Properties

Label 570.2.q.b.49.1
Level $570$
Weight $2$
Character 570.49
Analytic conductor $4.551$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 570 = 2 \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 570.q (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.55147291521\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.89539436150784.1
Defining polynomial: \(x^{12} - 2 x^{11} + 2 x^{10} - 8 x^{9} + 4 x^{8} + 16 x^{7} - 8 x^{6} + 20 x^{5} + 20 x^{4} - 24 x^{3} + 8 x^{2} - 8 x + 4\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 49.1
Root \(-0.531325 - 1.98293i\) of defining polynomial
Character \(\chi\) \(=\) 570.49
Dual form 570.2.q.b.349.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.866025 - 0.500000i) q^{2} +(-0.866025 - 0.500000i) q^{3} +(0.500000 + 0.866025i) q^{4} +(-0.837733 + 2.07321i) q^{5} +(0.500000 + 0.866025i) q^{6} -0.785680i q^{7} -1.00000i q^{8} +(0.500000 + 0.866025i) q^{9} +O(q^{10})\) \(q+(-0.866025 - 0.500000i) q^{2} +(-0.866025 - 0.500000i) q^{3} +(0.500000 + 0.866025i) q^{4} +(-0.837733 + 2.07321i) q^{5} +(0.500000 + 0.866025i) q^{6} -0.785680i q^{7} -1.00000i q^{8} +(0.500000 + 0.866025i) q^{9} +(1.76210 - 1.37659i) q^{10} -0.377784 q^{11} -1.00000i q^{12} +(2.51426 - 1.45161i) q^{13} +(-0.392840 + 0.680419i) q^{14} +(1.76210 - 1.37659i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(-2.45651 - 1.41827i) q^{17} -1.00000i q^{18} +(-2.82148 + 3.32254i) q^{19} +(-2.21432 + 0.311108i) q^{20} +(-0.392840 + 0.680419i) q^{21} +(0.327171 + 0.188892i) q^{22} +(-7.86994 + 4.54371i) q^{23} +(-0.500000 + 0.866025i) q^{24} +(-3.59641 - 3.47359i) q^{25} -2.90321 q^{26} -1.00000i q^{27} +(0.680419 - 0.392840i) q^{28} +(2.01037 + 3.48207i) q^{29} +(-2.21432 + 0.311108i) q^{30} -4.42864 q^{31} +(0.866025 - 0.500000i) q^{32} +(0.327171 + 0.188892i) q^{33} +(1.41827 + 2.45651i) q^{34} +(1.62888 + 0.658190i) q^{35} +(-0.500000 + 0.866025i) q^{36} +0.0967881i q^{37} +(4.10474 - 1.46666i) q^{38} -2.90321 q^{39} +(2.07321 + 0.837733i) q^{40} +(-1.43655 + 2.48818i) q^{41} +(0.680419 - 0.392840i) q^{42} +(0.371213 + 0.214320i) q^{43} +(-0.188892 - 0.327171i) q^{44} +(-2.21432 + 0.311108i) q^{45} +9.08742 q^{46} +(-10.4680 + 6.04371i) q^{47} +(0.866025 - 0.500000i) q^{48} +6.38271 q^{49} +(1.37778 + 4.80642i) q^{50} +(1.41827 + 2.45651i) q^{51} +(2.51426 + 1.45161i) q^{52} +(-6.00443 + 3.46666i) q^{53} +(-0.500000 + 0.866025i) q^{54} +(0.316482 - 0.783227i) q^{55} -0.785680 q^{56} +(4.10474 - 1.46666i) q^{57} -4.02074i q^{58} +(-4.88025 + 8.45283i) q^{59} +(2.07321 + 0.837733i) q^{60} +(-2.27777 - 3.94521i) q^{61} +(3.83531 + 2.21432i) q^{62} +(0.680419 - 0.392840i) q^{63} -1.00000 q^{64} +(0.903212 + 6.42864i) q^{65} +(-0.188892 - 0.327171i) q^{66} +(-7.31738 + 4.22469i) q^{67} -2.83654i q^{68} +9.08742 q^{69} +(-1.08156 - 1.38445i) q^{70} +(5.86987 - 10.1669i) q^{71} +(0.866025 - 0.500000i) q^{72} +(1.95744 + 1.13013i) q^{73} +(0.0483940 - 0.0838209i) q^{74} +(1.37778 + 4.80642i) q^{75} +(-4.28814 - 0.782204i) q^{76} +0.296818i q^{77} +(2.51426 + 1.45161i) q^{78} +(-0.785680 + 1.36084i) q^{79} +(-1.37659 - 1.76210i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(2.48818 - 1.43655i) q^{82} -2.75557i q^{83} -0.785680 q^{84} +(4.99827 - 3.90474i) q^{85} +(-0.214320 - 0.371213i) q^{86} -4.02074i q^{87} +0.377784i q^{88} +(5.96912 + 10.3388i) q^{89} +(2.07321 + 0.837733i) q^{90} +(-1.14050 - 1.97540i) q^{91} +(-7.86994 - 4.54371i) q^{92} +(3.83531 + 2.21432i) q^{93} +12.0874 q^{94} +(-4.52468 - 8.63292i) q^{95} -1.00000 q^{96} +(-2.98299 - 1.72223i) q^{97} +(-5.52759 - 3.19135i) q^{98} +(-0.188892 - 0.327171i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12q + 6q^{4} + 6q^{6} + 6q^{9} + O(q^{10}) \) \( 12q + 6q^{4} + 6q^{6} + 6q^{9} - 2q^{10} - 4q^{11} - 18q^{14} - 2q^{15} - 6q^{16} + 6q^{19} - 18q^{21} - 6q^{24} - 2q^{25} - 8q^{26} - 16q^{29} + 4q^{34} + 2q^{35} - 6q^{36} - 8q^{39} + 2q^{40} + 10q^{41} - 2q^{44} + 28q^{46} - 56q^{49} + 16q^{50} + 4q^{51} - 6q^{54} - 8q^{55} - 36q^{56} + 8q^{59} + 2q^{60} - 28q^{61} - 12q^{64} - 16q^{65} - 2q^{66} + 28q^{69} + 16q^{70} + 44q^{71} + 14q^{74} + 16q^{75} - 12q^{76} - 36q^{79} - 6q^{81} - 36q^{84} - 32q^{85} + 24q^{86} + 6q^{89} + 2q^{90} + 64q^{94} - 12q^{95} - 12q^{96} - 2q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/570\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(211\) \(457\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 0.500000i −0.612372 0.353553i
\(3\) −0.866025 0.500000i −0.500000 0.288675i
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) −0.837733 + 2.07321i −0.374645 + 0.927168i
\(6\) 0.500000 + 0.866025i 0.204124 + 0.353553i
\(7\) 0.785680i 0.296959i −0.988915 0.148480i \(-0.952562\pi\)
0.988915 0.148480i \(-0.0474379\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0.500000 + 0.866025i 0.166667 + 0.288675i
\(10\) 1.76210 1.37659i 0.557226 0.435315i
\(11\) −0.377784 −0.113906 −0.0569531 0.998377i \(-0.518139\pi\)
−0.0569531 + 0.998377i \(0.518139\pi\)
\(12\) 1.00000i 0.288675i
\(13\) 2.51426 1.45161i 0.697329 0.402603i −0.109023 0.994039i \(-0.534772\pi\)
0.806352 + 0.591436i \(0.201439\pi\)
\(14\) −0.392840 + 0.680419i −0.104991 + 0.181850i
\(15\) 1.76210 1.37659i 0.454973 0.355433i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −2.45651 1.41827i −0.595792 0.343980i 0.171593 0.985168i \(-0.445109\pi\)
−0.767384 + 0.641188i \(0.778442\pi\)
\(18\) 1.00000i 0.235702i
\(19\) −2.82148 + 3.32254i −0.647292 + 0.762242i
\(20\) −2.21432 + 0.311108i −0.495137 + 0.0695658i
\(21\) −0.392840 + 0.680419i −0.0857247 + 0.148480i
\(22\) 0.327171 + 0.188892i 0.0697531 + 0.0402719i
\(23\) −7.86994 + 4.54371i −1.64100 + 0.947429i −0.660515 + 0.750813i \(0.729662\pi\)
−0.980481 + 0.196616i \(0.937005\pi\)
\(24\) −0.500000 + 0.866025i −0.102062 + 0.176777i
\(25\) −3.59641 3.47359i −0.719282 0.694719i
\(26\) −2.90321 −0.569367
\(27\) 1.00000i 0.192450i
