337 + 0.452837i −0.837965 0.545724i \(-0.816255\pi\)
0.0536280 + 0.998561i \(0.482921\pi\)
\(68\) 4.63752i 0.562382i
\(69\) 6.38058 0.768131
\(70\) −2.08130 + 10.2446i −0.248764 + 1.22447i
\(71\) 1.08427 1.87801i 0.128679 0.222879i −0.794486 0.607283i \(-0.792260\pi\)
0.923165 + 0.384403i \(0.125593\pi\)
\(72\) −0.866025 + 0.500000i −0.102062 + 0.0589256i
\(73\) −10.2463 5.91573i −1.19924 0.692384i −0.238857 0.971055i \(-0.576773\pi\)
−0.960387 + 0.278671i \(0.910106\pi\)
\(74\) 1.09697 1.90000i 0.127520 0.220871i
\(75\) 4.96239 0.612127i 0.573007 0.0706823i
\(76\) 4.23449 + 1.03398i 0.485729 + 0.118606i
\(77\) 18.5247i 2.11108i
\(78\) −0.698071 0.403032i −0.0790410 0.0456344i
\(79\) −4.67513 + 8.09756i −0.525993 + 0.911047i 0.473548 + 0.880768i \(0.342973\pi\)
−0.999541 + 0.0302792i \(0.990360\pi\)
\(80\) −0.445186 + 2.19130i −0.0497734 + 0.244995i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) −3.51235 + 2.02785i −0.387874 + 0.223939i
\(83\) 9.92478i 1.08939i 0.838636 + 0.544693i \(0.183354\pi\)
−0.838636 + 0.544693i \(0.816646\pi\)
\(84\) −4.67513 −0.510099
\(85\) −10.1622 2.06456i −1.10225 0.223933i
\(86\) 3.67513 + 6.36551i 0.396300 + 0.686411i
\(87\) 4.06300i 0.435600i
\(88\) 3.96239i 0.422392i
\(89\) −9.13141 15.8161i −0.967928 1.67650i −0.701535 0.712635i \(-0.747502\pi\)
−0.266393 0.963865i \(-0.585832\pi\)
\(90\) 0.710109 + 2.12032i 0.0748520 + 0.223501i
\(91\) −1.88423 3.26358i −0.197521 0.342116i
\(92\) 5.52574 + 3.19029i 0.576099 + 0.332611i
\(93\) 2.90141 + 1.67513i 0.300862 + 0.173703i
\(94\) 9.38058 0.967533
\(95\) 4.15090 8.81873i 0.425873 0.904783i
\(96\) −1.00000 −0.102062
\(97\) 10.7439 + 6.20299i 1.09088 + 0.629818i 0.933810 0.357770i \(-0.116463\pi\)
0.157067 + 0.987588i \(0.449796\pi\)
\(98\) −12.8664 7.42842i −1.29970 0.750384i
\(99\) −1.98119 3.43153i −0.199118 0.344882i
\(100\) 4.60362 + 1.95108i 0.460362 + 0.195108i
\(101\) 5.21933 + 9.04014i 0.519343 + 0.899528i 0.999747 + 0.0224809i \(0.00715649\pi\)
−0.480405 + 0.877047i \(0.659510\pi\)
\(102\) 4.63752i 0.459183i
\(103\) 2.13093i 0.209967i −0.994474 0.104984i \(-0.966521\pi\)
0.994474 0.104984i \(-0.0334790\pi\)
\(104\) −0.403032 0.698071i −0.0395205 0.0684515i
\(105\) −2.08130 + 10.2446i −0.203115 + 0.999773i
\(106\) 1.55642 0.151173
\(107\) 7.95746i 0.769277i −0.923067 0.384639i \(-0.874326\pi\)
0.923067 0.384639i \(-0.125674\pi\)
\(108\) −0.866025 + 0.500000i −0.0833333 + 0.0481125i
\(109\) 5.20299 9.01184i 0.498356 0.863177i −0.501643 0.865075i \(-0.667271\pi\)
0.999998 + 0.00189769i \(0.000604054\pi\)
\(110\) −8.68279 1.76400i −0.827872 0.168191i
\(111\) 1.09697 1.90000i 0.104120 0.180340i
\(112\) −4.04878 2.33757i −0.382574 0.220879i
\(113\) 12.3004i 1.15713i 0.815637 + 0.578564i \(0.196387\pi\)
−0.815637 + 0.578564i \(0.803613\pi\)
\(114\) 4.23449 + 1.03398i 0.396596 + 0.0968410i
\(115\) 9.45088 10.6883i 0.881299 0.996690i
\(116\) 2.03150 3.51866i 0.188620 0.326700i
\(117\) −0.698071 0.403032i −0.0645367 0.0372603i
\(118\) 6.83680 3.94723i 0.629379 0.363372i
\(119\) 10.8405 18.7763i 0.993747 1.72122i
\(120\) −0.445186 + 2.19130i −0.0406398 + 0.200038i
\(121\) 4.70052 0.427320
\(122\) 4.40597i 0.398898i
\(123\) −3.51235 + 2.02785i −0.316698 + 0.182846i
\(124\) 1.67513 + 2.90141i 0.150431 + 0.260554i
\(125\) 6.32487 9.21933i 0.565713 0.824602i
\(126\) −4.67513 −0.416494
\(127\) −10.3754 + 5.99024i −0.920668 + 0.531548i −0.883848 0.467774i \(-0.845056\pi\)
−0.0368202 + 0.999322i \(0.511723\pi\)
\(128\) −0.866025 0.500000i −0.0765466 0.0441942i
\(129\) 3.67513 + 6.36551i 0.323577 + 0.560452i
\(130\) −1.70911 + 0.572393i −0.149899 + 0.0502022i
\(131\) 6.30606 10.9224i 0.550963 0.954296i −0.447242 0.894413i \(-0.647594\pi\)
0.998205 0.0598835i \(-0.0190729\pi\)
\(132\) 3.96239i 0.344882i
\(133\) 14.7275 + 14.0847i 1.27704 + 1.22130i
\(134\) −7.41327 −0.640409
\(135\) 0.710109 + 2.12032i 0.0611164 + 0.182488i
\(136\) 2.31876 4.01621i 0.198832 0.344387i
\(137\) −5.53206 + 3.19394i −0.472636 + 0.272876i −0.717342 0.696721i \(-0.754642\pi\)
0.244707 + 0.969597i \(0.421308\pi\)
\(138\) 5.52574 + 3.19029i 0.470383 + 0.271575i
\(139\) −6.63752 11.4965i −0.562987 0.975122i −0.997234 0.0743282i \(-0.976319\pi\)
0.434247 0.900794i \(-0.357015\pi\)
\(140\) −6.92478 + 7.83146i −0.585250 + 0.661879i
\(141\) 9.38058 0.789987
\(142\) 1.87801 1.08427i 0.157599 0.0909901i
\(143\) 2.76603 1.59697i 0.231307 0.133545i
\(144\) −1.00000 −0.0833333
\(145\) −6.80606 6.01810i −0.565213 0.499776i
\(146\) −5.91573 10.2463i −0.489589 0.847993i
\(147\) −12.8664 7.42842i −1.06120 0.612686i
\(148\) 1.90000 1.09697i 0.156179 0.0901702i
\(149\) 0.449692 0.778890i 0.0368402 0.0638091i −0.847017 0.531565i \(-0.821604\pi\)
0.883858 + 0.467756i \(0.154937\pi\)
\(150\) 4.60362 + 1.95108i 0.375884 + 0.159305i
\(151\) −10.3757 −0.844359 −0.422179 0.906512i \(-0.638735\pi\)
