Properties

Label 570.2.q.b.349.4
Level $570$
Weight $2$
Character 570.349
Analytic conductor $4.551$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 570 = 2 \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 570.q (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.55147291521\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.89539436150784.1
Defining polynomial: \(x^{12} - 2 x^{11} + 2 x^{10} - 8 x^{9} + 4 x^{8} + 16 x^{7} - 8 x^{6} + 20 x^{5} + 20 x^{4} - 24 x^{3} + 8 x^{2} - 8 x + 4\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 349.4
Root \(-1.16746 - 0.312819i\) of defining polynomial
Character \(\chi\) \(=\) 570.349
Dual form 570.2.q.b.49.4

$q$-expansion

\(f(q)\) \(=\) \(q+(0.866025 - 0.500000i) q^{2} +(0.866025 - 0.500000i) q^{3} +(0.500000 - 0.866025i) q^{4} +(-1.60976 + 1.55199i) q^{5} +(0.500000 - 0.866025i) q^{6} -3.53919i q^{7} -1.00000i q^{8} +(0.500000 - 0.866025i) q^{9} +O(q^{10})\) \(q+(0.866025 - 0.500000i) q^{2} +(0.866025 - 0.500000i) q^{3} +(0.500000 - 0.866025i) q^{4} +(-1.60976 + 1.55199i) q^{5} +(0.500000 - 0.866025i) q^{6} -3.53919i q^{7} -1.00000i q^{8} +(0.500000 - 0.866025i) q^{9} +(-0.618092 + 2.14894i) q^{10} +3.34017 q^{11} -1.00000i q^{12} +(1.48028 + 0.854638i) q^{13} +(-1.76959 - 3.06503i) q^{14} +(-0.618092 + 2.14894i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(3.29175 - 1.90049i) q^{17} -1.00000i q^{18} +(1.30878 - 4.15777i) q^{19} +(0.539189 + 2.17009i) q^{20} +(-1.76959 - 3.06503i) q^{21} +(2.89267 - 1.67009i) q^{22} +(-7.33350 - 4.23400i) q^{23} +(-0.500000 - 0.866025i) q^{24} +(0.182626 - 4.99666i) q^{25} +1.70928 q^{26} -1.00000i q^{27} +(-3.06503 - 1.76959i) q^{28} +(-3.97887 + 6.89160i) q^{29} +(0.539189 + 2.17009i) q^{30} +1.07838 q^{31} +(-0.866025 - 0.500000i) q^{32} +(2.89267 - 1.67009i) q^{33} +(1.90049 - 3.29175i) q^{34} +(5.49280 + 5.69723i) q^{35} +(-0.500000 - 0.866025i) q^{36} +4.70928i q^{37} +(-0.945448 - 4.25513i) q^{38} +1.70928 q^{39} +(1.55199 + 1.60976i) q^{40} +(5.96441 + 10.3307i) q^{41} +(-3.06503 - 1.76959i) q^{42} +(4.39800 - 2.53919i) q^{43} +(1.67009 - 2.89267i) q^{44} +(0.539189 + 2.17009i) q^{45} -8.46800 q^{46} +(-4.73543 - 2.73400i) q^{47} +(-0.866025 - 0.500000i) q^{48} -5.52586 q^{49} +(-2.34017 - 4.41855i) q^{50} +(1.90049 - 3.29175i) q^{51} +(1.48028 - 0.854638i) q^{52} +(10.8342 + 6.25513i) q^{53} +(-0.500000 - 0.866025i) q^{54} +(-5.37686 + 5.18393i) q^{55} -3.53919 q^{56} +(-0.945448 - 4.25513i) q^{57} +7.95774i q^{58} +(2.93302 + 5.08013i) q^{59} +(1.55199 + 1.60976i) q^{60} +(-6.92522 + 11.9948i) q^{61} +(0.933903 - 0.539189i) q^{62} +(-3.06503 - 1.76959i) q^{63} -1.00000 q^{64} +(-3.70928 + 0.921622i) q^{65} +(1.67009 - 2.89267i) q^{66} +(-7.82551 - 4.51806i) q^{67} -3.80098i q^{68} -8.46800 q^{69} +(7.60552 + 2.18754i) q^{70} +(4.04585 + 7.00763i) q^{71} +(-0.866025 - 0.500000i) q^{72} +(-5.11673 + 2.95415i) q^{73} +(2.35464 + 4.07835i) q^{74} +(-2.34017 - 4.41855i) q^{75} +(-2.94635 - 3.21233i) q^{76} -11.8215i q^{77} +(1.48028 - 0.854638i) q^{78} +(-3.53919 - 6.13005i) q^{79} +(2.14894 + 0.618092i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(10.3307 + 5.96441i) q^{82} +4.68035i q^{83} -3.53919 q^{84} +(-2.34936 + 8.16810i) q^{85} +(2.53919 - 4.39800i) q^{86} +7.95774i q^{87} -3.34017i q^{88} +(4.66229 - 8.07532i) q^{89} +(1.55199 + 1.60976i) q^{90} +(3.02472 - 5.23898i) q^{91} +(-7.33350 + 4.23400i) q^{92} +(0.933903 - 0.539189i) q^{93} -5.46800 q^{94} +(4.34602 + 8.72422i) q^{95} -1.00000 q^{96} +(-5.06662 + 2.92522i) q^{97} +(-4.78553 + 2.76293i) q^{98} +(1.67009 - 2.89267i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12q + 6q^{4} + 6q^{6} + 6q^{9} + O(q^{10}) \) \( 12q + 6q^{4} + 6q^{6} + 6q^{9} - 2q^{10} - 4q^{11} - 18q^{14} - 2q^{15} - 6q^{16} + 6q^{19} - 18q^{21} - 6q^{24} - 2q^{25} - 8q^{26} - 16q^{29} + 4q^{34} + 2q^{35} - 6q^{36} - 8q^{39} + 2q^{40} + 10q^{41} - 2q^{44} + 28q^{46} - 56q^{49} + 16q^{50} + 4q^{51} - 6q^{54} - 8q^{55} - 36q^{56} + 8q^{59} + 2q^{60} - 28q^{61} - 12q^{64} - 16q^{65} - 2q^{66} + 28q^{69} + 16q^{70} + 44q^{71} + 14q^{74} + 16q^{75} - 12q^{76} - 36q^{79} - 6q^{81} - 36q^{84} - 32q^{85} + 24q^{86} + 6q^{89} + 2q^{90} + 64q^{94} - 12q^{95} - 12q^{96} - 2q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/570\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(211\) \(457\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 0.500000i 0.612372 0.353553i
\(3\) 0.866025 0.500000i 0.500000 0.288675i
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) −1.60976 + 1.55199i −0.719905 + 0.694073i
\(6\) 0.500000 0.866025i 0.204124 0.353553i
\(7\) 3.53919i 1.33769i −0.743403 0.668844i \(-0.766789\pi\)
0.743403 0.668844i \(-0.233211\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0.500000 0.866025i 0.166667 0.288675i
\(10\) −0.618092 + 2.14894i −0.195458 + 0.679556i
\(11\) 3.34017 1.00710 0.503550 0.863966i \(-0.332027\pi\)
0.503550 + 0.863966i \(0.332027\pi\)
\(12\) 1.00000i 0.288675i
\(13\) 1.48028 + 0.854638i 0.410555 + 0.237034i 0.691028 0.722828i \(-0.257158\pi\)
−0.280473 + 0.959862i \(0.590491\pi\)
\(14\) −1.76959 3.06503i −0.472944 0.819163i
\(15\) −0.618092 + 2.14894i −0.159591 + 0.554855i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 3.29175 1.90049i 0.798366 0.460937i −0.0445332 0.999008i \(-0.514180\pi\)
0.842900 + 0.538071i \(0.180847\pi\)
\(18\) 1.00000i 0.235702i
\(19\) 1.30878 4.15777i 0.300255 0.953859i