\(28\) 0.680419 0.392840i 0.128587 0.0742398i
\(29\) 2.01037 + 3.48207i 0.373317 + 0.646603i 0.990074 0.140550i \(-0.0448872\pi\)
−0.616757 + 0.787154i \(0.711554\pi\)
\(30\) −2.21432 + 0.311108i −0.404278 + 0.0568003i
\(31\) −4.42864 −0.795407 −0.397704 0.917514i \(-0.630193\pi\)
−0.397704 + 0.917514i \(0.630193\pi\)
\(32\) 0.866025 0.500000i 0.153093 0.0883883i
\(33\) 0.327171 + 0.188892i 0.0569531 + 0.0328819i
\(34\) 1.41827 + 2.45651i 0.243231 + 0.421288i
\(35\) 1.62888 + 0.658190i 0.275331 + 0.111254i
\(36\) −0.500000 + 0.866025i −0.0833333 + 0.144338i
\(37\) 0.0967881i 0.0159119i 0.999968 + 0.00795593i \(0.00253248\pi\)
−0.999968 + 0.00795593i \(0.997468\pi\)
\(38\) 4.10474 1.46666i 0.665877 0.237924i
\(39\) −2.90321 −0.464886
\(40\) 2.07321 + 0.837733i 0.327803 + 0.132457i
\(41\) −1.43655 + 2.48818i −0.224351 + 0.388588i −0.956125 0.292960i \(-0.905360\pi\)
0.731773 + 0.681548i \(0.238693\pi\)
\(42\) 0.680419 0.392840i 0.104991 0.0606165i
\(43\) 0.371213 + 0.214320i 0.0566094 + 0.0326835i 0.528038 0.849221i \(-0.322928\pi\)
−0.471428 + 0.881904i \(0.656261\pi\)
\(44\) −0.188892 0.327171i −0.0284766 0.0493229i
\(45\) −2.21432 + 0.311108i −0.330091 + 0.0463772i
\(46\) 9.08742 1.33987
\(47\) −10.4680 + 6.04371i −1.52692 + 0.881566i −0.527428 + 0.849600i \(0.676843\pi\)
−0.999489 + 0.0319658i \(0.989823\pi\)
\(48\) 0.866025 0.500000i 0.125000 0.0721688i
\(49\) 6.38271 0.911815
\(50\) 1.37778 + 4.80642i 0.194848 + 0.679731i
\(51\) 1.41827 + 2.45651i 0.198597 + 0.343980i
\(52\) 2.51426 + 1.45161i 0.348664 + 0.201302i
\(53\) −6.00443 + 3.46666i −0.824772 + 0.476183i −0.852059 0.523445i \(-0.824647\pi\)
0.0272870 + 0.999628i \(0.491313\pi\)
\(54\) −0.500000 + 0.866025i −0.0680414 + 0.117851i
\(55\) 0.316482 0.783227i 0.0426745 0.105610i
\(56\) −0.785680 −0.104991
\(57\) 4.10474 1.46666i 0.543686 0.194264i
\(58\) 4.02074i 0.527949i
\(59\) −4.88025 + 8.45283i −0.635354 + 1.10047i 0.351086 + 0.936343i \(0.385812\pi\)
−0.986440 + 0.164122i \(0.947521\pi\)
\(60\) 2.07321 + 0.837733i 0.267650 + 0.108151i
\(61\) −2.27777 3.94521i −0.291639 0.505133i 0.682559 0.730831i \(-0.260867\pi\)
−0.974197 + 0.225698i \(0.927534\pi\)
\(62\) 3.83531 + 2.21432i 0.487085 + 0.281219i
\(63\) 0.680419 0.392840i 0.0857247 0.0494932i
\(64\) −1.00000 −0.125000
\(65\) 0.903212 + 6.42864i 0.112030 + 0.797375i
\(66\) −0.188892 0.327171i −0.0232510 0.0402719i
\(67\) −7.31738 + 4.22469i −0.893960 + 0.516128i −0.875236 0.483696i \(-0.839294\pi\)
−0.0187245 + 0.999825i \(0.505961\pi\)
\(68\) 2.83654i 0.343980i
\(69\) 9.08742 1.09400
\(70\) −1.08156 1.38445i −0.129271 0.165473i
\(71\) 5.86987 10.1669i 0.696626 1.20659i −0.273004 0.962013i \(-0.588017\pi\)
0.969630 0.244578i \(-0.0786495\pi\)
\(72\) 0.866025 0.500000i 0.102062 0.0589256i
\(73\) 1.95744 + 1.13013i 0.229101 + 0.132271i 0.610157 0.792280i \(-0.291106\pi\)
−0.381056 + 0.924552i \(0.624440\pi\)
\(74\) 0.0483940 0.0838209i 0.00562569 0.00974399i
\(75\) 1.37778 + 4.80642i 0.159093 + 0.554998i
\(76\) −4.28814 0.782204i −0.491884 0.0897250i
\(77\) 0.296818i 0.0338255i
\(78\) 2.51426 + 1.45161i 0.284683 + 0.164362i
\(79\) −0.785680 + 1.36084i −0.0883959 + 0.153106i −0.906833 0.421490i \(-0.861507\pi\)
0.818437 + 0.574596i \(0.194841\pi\)
\(80\) −1.37659 1.76210i −0.153907 0.197009i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 2.48818 1.43655i 0.274773 0.158640i
\(83\) 2.75557i 0.302463i −0.988498 0.151231i \(-0.951676\pi\)
0.988498 0.151231i \(-0.0483239\pi\)
\(84\) −0.785680 −0.0857247
\(85\) 4.99827 3.90474i 0.542138 0.423528i
\(86\) −0.214320 0.371213i −0.0231107 0.0400289i
\(87\) 4.02074i 0.431069i
\(88\) 0.377784i 0.0402719i
\(89\) 5.96912 + 10.3388i 0.632726 + 1.09591i 0.986992 + 0.160769i \(0.0513973\pi\)
−0.354266 + 0.935145i \(0.615269\pi\)
\(90\) 2.07321 + 0.837733i 0.218536 + 0.0883048i
\(91\) −1.14050 1.97540i −0.119557 0.207078i
\(92\) −7.86994 4.54371i −0.820498 0.473715i
\(93\) 3.83531 + 2.21432i 0.397704 + 0.229614i
\(94\) 12.0874 1.24672
\(95\) −4.52468 8.63292i −0.464222 0.885719i
\(96\) −1.00000 −0.102062
\(97\) −2.98299 1.72223i −0.302877 0.174866i 0.340858 0.940115i \(-0.389283\pi\)
−0.643735 + 0.765249i \(0.722616\pi\)
\(98\) −5.52759 3.19135i −0.558371 0.322375i
\(99\) −0.188892 0.327171i −0.0189844 0.0328819i
\(100\) 1.21002 4.85138i 0.121002 0.485138i
\(101\) −8.54617 14.8024i −0.850376 1.47289i −0.880870 0.473359i \(-0.843041\pi\)
0.0304937 0.999535i \(-0.490292\pi\)
\(102\) 2.83654i 0.280859i
\(103\) 8.11753i 0.799844i 0.916549 + 0.399922i \(0.130963\pi\)
−0.916549 + 0.399922i \(0.869037\pi\)
\(104\) −1.45161 2.51426i −0.142342 0.246543i
\(105\) −1.08156 1.38445i −0.105549 0.135108i
\(106\) 6.93332 0.673424
\(107\) 17.7812i 1.71898i −0.511155 0.859488i \(-0.670782\pi\)
0.511155 0.859488i \(-0.329218\pi\)
\(108\) 0.866025 0.500000i 0.0833333 0.0481125i
\(109\) 0.722230 1.25094i 0.0691771 0.119818i −0.829362 0.558711i \(-0.811296\pi\)
0.898539 + 0.438893i \(0.144629\pi\)
\(110\) −0.665695 + 0.520053i −0.0634715 + 0.0495851i
\(111\) 0.0483940 0.0838209i 0.00459336 0.00795593i
\(112\) 0.680419 + 0.392840i 0.0642936 + 0.0371199i
\(113\) 14.3160i 1.34674i 0.739306 + 0.673369i \(0.235154\pi\)
−0.739306 + 0.673369i \(0.764846\pi\)
\(114\) −4.28814 0.782204i −0.401621 0.0732602i
\(115\) −2.82717 20.1225i −0.263635 1.87643i
\(116\) −2.01037 + 3.48207i −0.186658 + 0.323302i
\(117\) 2.51426 + 1.45161i 0.232443 + 0.134201i
\(118\) 8.45283 4.88025i 0.778146 0.449263i
\(119\) −1.11430 + 1.93003i −0.102148 + 0.176926i
\(120\) −1.37659 1.76210i −0.125665 0.160857i
\(121\) −10.8573 −0.987025
\(122\) 4.55554i 0.412439i
\(123\) 2.48818 1.43655i 0.224351 0.129529i
\(124\) −2.21432 3.83531i −0.198852 0.344421i
\(125\) 10.2143 4.54617i 0.913597 0.406622i
\(126\) −0.785680 −0.0699940
\(127\) 3.14252 1.81433i 0.278854 0.160996i −0.354051 0.935226i \(-0.615196\pi\)
0.632904 + 0.774230i \(0.281863\pi\)
\(128\) 0.866025 + 0.500000i 0.0765466 + 0.0441942i
\(129\) −0.214320 0.371213i −0.0188698 0.0326835i