−0.422179 + 0.906512i \(0.638735\pi\)
\(152\) 3.15018 + 3.01270i 0.255514 + 0.244362i
\(153\) 4.63752i 0.374921i
\(154\) 9.26234 16.0428i 0.746381 1.29277i
\(155\) 7.10362 2.37905i 0.570576 0.191090i
\(156\) −0.403032 0.698071i −0.0322684 0.0558904i
\(157\) −12.2534 7.07452i −0.977929 0.564608i −0.0762850 0.997086i \(-0.524306\pi\)
−0.901644 + 0.432478i \(0.857639\pi\)
\(158\) −8.09756 + 4.67513i −0.644208 + 0.371933i
\(159\) 1.55642 0.123432
\(160\) −1.48119 + 1.67513i −0.117099 + 0.132431i
\(161\) 14.9150 + 25.8336i 1.17547 + 2.03597i
\(162\) −0.866025 + 0.500000i −0.0680414 + 0.0392837i
\(163\) 17.4617i 1.36770i 0.729621 + 0.683852i \(0.239697\pi\)
−0.729621 + 0.683852i \(0.760303\pi\)
\(164\) −4.05571 −0.316698
\(165\) −8.68279 1.76400i −0.675955 0.137327i
\(166\) −4.96239 + 8.59511i −0.385156 + 0.667110i
\(167\) −20.0979 + 11.6036i −1.55523 + 0.897910i −0.557523 + 0.830161i \(0.688248\pi\)
−0.997702 + 0.0677489i \(0.978418\pi\)
\(168\) −4.04878 2.33757i −0.312370 0.180347i
\(169\) −6.17513 + 10.6956i −0.475010 + 0.822742i
\(170\) −7.76845 6.86907i −0.595813 0.526833i
\(171\) 4.23449 + 1.03398i 0.323819 + 0.0790704i
\(172\) 7.35026i 0.560452i
\(173\) −16.6055 9.58721i −1.26250 0.728902i −0.288939 0.957348i \(-0.593302\pi\)
−0.973557 + 0.228445i \(0.926636\pi\)
\(174\) 2.03150 3.51866i 0.154008 0.266749i
\(175\) 14.0783 + 18.6607i 1.06422 + 1.41062i
\(176\) 1.98119 3.43153i 0.149338 0.258661i
\(177\) 6.83680 3.94723i 0.513886 0.296692i
\(178\) 18.2628i 1.36886i
\(179\) −18.3707 −1.37309 −0.686546 0.727086i \(-0.740874\pi\)
−0.686546 + 0.727086i \(0.740874\pi\)
\(180\) −0.445186 + 2.19130i −0.0331822 + 0.163330i
\(181\) 3.10966 + 5.38610i 0.231140 + 0.400345i 0.958144 0.286288i \(-0.0924213\pi\)
−0.727004 + 0.686633i \(0.759088\pi\)
\(182\) 3.76845i 0.279336i
\(183\) 4.40597i 0.325699i
\(184\) 3.19029 + 5.52574i 0.235191 + 0.407363i
\(185\) −1.55793 4.65184i −0.114542 0.342010i
\(186\) 1.67513 + 2.90141i 0.122827 + 0.212742i
\(187\) 15.9138 + 9.18783i 1.16373 + 0.671880i
\(188\) 8.12382 + 4.69029i 0.592490 + 0.342075i
\(189\) −4.67513 −0.340066
\(190\) 8.00415 5.56180i 0.580682 0.403495i
\(191\) 3.47627 0.251534 0.125767 0.992060i \(-0.459861\pi\)
0.125767 + 0.992060i \(0.459861\pi\)
\(192\) −0.866025 0.500000i −0.0625000 0.0360844i
\(193\) −7.57171 4.37153i −0.545024 0.314670i 0.202089 0.979367i \(-0.435227\pi\)
−0.747112 + 0.664698i \(0.768560\pi\)
\(194\) 6.20299 + 10.7439i 0.445348 + 0.771366i
\(195\) −1.70911 + 0.572393i −0.122392 + 0.0409899i
\(196\) −7.42842 12.8664i −0.530602 0.919029i
\(197\) 12.6448i 0.900906i −0.892800 0.450453i \(-0.851263\pi\)
0.892800 0.450453i \(-0.148737\pi\)
\(198\) 3.96239i 0.281595i
\(199\) −2.18783 3.78943i −0.155091 0.268625i 0.778001 0.628263i \(-0.216234\pi\)
−0.933092 + 0.359637i \(0.882900\pi\)
\(200\) 3.01131 + 3.99149i 0.212932 + 0.282241i
\(201\) −7.41327 −0.522891
\(202\) 10.4387i 0.734461i
\(203\) 16.4502 9.49754i 1.15458 0.666596i
\(204\) 2.31876 4.01621i 0.162346 0.281191i
\(205\) −1.80555 + 8.88729i −0.126105 + 0.620715i
\(206\) 1.06547 1.84544i 0.0742346 0.128578i
\(207\) 5.52574 + 3.19029i 0.384066 + 0.221740i
\(208\) 0.806063i 0.0558904i
\(209\) −11.9375 + 12.4823i −0.825732 + 0.863416i
\(210\) −6.92478 + 7.83146i −0.477855 + 0.540422i
\(211\) 6.65022 11.5185i 0.457820 0.792967i −0.541026 0.841006i \(-0.681964\pi\)
0.998845 + 0.0480390i \(0.0152972\pi\)
\(212\) 1.34790 + 0.778209i 0.0925739 + 0.0534476i
\(213\) 1.87801 1.08427i 0.128679 0.0742931i
\(214\) 3.97873 6.89137i 0.271981 0.471084i
\(215\) 16.1067 + 3.27224i 1.09846 + 0.223165i
\(216\) −1.00000 −0.0680414
\(217\) 15.6629i 1.06327i
\(218\) 9.01184 5.20299i 0.610359 0.352391i
\(219\) −5.91573 10.2463i −0.399748 0.692384i
\(220\) −6.63752 5.86907i −0.447501 0.395692i
\(221\) 3.73813 0.251454
\(222\) 1.90000 1.09697i 0.127520 0.0736237i
\(223\) 1.57468 + 0.909141i 0.105448 + 0.0608806i 0.551797 0.833979i \(-0.313942\pi\)
−0.446348 + 0.894859i \(0.647276\pi\)
\(224\) −2.33757 4.04878i −0.156185 0.270521i
\(225\) 4.60362 + 1.95108i 0.306908 + 0.130072i
\(226\) −6.15022 + 10.6525i −0.409106 + 0.708593i
\(227\) 12.8691i 0.854150i 0.904216 + 0.427075i \(0.140456\pi\)
−0.904216 + 0.427075i \(0.859544\pi\)
\(228\) 3.15018 + 3.01270i 0.208626 + 0.199521i
\(229\) −16.1114 −1.06467 −0.532336 0.846533i \(-0.678686\pi\)
−0.532336 + 0.846533i \(0.678686\pi\)
\(230\) 13.5289 4.53090i 0.892066 0.298759i
\(231\) 9.26234 16.0428i 0.609417 1.05554i
\(232\) 3.51866 2.03150i 0.231012 0.133375i
\(233\) 1.90632 + 1.10062i 0.124887 + 0.0721037i 0.561142 0.827719i \(-0.310362\pi\)
−0.436255 + 0.899823i \(0.643695\pi\)
\(234\) −0.403032 0.698071i −0.0263470 0.0456344i
\(235\) 13.8945 15.7137i 0.906375 1.02505i
\(236\) 7.89446 0.513886
\(237\) −8.09756 + 4.67513i −0.525993 + 0.303682i
\(238\) 18.7763 10.8405i 1.21709 0.702686i