\(20\) 0.539189 + 2.17009i 0.120566 + 0.485246i
\(21\) −1.76959 3.06503i −0.386157 0.668844i
\(22\) 2.89267 1.67009i 0.616720 0.356064i
\(23\) −7.33350 4.23400i −1.52914 0.882850i −0.999398 0.0346916i \(-0.988955\pi\)
−0.529743 0.848158i \(-0.677712\pi\)
\(24\) −0.500000 0.866025i −0.102062 0.176777i
\(25\) 0.182626 4.99666i 0.0365252 0.999333i
\(26\) 1.70928 0.335216
\(27\) 1.00000i 0.192450i
\(28\) −3.06503 1.76959i −0.579236 0.334422i
\(29\) −3.97887 + 6.89160i −0.738858 + 1.27974i 0.214152 + 0.976800i \(0.431301\pi\)
−0.953010 + 0.302939i \(0.902032\pi\)
\(30\) 0.539189 + 2.17009i 0.0984420 + 0.396202i
\(31\) 1.07838 0.193682 0.0968412 0.995300i \(-0.469126\pi\)
0.0968412 + 0.995300i \(0.469126\pi\)
\(32\) −0.866025 0.500000i −0.153093 0.0883883i
\(33\) 2.89267 1.67009i 0.503550 0.290725i
\(34\) 1.90049 3.29175i 0.325932 0.564530i
\(35\) 5.49280 + 5.69723i 0.928453 + 0.963007i
\(36\) −0.500000 0.866025i −0.0833333 0.144338i
\(37\) 4.70928i 0.774200i 0.922038 + 0.387100i \(0.126523\pi\)
−0.922038 + 0.387100i \(0.873477\pi\)
\(38\) −0.945448 4.25513i −0.153372 0.690273i
\(39\) 1.70928 0.273703
\(40\) 1.55199 + 1.60976i 0.245392 + 0.254525i
\(41\) 5.96441 + 10.3307i 0.931484 + 1.61338i 0.780787 + 0.624797i \(0.214818\pi\)
0.150696 + 0.988580i \(0.451848\pi\)
\(42\) −3.06503 1.76959i −0.472944 0.273054i
\(43\) 4.39800 2.53919i 0.670689 0.387223i −0.125648 0.992075i \(-0.540101\pi\)
0.796338 + 0.604852i \(0.206768\pi\)
\(44\) 1.67009 2.89267i 0.251775 0.436087i
\(45\) 0.539189 + 2.17009i 0.0803775 + 0.323497i
\(46\) −8.46800 −1.24854
\(47\) −4.73543 2.73400i −0.690733 0.398795i 0.113154 0.993578i \(-0.463905\pi\)
−0.803887 + 0.594783i \(0.797238\pi\)
\(48\) −0.866025 0.500000i −0.125000 0.0721688i
\(49\) −5.52586 −0.789408
\(50\) −2.34017 4.41855i −0.330950 0.624877i
\(51\) 1.90049 3.29175i 0.266122 0.460937i
\(52\) 1.48028 0.854638i 0.205277 0.118517i
\(53\) 10.8342 + 6.25513i 1.48819 + 0.859208i 0.999909 0.0134772i \(-0.00429006\pi\)
0.488283 + 0.872685i \(0.337623\pi\)
\(54\) −0.500000 0.866025i −0.0680414 0.117851i
\(55\) −5.37686 + 5.18393i −0.725016 + 0.699001i
\(56\) −3.53919 −0.472944
\(57\) −0.945448 4.25513i −0.125228 0.563606i
\(58\) 7.95774i 1.04490i
\(59\) 2.93302 + 5.08013i 0.381846 + 0.661377i 0.991326 0.131425i \(-0.0419551\pi\)
−0.609480 + 0.792801i \(0.708622\pi\)
\(60\) 1.55199 + 1.60976i 0.200362 + 0.207819i
\(61\) −6.92522 + 11.9948i −0.886683 + 1.53578i −0.0429107 + 0.999079i \(0.513663\pi\)
−0.843772 + 0.536701i \(0.819670\pi\)
\(62\) 0.933903 0.539189i 0.118606 0.0684771i
\(63\) −3.06503 1.76959i −0.386157 0.222948i
\(64\) −1.00000 −0.125000
\(65\) −3.70928 + 0.921622i −0.460079 + 0.114313i
\(66\) 1.67009 2.89267i 0.205573 0.356064i
\(67\) −7.82551 4.51806i −0.956038 0.551969i −0.0610865 0.998132i \(-0.519457\pi\)
−0.894951 + 0.446164i \(0.852790\pi\)
\(68\) 3.80098i 0.460937i
\(69\) −8.46800 −1.01943
\(70\) 7.60552 + 2.18754i 0.909034 + 0.261462i
\(71\) 4.04585 + 7.00763i 0.480155 + 0.831652i 0.999741 0.0227659i \(-0.00724723\pi\)
−0.519586 + 0.854418i \(0.673914\pi\)
\(72\) −0.866025 0.500000i −0.102062 0.0589256i
\(73\) −5.11673 + 2.95415i −0.598868 + 0.345757i −0.768596 0.639734i \(-0.779044\pi\)
0.169728 + 0.985491i \(0.445711\pi\)
\(74\) 2.35464 + 4.07835i 0.273721 + 0.474099i
\(75\) −2.34017 4.41855i −0.270220 0.510210i
\(76\) −2.94635 3.21233i −0.337969 0.368479i
\(77\) 11.8215i 1.34719i
\(78\) 1.48028 0.854638i 0.167608 0.0967687i
\(79\) −3.53919 6.13005i −0.398190 0.689685i 0.595313 0.803494i \(-0.297028\pi\)
−0.993503 + 0.113809i \(0.963695\pi\)
\(80\) 2.14894 + 0.618092i 0.240259 + 0.0691048i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 10.3307 + 5.96441i 1.14083 + 0.658658i
\(83\) 4.68035i 0.513735i 0.966447 + 0.256867i \(0.0826903\pi\)
−0.966447 + 0.256867i \(0.917310\pi\)
\(84\) −3.53919 −0.386157
\(85\) −2.34936 + 8.16810i −0.254824 + 0.885955i
\(86\) 2.53919 4.39800i 0.273808 0.474249i
\(87\) 7.95774i 0.853159i
\(88\) 3.34017i 0.356064i
\(89\) 4.66229 8.07532i 0.494201 0.855982i −0.505776 0.862665i \(-0.668794\pi\)
0.999978 + 0.00668268i \(0.00212718\pi\)
\(90\) 1.55199 + 1.60976i 0.163595 + 0.169683i
\(91\) 3.02472 5.23898i 0.317077 0.549194i
\(92\) −7.33350 + 4.23400i −0.764570 + 0.441425i
\(93\) 0.933903 0.539189i 0.0968412 0.0559113i
\(94\) −5.46800 −0.563981
\(95\) 4.34602 + 8.72422i 0.445892 + 0.895087i
\(96\) −1.00000 −0.102062
\(97\) −5.06662 + 2.92522i −0.514438 + 0.297011i −0.734656 0.678440i \(-0.762656\pi\)
0.220218 + 0.975451i \(0.429323\pi\)
\(98\) −4.78553 + 2.76293i −0.483412 + 0.279098i
\(99\) 1.67009 2.89267i 0.167850 0.290725i
\(100\) −4.23592 2.65649i −0.423592 0.265649i
\(101\) 4.32684 7.49431i 0.430537 0.745712i −0.566383 0.824142i \(-0.691658\pi\)
0.996920 + 0.0784306i \(0.0249909\pi\)
\(102\) 3.80098i 0.376354i
\(103\) 0.751536i 0.0740510i 0.999314 + 0.0370255i \(0.0117883\pi\)
−0.999314 + 0.0370255i \(0.988212\pi\)
\(104\) 0.854638 1.48028i 0.0838041 0.145153i
\(105\) 7.60552 + 2.18754i 0.742223 + 0.213482i
\(106\) 12.5103 1.21510
\(107\) 9.82377i 0.949700i 0.880067 + 0.474850i \(0.157498\pi\)
−0.880067 + 0.474850i \(0.842502\pi\)
\(108\) −0.866025 0.500000i −0.0833333 0.0481125i
\(109\) −3.92522 6.79867i −0.375968 0.651195i 0.614504 0.788914i \(-0.289356\pi\)
−0.990471 + 0.137719i \(0.956023\pi\)
\(110\) −2.06453 + 7.17785i −0.196846 + 0.684381i
\(111\) 2.35464 + 4.07835i 0.223492 + 0.387100i
\(112\) −3.06503 + 1.76959i −0.289618 + 0.167211i