\(130\) 2.43212 6.01897i 0.213311 0.527899i
\(131\) 8.40321 14.5548i 0.734192 1.27166i −0.220885 0.975300i \(-0.570895\pi\)
0.955077 0.296358i \(-0.0957722\pi\)
\(132\) 0.377784i 0.0328819i
\(133\) 2.61045 + 2.21678i 0.226355 + 0.192219i
\(134\) 8.44938 0.729916
\(135\) 2.07321 + 0.837733i 0.178434 + 0.0721005i
\(136\) −1.41827 + 2.45651i −0.121615 + 0.210644i
\(137\) 1.89969 1.09679i 0.162302 0.0937049i −0.416649 0.909067i \(-0.636796\pi\)
0.578951 + 0.815362i \(0.303462\pi\)
\(138\) −7.86994 4.54371i −0.669934 0.386786i
\(139\) 0.836535 + 1.44892i 0.0709540 + 0.122896i 0.899320 0.437292i \(-0.144062\pi\)
−0.828366 + 0.560188i \(0.810729\pi\)
\(140\) 0.244431 + 1.73975i 0.0206582 + 0.147035i
\(141\) 12.0874 1.01794
\(142\) −10.1669 + 5.86987i −0.853189 + 0.492589i
\(143\) −0.949846 + 0.548394i −0.0794301 + 0.0458590i
\(144\) −1.00000 −0.0833333
\(145\) −8.90321 + 1.25088i −0.739372 + 0.103880i
\(146\) −1.13013 1.95744i −0.0935299 0.161999i
\(147\) −5.52759 3.19135i −0.455908 0.263218i
\(148\) −0.0838209 + 0.0483940i −0.00689004 + 0.00397797i
\(149\) 2.69926 4.67526i 0.221132 0.383012i −0.734020 0.679128i \(-0.762358\pi\)
0.955152 + 0.296116i \(0.0956914\pi\)
\(150\) 1.21002 4.85138i 0.0987974 0.396113i
\(151\) 9.07160 0.738236 0.369118 0.929382i \(-0.379660\pi\)
0.369118 + 0.929382i \(0.379660\pi\)
\(152\) 3.32254 + 2.82148i 0.269493 + 0.228852i
\(153\) 2.83654i 0.229320i
\(154\) 0.148409 0.257052i 0.0119591 0.0207138i
\(155\) 3.71002 9.18150i 0.297996 0.737476i
\(156\) −1.45161 2.51426i −0.116221 0.201302i
\(157\) 13.3094 + 7.68421i 1.06221 + 0.613267i 0.926042 0.377419i \(-0.123188\pi\)
0.136166 + 0.990686i \(0.456522\pi\)
\(158\) 1.36084 0.785680i 0.108262 0.0625054i
\(159\) 6.93332 0.549848
\(160\) 0.311108 + 2.21432i 0.0245952 + 0.175057i
\(161\) 3.56990 + 6.18325i 0.281348 + 0.487309i
\(162\) 0.866025 0.500000i 0.0680414 0.0392837i
\(163\) 7.31756i 0.573156i −0.958057 0.286578i \(-0.907482\pi\)
0.958057 0.286578i \(-0.0925177\pi\)
\(164\) −2.87310 −0.224351
\(165\) −0.665695 + 0.520053i −0.0518243 + 0.0404861i
\(166\) −1.37778 + 2.38639i −0.106937 + 0.185220i
\(167\) −5.03277 + 2.90567i −0.389448 + 0.224848i −0.681921 0.731426i \(-0.738855\pi\)
0.292473 + 0.956274i \(0.405522\pi\)
\(168\) 0.680419 + 0.392840i 0.0524955 + 0.0303083i
\(169\) −2.28568 + 3.95891i −0.175822 + 0.304532i
\(170\) −6.28100 + 0.882468i −0.481730 + 0.0676822i
\(171\) −4.28814 0.782204i −0.327922 0.0598167i
\(172\) 0.428639i 0.0326835i
\(173\) 7.55647 + 4.36273i 0.574508 + 0.331692i 0.758948 0.651152i \(-0.225714\pi\)
−0.184440 + 0.982844i \(0.559047\pi\)
\(174\) −2.01037 + 3.48207i −0.152406 + 0.263975i
\(175\) −2.72913 + 2.82563i −0.206303 + 0.213597i
\(176\) 0.188892 0.327171i 0.0142383 0.0246614i
\(177\) 8.45283 4.88025i 0.635354 0.366822i
\(178\) 11.9382i 0.894809i
\(179\) 23.2306 1.73634 0.868169 0.496269i \(-0.165297\pi\)
0.868169 + 0.496269i \(0.165297\pi\)
\(180\) −1.37659 1.76210i −0.102605 0.131339i
\(181\) −3.77309 6.53518i −0.280451 0.485756i 0.691045 0.722812i \(-0.257151\pi\)
−0.971496 + 0.237056i \(0.923817\pi\)
\(182\) 2.28100i 0.169079i
\(183\) 4.55554i 0.336755i
\(184\) 4.54371 + 7.86994i 0.334967 + 0.580179i
\(185\) −0.200662 0.0810825i −0.0147530 0.00596131i
\(186\) −2.21432 3.83531i −0.162362 0.281219i
\(187\) 0.928032 + 0.535799i 0.0678644 + 0.0391815i
\(188\) −10.4680 6.04371i −0.763458 0.440783i
\(189\) −0.785680 −0.0571498
\(190\) −0.397977 + 9.73867i −0.0288723 + 0.706517i
\(191\) −20.4701 −1.48117 −0.740583 0.671965i \(-0.765451\pi\)
−0.740583 + 0.671965i \(0.765451\pi\)
\(192\) 0.866025 + 0.500000i 0.0625000 + 0.0360844i
\(193\) 16.3886 + 9.46198i 1.17968 + 0.681088i 0.955940 0.293561i \(-0.0948404\pi\)
0.223739 + 0.974649i \(0.428174\pi\)
\(194\) 1.72223 + 2.98299i 0.123649 + 0.214166i
\(195\) 2.43212 6.01897i 0.174167 0.431027i
\(196\) 3.19135 + 5.52759i 0.227954 + 0.394828i
\(197\) 1.73038i 0.123284i −0.998098 0.0616422i \(-0.980366\pi\)
0.998098 0.0616422i \(-0.0196338\pi\)
\(198\) 0.377784i 0.0268480i
\(199\) 7.53580 + 13.0524i 0.534199 + 0.925259i 0.999202 + 0.0399501i \(0.0127199\pi\)
−0.465003 + 0.885309i \(0.653947\pi\)
\(200\) −3.47359 + 3.59641i −0.245620 + 0.254304i
\(201\) 8.44938 0.595974
\(202\) 17.0923i 1.20261i
\(203\) 2.73579 1.57951i 0.192015 0.110860i
\(204\) −1.41827 + 2.45651i −0.0992986 + 0.171990i
\(205\) −3.95507 5.06270i −0.276234 0.353594i
\(206\) 4.05877 7.02999i 0.282788 0.489803i
\(207\) −7.86994 4.54371i −0.546998 0.315810i
\(208\) 2.90321i 0.201302i
\(209\) 1.06591 1.25520i 0.0737306 0.0868242i
\(210\) 0.244431 + 1.73975i 0.0168674 + 0.120054i
\(211\) −6.65801 + 11.5320i −0.458357 + 0.793897i −0.998874 0.0474357i \(-0.984895\pi\)
0.540518 + 0.841333i \(0.318228\pi\)
\(212\) −6.00443 3.46666i −0.412386 0.238091i
\(213\) −10.1669 + 5.86987i −0.696626 + 0.402197i
\(214\) −8.89062 + 15.3990i −0.607750 + 1.05265i
\(215\) −0.755307 + 0.590060i −0.0515115 + 0.0402417i
\(216\) −1.00000 −0.0680414
\(217\) 3.47949i 0.236203i
\(218\) −1.25094 + 0.722230i −0.0847243 + 0.0489156i
\(219\) −1.13013 1.95744i −0.0763669 0.132271i
\(220\) 0.836535 0.117532i 0.0563992 0.00792398i
\(221\) −8.23506 −0.553950
\(222\) −0.0838209 + 0.0483940i −0.00562569 + 0.00324800i
\(223\) −16.6003 9.58419i −1.11164 0.641805i −0.172386 0.985030i \(-0.555148\pi\)
−0.939253 + 0.343224i \(0.888481\pi\)
\(224\) −0.392840 0.680419i −0.0262477 0.0454624i
\(225\) 1.21002 4.85138i 0.0806677 0.323425i
\(226\) 7.15801 12.3980i 0.476144 0.824706i
\(227\) 6.88247i 0.456805i −0.973567 0.228403i \(-0.926650\pi\)
0.973567 0.228403i \(-0.0733503\pi\)
\(228\) 3.32254 + 2.82148i 0.220040 + 0.186857i
\(229\) −13.7462 −0.908375 −0.454187 0.890906i \(-0.650070\pi\)
−0.454187 + 0.890906i \(0.650070\pi\)
\(230\) −7.61283 + 18.8401i −0.501975 + 1.24228i
\(231\) 0.148409 0.257052i 0.00976459 0.0169128i
\(232\) 3.48207 2.01037i 0.228609 0.131987i
\(233\) 5.88642 + 3.39853i 0.385632 + 0.222645i 0.680266 0.732965i \(-0.261864\pi\)