\(239\) −4.70052 −0.304052 −0.152026 0.988377i \(-0.548580\pi\)
−0.152026 + 0.988377i \(0.548580\pi\)
\(240\) −1.48119 + 1.67513i −0.0956107 + 0.108129i
\(241\) −12.6405 21.8939i −0.814244 1.41031i −0.909870 0.414894i \(-0.863819\pi\)
0.0956262 0.995417i \(-0.469515\pi\)
\(242\) 4.07077 + 2.35026i 0.261679 + 0.151081i
\(243\) −0.866025 + 0.500000i −0.0555556 + 0.0320750i
\(244\) −2.20299 + 3.81568i −0.141032 + 0.244274i
\(245\) −31.5012 + 10.5500i −2.01254 + 0.674013i
\(246\) −4.05571 −0.258583
\(247\) −0.833453 + 3.41327i −0.0530313 + 0.217181i
\(248\) 3.35026i 0.212742i
\(249\) −4.96239 + 8.59511i −0.314479 + 0.544693i
\(250\) 10.0872 4.82174i 0.637968 0.304954i
\(251\) 6.21933 + 10.7722i 0.392561 + 0.679935i 0.992787 0.119896i \(-0.0382560\pi\)
−0.600226 + 0.799831i \(0.704923\pi\)
\(252\) −4.04878 2.33757i −0.255049 0.147253i
\(253\) −21.8951 + 12.6412i −1.37654 + 0.794743i
\(254\) −11.9805 −0.751723
\(255\) −7.76845 6.86907i −0.486479 0.430158i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 22.7011 13.1065i 1.41606 0.817561i 0.420107 0.907475i \(-0.361992\pi\)
0.995950 + 0.0899138i \(0.0286592\pi\)
\(258\) 7.35026i 0.457607i
\(259\) 10.2569 0.637335
\(260\) −1.76633 0.358849i −0.109543 0.0222548i
\(261\) 2.03150 3.51866i 0.125747 0.217800i
\(262\) 10.9224 6.30606i 0.674790 0.389590i
\(263\) 5.03329 + 2.90597i 0.310366 + 0.179190i 0.647090 0.762413i \(-0.275986\pi\)
−0.336724 + 0.941603i \(0.609319\pi\)
\(264\) 1.98119 3.43153i 0.121934 0.211196i
\(265\) 2.30536 2.60720i 0.141617 0.160159i
\(266\) 5.71203 + 19.5615i 0.350227 + 1.19939i
\(267\) 18.2628i 1.11767i
\(268\) −6.42008 3.70663i −0.392169 0.226419i
\(269\) 11.7501 20.3518i 0.716418 1.24087i −0.245992 0.969272i \(-0.579114\pi\)
0.962410 0.271600i \(-0.0875528\pi\)
\(270\) −0.445186 + 2.19130i −0.0270932 + 0.133358i
\(271\) −16.3430 + 28.3069i −0.992765 + 1.71952i −0.392393 + 0.919798i \(0.628353\pi\)
−0.600372 + 0.799721i \(0.704981\pi\)
\(272\) 4.01621 2.31876i 0.243518 0.140595i
\(273\) 3.76845i 0.228077i
\(274\) −6.38787 −0.385906
\(275\) −15.8158 + 11.9320i −0.953731 + 0.719526i
\(276\) 3.19029 + 5.52574i 0.192033 + 0.332611i
\(277\) 19.6688i 1.18178i 0.806751 + 0.590892i \(0.201224\pi\)
−0.806751 + 0.590892i \(0.798776\pi\)
\(278\) 13.2750i 0.796184i
\(279\) 1.67513 + 2.90141i 0.100287 + 0.173703i
\(280\) −9.91276 + 3.31985i −0.592401 + 0.198399i
\(281\) 5.79631 + 10.0395i 0.345779 + 0.598906i 0.985495 0.169705i \(-0.0542815\pi\)
−0.639716 + 0.768611i \(0.720948\pi\)
\(282\) 8.12382 + 4.69029i 0.483766 + 0.279303i
\(283\) 25.4621 + 14.7005i 1.51356 + 0.873855i 0.999874 + 0.0158784i \(0.00505446\pi\)
0.513688 + 0.857977i \(0.328279\pi\)
\(284\) 2.16854 0.128679
\(285\) 8.00415 5.56180i 0.474125 0.329452i
\(286\) 3.19394 0.188861
\(287\) −16.4207 9.48049i −0.969282 0.559615i
\(288\) −0.866025 0.500000i −0.0510310 0.0294628i
\(289\) 2.25329 + 3.90282i 0.132547 + 0.229578i
\(290\) −2.88517 8.61486i −0.169423 0.505882i
\(291\) 6.20299 + 10.7439i 0.363625 + 0.629818i
\(292\) 11.8315i 0.692384i
\(293\) 22.2628i 1.30061i 0.759674 + 0.650304i \(0.225358\pi\)
−0.759674 + 0.650304i \(0.774642\pi\)
\(294\) −7.42842 12.8664i −0.433235 0.750384i
\(295\) 3.51451 17.2992i 0.204622 1.00720i
\(296\) 2.19394 0.127520
\(297\) 3.96239i 0.229921i
\(298\) 0.778890 0.449692i 0.0451199 0.0260500i
\(299\) −2.57158 + 4.45410i −0.148718 + 0.257587i
\(300\) 3.01131 + 3.99149i 0.173858 + 0.230449i
\(301\) −17.1817 + 29.7596i −0.990338 + 1.71532i
\(302\) −8.98558 5.18783i −0.517062 0.298526i
\(303\) 10.4387i 0.599685i
\(304\) 1.22179 + 4.18416i 0.0700745 + 0.239978i
\(305\) 7.38058 + 6.52610i 0.422611 + 0.373683i
\(306\) 2.31876 4.01621i 0.132555 0.229591i
\(307\) 27.0744 + 15.6314i 1.54522 + 0.892132i 0.998496 + 0.0548168i \(0.0174575\pi\)
0.546721 + 0.837315i \(0.315876\pi\)
\(308\) 16.0428 9.26234i 0.914126 0.527771i
\(309\) 1.06547 1.84544i 0.0606123 0.104984i
\(310\) 7.34144 + 1.49149i 0.416966 + 0.0847110i
\(311\) −17.7889 −1.00872 −0.504359 0.863494i \(-0.668271\pi\)
−0.504359 + 0.863494i \(0.668271\pi\)
\(312\) 0.806063i 0.0456344i
\(313\) −5.40177 + 3.11871i −0.305326 + 0.176280i −0.644833 0.764323i \(-0.723073\pi\)
0.339507 + 0.940604i \(0.389740\pi\)
\(314\) −7.07452 12.2534i −0.399238 0.691501i
\(315\) −6.92478 + 7.83146i −0.390167 + 0.441253i
\(316\) −9.35026 −0.525993
\(317\) −11.9018 + 6.87153i −0.668474 + 0.385944i −0.795498 0.605956i \(-0.792791\pi\)
0.127024 + 0.991900i \(0.459457\pi\)
\(318\) 1.34790 + 0.778209i 0.0755863 + 0.0436398i
\(319\) 8.04960 + 13.9423i 0.450691 + 0.780620i
\(320\) −2.12032 + 0.710109i −0.118529 + 0.0396963i
\(321\) 3.97873 6.89137i 0.222071 0.384639i
\(322\) 29.8300i 1.66236i
\(323\) −19.4041 + 5.66608i −1.07968 + 0.315269i
\(324\) −1.00000 −0.0555556
\(325\) −1.57269 + 3.71081i −0.0872372 + 0.205839i
\(326\) −8.73084 + 15.1223i −0.483557 + 0.837544i
\(327\) 9.01184 5.20299i 0.498356 0.287726i