\(113\) 7.98440i 0.751109i 0.926800 + 0.375555i \(0.122548\pi\)
−0.926800 + 0.375555i \(0.877452\pi\)
\(114\) −2.94635 3.21233i −0.275951 0.300862i
\(115\) 18.3763 4.56585i 1.71360 0.425768i
\(116\) 3.97887 + 6.89160i 0.369429 + 0.639869i
\(117\) 1.48028 0.854638i 0.136852 0.0790113i
\(118\) 5.08013 + 2.93302i 0.467664 + 0.270006i
\(119\) −6.72620 11.6501i −0.616590 1.06796i
\(120\) 2.14894 + 0.618092i 0.196171 + 0.0564238i
\(121\) 0.156755 0.0142505
\(122\) 13.8504i 1.25396i
\(123\) 10.3307 + 5.96441i 0.931484 + 0.537792i
\(124\) 0.539189 0.933903i 0.0484206 0.0838669i
\(125\) 7.46081 + 8.32684i 0.667315 + 0.744775i
\(126\) −3.53919 −0.315296
\(127\) 16.1160 + 9.30458i 1.43006 + 0.825648i 0.997125 0.0757754i \(-0.0241432\pi\)
0.432939 + 0.901423i \(0.357477\pi\)
\(128\) −0.866025 + 0.500000i −0.0765466 + 0.0441942i
\(129\) 2.53919 4.39800i 0.223563 0.387223i
\(130\) −2.75152 + 2.65279i −0.241324 + 0.232665i
\(131\) 3.79072 + 6.56573i 0.331197 + 0.573650i 0.982747 0.184956i \(-0.0592141\pi\)
−0.651550 + 0.758606i \(0.725881\pi\)
\(132\) 3.34017i 0.290725i
\(133\) −14.7151 4.63203i −1.27597 0.401648i
\(134\) −9.03612 −0.780602
\(135\) 1.55199 + 1.60976i 0.133574 + 0.138546i
\(136\) −1.90049 3.29175i −0.162966 0.282265i
\(137\) −9.88875 5.70928i −0.844853 0.487776i 0.0140576 0.999901i \(-0.495525\pi\)
−0.858911 + 0.512125i \(0.828858\pi\)
\(138\) −7.33350 + 4.23400i −0.624269 + 0.360422i
\(139\) 1.80098 3.11940i 0.152757 0.264584i −0.779483 0.626424i \(-0.784518\pi\)
0.932240 + 0.361840i \(0.117851\pi\)
\(140\) 7.68035 1.90829i 0.649108 0.161280i
\(141\) −5.46800 −0.460489
\(142\) 7.00763 + 4.04585i 0.588067 + 0.339521i
\(143\) 4.94438 + 2.85464i 0.413470 + 0.238717i
\(144\) −1.00000 −0.0833333
\(145\) −4.29072 17.2690i −0.356325 1.43411i
\(146\) −2.95415 + 5.11673i −0.244487 + 0.423464i
\(147\) −4.78553 + 2.76293i −0.394704 + 0.227883i
\(148\) 4.07835 + 2.35464i 0.335238 + 0.193550i
\(149\) −5.14896 8.91825i −0.421819 0.730612i 0.574299 0.818646i \(-0.305275\pi\)
−0.996117 + 0.0880341i \(0.971942\pi\)
\(150\) −4.23592 2.65649i −0.345862 0.216902i
\(151\) −4.69594 −0.382151 −0.191075 0.981575i \(-0.561197\pi\)
−0.191075 + 0.981575i \(0.561197\pi\)
\(152\) −4.15777 1.30878i −0.337240 0.106156i
\(153\) 3.80098i 0.307291i
\(154\) −5.91075 10.2377i −0.476302 0.824979i
\(155\) −1.73592 + 1.67364i −0.139433 + 0.134430i
\(156\) 0.854638 1.48028i 0.0684258 0.118517i
\(157\) 9.10838 5.25872i 0.726928 0.419692i −0.0903695 0.995908i \(-0.528805\pi\)
0.817297 + 0.576216i \(0.195471\pi\)
\(158\) −6.13005 3.53919i −0.487681 0.281563i
\(159\) 12.5103 0.992128
\(160\) 2.17009 0.539189i 0.171560 0.0426266i
\(161\) −14.9849 + 25.9546i −1.18098 + 2.04551i
\(162\) −0.866025 0.500000i −0.0680414 0.0392837i
\(163\) 16.7792i 1.31425i 0.753781 + 0.657126i \(0.228228\pi\)
−0.753781 + 0.657126i \(0.771772\pi\)
\(164\) 11.9288 0.931484
\(165\) −2.06453 + 7.17785i −0.160724 + 0.558795i
\(166\) 2.34017 + 4.05330i 0.181633 + 0.314597i
\(167\) −10.0496 5.80212i −0.777659 0.448981i 0.0579413 0.998320i \(-0.481546\pi\)
−0.835600 + 0.549339i \(0.814880\pi\)
\(168\) −3.06503 + 1.76959i −0.236472 + 0.136527i
\(169\) −5.03919 8.72813i −0.387630 0.671395i
\(170\) 2.04945 + 8.24846i 0.157186 + 0.632628i
\(171\) −2.94635 3.21233i −0.225313 0.245653i
\(172\) 5.07838i 0.387223i
\(173\) 7.70752 4.44994i 0.585992 0.338323i −0.177519 0.984117i \(-0.556807\pi\)
0.763511 + 0.645795i \(0.223474\pi\)
\(174\) 3.97887 + 6.89160i 0.301637 + 0.522451i
\(175\) −17.6841 0.646348i −1.33680 0.0488593i
\(176\) −1.67009 2.89267i −0.125888 0.218044i
\(177\) 5.08013 + 2.93302i 0.381846 + 0.220459i
\(178\) 9.32457i 0.698906i
\(179\) −21.8599 −1.63388 −0.816942 0.576719i \(-0.804333\pi\)
−0.816942 + 0.576719i \(0.804333\pi\)
\(180\) 2.14894 + 0.618092i 0.160173 + 0.0460699i
\(181\) 2.66342 4.61318i 0.197971 0.342895i −0.749900 0.661551i \(-0.769898\pi\)
0.947870 + 0.318656i \(0.103232\pi\)
\(182\) 6.04945i 0.448415i
\(183\) 13.8504i 1.02385i
\(184\) −4.23400 + 7.33350i −0.312135 + 0.540633i
\(185\) −7.30877 7.58078i −0.537351 0.557350i
\(186\) 0.539189 0.933903i 0.0395352 0.0684771i
\(187\) 10.9950 6.34797i 0.804035 0.464210i
\(188\) −4.73543 + 2.73400i −0.345366 + 0.199397i
\(189\) −3.53919 −0.257438
\(190\) 8.12588 + 5.38239i 0.589513 + 0.390480i
\(191\) 8.99386 0.650773 0.325386 0.945581i \(-0.394506\pi\)
0.325386 + 0.945581i \(0.394506\pi\)
\(192\) −0.866025 + 0.500000i −0.0625000 + 0.0360844i
\(193\) −2.02042 + 1.16649i −0.145433 + 0.0839660i −0.570951 0.820984i \(-0.693425\pi\)
0.425518 + 0.904950i \(0.360092\pi\)
\(194\) −2.92522 + 5.06662i −0.210018 + 0.363762i
\(195\) −2.75152 + 2.65279i −0.197040 + 0.189970i
\(196\) −2.76293 + 4.78553i −0.197352 + 0.341824i
\(197\) 24.0856i 1.71603i 0.513628 + 0.858013i \(0.328301\pi\)
−0.513628 + 0.858013i \(0.671699\pi\)
\(198\) 3.34017i 0.237376i
\(199\) 0.652028 1.12935i 0.0462210 0.0800572i −0.841989 0.539494i \(-0.818615\pi\)
0.888210 + 0.459437i \(0.151949\pi\)
\(200\) −4.99666 0.182626i −0.353317 0.0129136i
\(201\) −9.03612 −0.637359
\(202\) 8.65368i 0.608871i
\(203\) 24.3907 + 14.0820i 1.71189 + 0.988361i
\(204\) −1.90049 3.29175i −0.133061 0.230469i
\(205\) −25.6344 7.37310i −1.79038 0.514960i
\(206\) 0.375768 + 0.650849i 0.0261810 + 0.0453468i
\(207\) −7.33350 + 4.23400i −0.509714 + 0.294283i
\(208\) 1.70928i 0.118517i
\(209\) 4.37156 13.8877i 0.302387 0.960631i
\(210\) 7.68035 1.90829i 0.529994 0.131685i