−0.294634 + 0.955610i \(0.595198\pi\)
\(234\) −1.45161 2.51426i −0.0948945 0.164362i
\(235\) −3.76049 26.7654i −0.245307 1.74598i
\(236\) −9.76049 −0.635354
\(237\) 1.36084 0.785680i 0.0883959 0.0510354i
\(238\) 1.93003 1.11430i 0.125105 0.0722297i
\(239\) 10.8573 0.702299 0.351149 0.936319i \(-0.385791\pi\)
0.351149 + 0.936319i \(0.385791\pi\)
\(240\) 0.311108 + 2.21432i 0.0200819 + 0.142934i
\(241\) 4.84368 + 8.38950i 0.312009 + 0.540415i 0.978797 0.204832i \(-0.0656648\pi\)
−0.666788 + 0.745247i \(0.732331\pi\)
\(242\) 9.40268 + 5.42864i 0.604427 + 0.348966i
\(243\) 0.866025 0.500000i 0.0555556 0.0320750i
\(244\) 2.27777 3.94521i 0.145819 0.252566i
\(245\) −5.34700 + 13.2327i −0.341607 + 0.845406i
\(246\) −2.87310 −0.183182
\(247\) −2.27091 + 12.4494i −0.144494 + 0.792135i
\(248\) 4.42864i 0.281219i
\(249\) −1.37778 + 2.38639i −0.0873135 + 0.151231i
\(250\) −11.1189 1.17006i −0.703224 0.0740011i
\(251\) −7.54617 13.0704i −0.476310 0.824993i 0.523321 0.852135i \(-0.324693\pi\)
−0.999632 + 0.0271420i \(0.991359\pi\)
\(252\) 0.680419 + 0.392840i 0.0428624 + 0.0247466i
\(253\) 2.97314 1.71654i 0.186920 0.107918i
\(254\) −3.62867 −0.227683
\(255\) −6.28100 + 0.882468i −0.393331 + 0.0552623i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 19.7676 11.4128i 1.23307 0.711912i 0.265400 0.964139i \(-0.414496\pi\)
0.967668 + 0.252226i \(0.0811628\pi\)
\(258\) 0.428639i 0.0266859i
\(259\) 0.0760445 0.00472517
\(260\) −5.11576 + 3.99652i −0.317266 + 0.247854i
\(261\) −2.01037 + 3.48207i −0.124439 + 0.215534i
\(262\) −14.5548 + 8.40321i −0.899198 + 0.519152i
\(263\) 10.4885 + 6.05554i 0.646749 + 0.373401i 0.787209 0.616686i \(-0.211525\pi\)
−0.140461 + 0.990086i \(0.544858\pi\)
\(264\) 0.188892 0.327171i 0.0116255 0.0201360i
\(265\) −2.15701 15.3526i −0.132504 0.943102i
\(266\) −1.15233 3.22501i −0.0706537 0.197738i
\(267\) 11.9382i 0.730609i
\(268\) −7.31738 4.22469i −0.446980 0.258064i
\(269\) −12.6168 + 21.8529i −0.769258 + 1.33239i 0.168708 + 0.985666i \(0.446040\pi\)
−0.937966 + 0.346728i \(0.887293\pi\)
\(270\) −1.37659 1.76210i −0.0837764 0.107238i
\(271\) −15.4652 + 26.7865i −0.939444 + 1.62717i −0.172934 + 0.984933i \(0.555325\pi\)
−0.766511 + 0.642232i \(0.778009\pi\)
\(272\) 2.45651 1.41827i 0.148948 0.0859951i
\(273\) 2.28100i 0.138052i
\(274\) −2.19358 −0.132519
\(275\) 1.35867 + 1.31227i 0.0819307 + 0.0791328i
\(276\) 4.54371 + 7.86994i 0.273499 + 0.473715i
\(277\) 19.4938i 1.17127i 0.810576 + 0.585634i \(0.199154\pi\)
−0.810576 + 0.585634i \(0.800846\pi\)
\(278\) 1.67307i 0.100344i
\(279\) −2.21432 3.83531i −0.132568 0.229614i
\(280\) 0.658190 1.62888i 0.0393344 0.0973443i
\(281\) 3.71755 + 6.43898i 0.221770 + 0.384117i 0.955346 0.295491i \(-0.0954832\pi\)
−0.733575 + 0.679608i \(0.762150\pi\)
\(282\) −10.4680 6.04371i −0.623361 0.359898i
\(283\) 1.48485 + 0.857279i 0.0882652 + 0.0509599i 0.543483 0.839420i \(-0.317105\pi\)
−0.455218 + 0.890380i \(0.650439\pi\)
\(284\) 11.7397 0.696626
\(285\) −0.397977 + 9.73867i −0.0235741 + 0.576869i
\(286\) 1.09679 0.0648544
\(287\) 1.95491 + 1.12867i 0.115395 + 0.0666232i
\(288\) 0.866025 + 0.500000i 0.0510310 + 0.0294628i
\(289\) −4.47703 7.75445i −0.263355 0.456144i
\(290\) 8.33585 + 3.36831i 0.489498 + 0.197794i
\(291\) 1.72223 + 2.98299i 0.100959 + 0.174866i
\(292\) 2.26025i 0.132271i
\(293\) 7.93825i 0.463757i 0.972745 + 0.231879i \(0.0744872\pi\)
−0.972745 + 0.231879i \(0.925513\pi\)
\(294\) 3.19135 + 5.52759i 0.186124 + 0.322375i
\(295\) −13.4362 17.1990i −0.782284 1.00136i
\(296\) 0.0967881 0.00562569
\(297\) 0.377784i 0.0219213i
\(298\) −4.67526 + 2.69926i −0.270831 + 0.156364i
\(299\) −13.1914 + 22.8481i −0.762876 + 1.32134i
\(300\) −3.47359 + 3.59641i −0.200548 + 0.207639i
\(301\) 0.168387 0.291654i 0.00970565 0.0168107i
\(302\) −7.85623 4.53580i −0.452076 0.261006i
\(303\) 17.0923i 0.981929i
\(304\) −1.46666 4.10474i −0.0841188 0.235423i
\(305\) 10.0874 1.41726i 0.577604 0.0811523i
\(306\) −1.41827 + 2.45651i −0.0810770 + 0.140429i
\(307\) −0.919506 0.530877i −0.0524790 0.0302988i 0.473531 0.880777i \(-0.342979\pi\)
−0.526010 + 0.850478i \(0.676313\pi\)
\(308\) −0.257052 + 0.148409i −0.0146469 + 0.00845638i
\(309\) 4.05877 7.02999i 0.230895 0.399922i
\(310\) −7.80372 + 6.09641i −0.443222 + 0.346253i
\(311\) 17.5210 0.993524 0.496762 0.867887i \(-0.334522\pi\)
0.496762 + 0.867887i \(0.334522\pi\)
\(312\) 2.90321i 0.164362i
\(313\) −10.6480 + 6.14764i −0.601862 + 0.347485i −0.769774 0.638317i \(-0.779631\pi\)
0.167912 + 0.985802i \(0.446298\pi\)
\(314\) −7.68421 13.3094i −0.433645 0.751095i
\(315\) 0.244431 + 1.73975i 0.0137721 + 0.0980237i
\(316\) −1.57136 −0.0883959
\(317\) 20.7188 11.9620i 1.16368 0.671852i 0.211498 0.977379i \(-0.432166\pi\)
0.952183 + 0.305527i \(0.0988326\pi\)
\(318\) −6.00443 3.46666i −0.336712 0.194401i
\(319\) −0.759487 1.31547i −0.0425231 0.0736522i
\(320\) 0.837733 2.07321i 0.0468307 0.115896i
\(321\) −8.89062 + 15.3990i −0.496226 + 0.859488i
\(322\) 7.13981i 0.397886i
\(323\) 11.6432 4.16024i 0.647847 0.231482i
\(324\) −1.00000 −0.0555556
\(325\) −14.0846 3.51293i −0.781272 0.194862i
\(326\) −3.65878 + 6.33719i −0.202641 + 0.350985i
\(327\) −1.25094 + 0.722230i −0.0691771 + 0.0399394i
\(328\) 2.48818 + 1.43655i 0.137387 + 0.0793202i
\(329\) 4.74842 + 8.22451i 0.261789 + 0.453432i
\(330\) 0.836535 0.117532i 0.0460498 0.00646991i
\(331\) 13.0810 0.718995 0.359497 0.933146i \(-0.382948\pi\)
0.359497 + 0.933146i \(0.382948\pi\)
\(332\) 2.38639 1.37778i 0.130970 0.0756157i
\(333\) −0.0838209 + 0.0483940i −0.00459336 + 0.00265198i
\(334\) 5.81135 0.317983
\(335\) −2.62867 18.7096i −0.143620 1.02222i
\(336\) −0.392840 0.680419i −0.0214312 0.0371199i
\(337\) 14.3953 + 8.31111i 0.784160 + 0.452735i 0.837903 0.545820i \(-0.183782\pi\)
−0.0537427 + 0.998555i \(0.517115\pi\)
\(338\) 3.95891 2.28568i 0.215337 0.124325i
\(339\) 7.15801 12.3980i 0.388770 0.673369i