\(328\) −3.51235 2.02785i −0.193937 0.111970i
\(329\) 21.9277 + 37.9799i 1.20891 + 2.09390i
\(330\) −6.63752 5.86907i −0.365383 0.323082i
\(331\) −1.56230 −0.0858716 −0.0429358 0.999078i \(-0.513671\pi\)
−0.0429358 + 0.999078i \(0.513671\pi\)
\(332\) −8.59511 + 4.96239i −0.471718 + 0.272346i
\(333\) 1.90000 1.09697i 0.104120 0.0601135i
\(334\) −23.2071 −1.26984
\(335\) −10.9805 + 12.4182i −0.599928 + 0.678478i
\(336\) −2.33757 4.04878i −0.127525 0.220879i
\(337\) −11.2909 6.51881i −0.615055 0.355102i 0.159886 0.987135i \(-0.448887\pi\)
−0.774941 + 0.632033i \(0.782221\pi\)
\(338\) −10.6956 + 6.17513i −0.581766 + 0.335883i
\(339\) −6.15022 + 10.6525i −0.334034 + 0.578564i
\(340\) −3.29314 9.83301i −0.178596 0.533270i
\(341\) −13.2750 −0.718884
\(342\) 3.15018 + 3.01270i 0.170342 + 0.162908i
\(343\) 36.7318i 1.98333i
\(344\) −3.67513 + 6.36551i −0.198150 + 0.343205i
\(345\) 13.5289 4.53090i 0.728369 0.243936i
\(346\) −9.58721 16.6055i −0.515412 0.892719i
\(347\) 21.2610 + 12.2750i 1.14135 + 0.658959i 0.946764 0.321927i \(-0.104331\pi\)
0.194585 + 0.980886i \(0.437664\pi\)
\(348\) 3.51866 2.03150i 0.188620 0.108900i
\(349\) −6.86907 −0.367693 −0.183846 0.982955i \(-0.558855\pi\)
−0.183846 + 0.982955i \(0.558855\pi\)
\(350\) 2.86177 + 23.1998i 0.152968 + 1.24008i
\(351\) −0.403032 0.698071i −0.0215122 0.0372603i
\(352\) 3.43153 1.98119i 0.182901 0.105598i
\(353\) 29.1368i 1.55080i 0.631473 + 0.775398i \(0.282451\pi\)
−0.631473 + 0.775398i \(0.717549\pi\)
\(354\) 7.89446 0.419586
\(355\) 0.965406 4.75194i 0.0512385 0.252207i
\(356\) 9.13141 15.8161i 0.483964 0.838250i
\(357\) 18.7763 10.8405i 0.993747 0.573740i
\(358\) −15.9095 9.18536i −0.840844 0.485462i
\(359\) 10.4223 18.0520i 0.550069 0.952747i −0.448200 0.893933i \(-0.647935\pi\)
0.998269 0.0588138i \(-0.0187318\pi\)
\(360\) −1.48119 + 1.67513i −0.0780658 + 0.0882871i
\(361\) −0.847322 18.9811i −0.0445959 0.999005i
\(362\) 6.21933i 0.326881i
\(363\) 4.07077 + 2.35026i 0.213660 + 0.123357i
\(364\) 1.88423 3.26358i 0.0987603 0.171058i
\(365\) −25.9263 5.26720i −1.35704 0.275698i
\(366\) −2.20299 + 3.81568i −0.115152 + 0.199449i
\(367\) 23.1758 13.3806i 1.20977 0.698461i 0.247060 0.969000i \(-0.420535\pi\)
0.962709 + 0.270540i \(0.0872021\pi\)
\(368\) 6.38058i 0.332611i
\(369\) −4.05571 −0.211132
\(370\) 0.976711 4.80758i 0.0507768 0.249934i
\(371\) 3.63823 + 6.30159i 0.188887 + 0.327162i
\(372\) 3.35026i 0.173703i
\(373\) 27.6312i 1.43069i −0.698772 0.715344i \(-0.746270\pi\)
0.698772 0.715344i \(-0.253730\pi\)
\(374\) 9.18783 + 15.9138i 0.475091 + 0.822882i
\(375\) 10.0872 4.82174i 0.520899 0.248994i
\(376\) 4.69029 + 8.12382i 0.241883 + 0.418954i
\(377\) 2.83627 + 1.63752i 0.146075 + 0.0843365i
\(378\) −4.04878 2.33757i −0.208247 0.120231i
\(379\) 28.4387 1.46080 0.730398 0.683022i \(-0.239335\pi\)
0.730398 + 0.683022i \(0.239335\pi\)
\(380\) 9.71270 0.814582i 0.498251 0.0417872i
\(381\) −11.9805 −0.613779
\(382\) 3.01054 + 1.73813i 0.154033 + 0.0889307i
\(383\) −14.7601 8.52175i −0.754206 0.435441i 0.0730058 0.997332i \(-0.476741\pi\)
−0.827212 + 0.561891i \(0.810074\pi\)
\(384\) −0.500000 0.866025i −0.0255155 0.0441942i
\(385\) −13.1545 39.2782i −0.670417 2.00180i
\(386\) −4.37153 7.57171i −0.222505 0.385390i
\(387\) 7.35026i 0.373635i
\(388\) 12.4060i 0.629818i
\(389\) 1.28115 + 2.21901i 0.0649568 + 0.112508i 0.896675 0.442690i \(-0.145976\pi\)
−0.831718 + 0.555198i \(0.812642\pi\)
\(390\) −1.76633 0.358849i −0.0894416 0.0181710i
\(391\) −29.5901 −1.49643
\(392\) 14.8568i 0.750384i
\(393\) 10.9224 6.30606i 0.550963 0.318099i
\(394\) 6.32241 10.9507i 0.318518 0.551690i
\(395\) −4.16261 + 20.4893i −0.209444 + 1.03093i
\(396\) 1.98119 3.43153i 0.0995588 0.172441i
\(397\) 18.6367 + 10.7599i 0.935347 + 0.540023i 0.888499 0.458879i \(-0.151749\pi\)
0.0468484 + 0.998902i \(0.485082\pi\)
\(398\) 4.37565i 0.219332i
\(399\) 5.71203 + 19.5615i 0.285959 + 0.979301i
\(400\) 0.612127 + 4.96239i 0.0306063 + 0.248119i
\(401\) 13.9502 24.1624i 0.696638 1.20661i −0.272987 0.962018i \(-0.588012\pi\)
0.969625 0.244595i \(-0.0786550\pi\)
\(402\) −6.42008 3.70663i −0.320204 0.184870i
\(403\) −2.33872 + 1.35026i −0.116500 + 0.0672613i
\(404\) −5.21933 + 9.04014i −0.259671 + 0.449764i
\(405\) −0.445186 + 2.19130i −0.0221215 + 0.108887i
\(406\) 18.9951 0.942710
\(407\) 8.69323i 0.430907i
\(408\) 4.01621 2.31876i 0.198832 0.114796i
\(409\) 18.6543 + 32.3103i 0.922398 + 1.59764i 0.795694 + 0.605699i \(0.207107\pi\)
0.126704 + 0.991941i \(0.459560\pi\)
\(410\) −6.00729 + 6.79384i −0.296679 + 0.335524i
\(411\) −6.38787 −0.315091
\(412\) 1.84544 1.06547i 0.0909184 0.0524918i
\(413\) 31.9629 + 18.4538i 1.57279 + 0.908053i
\(414\) 3.19029 + 5.52574i 0.156794 + 0.271575i
\(415\) 7.04767 + 21.0437i 0.345957 + 1.03299i
\(416\) 0.403032 0.698071i 0.0197603 0.0342258i
\(417\) 13.2750i 0.650081i