\(211\) −3.49220 6.04867i −0.240413 0.416408i 0.720419 0.693539i \(-0.243950\pi\)
−0.960832 + 0.277132i \(0.910616\pi\)
\(212\) 10.8342 6.25513i 0.744096 0.429604i
\(213\) 7.00763 + 4.04585i 0.480155 + 0.277217i
\(214\) 4.91189 + 8.50763i 0.335770 + 0.581570i
\(215\) −3.13890 + 10.9132i −0.214072 + 0.744271i
\(216\) −1.00000 −0.0680414
\(217\) 3.81658i 0.259087i
\(218\) −6.79867 3.92522i −0.460464 0.265849i
\(219\) −2.95415 + 5.11673i −0.199623 + 0.345757i
\(220\) 1.80098 + 7.24846i 0.121422 + 0.488691i
\(221\) 6.49693 0.437031
\(222\) 4.07835 + 2.35464i 0.273721 + 0.158033i
\(223\) 8.67180 5.00667i 0.580707 0.335271i −0.180708 0.983537i \(-0.557839\pi\)
0.761414 + 0.648266i \(0.224505\pi\)
\(224\) −1.76959 + 3.06503i −0.118236 + 0.204791i
\(225\) −4.23592 2.65649i −0.282395 0.177099i
\(226\) 3.99220 + 6.91469i 0.265557 + 0.459959i
\(227\) 14.2485i 0.945704i −0.881142 0.472852i \(-0.843225\pi\)
0.881142 0.472852i \(-0.156775\pi\)
\(228\) −4.15777 1.30878i −0.275355 0.0866763i
\(229\) 15.8576 1.04790 0.523951 0.851749i \(-0.324458\pi\)
0.523951 + 0.851749i \(0.324458\pi\)
\(230\) 13.6314 13.1423i 0.898828 0.866577i
\(231\) −5.91075 10.2377i −0.388899 0.673593i
\(232\) 6.89160 + 3.97887i 0.452456 + 0.261226i
\(233\) 21.3006 12.2979i 1.39545 0.805663i 0.401538 0.915843i \(-0.368476\pi\)
0.993912 + 0.110179i \(0.0351426\pi\)
\(234\) 0.854638 1.48028i 0.0558694 0.0967687i
\(235\) 11.8660 2.94828i 0.774055 0.192325i
\(236\) 5.86603 0.381846
\(237\) −6.13005 3.53919i −0.398190 0.229895i
\(238\) −11.6501 6.72620i −0.755165 0.435995i
\(239\) −0.156755 −0.0101397 −0.00506983 0.999987i \(-0.501614\pi\)
−0.00506983 + 0.999987i \(0.501614\pi\)
\(240\) 2.17009 0.539189i 0.140078 0.0348045i
\(241\) 12.7968 22.1647i 0.824313 1.42775i −0.0781302 0.996943i \(-0.524895\pi\)
0.902443 0.430809i \(-0.141772\pi\)
\(242\) 0.135754 0.0783777i 0.00872661 0.00503831i
\(243\) −0.866025 0.500000i −0.0555556 0.0320750i
\(244\) 6.92522 + 11.9948i 0.443342 + 0.767890i
\(245\) 8.89528 8.57610i 0.568299 0.547907i
\(246\) 11.9288 0.760553
\(247\) 5.49075 5.03612i 0.349368 0.320440i
\(248\) 1.07838i 0.0684771i
\(249\) 2.34017 + 4.05330i 0.148302 + 0.256867i
\(250\) 10.6247 + 3.48085i 0.671963 + 0.220148i
\(251\) 5.32684 9.22636i 0.336227 0.582363i −0.647493 0.762072i \(-0.724182\pi\)
0.983720 + 0.179709i \(0.0575156\pi\)
\(252\) −3.06503 + 1.76959i −0.193079 + 0.111474i
\(253\) −24.4952 14.1423i −1.54000 0.889118i
\(254\) 18.6092 1.16764
\(255\) 2.04945 + 8.24846i 0.128341 + 0.516539i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −16.7899 9.69368i −1.04733 0.604675i −0.125428 0.992103i \(-0.540030\pi\)
−0.921900 + 0.387428i \(0.873364\pi\)
\(258\) 5.07838i 0.316166i
\(259\) 16.6670 1.03564
\(260\) −1.05649 + 3.67314i −0.0655207 + 0.227798i
\(261\) 3.97887 + 6.89160i 0.246286 + 0.426580i
\(262\) 6.56573 + 3.79072i 0.405632 + 0.234192i
\(263\) −26.5877 + 15.3504i −1.63947 + 0.946548i −0.658454 + 0.752621i \(0.728789\pi\)
−0.981016 + 0.193927i \(0.937878\pi\)
\(264\) −1.67009 2.89267i −0.102787 0.178032i
\(265\) −27.1483 + 6.74539i −1.66771 + 0.414366i
\(266\) −15.0597 + 3.34612i −0.923370 + 0.205164i
\(267\) 9.32457i 0.570655i
\(268\) −7.82551 + 4.51806i −0.478019 + 0.275984i
\(269\) −14.1334 24.4797i −0.861726 1.49255i −0.870262 0.492590i \(-0.836050\pi\)
0.00853563 0.999964i \(-0.497283\pi\)
\(270\) 2.14894 + 0.618092i 0.130781 + 0.0376159i
\(271\) 5.80817 + 10.0600i 0.352821 + 0.611104i 0.986743 0.162293i \(-0.0518890\pi\)
−0.633921 + 0.773398i \(0.718556\pi\)
\(272\) −3.29175 1.90049i −0.199592 0.115234i
\(273\) 6.04945i 0.366129i
\(274\) −11.4186 −0.689820
\(275\) 0.610003 16.6897i 0.0367846 1.00643i
\(276\) −4.23400 + 7.33350i −0.254857 + 0.441425i
\(277\) 26.1750i 1.57270i 0.617779 + 0.786352i \(0.288033\pi\)
−0.617779 + 0.786352i \(0.711967\pi\)
\(278\) 3.60197i 0.216032i
\(279\) 0.539189 0.933903i 0.0322804 0.0559113i
\(280\) 5.69723 5.49280i 0.340475 0.328258i
\(281\) −12.0139 + 20.8086i −0.716686 + 1.24134i 0.245619 + 0.969366i \(0.421009\pi\)
−0.962305 + 0.271971i \(0.912325\pi\)
\(282\) −4.73543 + 2.73400i −0.281991 + 0.162807i
\(283\) 17.5920 10.1568i 1.04574 0.603756i 0.124284 0.992247i \(-0.460337\pi\)
0.921453 + 0.388490i \(0.127003\pi\)
\(284\) 8.09171 0.480155
\(285\) 8.12588 + 5.38239i 0.481335 + 0.318825i
\(286\) 5.70928 0.337597
\(287\) 36.5621 21.1092i 2.15819 1.24603i
\(288\) −0.866025 + 0.500000i −0.0510310 + 0.0294628i
\(289\) −1.27626 + 2.21055i −0.0750741 + 0.130032i
\(290\) −12.3504 12.8100i −0.725239 0.752230i
\(291\) −2.92522 + 5.06662i −0.171479 + 0.297011i
\(292\) 5.90829i 0.345757i
\(293\) 5.32457i 0.311065i 0.987831 + 0.155532i \(0.0497093\pi\)
−0.987831 + 0.155532i \(0.950291\pi\)
\(294\) −2.76293 + 4.78553i −0.161137 + 0.279098i
\(295\) −12.6058 3.62575i −0.733937 0.211099i
\(296\) 4.70928 0.273721
\(297\) 3.34017i 0.193816i
\(298\) −8.91825 5.14896i −0.516621 0.298271i
\(299\) −7.23707 12.5350i −0.418531 0.724916i
\(300\) −4.99666 0.182626i −0.288483 0.0105439i
\(301\) −8.98667 15.5654i −0.517983 0.897173i
\(302\) −4.06681 + 2.34797i −0.234018 + 0.135111i
\(303\) 8.65368i 0.497141i
\(304\) −4.25513 + 0.945448i −0.244048 + 0.0542251i
\(305\) −7.46800 30.0566i −0.427616 1.72104i
\(306\) −1.90049 3.29175i −0.108644 0.188177i
\(307\) 3.18301 1.83771i 0.181664 0.104884i −0.406410 0.913691i \(-0.633220\pi\)
0.588074 + 0.808807i \(0.299886\pi\)
\(308\) −10.2377 5.91075i −0.583348 0.336796i
\(309\) 0.375768 + 0.650849i 0.0213767 + 0.0370255i