\(340\) 5.88074 + 2.37626i 0.318928 + 0.128871i
\(341\) 1.67307 0.0906019
\(342\) 3.32254 + 2.82148i 0.179662 + 0.152568i
\(343\) 10.5145i 0.567731i
\(344\) 0.214320 0.371213i 0.0115553 0.0200144i
\(345\) −7.61283 + 18.8401i −0.409861 + 1.01432i
\(346\) −4.36273 7.55647i −0.234542 0.406238i
\(347\) 4.62989 + 2.67307i 0.248546 + 0.143498i 0.619098 0.785314i \(-0.287498\pi\)
−0.370552 + 0.928812i \(0.620832\pi\)
\(348\) 3.48207 2.01037i 0.186658 0.107767i
\(349\) −0.882468 −0.0472374 −0.0236187 0.999721i \(-0.507519\pi\)
−0.0236187 + 0.999721i \(0.507519\pi\)
\(350\) 3.77631 1.08250i 0.201852 0.0578620i
\(351\) −1.45161 2.51426i −0.0774810 0.134201i
\(352\) −0.327171 + 0.188892i −0.0174383 + 0.0100680i
\(353\) 15.1032i 0.803864i −0.915669 0.401932i \(-0.868339\pi\)
0.915669 0.401932i \(-0.131661\pi\)
\(354\) −9.76049 −0.518764
\(355\) 16.1608 + 20.6866i 0.857725 + 1.09793i
\(356\) −5.96912 + 10.3388i −0.316363 + 0.547957i
\(357\) 1.93003 1.11430i 0.102148 0.0589753i
\(358\) −20.1183 11.6153i −1.06329 0.613888i
\(359\) −7.82394 + 13.5515i −0.412932 + 0.715219i −0.995209 0.0977715i \(-0.968829\pi\)
0.582277 + 0.812990i \(0.302162\pi\)
\(360\) 0.311108 + 2.21432i 0.0163968 + 0.116705i
\(361\) −3.07851 18.7489i −0.162027 0.986786i
\(362\) 7.54617i 0.396618i
\(363\) 9.40268 + 5.42864i 0.493513 + 0.284930i
\(364\) 1.14050 1.97540i 0.0597783 0.103539i
\(365\) −3.98280 + 3.11143i −0.208469 + 0.162860i
\(366\) 2.27777 3.94521i 0.119061 0.206220i
\(367\) −27.8642 + 16.0874i −1.45450 + 0.839756i −0.998732 0.0503417i \(-0.983969\pi\)
−0.455769 + 0.890098i \(0.650636\pi\)
\(368\) 9.08742i 0.473715i
\(369\) −2.87310 −0.149568
\(370\) 0.133237 + 0.170551i 0.00692667 + 0.00886650i
\(371\) 2.72369 + 4.71757i 0.141407 + 0.244924i
\(372\) 4.42864i 0.229614i
\(373\) 15.1160i 0.782677i −0.920247 0.391338i \(-0.872012\pi\)
0.920247 0.391338i \(-0.127988\pi\)
\(374\) −0.535799 0.928032i −0.0277055 0.0479874i
\(375\) −11.1189 1.17006i −0.574180 0.0604216i
\(376\) 6.04371 + 10.4680i 0.311681 + 0.539847i
\(377\) 10.1092 + 5.83654i 0.520649 + 0.300597i
\(378\) 0.680419 + 0.392840i 0.0349970 + 0.0202055i
\(379\) 0.907658 0.0466232 0.0233116 0.999728i \(-0.492579\pi\)
0.0233116 + 0.999728i \(0.492579\pi\)
\(380\) 5.21399 8.23494i 0.267472 0.422444i
\(381\) −3.62867 −0.185902
\(382\) 17.7276 + 10.2351i 0.907025 + 0.523671i
\(383\) 0.526479 + 0.303963i 0.0269018 + 0.0155318i 0.513391 0.858155i \(-0.328389\pi\)
−0.486489 + 0.873687i \(0.661723\pi\)
\(384\) −0.500000 0.866025i −0.0255155 0.0441942i
\(385\) −0.615366 0.248654i −0.0313619 0.0126726i
\(386\) −9.46198 16.3886i −0.481602 0.834159i
\(387\) 0.428639i 0.0217890i
\(388\) 3.44446i 0.174866i
\(389\) −6.04048 10.4624i −0.306265 0.530466i 0.671277 0.741206i \(-0.265746\pi\)
−0.977542 + 0.210740i \(0.932413\pi\)
\(390\) −5.11576 + 3.99652i −0.259047 + 0.202372i
\(391\) 25.7768 1.30359
\(392\) 6.38271i 0.322375i
\(393\) −14.5548 + 8.40321i −0.734192 + 0.423886i
\(394\) −0.865190 + 1.49855i −0.0435876 + 0.0754960i
\(395\) −2.16311 2.76890i −0.108838 0.139318i
\(396\) 0.188892 0.327171i 0.00949219 0.0164410i
\(397\) 16.3351 + 9.43110i 0.819837 + 0.473333i 0.850360 0.526201i \(-0.176384\pi\)
−0.0305230 + 0.999534i \(0.509717\pi\)
\(398\) 15.0716i 0.755471i
\(399\) −1.15233 3.22501i −0.0576885 0.161453i
\(400\) 4.80642 1.37778i 0.240321 0.0688892i
\(401\) −4.88739 + 8.46521i −0.244065 + 0.422732i −0.961868 0.273513i \(-0.911814\pi\)
0.717804 + 0.696246i \(0.245148\pi\)
\(402\) −7.31738 4.22469i −0.364958 0.210708i
\(403\) −11.1347 + 6.42864i −0.554660 + 0.320233i
\(404\) 8.54617 14.8024i 0.425188 0.736447i
\(405\) −1.37659 1.76210i −0.0684032 0.0875596i
\(406\) −3.15902 −0.156779
\(407\) 0.0365650i 0.00181246i
\(408\) 2.45651 1.41827i 0.121615 0.0702147i
\(409\) −19.1916 33.2408i −0.948963 1.64365i −0.747615 0.664133i \(-0.768801\pi\)
−0.201348 0.979520i \(-0.564532\pi\)
\(410\) 0.893844 + 6.36196i 0.0441438 + 0.314195i
\(411\) −2.19358 −0.108201
\(412\) −7.02999 + 4.05877i −0.346343 + 0.199961i
\(413\) 6.64122 + 3.83431i 0.326793 + 0.188674i
\(414\) 4.54371 + 7.86994i 0.223311 + 0.386786i
\(415\) 5.71288 + 2.30843i 0.280434 + 0.113316i
\(416\) 1.45161 2.51426i 0.0711708 0.123272i
\(417\) 1.67307i 0.0819306i
\(418\) −1.55071 + 0.554082i −0.0758476 + 0.0271010i
\(419\) −30.7560 −1.50253 −0.751266 0.660000i \(-0.770556\pi\)
−0.751266 + 0.660000i \(0.770556\pi\)
\(420\) 0.658190 1.62888i 0.0321164 0.0794813i
\(421\) 6.31433 10.9367i 0.307742 0.533024i −0.670126 0.742247i \(-0.733760\pi\)
0.977868 + 0.209223i \(0.0670934\pi\)
\(422\) 11.5320 6.65801i 0.561370 0.324107i
\(423\) −10.4680 6.04371i −0.508972 0.293855i
\(424\) 3.46666 + 6.00443i 0.168356 + 0.291601i
\(425\) 3.90813 + 13.6336i 0.189572 + 0.661326i
\(426\) 11.7397 0.568793
\(427\) −3.09968 + 1.78960i −0.150004 + 0.0866047i
\(428\) 15.3990 8.89062i 0.744339 0.429744i
\(429\) 1.09679 0.0529534
\(430\) 0.949145 0.133353i 0.0457718 0.00643086i
\(431\) 17.6763 + 30.6162i 0.851437 + 1.47473i 0.879911 + 0.475138i \(0.157602\pi\)
−0.0284739 + 0.999595i \(0.509065\pi\)
\(432\) 0.866025 + 0.500000i 0.0416667 + 0.0240563i
\(433\) −18.0052 + 10.3953i −0.865274 + 0.499566i −0.865775 0.500434i \(-0.833174\pi\)
0.000500727 1.00000i \(0.499841\pi\)
\(434\) 1.73975 3.01333i 0.0835105 0.144645i
\(435\) 8.33585 + 3.36831i 0.399673 + 0.161498i
\(436\) 1.44446 0.0691771
\(437\) 7.10822 38.9681i 0.340032 1.86410i
\(438\) 2.26025i 0.107999i
\(439\) −1.96444 + 3.40251i −0.0937576 + 0.162393i −0.909089 0.416601i \(-0.863221\pi\)
0.815332 + 0.578994i \(0.196555\pi\)
\(440\) −0.783227 0.316482i −0.0373389 0.0150877i
\(441\) 3.19135 + 5.52759i 0.151969 + 0.263218i
\(442\) 7.13177 + 4.11753i 0.339224 + 0.195851i
\(443\) 1.38265 0.798275i 0.0656918 0.0379272i −0.466794 0.884366i \(-0.654591\pi\)
0.532486 + 0.846439i \(0.321258\pi\)
\(444\) 0.0967881 0.00459336
\(445\) −26.4351 + 3.71408i −1.25314 + 0.176064i
\(446\) 9.58419 + 16.6003i 0.453825 + 0.786047i