\(418\) −16.5793 + 4.84121i −0.810919 + 0.236791i
\(419\) 16.5271 0.807399 0.403700 0.914892i \(-0.367724\pi\)
0.403700 + 0.914892i \(0.367724\pi\)
\(420\) −9.91276 + 3.31985i −0.483693 + 0.161992i
\(421\) 10.4902 18.1696i 0.511263 0.885534i −0.488652 0.872479i \(-0.662511\pi\)
0.999915 0.0130548i \(-0.00415559\pi\)
\(422\) 11.5185 6.65022i 0.560712 0.323727i
\(423\) 8.12382 + 4.69029i 0.394994 + 0.228050i
\(424\) 0.778209 + 1.34790i 0.0377931 + 0.0654597i
\(425\) −23.0132 + 2.83875i −1.11630 + 0.137700i
\(426\) 2.16854 0.105066
\(427\) −17.8388 + 10.2992i −0.863281 + 0.498415i
\(428\) 6.89137 3.97873i 0.333107 0.192319i
\(429\) 3.19394 0.154205
\(430\) 12.3127 + 10.8872i 0.593769 + 0.525026i
\(431\) 8.69640 + 15.0626i 0.418891 + 0.725540i 0.995828 0.0912482i \(-0.0290857\pi\)
−0.576937 + 0.816788i \(0.695752\pi\)
\(432\) −0.866025 0.500000i −0.0416667 0.0240563i
\(433\) −0.124800 + 0.0720532i −0.00599750 + 0.00346266i −0.502996 0.864289i \(-0.667769\pi\)
0.496998 + 0.867752i \(0.334436\pi\)
\(434\) −7.83146 + 13.5645i −0.375922 + 0.651116i
\(435\) −2.88517 8.61486i −0.138334 0.413051i
\(436\) 10.4060 0.498356
\(437\) 6.59739 27.0185i 0.315596 1.29247i
\(438\) 11.8315i 0.565329i
\(439\) 15.5381 26.9128i 0.741593 1.28448i −0.210177 0.977663i \(-0.567404\pi\)
0.951770 0.306813i \(-0.0992625\pi\)
\(440\) −2.81373 8.40152i −0.134139 0.400527i
\(441\) −7.42842 12.8664i −0.353734 0.612686i
\(442\) 3.23732 + 1.86907i 0.153984 + 0.0889025i
\(443\) −26.7774 + 15.4599i −1.27223 + 0.734523i −0.975408 0.220409i \(-0.929261\pi\)
−0.296824 + 0.954932i \(0.595927\pi\)
\(444\) 2.19394 0.104120
\(445\) −30.5926 27.0508i −1.45023 1.28233i
\(446\) 0.909141 + 1.57468i 0.0430491 + 0.0745632i
\(447\) 0.778890 0.449692i 0.0368402 0.0212697i
\(448\) 4.67513i 0.220879i
\(449\) 3.40009 0.160460 0.0802301 0.996776i \(-0.474434\pi\)
0.0802301 + 0.996776i \(0.474434\pi\)
\(450\) 3.01131 + 3.99149i 0.141955 + 0.188161i
\(451\) 8.03515 13.9173i 0.378360 0.655339i
\(452\) −10.6525 + 6.15022i −0.501051 + 0.289282i
\(453\) −8.98558 5.18783i −0.422179 0.243745i
\(454\) −6.43453 + 11.1449i −0.301988 + 0.523058i
\(455\) −6.31265 5.58181i −0.295942 0.261679i
\(456\) 1.22179 + 4.18416i 0.0572156 + 0.195941i
\(457\) 9.11634i 0.426445i 0.977004 + 0.213222i \(0.0683959\pi\)
−0.977004 + 0.213222i \(0.931604\pi\)
\(458\) −13.9529 8.05571i −0.651976 0.376419i
\(459\) 2.31876 4.01621i 0.108230 0.187461i
\(460\) 13.9818 + 2.84055i 0.651904 + 0.132441i
\(461\) −2.13823 + 3.70352i −0.0995871 + 0.172490i −0.911514 0.411269i \(-0.865086\pi\)
0.811927 + 0.583759i \(0.198419\pi\)
\(462\) 16.0428 9.26234i 0.746381 0.430923i
\(463\) 29.4871i 1.37038i −0.728364 0.685190i \(-0.759719\pi\)
0.728364 0.685190i \(-0.240281\pi\)
\(464\) 4.06300 0.188620
\(465\) 7.34144 + 1.49149i 0.340451 + 0.0691662i
\(466\) 1.10062 + 1.90632i 0.0509850 + 0.0883087i
\(467\) 15.9575i 0.738423i −0.929345 0.369212i \(-0.879628\pi\)
0.929345 0.369212i \(-0.120372\pi\)
\(468\) 0.806063i 0.0372603i
\(469\) −17.3290 30.0147i −0.800179 1.38595i
\(470\) 19.8898 6.66123i 0.917448 0.307260i
\(471\) −7.07452 12.2534i −0.325976 0.564608i
\(472\) 6.83680 + 3.94723i 0.314689 + 0.181686i
\(473\) −25.2226 14.5623i −1.15974 0.669575i
\(474\) −9.35026 −0.429472
\(475\) 2.53896 21.6461i 0.116496 0.993191i
\(476\) 21.6810 0.993747
\(477\) 1.34790 + 0.778209i 0.0617160 + 0.0356317i
\(478\) −4.07077 2.35026i −0.186193 0.107498i
\(479\) 10.5410 + 18.2576i 0.481632 + 0.834211i 0.999778 0.0210814i \(-0.00671090\pi\)
−0.518146 + 0.855292i \(0.673378\pi\)
\(480\) −2.12032 + 0.710109i −0.0967788 + 0.0324119i
\(481\) 0.884226 + 1.53152i 0.0403172 + 0.0698315i
\(482\) 25.2809i 1.15151i
\(483\) 29.8300i 1.35731i
\(484\) 2.35026 + 4.07077i 0.106830 + 0.185035i
\(485\) 27.1852 + 5.52297i 1.23442 + 0.250785i
\(486\) −1.00000 −0.0453609
\(487\) 10.2365i 0.463859i −0.972733 0.231929i \(-0.925496\pi\)
0.972733 0.231929i \(-0.0745038\pi\)
\(488\) −3.81568 + 2.20299i −0.172728 + 0.0997245i
\(489\) −8.73084 + 15.1223i −0.394822 + 0.683852i
\(490\) −32.5559 6.61407i −1.47072 0.298793i
\(491\) −3.68901 + 6.38956i −0.166483 + 0.288357i −0.937181 0.348844i \(-0.886574\pi\)
0.770698 + 0.637200i \(0.219908\pi\)
\(492\) −3.51235 2.02785i −0.158349 0.0914228i
\(493\) 18.8423i 0.848613i
\(494\) −2.42842 + 2.53925i −0.109260 + 0.114246i
\(495\) −6.63752 5.86907i −0.298334 0.263795i
\(496\) −1.67513 + 2.90141i −0.0752156 + 0.130277i
\(497\) 8.77996 + 5.06911i 0.393835 + 0.227381i
\(498\) −8.59511 + 4.96239i −0.385156 + 0.222370i
\(499\) −13.1944 + 22.8534i −0.590663 + 1.02306i 0.403480 + 0.914988i \(0.367800\pi\)
−0.994143 + 0.108070i \(0.965533\pi\)
\(500\) 11.1466 + 0.867833i 0.498491 + 0.0388107i
\(501\) −23.2071 −1.03682
\(502\) 12.4387i 0.555164i
\(503\) −27.0701 + 15.6289i −1.20700 + 0.696860i −0.962102 0.272689i \(-0.912087\pi\)
−0.244895 + 0.969550i \(0.578754\pi\)