\(310\) −0.666537 + 2.31737i −0.0378567 + 0.131618i
\(311\) −13.7321 −0.778674 −0.389337 0.921095i \(-0.627296\pi\)
−0.389337 + 0.921095i \(0.627296\pi\)
\(312\) 1.70928i 0.0967687i
\(313\) 15.5384 + 8.97107i 0.878279 + 0.507075i 0.870091 0.492892i \(-0.164060\pi\)
0.00818874 + 0.999966i \(0.497393\pi\)
\(314\) 5.25872 9.10838i 0.296767 0.514015i
\(315\) 7.68035 1.90829i 0.432738 0.107520i
\(316\) −7.07838 −0.398190
\(317\) −6.35055 3.66649i −0.356682 0.205931i 0.310942 0.950429i \(-0.399355\pi\)
−0.667625 + 0.744498i \(0.732689\pi\)
\(318\) 10.8342 6.25513i 0.607552 0.350770i
\(319\) −13.2901 + 23.0192i −0.744103 + 1.28883i
\(320\) 1.60976 1.55199i 0.0899881 0.0867591i
\(321\) 4.91189 + 8.50763i 0.274155 + 0.474850i
\(322\) 29.9698i 1.67015i
\(323\) −3.59363 16.1737i −0.199955 0.899928i
\(324\) −1.00000 −0.0555556
\(325\) 4.54067 7.24036i 0.251871 0.401623i
\(326\) 8.38962 + 14.5313i 0.464658 + 0.804812i
\(327\) −6.79867 3.92522i −0.375968 0.217065i
\(328\) 10.3307 5.96441i 0.570415 0.329329i
\(329\) −9.67614 + 16.7596i −0.533463 + 0.923985i
\(330\) 1.80098 + 7.24846i 0.0991409 + 0.399015i
\(331\) 21.4813 1.18072 0.590360 0.807140i \(-0.298986\pi\)
0.590360 + 0.807140i \(0.298986\pi\)
\(332\) 4.05330 + 2.34017i 0.222454 + 0.128434i
\(333\) 4.07835 + 2.35464i 0.223492 + 0.129033i
\(334\) −11.6042 −0.634956
\(335\) 19.6092 4.87217i 1.07136 0.266195i
\(336\) −1.76959 + 3.06503i −0.0965393 + 0.167211i
\(337\) −17.6151 + 10.1701i −0.959556 + 0.554000i −0.896036 0.443981i \(-0.853566\pi\)
−0.0635196 + 0.997981i \(0.520233\pi\)
\(338\) −8.72813 5.03919i −0.474748 0.274096i
\(339\) 3.99220 + 6.91469i 0.216827 + 0.375555i
\(340\) 5.89911 + 6.11866i 0.319924 + 0.331831i
\(341\) 3.60197 0.195058
\(342\) −4.15777 1.30878i −0.224827 0.0707709i
\(343\) 5.21727i 0.281706i
\(344\) −2.53919 4.39800i −0.136904 0.237124i
\(345\) 13.6314 13.1423i 0.733890 0.707557i
\(346\) 4.44994 7.70752i 0.239230 0.414359i
\(347\) −7.97084 + 4.60197i −0.427897 + 0.247047i −0.698450 0.715658i \(-0.746127\pi\)
0.270553 + 0.962705i \(0.412793\pi\)
\(348\) 6.89160 + 3.97887i 0.369429 + 0.213290i
\(349\) −8.24846 −0.441530 −0.220765 0.975327i \(-0.570855\pi\)
−0.220765 + 0.975327i \(0.570855\pi\)
\(350\) −15.6381 + 8.28231i −0.835891 + 0.442708i
\(351\) 0.854638 1.48028i 0.0456172 0.0790113i
\(352\) −2.89267 1.67009i −0.154180 0.0890159i
\(353\) 6.24005i 0.332125i 0.986115 + 0.166062i \(0.0531053\pi\)
−0.986115 + 0.166062i \(0.946895\pi\)
\(354\) 5.86603 0.311776
\(355\) −17.3886 5.00142i −0.922893 0.265448i
\(356\) −4.66229 8.07532i −0.247101 0.427991i
\(357\) −11.6501 6.72620i −0.616590 0.355988i
\(358\) −18.9312 + 10.9299i −1.00055 + 0.577665i
\(359\) 0.401626 + 0.695636i 0.0211970 + 0.0367143i 0.876429 0.481531i \(-0.159919\pi\)
−0.855232 + 0.518245i \(0.826586\pi\)
\(360\) 2.17009 0.539189i 0.114374 0.0284177i
\(361\) −15.5742 10.8833i −0.819693 0.572803i
\(362\) 5.32684i 0.279973i
\(363\) 0.135754 0.0783777i 0.00712525 0.00411376i
\(364\) −3.02472 5.23898i −0.158539 0.274597i
\(365\) 3.65187 12.6966i 0.191147 0.664570i
\(366\) 6.92522 + 11.9948i 0.361987 + 0.626980i
\(367\) −2.54265 1.46800i −0.132725 0.0766289i 0.432167 0.901793i \(-0.357749\pi\)
−0.564892 + 0.825165i \(0.691082\pi\)
\(368\) 8.46800i 0.441425i
\(369\) 11.9288 0.620989
\(370\) −10.1200 2.91077i −0.526112 0.151323i
\(371\) 22.1381 38.3443i 1.14935 1.99074i
\(372\) 1.07838i 0.0559113i
\(373\) 25.5152i 1.32113i −0.750771 0.660563i \(-0.770318\pi\)
0.750771 0.660563i \(-0.229682\pi\)
\(374\) 6.34797 10.9950i 0.328246 0.568538i
\(375\) 10.6247 + 3.48085i 0.548656 + 0.179750i
\(376\) −2.73400 + 4.73543i −0.140995 + 0.244211i
\(377\) −11.7797 + 6.80098i −0.606683 + 0.350269i
\(378\) −3.06503 + 1.76959i −0.157648 + 0.0910181i
\(379\) 26.6537 1.36911 0.684554 0.728962i \(-0.259997\pi\)
0.684554 + 0.728962i \(0.259997\pi\)
\(380\) 9.72841 + 0.598347i 0.499057 + 0.0306946i
\(381\) 18.6092 0.953376
\(382\) 7.78891 4.49693i 0.398515 0.230083i
\(383\) 8.35837 4.82571i 0.427093 0.246582i −0.271015 0.962575i \(-0.587359\pi\)
0.698107 + 0.715993i \(0.254026\pi\)
\(384\) −0.500000 + 0.866025i −0.0255155 + 0.0441942i
\(385\) 18.3469 + 19.0297i 0.935045 + 0.969845i
\(386\) −1.16649 + 2.02042i −0.0593729 + 0.102837i
\(387\) 5.07838i 0.258148i
\(388\) 5.85043i 0.297011i
\(389\) −10.2407 + 17.7374i −0.519222 + 0.899319i 0.480528 + 0.876979i \(0.340445\pi\)
−0.999750 + 0.0223401i \(0.992888\pi\)
\(390\) −1.05649 + 3.67314i −0.0534974 + 0.185997i
\(391\) −32.1867 −1.62775
\(392\) 5.52586i 0.279098i
\(393\) 6.56573 + 3.79072i 0.331197 + 0.191217i
\(394\) 12.0428 + 20.8587i 0.606707 + 1.05085i
\(395\) 15.2110 + 4.37509i 0.765351 + 0.220135i
\(396\) −1.67009 2.89267i −0.0839250 0.145362i
\(397\) 0.296562 0.171220i 0.0148840 0.00859330i −0.492540 0.870290i \(-0.663931\pi\)
0.507424 + 0.861697i \(0.330598\pi\)
\(398\) 1.30406i 0.0653664i
\(399\) −15.0597 + 3.34612i −0.753928 + 0.167515i
\(400\) −4.41855 + 2.34017i −0.220928 + 0.117009i
\(401\) −4.06278 7.03694i −0.202886 0.351408i 0.746571 0.665305i \(-0.231699\pi\)
−0.949457 + 0.313897i \(0.898365\pi\)
\(402\) −7.82551 + 4.51806i −0.390301 + 0.225340i
\(403\) 1.59630 + 0.921622i 0.0795172 + 0.0459093i
\(404\) −4.32684 7.49431i −0.215268 0.372856i
\(405\) 2.14894 + 0.618092i 0.106782 + 0.0307132i
\(406\) 28.1639 1.39775
\(407\) 15.7298i 0.779697i
\(408\) −3.29175 1.90049i −0.162966 0.0940884i