\(447\) −4.67526 + 2.69926i −0.221132 + 0.127671i
\(448\) 0.785680i 0.0371199i
\(449\) 14.4588 0.682351 0.341175 0.940000i \(-0.389175\pi\)
0.341175 + 0.940000i \(0.389175\pi\)
\(450\) −3.47359 + 3.59641i −0.163747 + 0.169536i
\(451\) 0.542706 0.939995i 0.0255550 0.0442626i
\(452\) −12.3980 + 7.15801i −0.583155 + 0.336685i
\(453\) −7.85623 4.53580i −0.369118 0.213110i
\(454\) −3.44123 + 5.96039i −0.161505 + 0.279735i
\(455\) 5.05086 0.709636i 0.236788 0.0332682i
\(456\) −1.46666 4.10474i −0.0686827 0.192222i
\(457\) 28.9052i 1.35213i −0.736842 0.676065i \(-0.763684\pi\)
0.736842 0.676065i \(-0.236316\pi\)
\(458\) 11.9046 + 6.87310i 0.556264 + 0.321159i
\(459\) −1.41827 + 2.45651i −0.0661991 + 0.114660i
\(460\) 16.0130 12.5096i 0.746609 0.583264i
\(461\) −1.22369 + 2.11949i −0.0569928 + 0.0987145i −0.893114 0.449830i \(-0.851485\pi\)
0.836121 + 0.548545i \(0.184818\pi\)
\(462\) −0.257052 + 0.148409i −0.0119591 + 0.00690460i
\(463\) 7.67460i 0.356669i 0.983970 + 0.178335i \(0.0570709\pi\)
−0.983970 + 0.178335i \(0.942929\pi\)
\(464\) −4.02074 −0.186658
\(465\) −7.80372 + 6.09641i −0.361889 + 0.282714i
\(466\) −3.39853 5.88642i −0.157434 0.272683i
\(467\) 9.78123i 0.452622i −0.974055 0.226311i \(-0.927334\pi\)
0.974055 0.226311i \(-0.0726665\pi\)
\(468\) 2.90321i 0.134201i
\(469\) 3.31926 + 5.74912i 0.153269 + 0.265470i
\(470\) −10.1260 + 25.0598i −0.467079 + 1.15592i
\(471\) −7.68421 13.3094i −0.354070 0.613267i
\(472\) 8.45283 + 4.88025i 0.389073 + 0.224632i
\(473\) −0.140238 0.0809666i −0.00644817 0.00372285i
\(474\) −1.57136 −0.0721750
\(475\) 21.6883 2.14853i 0.995129 0.0985812i
\(476\) −2.22861 −0.102148
\(477\) −6.00443 3.46666i −0.274924 0.158728i
\(478\) −9.40268 5.42864i −0.430069 0.248300i
\(479\) −16.9716 29.3956i −0.775451 1.34312i −0.934540 0.355857i \(-0.884189\pi\)
0.159089 0.987264i \(-0.449144\pi\)
\(480\) 0.837733 2.07321i 0.0382371 0.0946287i
\(481\) 0.140498 + 0.243350i 0.00640616 + 0.0110958i
\(482\) 9.68736i 0.441247i
\(483\) 7.13981i 0.324872i
\(484\) −5.42864 9.40268i −0.246756 0.427395i
\(485\) 6.06950 4.74160i 0.275602 0.215305i
\(486\) −1.00000 −0.0453609
\(487\) 33.8780i 1.53516i 0.640953 + 0.767580i \(0.278539\pi\)
−0.640953 + 0.767580i \(0.721461\pi\)
\(488\) −3.94521 + 2.27777i −0.178591 + 0.103110i
\(489\) −3.65878 + 6.33719i −0.165456 + 0.286578i
\(490\) 11.2470 8.78635i 0.508087 0.396927i
\(491\) 20.5622 35.6148i 0.927960 1.60727i 0.141231 0.989977i \(-0.454894\pi\)
0.786729 0.617298i \(-0.211773\pi\)
\(492\) 2.48818 + 1.43655i 0.112176 + 0.0647647i
\(493\) 11.4050i 0.513655i
\(494\) 8.19135 9.64603i 0.368546 0.433995i
\(495\) 0.836535 0.117532i 0.0375995 0.00528266i
\(496\) 2.21432 3.83531i 0.0994259 0.172211i
\(497\) −7.98795 4.61184i −0.358308 0.206869i
\(498\) 2.38639 1.37778i 0.106937 0.0617400i
\(499\) 9.98987 17.3030i 0.447208 0.774587i −0.550995 0.834508i \(-0.685752\pi\)
0.998203 + 0.0599217i \(0.0190851\pi\)
\(500\) 9.04426 + 6.57277i 0.404472 + 0.293943i
\(501\) 5.81135 0.259632
\(502\) 15.0923i 0.673604i
\(503\) −18.2708 + 10.5486i −0.814653 + 0.470340i −0.848569 0.529084i \(-0.822535\pi\)
0.0339160 + 0.999425i \(0.489202\pi\)
\(504\) −0.392840 0.680419i −0.0174985 0.0303083i
\(505\) 37.8479 5.31756i 1.68421 0.236628i
\(506\) −3.43309 −0.152619
\(507\) 3.95891 2.28568i 0.175822 0.101511i
\(508\) 3.14252 + 1.81433i 0.139427 + 0.0804981i
\(509\) −11.3620 19.6795i −0.503610 0.872278i −0.999991 0.00417367i \(-0.998671\pi\)
0.496381 0.868105i \(-0.334662\pi\)
\(510\) 5.88074 + 2.37626i 0.260403 + 0.105222i
\(511\) 0.887918 1.53792i 0.0392792 0.0680335i
\(512\) 1.00000i 0.0441942i
\(513\) 3.32254 + 2.82148i 0.146694 + 0.124571i
\(514\) −22.8256 −1.00680
\(515\) −16.8294 6.80032i −0.741590 0.299658i
\(516\) 0.214320 0.371213i 0.00943490 0.0163417i
\(517\) 3.95465 2.28322i 0.173925 0.100416i
\(518\) −0.0658565 0.0380222i −0.00289357 0.00167060i
\(519\) −4.36273 7.55647i −0.191503 0.331692i
\(520\) 6.42864 0.903212i 0.281914 0.0396085i
\(521\) 29.0923 1.27456 0.637279 0.770633i \(-0.280060\pi\)
0.637279 + 0.770633i \(0.280060\pi\)
\(522\) 3.48207 2.01037i 0.152406 0.0879916i
\(523\) −6.84186 + 3.95015i −0.299174 + 0.172728i −0.642072 0.766645i \(-0.721925\pi\)
0.342898 + 0.939373i \(0.388591\pi\)
\(524\) 16.8064 0.734192
\(525\) 3.77631 1.08250i 0.164812 0.0472441i
\(526\) −6.05554 10.4885i −0.264034 0.457320i
\(527\) 10.8790 + 6.28100i 0.473897 + 0.273604i
\(528\) −0.327171 + 0.188892i −0.0142383 + 0.00822048i
\(529\) 29.7906 51.5988i 1.29524 2.24343i
\(530\) −5.80827 + 14.3742i −0.252295 + 0.624377i
\(531\) −9.76049 −0.423569
\(532\) −0.614563 + 3.36911i −0.0266447 + 0.146069i
\(533\) 8.34122i 0.361298i
\(534\) −5.96912 + 10.3388i −0.258309 + 0.447405i
\(535\) 36.8643 + 14.8959i 1.59378 + 0.644007i
\(536\) 4.22469 + 7.31738i 0.182479 + 0.316063i
\(537\) −20.1183 11.6153i −0.868169 0.501238i
\(538\) 21.8529 12.6168i 0.942145 0.543947i
\(539\) −2.41129 −0.103861
\(540\) 0.311108 + 2.21432i 0.0133879 + 0.0952891i
\(541\) 10.3160 + 17.8679i 0.443521 + 0.768201i 0.997948 0.0640318i \(-0.0203959\pi\)
−0.554427 + 0.832232i \(0.687063\pi\)
\(542\) 26.7865 15.4652i 1.15058 0.664287i
\(543\) 7.54617i 0.323837i
\(544\) −2.83654 −0.121615
\(545\) 1.98843 + 2.54529i 0.0851748 + 0.109028i
\(546\) 1.14050 1.97540i 0.0488088 0.0845393i
\(547\) −7.43965 + 4.29529i −0.318097 + 0.183653i −0.650544 0.759469i \(-0.725459\pi\)
0.332447 + 0.943122i \(0.392126\pi\)
\(548\) 1.89969 + 1.09679i 0.0811508 + 0.0468525i
\(549\) 2.27777 3.94521i 0.0972128 0.168378i
\(550\) −0.520505 1.81579i −0.0221944 0.0774256i
\(551\) −17.2415 3.14504i −0.734513 0.133983i
\(552\) 9.08742i 0.386786i
\(553\) 1.06918 + 0.617293i 0.0454663 + 0.0262500i
\(554\) 9.74689 16.8821i 0.414106 0.717252i
\(555\) 0.133237 + 0.170551i 0.00565560 + 0.00723947i
\(556\) −0.836535 + 1.44892i −0.0354770 + 0.0614480i
\(557\) −21.3209 + 12.3097i −0.903397 + 0.521577i −0.878301 0.478108i \(-0.841323\pi\)
−0.0250964 + 0.999685i \(0.507989\pi\)