\(504\) −2.33757 4.04878i −0.104123 0.180347i
\(505\) 17.4861 + 15.4617i 0.778122 + 0.688036i
\(506\) −25.2823 −1.12394
\(507\) −10.6956 + 6.17513i −0.475010 + 0.274247i
\(508\) −10.3754 5.99024i −0.460334 0.265774i
\(509\) 1.79384 + 3.10703i 0.0795108 + 0.137717i 0.903039 0.429559i \(-0.141331\pi\)
−0.823528 + 0.567275i \(0.807998\pi\)
\(510\) −3.29314 9.83301i −0.145823 0.435413i
\(511\) 27.6568 47.9030i 1.22346 2.11910i
\(512\) 1.00000i 0.0441942i
\(513\) 3.15018 + 3.01270i 0.139084 + 0.133014i
\(514\) 26.2130 1.15621
\(515\) −1.51319 4.51825i −0.0666793 0.199098i
\(516\) −3.67513 + 6.36551i −0.161789 + 0.280226i
\(517\) −32.1897 + 18.5847i −1.41570 + 0.817356i
\(518\) 8.88277 + 5.12847i 0.390287 + 0.225332i
\(519\) −9.58721 16.6055i −0.420832 0.728902i
\(520\) −1.35026 1.19394i −0.0592129 0.0523576i
\(521\) 1.56134 0.0684036 0.0342018 0.999415i \(-0.489111\pi\)
0.0342018 + 0.999415i \(0.489111\pi\)
\(522\) 3.51866 2.03150i 0.154008 0.0889164i
\(523\) 11.2025 6.46779i 0.489853 0.282817i −0.234660 0.972077i \(-0.575398\pi\)
0.724513 + 0.689261i \(0.242065\pi\)
\(524\) 12.6121 0.550963
\(525\) 2.86177 + 23.1998i 0.124898 + 1.01252i
\(526\) 2.90597 + 5.03329i 0.126706 + 0.219462i
\(527\) −13.4554 7.76845i −0.586124 0.338399i
\(528\) 3.43153 1.98119i 0.149338 0.0862204i
\(529\) 8.85589 15.3389i 0.385039 0.666907i
\(530\) 3.30010 1.10523i 0.143347 0.0480079i
\(531\) 7.89446 0.342590
\(532\) −4.83399 + 19.7968i −0.209580 + 0.858299i
\(533\) 3.26916i 0.141603i
\(534\) 9.13141 15.8161i 0.395155 0.684428i
\(535\) −5.65066 16.8723i −0.244300 0.729455i
\(536\) −3.70663 6.42008i −0.160102 0.277305i
\(537\) −15.9095 9.18536i −0.686546 0.396378i
\(538\) 20.3518 11.7501i 0.877429 0.506584i
\(539\) 58.8686 2.53565
\(540\) −1.48119 + 1.67513i −0.0637405 + 0.0720862i
\(541\) −16.3004 28.2332i −0.700810 1.21384i −0.968182 0.250246i \(-0.919489\pi\)
0.267372 0.963593i \(-0.413845\pi\)
\(542\) −28.3069 + 16.3430i −1.21588 + 0.701991i
\(543\) 6.21933i 0.266897i
\(544\) 4.63752 0.198832
\(545\) 4.63260 22.8026i 0.198439 0.976758i
\(546\) 1.88423 3.26358i 0.0806374 0.139668i
\(547\) −24.6599 + 14.2374i −1.05438 + 0.608748i −0.923873 0.382699i \(-0.874995\pi\)
−0.130510 + 0.991447i \(0.541661\pi\)
\(548\) −5.53206 3.19394i −0.236318 0.136438i
\(549\) −2.20299 + 3.81568i −0.0940211 + 0.162849i
\(550\) −19.6629 + 2.42548i −0.838429 + 0.103423i
\(551\) −17.2047 4.20106i −0.732947 0.178971i
\(552\) 6.38058i 0.271575i
\(553\) −37.8572 21.8568i −1.60985 0.929448i
\(554\) −9.83440 + 17.0337i −0.417823 + 0.723691i
\(555\) 0.976711 4.80758i 0.0414591 0.204070i
\(556\) 6.63752 11.4965i 0.281494 0.487561i
\(557\) 24.3934 14.0836i 1.03358 0.596740i 0.115574 0.993299i \(-0.463129\pi\)
0.918009 + 0.396559i \(0.129796\pi\)
\(558\) 3.35026i 0.141828i
\(559\) −5.92478 −0.250591
\(560\) −10.2446 2.08130i −0.432915 0.0879512i
\(561\) 9.18783 + 15.9138i 0.387910 + 0.671880i
\(562\) 11.5926i 0.489005i
\(563\) 7.02776i 0.296185i −0.988974 0.148092i \(-0.952687\pi\)
0.988974 0.148092i \(-0.0473133\pi\)
\(564\) 4.69029 + 8.12382i 0.197497 + 0.342075i
\(565\) 8.73464 + 26.0808i 0.367469 + 1.09723i
\(566\) 14.7005 + 25.4621i 0.617909 + 1.07025i
\(567\) −4.04878 2.33757i −0.170033 0.0981685i
\(568\) 1.87801 + 1.08427i 0.0787997 + 0.0454950i
\(569\) −21.5320 −0.902668 −0.451334 0.892355i \(-0.649052\pi\)
−0.451334 + 0.892355i \(0.649052\pi\)
\(570\) 9.71270 0.814582i 0.406820 0.0341191i
\(571\) 14.1417 0.591813 0.295907 0.955217i \(-0.404378\pi\)
0.295907 + 0.955217i \(0.404378\pi\)
\(572\) 2.76603 + 1.59697i 0.115654 + 0.0667726i
\(573\) 3.01054 + 1.73813i 0.125767 + 0.0726116i
\(574\) −9.48049 16.4207i −0.395708 0.685386i
\(575\) 12.4490 29.3737i 0.519159 1.22497i
\(576\) −0.500000 0.866025i −0.0208333 0.0360844i
\(577\) 4.22918i 0.176063i −0.996118 0.0880315i \(-0.971942\pi\)
0.996118 0.0880315i \(-0.0280576\pi\)
\(578\) 4.50659i 0.187449i
\(579\) −4.37153 7.57171i −0.181675 0.314670i
\(580\) 1.80879 8.90327i 0.0751061 0.369688i
\(581\) −46.3996 −1.92498
\(582\) 12.4060i 0.514244i
\(583\) −5.34089 + 3.08356i −0.221197 + 0.127708i
\(584\) 5.91573 10.2463i 0.244795 0.423997i
\(585\) −1.76633 0.358849i −0.0730287 0.0148366i
\(586\) −11.1314 + 19.2802i −0.459834 + 0.796456i
\(587\) −2.11194 1.21933i −0.0871691 0.0503271i 0.455782 0.890092i \(-0.349360\pi\)
−0.542951 + 0.839764i \(0.682693\pi\)
\(588\) 14.8568i 0.612686i
\(589\) 10.0933 10.5539i 0.415888 0.434868i
\(590\) 11.6932 13.2243i 0.481403 0.544434i
\(591\) 6.32241 10.9507i 0.260069 0.450453i
\(592\) 1.90000 + 1.09697i 0.0780897 + 0.0450851i
\(593\) −2.19785 + 1.26893i −0.0902549 + 0.0521087i −0.544448 0.838794i \(-0.683261\pi\)
0.454193 + 0.890903i \(0.349928\pi\)
\(594\) 1.98119 3.43153i 0.0812894 0.140797i
\(595\) 9.65209 47.5097i 0.395697 1.94771i
\(596\) 0.899385 0.0368402
\(597\) 4.37565i 0.179084i