\(409\) 6.03725 10.4568i 0.298523 0.517057i −0.677275 0.735730i \(-0.736839\pi\)
0.975798 + 0.218673i \(0.0701728\pi\)
\(410\) −25.8865 + 6.43188i −1.27845 + 0.317648i
\(411\) −11.4186 −0.563236
\(412\) 0.650849 + 0.375768i 0.0320650 + 0.0185128i
\(413\) 17.9795 10.3805i 0.884716 0.510791i
\(414\) −4.23400 + 7.33350i −0.208090 + 0.360422i
\(415\) −7.26387 7.53421i −0.356569 0.369840i
\(416\) −0.854638 1.48028i −0.0419021 0.0725765i
\(417\) 3.60197i 0.176389i
\(418\) −3.15796 14.2129i −0.154461 0.695174i
\(419\) 15.2290 0.743985 0.371992 0.928236i \(-0.378675\pi\)
0.371992 + 0.928236i \(0.378675\pi\)
\(420\) 5.69723 5.49280i 0.277996 0.268021i
\(421\) −4.80458 8.32177i −0.234161 0.405578i 0.724868 0.688888i \(-0.241901\pi\)
−0.959028 + 0.283310i \(0.908568\pi\)
\(422\) −6.04867 3.49220i −0.294445 0.169998i
\(423\) −4.73543 + 2.73400i −0.230244 + 0.132932i
\(424\) 6.25513 10.8342i 0.303776 0.526155i
\(425\) −8.89496 16.7948i −0.431469 0.814669i
\(426\) 8.09171 0.392045
\(427\) 42.4520 + 24.5096i 2.05439 + 1.18611i
\(428\) 8.50763 + 4.91189i 0.411232 + 0.237425i
\(429\) 5.70928 0.275646
\(430\) 2.73820 + 11.0205i 0.132048 + 0.531457i
\(431\) 6.62730 11.4788i 0.319226 0.552916i −0.661101 0.750297i \(-0.729910\pi\)
0.980327 + 0.197381i \(0.0632438\pi\)
\(432\) −0.866025 + 0.500000i −0.0416667 + 0.0240563i
\(433\) 13.2965 + 7.67675i 0.638990 + 0.368921i 0.784225 0.620476i \(-0.213061\pi\)
−0.145235 + 0.989397i \(0.546394\pi\)
\(434\) −1.90829 3.30526i −0.0916009 0.158657i
\(435\) −12.3504 12.8100i −0.592155 0.614193i
\(436\) −7.85043 −0.375968
\(437\) −27.2020 + 24.9497i −1.30125 + 1.19350i
\(438\) 5.90829i 0.282309i
\(439\) 10.4263 + 18.0590i 0.497623 + 0.861908i 0.999996 0.00274309i \(-0.000873154\pi\)
−0.502374 + 0.864651i \(0.667540\pi\)
\(440\) 5.18393 + 5.37686i 0.247134 + 0.256332i
\(441\) −2.76293 + 4.78553i −0.131568 + 0.227883i
\(442\) 5.62651 3.24846i 0.267626 0.154514i
\(443\) −22.0694 12.7418i −1.04855 0.605381i −0.126308 0.991991i \(-0.540313\pi\)
−0.922243 + 0.386610i \(0.873646\pi\)
\(444\) 4.70928 0.223492
\(445\) 5.02771 + 20.2351i 0.238336 + 0.959237i
\(446\) 5.00667 8.67180i 0.237072 0.410622i
\(447\) −8.91825 5.14896i −0.421819 0.243537i
\(448\) 3.53919i 0.167211i
\(449\) 19.1412 0.903327 0.451664 0.892188i \(-0.350831\pi\)
0.451664 + 0.892188i \(0.350831\pi\)
\(450\) −4.99666 0.182626i −0.235545 0.00860908i
\(451\) 19.9221 + 34.5062i 0.938097 + 1.62483i
\(452\) 6.91469 + 3.99220i 0.325240 + 0.187777i
\(453\) −4.06681 + 2.34797i −0.191075 + 0.110317i
\(454\) −7.12423 12.3395i −0.334357 0.579123i
\(455\) 3.26180 + 13.1278i 0.152915 + 0.615442i
\(456\) −4.25513 + 0.945448i −0.199265 + 0.0442746i
\(457\) 32.0216i 1.49791i 0.662623 + 0.748953i \(0.269443\pi\)
−0.662623 + 0.748953i \(0.730557\pi\)
\(458\) 13.7331 7.92881i 0.641706 0.370489i
\(459\) −1.90049 3.29175i −0.0887074 0.153646i
\(460\) 5.23400 18.1973i 0.244037 0.848452i
\(461\) −20.6381 35.7462i −0.961211 1.66487i −0.719466 0.694527i \(-0.755614\pi\)
−0.241745 0.970340i \(-0.577720\pi\)
\(462\) −10.2377 5.91075i −0.476302 0.274993i
\(463\) 8.16168i 0.379305i −0.981851 0.189653i \(-0.939264\pi\)
0.981851 0.189653i \(-0.0607362\pi\)
\(464\) 7.95774 0.369429
\(465\) −0.666537 + 2.31737i −0.0309099 + 0.107466i
\(466\) 12.2979 21.3006i 0.569690 0.986732i
\(467\) 17.8238i 0.824786i 0.911006 + 0.412393i \(0.135307\pi\)
−0.911006 + 0.412393i \(0.864693\pi\)
\(468\) 1.70928i 0.0790113i
\(469\) −15.9903 + 27.6959i −0.738362 + 1.27888i
\(470\) 8.80214 8.48630i 0.406013 0.391444i
\(471\) 5.25872 9.10838i 0.242309 0.419692i
\(472\) 5.08013 2.93302i 0.233832 0.135003i
\(473\) 14.6901 8.48133i 0.675451 0.389972i
\(474\) −7.07838 −0.325121
\(475\) −20.5360 7.29887i −0.942255 0.334895i
\(476\) −13.4524 −0.616590
\(477\) 10.8342 6.25513i 0.496064 0.286403i
\(478\) −0.135754 + 0.0783777i −0.00620925 + 0.00358491i
\(479\) −11.5694 + 20.0389i −0.528621 + 0.915599i 0.470822 + 0.882228i \(0.343958\pi\)
−0.999443 + 0.0333707i \(0.989376\pi\)
\(480\) 1.60976 1.55199i 0.0734750 0.0708385i
\(481\) −4.02472 + 6.97103i −0.183512 + 0.317851i
\(482\) 25.5936i 1.16575i
\(483\) 29.9698i 1.36368i
\(484\) 0.0783777 0.135754i 0.00356262 0.00617065i
\(485\) 3.61611 12.5723i 0.164199 0.570877i
\(486\) −1.00000 −0.0453609
\(487\) 10.8855i 0.493269i 0.969109 + 0.246635i \(0.0793248\pi\)
−0.969109 + 0.246635i \(0.920675\pi\)
\(488\) 11.9948 + 6.92522i 0.542980 + 0.313490i
\(489\) 8.38962 + 14.5313i 0.379392 + 0.657126i
\(490\) 3.41549 11.8748i 0.154296 0.536447i
\(491\) −15.3732 26.6272i −0.693784 1.20167i −0.970589 0.240743i \(-0.922609\pi\)
0.276805 0.960926i \(-0.410724\pi\)
\(492\) 10.3307 5.96441i 0.465742 0.268896i
\(493\) 30.2472i 1.36227i
\(494\) 2.23707 7.10678i 0.100651 0.319749i
\(495\) 1.80098 + 7.24846i 0.0809482 + 0.325794i
\(496\) −0.539189 0.933903i −0.0242103 0.0419335i
\(497\) 24.8013 14.3190i 1.11249 0.642297i
\(498\) 4.05330 + 2.34017i 0.181633 + 0.104866i
\(499\) −3.29545 5.70789i −0.147525 0.255520i 0.782787 0.622289i \(-0.213797\pi\)
−0.930312 + 0.366769i \(0.880464\pi\)
\(500\) 10.9417 2.29783i 0.489326 0.102762i
\(501\) −11.6042 −0.518439
\(502\) 10.6537i 0.475497i
\(503\) −11.1192 6.41968i −0.495781 0.286240i 0.231188 0.972909i \(-0.425739\pi\)
−0.726970 + 0.686669i \(0.759072\pi\)
\(504\) −1.76959 + 3.06503i −0.0788240 + 0.136527i
\(505\) 4.66597 + 18.7792i 0.207633 + 0.835665i
\(506\) −28.2846 −1.25740
\(507\) −8.72813 5.03919i −0.387630 0.223798i
\(508\) 16.1160 9.30458i 0.715032 0.412824i