\(558\) 4.42864i 0.187479i
\(559\) 1.24443 0.0526338
\(560\) −1.38445 + 1.08156i −0.0585037 + 0.0457041i
\(561\) −0.535799 0.928032i −0.0226215 0.0391815i
\(562\) 7.43509i 0.313630i
\(563\) 33.6958i 1.42011i −0.704146 0.710055i \(-0.748670\pi\)
0.704146 0.710055i \(-0.251330\pi\)
\(564\) 6.04371 + 10.4680i 0.254486 + 0.440783i
\(565\) −29.6802 11.9930i −1.24865 0.504550i
\(566\) −0.857279 1.48485i −0.0360341 0.0624129i
\(567\) 0.680419 + 0.392840i 0.0285749 + 0.0164977i
\(568\) −10.1669 5.86987i −0.426594 0.246294i
\(569\) 3.59703 0.150795 0.0753976 0.997154i \(-0.475977\pi\)
0.0753976 + 0.997154i \(0.475977\pi\)
\(570\) 5.21399 8.23494i 0.218390 0.344924i
\(571\) 22.2623 0.931647 0.465823 0.884878i \(-0.345758\pi\)
0.465823 + 0.884878i \(0.345758\pi\)
\(572\) −0.949846 0.548394i −0.0397151 0.0229295i
\(573\) 17.7276 + 10.2351i 0.740583 + 0.427576i
\(574\) −1.12867 1.95491i −0.0471097 0.0815965i
\(575\) 44.0865 + 10.9959i 1.83853 + 0.458562i
\(576\) −0.500000 0.866025i −0.0208333 0.0360844i
\(577\) 34.7719i 1.44757i 0.690025 + 0.723786i \(0.257600\pi\)
−0.690025 + 0.723786i \(0.742400\pi\)
\(578\) 8.95407i 0.372440i
\(579\) −9.46198 16.3886i −0.393226 0.681088i
\(580\) −5.53490 7.08497i −0.229824 0.294187i
\(581\) −2.16500 −0.0898192
\(582\) 3.44446i 0.142777i
\(583\) 2.26838 1.30965i 0.0939468 0.0542402i
\(584\) 1.13013 1.95744i 0.0467650 0.0809993i
\(585\) −5.11576 + 3.99652i −0.211511 + 0.165236i
\(586\) 3.96912 6.87472i 0.163963 0.283992i
\(587\) −21.7306 12.5462i −0.896918 0.517836i −0.0207191 0.999785i \(-0.506596\pi\)
−0.876199 + 0.481949i \(0.839929\pi\)
\(588\) 6.38271i 0.263218i
\(589\) 12.4953 14.7143i 0.514861 0.606293i
\(590\) 3.03657 + 21.6128i 0.125013 + 0.889787i
\(591\) −0.865190 + 1.49855i −0.0355891 + 0.0616422i
\(592\) −0.0838209 0.0483940i −0.00344502 0.00198898i
\(593\) −36.9025 + 21.3057i −1.51540 + 0.874919i −0.515567 + 0.856850i \(0.672419\pi\)
−0.999837 + 0.0180690i \(0.994248\pi\)
\(594\) 0.188892 0.327171i 0.00775034 0.0134240i
\(595\) −3.06788 3.92704i −0.125771 0.160993i
\(596\) 5.39853 0.221132
\(597\) 15.0716i 0.616839i
\(598\) 22.8481 13.1914i 0.934328 0.539435i
\(599\) −21.3652 37.0056i −0.872958 1.51201i −0.858922 0.512106i \(-0.828865\pi\)
−0.0140358 0.999901i \(-0.504468\pi\)
\(600\) 4.80642 1.37778i 0.196221 0.0562478i
\(601\) −40.1481 −1.63768 −0.818838 0.574025i \(-0.805381\pi\)
−0.818838 + 0.574025i \(0.805381\pi\)
\(602\) −0.291654 + 0.168387i −0.0118869 + 0.00686293i
\(603\) −7.31738 4.22469i −0.297987 0.172043i
\(604\) 4.53580 + 7.85623i 0.184559 + 0.319666i
\(605\) 9.09550 22.5094i 0.369785 0.915138i
\(606\) 8.54617 14.8024i 0.347164 0.601307i
\(607\) 36.0988i 1.46520i 0.680657 + 0.732602i \(0.261695\pi\)
−0.680657 + 0.732602i \(0.738305\pi\)
\(608\) −0.782204 + 4.28814i −0.0317226 + 0.173907i
\(609\) −3.15902 −0.128010
\(610\) −9.44459 3.81632i −0.382400 0.154518i
\(611\) −17.5462 + 30.3909i −0.709842 + 1.22948i
\(612\) 2.45651 1.41827i 0.0992986 0.0573301i
\(613\) −21.8144 12.5946i −0.881076 0.508690i −0.0100632 0.999949i \(-0.503203\pi\)
−0.871013 + 0.491260i \(0.836537\pi\)
\(614\) 0.530877 + 0.919506i 0.0214245 + 0.0371083i
\(615\) 0.893844 + 6.36196i 0.0360433 + 0.256539i
\(616\) 0.296818 0.0119591
\(617\) −2.97740 + 1.71900i −0.119866 + 0.0692045i −0.558734 0.829347i \(-0.688713\pi\)
0.438868 + 0.898551i \(0.355379\pi\)
\(618\) −7.02999 + 4.05877i −0.282788 + 0.163268i
\(619\) 20.7397 0.833601 0.416800 0.908998i \(-0.363151\pi\)
0.416800 + 0.908998i \(0.363151\pi\)
\(620\) 9.80642 1.37778i 0.393835 0.0553332i
\(621\) 4.54371 + 7.86994i 0.182333 + 0.315810i
\(622\) −15.1736 8.76049i −0.608407 0.351264i
\(623\) 8.12301 4.68982i 0.325442 0.187894i
\(624\) 1.45161 2.51426i 0.0581107 0.100651i
\(625\) 0.868304 + 24.9849i 0.0347321 + 0.999397i
\(626\) 12.2953 0.491418
\(627\) −1.55071 + 0.554082i −0.0619293 + 0.0221279i
\(628\) 15.3684i 0.613267i
\(629\) 0.137271 0.237761i 0.00547337 0.00948015i
\(630\) 0.658190 1.62888i 0.0262229 0.0648962i
\(631\) −17.1629 29.7271i −0.683246 1.18342i −0.973985 0.226614i \(-0.927234\pi\)
0.290739 0.956802i \(-0.406099\pi\)
\(632\) 1.36084 + 0.785680i 0.0541312 + 0.0312527i
\(633\) 11.5320 6.65801i 0.458357 0.264632i
\(634\) −23.9240 −0.950142
\(635\) 1.12891 + 8.03503i 0.0447993 + 0.318861i
\(636\) 3.46666 + 6.00443i 0.137462 + 0.238091i
\(637\) 16.0478 9.26517i 0.635835 0.367100i
\(638\) 1.51897i 0.0601368i
\(639\) 11.7397 0.464417
\(640\) −1.76210 + 1.37659i −0.0696532 + 0.0544144i
\(641\) 1.54125 2.66952i 0.0608757 0.105440i −0.833981 0.551793i \(-0.813944\pi\)
0.894857 + 0.446353i \(0.147277\pi\)
\(642\) 15.3990 8.89062i 0.607750 0.350885i
\(643\) 27.9069 + 16.1121i 1.10054 + 0.635398i 0.936363 0.351032i \(-0.114169\pi\)
0.164179 + 0.986431i \(0.447503\pi\)
\(644\) −3.56990 + 6.18325i −0.140674 + 0.243654i
\(645\) 0.949145 0.133353i 0.0373725 0.00525077i
\(646\) −12.1635 2.21875i −0.478565 0.0872956i
\(647\) 4.90813i 0.192959i 0.995335 + 0.0964793i \(0.0307582\pi\)
−0.995335 + 0.0964793i \(0.969242\pi\)
\(648\) 0.866025 + 0.500000i 0.0340207 + 0.0196419i
\(649\) 1.84368 3.19335i 0.0723708 0.125350i
\(650\) 10.4411 + 10.0846i 0.409535 + 0.395550i
\(651\) 1.73975 3.01333i 0.0681861 0.118102i
\(652\) 6.33719 3.65878i 0.248184 0.143289i
\(653\) 41.4405i 1.62169i 0.585260 + 0.810846i \(0.300993\pi\)
−0.585260 + 0.810846i \(0.699007\pi\)
\(654\) 1.44446 0.0564829
\(655\) 23.1355 + 29.6147i 0.903979 + 1.15714i
\(656\) −1.43655 2.48818i −0.0560879 0.0971470i
\(657\) 2.26025i 0.0881809i
\(658\) 9.49685i 0.370226i
\(659\) −0.665688 1.15300i −0.0259315 0.0449147i 0.852768 0.522289i \(-0.174922\pi\)
−0.878700 + 0.477375i \(0.841589\pi\)
\(660\) −0.783227 0.316482i −0.0304871 0.0123191i
\(661\) 18.1891 + 31.5045i 0.707475 + 1.22538i 0.965791 + 0.259322i \(0.0834992\pi\)
−0.258316 + 0.966061i \(0.583167\pi\)
\(662\) −11.3284 6.54048i −0.440293 0.254203i
\(663\) 7.13177 + 4.11753i 0.276975 + 0.159912i
\(664\) −2.75557 −0.106937