\(598\) −4.45410 + 2.57158i −0.182142 + 0.105160i
\(599\) −14.1776 24.5563i −0.579281 1.00334i −0.995562 0.0941078i \(-0.970000\pi\)
0.416281 0.909236i \(-0.363333\pi\)
\(600\) 0.612127 + 4.96239i 0.0249900 + 0.202589i
\(601\) 23.5705 0.961463 0.480731 0.876868i \(-0.340371\pi\)
0.480731 + 0.876868i \(0.340371\pi\)
\(602\) −29.7596 + 17.1817i −1.21291 + 0.700275i
\(603\) −6.42008 3.70663i −0.261446 0.150946i
\(604\) −5.18783 8.98558i −0.211090 0.365618i
\(605\) 9.96660 3.33788i 0.405200 0.135704i
\(606\) −5.21933 + 9.04014i −0.212021 + 0.367231i
\(607\) 20.5042i 0.832241i −0.909310 0.416120i \(-0.863390\pi\)
0.909310 0.416120i \(-0.136610\pi\)
\(608\) −1.03398 + 4.23449i −0.0419334 + 0.171731i
\(609\) 18.9951 0.769719
\(610\) 3.12872 + 9.34206i 0.126678 + 0.378249i
\(611\) −3.78067 + 6.54831i −0.152950 + 0.264916i
\(612\) 4.01621 2.31876i 0.162346 0.0937303i
\(613\) −0.211935 0.122361i −0.00855999 0.00494211i 0.495714 0.868486i \(-0.334906\pi\)
−0.504274 + 0.863544i \(0.668240\pi\)
\(614\) 15.6314 + 27.0744i 0.630832 + 1.09263i
\(615\) −6.00729 + 6.79384i −0.242237 + 0.273954i
\(616\) 18.5247 0.746381
\(617\) 0.401053 0.231548i 0.0161458 0.00932177i −0.491905 0.870649i \(-0.663699\pi\)
0.508051 + 0.861327i \(0.330366\pi\)
\(618\) 1.84544 1.06547i 0.0742346 0.0428593i
\(619\) 11.1685 0.448902 0.224451 0.974485i \(-0.427941\pi\)
0.224451 + 0.974485i \(0.427941\pi\)
\(620\) 5.61213 + 4.96239i 0.225388 + 0.199294i
\(621\) 3.19029 + 5.52574i 0.128022 + 0.221740i
\(622\) −15.4057 8.89446i −0.617711 0.356635i
\(623\) 73.9422 42.6905i 2.96243 1.71036i
\(624\) 0.403032 0.698071i 0.0161342 0.0279452i
\(625\) 6.86400 24.0392i 0.274560 0.961570i
\(626\) −6.23743 −0.249298
\(627\) −16.5793 + 4.84121i −0.662113 + 0.193339i
\(628\) 14.1490i 0.564608i
\(629\) −5.08721 + 8.81131i −0.202840 + 0.351330i
\(630\) −9.91276 + 3.31985i −0.394934 + 0.132266i
\(631\) 20.9695 + 36.3202i 0.834781 + 1.44588i 0.894209 + 0.447650i \(0.147739\pi\)
−0.0594281 + 0.998233i \(0.518928\pi\)
\(632\) −8.09756 4.67513i −0.322104 0.185967i
\(633\) 11.5185 6.65022i 0.457820 0.264322i
\(634\) −13.7431 −0.545807
\(635\) −17.7454 + 20.0689i −0.704206 + 0.796409i
\(636\) 0.778209 + 1.34790i 0.0308580 + 0.0534476i
\(637\) 10.3711 5.98778i 0.410920 0.237245i
\(638\) 16.0992i 0.637373i
\(639\) 2.16854 0.0857863
\(640\) −2.19130 0.445186i −0.0866189 0.0175975i
\(641\) 12.5999 21.8237i 0.497666 0.861984i −0.502330 0.864676i \(-0.667524\pi\)
0.999996 + 0.00269246i \(0.000857038\pi\)
\(642\) 6.89137 3.97873i 0.271981 0.157028i
\(643\) 18.4581 + 10.6568i 0.727917 + 0.420263i 0.817660 0.575702i \(-0.195271\pi\)
−0.0897424 + 0.995965i \(0.528604\pi\)
\(644\) −14.9150 + 25.8336i −0.587734 + 1.01799i
\(645\) 12.3127 + 10.8872i 0.484810 + 0.428682i
\(646\) −19.6375 4.79510i −0.772628 0.188661i
\(647\) 22.0132i 0.865427i 0.901531 + 0.432714i \(0.142444\pi\)
−0.901531 + 0.432714i \(0.857556\pi\)
\(648\) −0.866025 0.500000i −0.0340207 0.0196419i
\(649\) −15.6405 + 27.0901i −0.613942 + 1.06338i
\(650\) −3.21740 + 2.42731i −0.126197 + 0.0952069i
\(651\) −7.83146 + 13.5645i −0.306939 + 0.531634i
\(652\) −15.1223 + 8.73084i −0.592233 + 0.341926i
\(653\) 33.6785i 1.31794i 0.752169 + 0.658970i \(0.229008\pi\)
−0.752169 + 0.658970i \(0.770992\pi\)
\(654\) 10.4060 0.406906
\(655\) 5.61475 27.6370i 0.219386 1.07987i
\(656\) −2.02785 3.51235i −0.0791744 0.137134i
\(657\) 11.8315i 0.461589i
\(658\) 43.8554i 1.70966i
\(659\) −22.9538 39.7572i −0.894154 1.54872i −0.834848 0.550480i \(-0.814445\pi\)
−0.0593053 0.998240i \(-0.518889\pi\)
\(660\) −2.81373 8.40152i −0.109524 0.327029i
\(661\) −7.24472 12.5482i −0.281787 0.488069i 0.690038 0.723773i \(-0.257594\pi\)
−0.971825 + 0.235704i \(0.924260\pi\)
\(662\) −1.35299 0.781148i −0.0525854 0.0303602i
\(663\) 3.23732 + 1.86907i 0.125727 + 0.0725886i
\(664\) −9.92478 −0.385156
\(665\) 41.2287 + 19.4060i 1.59878 + 0.752532i
\(666\) 2.19394 0.0850133
\(667\) −22.4511 12.9622i −0.869311 0.501897i
\(668\) −20.0979 11.6036i −0.777613 0.448955i
\(669\) 0.909141 + 1.57468i 0.0351494 + 0.0608806i
\(670\) −15.7185 + 5.26422i −0.607258 + 0.203375i
\(671\) −8.72909 15.1192i −0.336983 0.583671i
\(672\) 4.67513i 0.180347i
\(673\) 19.8397i 0.764764i −0.924004 0.382382i \(-0.875104\pi\)
0.924004 0.382382i \(-0.124896\pi\)
\(674\) −6.51881 11.2909i −0.251095 0.434909i
\(675\) 3.01131 + 3.99149i 0.115905 + 0.153633i
\(676\) −12.3503 −0.475010
\(677\) 10.3479i 0.397702i −0.980030 0.198851i \(-0.936279\pi\)
0.980030 0.198851i \(-0.0637209\pi\)
\(678\) −10.6525 + 6.15022i −0.409106 + 0.236198i
\(679\) −28.9998 + 50.2291i −1.11291 + 1.92761i
\(680\) 2.06456 10.1622i 0.0791723 0.389703i
\(681\) −6.43453 + 11.1449i −0.246572 + 0.427075i
\(682\) −11.4965 6.63752i −0.440225 0.254164i
\(683\) 40.3307i 1.54321i −0.636100 0.771607i \(-0.719453\pi\)
0.636100 0.771607i \(-0.280547\pi\)