\(509\) −11.4319 + 19.8006i −0.506709 + 0.877646i 0.493261 + 0.869882i \(0.335805\pi\)
−0.999970 + 0.00776458i \(0.997528\pi\)
\(510\) 5.89911 + 6.11866i 0.261217 + 0.270939i
\(511\) 10.4553 + 18.1091i 0.462514 + 0.801098i
\(512\) 1.00000i 0.0441942i
\(513\) −4.15777 1.30878i −0.183570 0.0577842i
\(514\) −19.3874 −0.855140
\(515\) −1.16638 1.20979i −0.0513968 0.0533097i
\(516\) −2.53919 4.39800i −0.111782 0.193611i
\(517\) −15.8171 9.13203i −0.695637 0.401626i
\(518\) 14.4341 8.33351i 0.634196 0.366153i
\(519\) 4.44994 7.70752i 0.195331 0.338323i
\(520\) 0.921622 + 3.70928i 0.0404158 + 0.162662i
\(521\) 3.34632 0.146605 0.0733024 0.997310i \(-0.476646\pi\)
0.0733024 + 0.997310i \(0.476646\pi\)
\(522\) 6.89160 + 3.97887i 0.301637 + 0.174150i
\(523\) −38.8290 22.4179i −1.69787 0.980268i −0.947773 0.318944i \(-0.896672\pi\)
−0.750101 0.661324i \(-0.769995\pi\)
\(524\) 7.58145 0.331197
\(525\) −15.6381 + 8.28231i −0.682502 + 0.361470i
\(526\) −15.3504 + 26.5877i −0.669311 + 1.15928i
\(527\) 3.54975 2.04945i 0.154629 0.0892754i
\(528\) −2.89267 1.67009i −0.125888 0.0726812i
\(529\) 24.3535 + 42.1815i 1.05885 + 1.83398i
\(530\) −20.1385 + 19.4159i −0.874759 + 0.843371i
\(531\) 5.86603 0.254564
\(532\) −11.3690 + 10.4277i −0.492910 + 0.452097i
\(533\) 20.3896i 0.883173i
\(534\) −4.66229 8.07532i −0.201757 0.349453i
\(535\) −15.2464 15.8139i −0.659161 0.683693i
\(536\) −4.51806 + 7.82551i −0.195150 + 0.338010i
\(537\) −18.9312 + 10.9299i −0.816942 + 0.471662i
\(538\) −24.4797 14.1334i −1.05539 0.609332i
\(539\) −18.4573 −0.795013
\(540\) 2.17009 0.539189i 0.0933857 0.0232030i
\(541\) 3.98440 6.90119i 0.171303 0.296705i −0.767573 0.640962i \(-0.778536\pi\)
0.938876 + 0.344257i \(0.111869\pi\)
\(542\) 10.0600 + 5.80817i 0.432116 + 0.249482i
\(543\) 5.32684i 0.228597i
\(544\) −3.80098 −0.162966
\(545\) 16.8701 + 4.85229i 0.722638 + 0.207849i
\(546\) −3.02472 5.23898i −0.129446 0.224207i
\(547\) 17.2203 + 9.94214i 0.736287 + 0.425095i 0.820718 0.571334i \(-0.193574\pi\)
−0.0844310 + 0.996429i \(0.526907\pi\)
\(548\) −9.88875 + 5.70928i −0.422427 + 0.243888i
\(549\) 6.92522 + 11.9948i 0.295561 + 0.511927i
\(550\) −7.81658 14.7587i −0.333300 0.629314i
\(551\) 23.4463 + 25.5629i 0.998844 + 1.08901i
\(552\) 8.46800i 0.360422i
\(553\) −21.6954 + 12.5259i −0.922583 + 0.532654i
\(554\) 13.0875 + 22.6682i 0.556035 + 0.963080i
\(555\) −10.1200 2.91077i −0.429569 0.123555i
\(556\) −1.80098 3.11940i −0.0763787 0.132292i
\(557\) −17.1356 9.89322i −0.726057 0.419189i 0.0909212 0.995858i \(-0.471019\pi\)
−0.816978 + 0.576669i \(0.804352\pi\)
\(558\) 1.07838i 0.0456514i
\(559\) 8.68035 0.367140
\(560\) 2.18754 7.60552i 0.0924406 0.321392i
\(561\) 6.34797 10.9950i 0.268012 0.464210i
\(562\) 24.0277i 1.01355i
\(563\) 32.6681i 1.37679i 0.725334 + 0.688397i \(0.241685\pi\)
−0.725334 + 0.688397i \(0.758315\pi\)
\(564\) −2.73400 + 4.73543i −0.115122 + 0.199397i
\(565\) −12.3917 12.8529i −0.521325 0.540727i
\(566\) 10.1568 17.5920i 0.426920 0.739448i
\(567\) −3.06503 + 1.76959i −0.128719 + 0.0743160i
\(568\) 7.00763 4.04585i 0.294033 0.169760i
\(569\) −11.0650 −0.463871 −0.231935 0.972731i \(-0.574506\pi\)
−0.231935 + 0.972731i \(0.574506\pi\)
\(570\) 9.72841 + 0.598347i 0.407478 + 0.0250620i
\(571\) −30.4040 −1.27237 −0.636184 0.771538i \(-0.719488\pi\)
−0.636184 + 0.771538i \(0.719488\pi\)
\(572\) 4.94438 2.85464i 0.206735 0.119358i
\(573\) 7.78891 4.49693i 0.325386 0.187862i
\(574\) 21.1092 36.5621i 0.881079 1.52607i
\(575\) −22.4952 + 35.8698i −0.938113 + 1.49587i
\(576\) −0.500000 + 0.866025i −0.0208333 + 0.0360844i
\(577\) 15.0010i 0.624502i −0.950000 0.312251i \(-0.898917\pi\)
0.950000 0.312251i \(-0.101083\pi\)
\(578\) 2.55252i 0.106171i
\(579\) −1.16649 + 2.02042i −0.0484778 + 0.0839660i
\(580\) −17.1007 4.91862i −0.710070 0.204234i
\(581\) 16.5646 0.687217
\(582\) 5.85043i 0.242508i
\(583\) 36.1881 + 20.8932i 1.49876 + 0.865309i
\(584\) 2.95415 + 5.11673i 0.122243 + 0.211732i
\(585\) −1.05649 + 3.67314i −0.0436805 + 0.151866i
\(586\) 2.66229 + 4.61122i 0.109978 + 0.190488i
\(587\) −0.566107 + 0.326842i −0.0233657 + 0.0134902i −0.511637 0.859201i \(-0.670961\pi\)
0.488272 + 0.872692i \(0.337628\pi\)
\(588\) 5.52586i 0.227883i
\(589\) 1.41136 4.48365i 0.0581542 0.184746i
\(590\) −12.7298 + 3.16290i −0.524077 + 0.130214i
\(591\) 12.0428 + 20.8587i 0.495374 + 0.858013i
\(592\) 4.07835 2.35464i 0.167619 0.0967750i
\(593\) 36.3095 + 20.9633i 1.49105 + 0.860858i 0.999948 0.0102432i \(-0.00326056\pi\)
0.491103 + 0.871102i \(0.336594\pi\)
\(594\) −1.67009 2.89267i −0.0685245 0.118688i
\(595\) 28.9085 + 8.31482i 1.18513 + 0.340874i
\(596\) −10.2979 −0.421819
\(597\) 1.30406i 0.0533714i
\(598\) −12.5350 7.23707i −0.512593 0.295946i
\(599\) −8.45722 + 14.6483i −0.345553 + 0.598515i −0.985454 0.169942i \(-0.945642\pi\)
0.639901 + 0.768457i \(0.278975\pi\)
\(600\) −4.41855 + 2.34017i −0.180387 + 0.0955372i
\(601\) −4.42243 −0.180395 −0.0901973 0.995924i \(-0.528750\pi\)
−0.0901973 + 0.995924i \(0.528750\pi\)
\(602\) −15.5654 8.98667i −0.634397 0.366269i
\(603\) −7.82551 + 4.51806i −0.318679 + 0.183990i
\(604\) −2.34797 + 4.06681i −0.0955376 + 0.165476i
\(605\) −0.252338 + 0.243284i −0.0102590 + 0.00989089i
\(606\) −4.32684 7.49431i −0.175766 0.304436i
\(607\) 15.6030i 0.633307i −0.948541 0.316653i \(-0.897441\pi\)
0.948541 0.316653i \(-0.102559\pi\)
\(608\) −3.21233 + 2.94635i −0.130277 + 0.119490i
\(609\) 28.1639 1.14126