\(665\) −6.78272 + 3.55495i −0.263022 + 0.137855i
\(666\) 0.0967881 0.00375046
\(667\) −31.6430 18.2691i −1.22522 0.707382i
\(668\) −5.03277 2.90567i −0.194724 0.112424i
\(669\) 9.58419 + 16.6003i 0.370546 + 0.641805i
\(670\) −7.07832 + 17.5174i −0.273459 + 0.676754i
\(671\) 0.860506 + 1.49044i 0.0332195 + 0.0575378i
\(672\) 0.785680i 0.0303083i
\(673\) 38.8069i 1.49590i −0.663757 0.747948i \(-0.731039\pi\)
0.663757 0.747948i \(-0.268961\pi\)
\(674\) −8.31111 14.3953i −0.320132 0.554485i
\(675\) −3.47359 + 3.59641i −0.133699 + 0.138426i
\(676\) −4.57136 −0.175822
\(677\) 31.6242i 1.21542i 0.794160 + 0.607709i \(0.207911\pi\)
−0.794160 + 0.607709i \(0.792089\pi\)
\(678\) −12.3980 + 7.15801i −0.476144 + 0.274902i
\(679\) −1.35312 + 2.34368i −0.0519281 + 0.0899421i
\(680\) −3.90474 4.99827i −0.149740 0.191675i
\(681\) −3.44123 + 5.96039i −0.131868 + 0.228403i
\(682\) −1.44892 0.836535i −0.0554821 0.0320326i
\(683\) 24.2000i 0.925988i 0.886361 + 0.462994i \(0.153225\pi\)
−0.886361 + 0.462994i \(0.846775\pi\)
\(684\) −1.46666 4.10474i −0.0560792 0.156949i
\(685\) 0.682439 + 4.85728i 0.0260746 + 0.185587i
\(686\) −5.25726 + 9.10585i −0.200723 + 0.347663i
\(687\) 11.9046 + 6.87310i 0.454187 + 0.262225i
\(688\) −0.371213 + 0.214320i −0.0141524 + 0.00817086i
\(689\) −10.0645 + 17.4321i −0.383425 + 0.664112i
\(690\) 16.0130 12.5096i 0.609603 0.476233i
\(691\) −21.1782 −0.805658 −0.402829 0.915275i \(-0.631973\pi\)
−0.402829 + 0.915275i \(0.631973\pi\)
\(692\) 8.72546i 0.331692i
\(693\) −0.257052 + 0.148409i −0.00976459 + 0.00563759i
\(694\) −2.67307 4.62989i −0.101468 0.175748i
\(695\) −3.70471 + 0.520505i −0.140528 + 0.0197439i
\(696\) −4.02074 −0.152406
\(697\) 7.05780 4.07483i 0.267333 0.154345i
\(698\) 0.764240 + 0.441234i 0.0289269 + 0.0167010i
\(699\) −3.39853 5.88642i −0.128544 0.222645i
\(700\) −3.81163 0.950685i −0.144066 0.0359325i
\(701\) 11.1635 19.3357i 0.421638 0.730299i −0.574462 0.818531i \(-0.694789\pi\)
0.996100 + 0.0882326i \(0.0281219\pi\)
\(702\) 2.90321i 0.109575i
\(703\) −0.321582 0.273086i −0.0121287 0.0102996i
\(704\) 0.377784 0.0142383
\(705\) −10.1260 + 25.0598i −0.381368 + 0.943806i
\(706\) −7.55162 + 13.0798i −0.284209 + 0.492264i
\(707\) −11.6300 + 6.71456i −0.437389 + 0.252527i
\(708\) 8.45283 + 4.88025i 0.317677 + 0.183411i
\(709\) −11.2733 19.5260i −0.423379 0.733313i 0.572889 0.819633i \(-0.305823\pi\)
−0.996267 + 0.0863198i \(0.972489\pi\)
\(710\) −3.65233 25.9956i −0.137069 0.975596i
\(711\) −1.57136 −0.0589306
\(712\) 10.3388 5.96912i 0.387464 0.223702i
\(713\) 34.8531 20.1225i 1.30526 0.753592i
\(714\) −2.22861 −0.0834036
\(715\) −0.341219 2.42864i −0.0127609 0.0908260i
\(716\) 11.6153 + 20.1183i 0.434084 + 0.751856i
\(717\) −9.40268 5.42864i −0.351149 0.202736i
\(718\) 13.5515 7.82394i 0.505736 0.291987i
\(719\) −16.3111 + 28.2517i −0.608302 + 1.05361i 0.383219 + 0.923658i \(0.374816\pi\)
−0.991520 + 0.129952i \(0.958518\pi\)
\(720\) 0.837733 2.07321i 0.0312205 0.0772640i
\(721\) 6.37778 0.237521
\(722\) −6.70841 + 17.7763i −0.249661 + 0.661566i
\(723\) 9.68736i 0.360277i
\(724\) 3.77309 6.53518i 0.140226 0.242878i
\(725\) 4.86516 19.5061i 0.180688 0.724440i
\(726\) −5.42864 9.40268i −0.201476 0.348966i
\(727\) −32.6741 18.8644i −1.21182 0.699643i −0.248662 0.968590i \(-0.579991\pi\)
−0.963155 + 0.268948i \(0.913324\pi\)
\(728\) −1.97540 + 1.14050i −0.0732132 + 0.0422697i
\(729\) −1.00000 −0.0370370
\(730\) 5.00492 0.703182i 0.185240 0.0260259i
\(731\) −0.607926 1.05296i −0.0224849 0.0389451i
\(732\) −3.94521 + 2.27777i −0.145819 + 0.0841888i
\(733\) 47.5531i 1.75641i 0.478281 + 0.878207i \(0.341260\pi\)
−0.478281 + 0.878207i \(0.658740\pi\)
\(734\) 32.1748 1.18760
\(735\) 11.2470 8.78635i 0.414851 0.324089i
\(736\) −4.54371 + 7.86994i −0.167483 + 0.290090i
\(737\) 2.76439 1.59602i 0.101828 0.0587902i
\(738\) 2.48818 + 1.43655i 0.0915911 + 0.0528801i
\(739\) −14.6602 + 25.3923i −0.539286 + 0.934070i 0.459657 + 0.888096i \(0.347972\pi\)
−0.998943 + 0.0459735i \(0.985361\pi\)
\(740\) −0.0301115 0.214320i −0.00110692 0.00787855i
\(741\) 8.19135 9.64603i 0.300917 0.354356i
\(742\) 5.44738i 0.199979i
\(743\) −7.39176 4.26764i −0.271177 0.156564i 0.358245 0.933628i \(-0.383375\pi\)
−0.629423 + 0.777063i \(0.716709\pi\)
\(744\) 2.21432 3.83531i 0.0811809 0.140609i
\(745\) 7.43154 + 9.51276i 0.272271 + 0.348521i
\(746\) −7.55800 + 13.0908i −0.276718 + 0.479290i
\(747\) 2.38639 1.37778i 0.0873135 0.0504105i
\(748\) 1.07160i 0.0391815i
\(749\) −13.9704 −0.510466
\(750\) 9.04426 + 6.57277i 0.330250 + 0.240004i
\(751\) 3.79213 + 6.56817i 0.138377 + 0.239676i 0.926882 0.375352i \(-0.122478\pi\)
−0.788505 + 0.615028i \(0.789145\pi\)
\(752\) 12.0874i 0.440783i
\(753\) 15.0923i 0.549996i
\(754\) −5.83654 10.1092i −0.212554 0.368154i
\(755\) −7.59957 + 18.8073i −0.276577 + 0.684469i
\(756\) −0.392840 0.680419i −0.0142875 0.0247466i
\(757\) −26.1600 15.1035i −0.950801 0.548945i −0.0574714 0.998347i \(-0.518304\pi\)
−0.893330 + 0.449402i \(0.851637\pi\)
\(758\) −0.786055 0.453829i −0.0285508 0.0164838i
\(759\) −3.43309 −0.124613
\(760\) −8.63292 + 4.52468i −0.313149 + 0.164127i
\(761\) −46.3526 −1.68028 −0.840140 0.542369i \(-0.817527\pi\)
−0.840140 + 0.542369i \(0.817527\pi\)
\(762\) 3.14252 + 1.81433i 0.113841 + 0.0657264i
\(763\) −0.982839 0.567442i −0.0355812 0.0205428i
\(764\) −10.2351 17.7276i −0.370292 0.641364i
\(765\) 5.88074 + 2.37626i 0.212618 + 0.0859138i
\(766\) −0.303963 0.526479i −0.0109826 0.0190225i
\(767\) 28.3368i 1.02318i
\(768\) 1.00000i 0.0360844i
\(769\) 3.85950 + 6.68485i 0.139177 + 0.241062i 0.927185 0.374603i \(-0.122221\pi\)
−0.788008 + 0.615665i \(0.788888\pi\)
\(770\) 0.408595 + 0.523023i 0.0147248 + 0.0188485i
\(771\) −22.8256 −0.822045
\(772\) 18.9240i 0.681088i
\(773\) −18.0095 + 10.3978i −0.647755 + 0.373982i −0.787596 0.616193i \(-0.788674\pi\)
0.139841 + 0.990174i \(0.455341\pi\)
\(774\) 0.214320 0.371213i 0.00770356 0.0133430i
\(775\)