\(684\) 1.22179 + 4.18416i 0.0467164 + 0.159985i
\(685\) −9.46168 + 10.7005i −0.361512 + 0.408846i
\(686\) 18.3659 31.8107i 0.701213 1.21454i
\(687\) −13.9529 8.05571i −0.532336 0.307344i
\(688\) −6.36551 + 3.67513i −0.242683 + 0.140113i
\(689\) −0.627285 + 1.08649i −0.0238977 + 0.0413920i
\(690\) 13.9818 + 2.84055i 0.532277 + 0.108138i
\(691\) 45.8202 1.74308 0.871541 0.490322i \(-0.163121\pi\)
0.871541 + 0.490322i \(0.163121\pi\)
\(692\) 19.1744i 0.728902i
\(693\) 16.0428 9.26234i 0.609417 0.351847i
\(694\) 12.2750 + 21.2610i 0.465954 + 0.807056i
\(695\) −22.2374 19.6629i −0.843514 0.745857i
\(696\) 4.06300 0.154008
\(697\) 16.2886 9.40422i 0.616974 0.356210i
\(698\) −5.94879 3.43453i −0.225165 0.129999i
\(699\) 1.10062 + 1.90632i 0.0416291 + 0.0721037i
\(700\) −9.12154 + 21.5225i −0.344762 + 0.813475i
\(701\) 18.6375 32.2811i 0.703929 1.21924i −0.263147 0.964756i \(-0.584760\pi\)
0.967077 0.254486i \(-0.0819062\pi\)
\(702\) 0.806063i 0.0304229i
\(703\) −6.91130 6.60966i −0.260665 0.249288i
\(704\) 3.96239 0.149338
\(705\) 19.8898 6.66123i 0.749093 0.250876i
\(706\) −14.5684 + 25.2332i −0.548289 + 0.949665i
\(707\) −42.2639 + 24.4010i −1.58950 + 0.917696i
\(708\) 6.83680 + 3.94723i 0.256943 + 0.148346i
\(709\) 22.8356 + 39.5524i 0.857608 + 1.48542i 0.874204 + 0.485559i \(0.161384\pi\)
−0.0165958 + 0.999862i \(0.505283\pi\)
\(710\) 3.21203 3.63259i 0.120546 0.136329i
\(711\) −9.35026 −0.350662
\(712\) 15.8161 9.13141i 0.592732 0.342214i
\(713\) 18.5127 10.6883i 0.693306 0.400280i
\(714\) 21.6810 0.811391
\(715\) 4.73084 5.35026i 0.176923 0.200088i
\(716\) −9.18536 15.9095i −0.343273 0.594567i
\(717\) −4.07077 2.35026i −0.152026 0.0877721i
\(718\) 18.0520 10.4223i 0.673694 0.388957i
\(719\) −14.5188 + 25.1473i −0.541460 + 0.937836i 0.457360 + 0.889281i \(0.348795\pi\)
−0.998821 + 0.0485550i \(0.984538\pi\)
\(720\) −2.12032 + 0.710109i −0.0790196 + 0.0264642i
\(721\) 9.96239 0.371019
\(722\) 8.75675 16.8618i 0.325892 0.627530i
\(723\) 25.2809i 0.940207i
\(724\) −3.10966 + 5.38610i −0.115570 + 0.200173i
\(725\) −18.7045 7.92723i −0.694668 0.294410i
\(726\) 2.35026 + 4.07077i 0.0872264 + 0.151081i
\(727\) −11.6107 6.70346i −0.430618 0.248618i 0.268992 0.963143i \(-0.413310\pi\)
−0.699610 + 0.714525i \(0.746643\pi\)
\(728\) 3.26358 1.88423i 0.120956 0.0698341i
\(729\) −1.00000 −0.0370370
\(730\) −19.8192 17.5247i −0.733543 0.648618i
\(731\) −17.0435 29.5202i −0.630376 1.09184i
\(732\) −3.81568 + 2.20299i −0.141032 + 0.0814247i
\(733\) 8.72829i 0.322387i 0.986923 + 0.161193i \(0.0515343\pi\)
−0.986923 + 0.161193i \(0.948466\pi\)
\(734\) 26.7612 0.987772
\(735\) −32.5559 6.61407i −1.20084 0.243964i
\(736\) −3.19029 + 5.52574i −0.117596 + 0.203682i
\(737\) 25.4388 14.6871i 0.937052 0.541007i
\(738\) −3.51235 2.02785i −0.129291 0.0746464i
\(739\) −16.1661 + 28.0005i −0.594679 + 1.03001i 0.398913 + 0.916989i \(0.369387\pi\)
−0.993592 + 0.113025i \(0.963946\pi\)
\(740\) 3.24965 3.67513i 0.119459 0.135100i
\(741\) −2.42842 + 2.53925i −0.0892104 + 0.0932816i
\(742\) 7.27645i 0.267127i
\(743\) −40.5255 23.3974i −1.48674 0.858367i −0.486850 0.873486i \(-0.661854\pi\)
−0.999886 + 0.0151182i \(0.995188\pi\)
\(744\) −1.67513 + 2.90141i −0.0614133 + 0.106371i
\(745\) 0.400394 1.97082i 0.0146693 0.0722054i
\(746\) 13.8156 23.9293i 0.505825 0.876114i
\(747\) −8.59511 + 4.96239i −0.314479 + 0.181564i
\(748\) 18.3757i 0.671880i
\(749\) 37.2022 1.35934
\(750\) 11.1466 + 0.867833i 0.407017 + 0.0316888i
\(751\) 19.6180 + 33.9794i 0.715871 + 1.23993i 0.962623 + 0.270846i \(0.0873036\pi\)
−0.246751 + 0.969079i \(0.579363\pi\)
\(752\) 9.38058i 0.342075i
\(753\) 12.4387i 0.453290i
\(754\) 1.63752 + 2.83627i 0.0596349 + 0.103291i
\(755\) −21.9997 + 7.36784i −0.800650 + 0.268143i
\(756\) −2.33757 4.04878i −0.0850164 0.147253i
\(757\) 3.30977 + 1.91090i 0.120296 + 0.0694527i 0.558940 0.829208i \(-0.311208\pi\)
−0.438645 + 0.898661i \(0.644541\pi\)
\(758\) 24.6286 + 14.2193i 0.894551 + 0.516469i
\(759\) −25.2823 −0.917691
\(760\) 8.81873 + 4.15090i 0.319889 + 0.150569i
\(761\) −28.3928 −1.02924 −0.514619 0.857419i \(-0.672067\pi\)
−0.514619 + 0.857419i \(0.672067\pi\)
\(762\) −10.3754 5.99024i −0.375861 0.217004i
\(763\) 42.1315 + 24.3246i 1.52526 + 0.880611i
\(764\) 1.73813 + 3.01054i 0.0628835 + 0.108917i
\(765\) −3.29314 9.83301i −0.119064 0.355513i
\(766\) −8.52175 14.7601i −0.307903 0.533304i
\(767\) 6.36344i 0.229770i
\(768\) 1.00000i 0.0360844i
\(769\) 3.11577 + 5.39668i 0.112358 + 0.194609i 0.916720 0.399529i \(-0.130826\pi\)
−0.804363 + 0.594139i \(0.797493\pi\)
\(770\) 8.24694 40.5932i 0.297199 1.46288i
\(771\) 26.2130 0.944038
\(772\) 8.74306i 0.314670i
\(773\) −21.6189 + 12.4817i −0.777577 + 0.448935i −0.835571 0.549382i \(-0.814863\pi\)
0.0579936 + 0.998317i \(0.481530\pi\)
\(774\) −3.67513 + 6.36551i −0.132100 + 0.228804i
\(775\) 13.3725 10.0887i 0.480356