\(610\) −21.4958 22.2958i −0.870339 0.902731i
\(611\) −4.67316 8.09415i −0.189056 0.327454i
\(612\) −3.29175 1.90049i −0.133061 0.0768228i
\(613\) 3.51225 2.02780i 0.141858 0.0819019i −0.427391 0.904067i \(-0.640567\pi\)
0.569249 + 0.822165i \(0.307234\pi\)
\(614\) 1.83771 3.18301i 0.0741640 0.128456i
\(615\) −25.8865 + 6.43188i −1.04385 + 0.259359i
\(616\) −11.8215 −0.476302
\(617\) 17.4062 + 10.0494i 0.700745 + 0.404576i 0.807625 0.589696i \(-0.200753\pi\)
−0.106880 + 0.994272i \(0.534086\pi\)
\(618\) 0.650849 + 0.375768i 0.0261810 + 0.0151156i
\(619\) 17.0917 0.686974 0.343487 0.939157i \(-0.388392\pi\)
0.343487 + 0.939157i \(0.388392\pi\)
\(620\) 0.581449 + 2.34017i 0.0233516 + 0.0939836i
\(621\) −4.23400 + 7.33350i −0.169905 + 0.294283i
\(622\) −11.8923 + 6.86603i −0.476838 + 0.275303i
\(623\) −28.5801 16.5007i −1.14504 0.661087i
\(624\) −0.854638 1.48028i −0.0342129 0.0592585i
\(625\) −24.9333 1.82504i −0.997332 0.0730017i
\(626\) 17.9421 0.717112
\(627\) −3.15796 14.2129i −0.126117 0.567607i
\(628\) 10.5174i 0.419692i
\(629\) 8.94994 + 15.5018i 0.356857 + 0.618095i
\(630\) 5.69723 5.49280i 0.226983 0.218838i
\(631\) −5.80652 + 10.0572i −0.231154 + 0.400370i −0.958148 0.286274i \(-0.907583\pi\)
0.726994 + 0.686644i \(0.240917\pi\)
\(632\) −6.13005 + 3.53919i −0.243840 + 0.140781i
\(633\) −6.04867 3.49220i −0.240413 0.138803i
\(634\) −7.33299 −0.291230
\(635\) −40.3835 + 10.0338i −1.60257 + 0.398181i
\(636\) 6.25513 10.8342i 0.248032 0.429604i
\(637\) −8.17979 4.72261i −0.324095 0.187116i
\(638\) 26.5802i 1.05232i
\(639\) 8.09171 0.320103
\(640\) 0.618092 2.14894i 0.0244322 0.0849445i
\(641\) −3.14116 5.44064i −0.124068 0.214893i 0.797300 0.603583i \(-0.206261\pi\)
−0.921368 + 0.388691i \(0.872928\pi\)
\(642\) 8.50763 + 4.91189i 0.335770 + 0.193857i
\(643\) −11.3358 + 6.54472i −0.447040 + 0.258099i −0.706579 0.707634i \(-0.749763\pi\)
0.259539 + 0.965733i \(0.416429\pi\)
\(644\) 14.9849 + 25.9546i 0.590489 + 1.02276i
\(645\) 2.73820 + 11.0205i 0.107817 + 0.433933i
\(646\) −11.1990 12.2100i −0.440619 0.480396i
\(647\) 7.89496i 0.310383i −0.987884 0.155191i \(-0.950401\pi\)
0.987884 0.155191i \(-0.0495994\pi\)
\(648\) −0.866025 + 0.500000i −0.0340207 + 0.0196419i
\(649\) 9.79678 + 16.9685i 0.384557 + 0.666073i
\(650\) 0.312158 8.54067i 0.0122439 0.334993i
\(651\) −1.90829 3.30526i −0.0747918 0.129543i
\(652\) 14.5313 + 8.38962i 0.569088 + 0.328563i
\(653\) 36.7620i 1.43861i −0.694695 0.719305i \(-0.744460\pi\)
0.694695 0.719305i \(-0.255540\pi\)
\(654\) −7.85043 −0.306976
\(655\) −16.2921 4.68603i −0.636586 0.183098i
\(656\) 5.96441 10.3307i 0.232871 0.403344i
\(657\) 5.90829i 0.230504i
\(658\) 19.3523i 0.754430i
\(659\) −14.8805 + 25.7738i −0.579662 + 1.00400i 0.415856 + 0.909430i \(0.363482\pi\)
−0.995518 + 0.0945733i \(0.969851\pi\)
\(660\) 5.18393 + 5.37686i 0.201784 + 0.209294i
\(661\) −2.94441 + 5.09987i −0.114524 + 0.198362i −0.917589 0.397529i \(-0.869868\pi\)
0.803065 + 0.595891i \(0.203201\pi\)
\(662\) 18.6034 10.7407i 0.723041 0.417448i
\(663\) 5.62651 3.24846i 0.218515 0.126160i
\(664\) 4.68035 0.181633
\(665\) 30.8767 15.3814i 1.19735 0.596465i
\(666\) 4.70928 0.182481
\(667\) 58.3581 33.6931i 2.25963 1.30460i
\(668\) −10.0496 + 5.80212i −0.388829 + 0.224491i
\(669\) 5.00667 8.67180i 0.193569 0.335271i
\(670\) 14.5459 14.0240i 0.561959 0.541795i
\(671\) −23.1314 + 40.0648i −0.892979 + 1.54668i
\(672\) 3.53919i 0.136527i
\(673\) 8.96719i 0.345660i 0.984952 + 0.172830i \(0.0552911\pi\)
−0.984952 + 0.172830i \(0.944709\pi\)
\(674\) −10.1701 + 17.6151i −0.391737 + 0.678509i
\(675\) −4.99666 0.182626i −0.192322 0.00702928i
\(676\) −10.0784 −0.387630
\(677\) 20.9721i 0.806024i −0.915195 0.403012i \(-0.867963\pi\)
0.915195 0.403012i \(-0.132037\pi\)
\(678\) 6.91469 + 3.99220i 0.265557 + 0.153320i
\(679\) 10.3529 + 17.9317i 0.397308 + 0.688157i
\(680\) 8.16810 + 2.34936i 0.313232 + 0.0900938i
\(681\) −7.12423 12.3395i −0.273001 0.472852i
\(682\) 3.11940 1.80098i 0.119448 0.0689632i
\(683\) 7.46922i 0.285802i 0.989737 + 0.142901i \(0.0456430\pi\)
−0.989737 + 0.142901i \(0.954357\pi\)
\(684\) −4.25513 + 0.945448i −0.162699 + 0.0361501i
\(685\) 24.7792 6.15676i 0.946766 0.235238i
\(686\) −2.60863 4.51829i −0.0995981 0.172509i
\(687\) 13.7331 7.92881i 0.523951 0.302503i
\(688\) −4.39800 2.53919i −0.167672 0.0968057i
\(689\) 10.6917 + 18.5186i 0.407323 + 0.705504i
\(690\) 5.23400 18.1973i 0.199255 0.692758i
\(691\) 4.35804 0.165788 0.0828938 0.996558i \(-0.473584\pi\)
0.0828938 + 0.996558i \(0.473584\pi\)
\(692\) 8.89988i 0.338323i
\(693\) −10.2377 5.91075i −0.388899 0.224531i
\(694\) −4.60197 + 7.97084i −0.174688 + 0.302569i
\(695\) 1.94214 + 7.81658i 0.0736696 + 0.296500i
\(696\) 7.95774 0.301637
\(697\) 39.2666 + 22.6706i 1.48733 + 0.858711i
\(698\) −7.14338 + 4.12423i −0.270381 + 0.156104i
\(699\) 12.2979 21.3006i 0.465150 0.805663i
\(700\) −9.40182 + 14.9917i −0.355355 + 0.566634i
\(701\) 10.1990 + 17.6652i 0.385212 + 0.667206i 0.991799 0.127811i \(-0.0407952\pi\)
−0.606587 + 0.795017i \(0.707462\pi\)
\(702\) 1.70928i 0.0645124i
\(703\) 19.5801 + 6.16342i 0.738478 + 0.232458i
\(704\) −3.34017 −0.125888
\(705\) 8.80214 8.48630i 0.331508 0.319613i
\(706\) 3.12003 + 5.40405i 0.117424 + 0.203384i
\(707\) −26.5238 15.3135i −0.997529 0.575924i
\(708\) 5.08013 2.93302i 0.190923 0.110229i
\(709\) 14.4377 25.0069i 0.542221 0.939154i −0.456555 0.889695i \(-0.650917\pi\)
0.998776 0.0494590i \(-0.0157497\pi\)
\(710\) −17.5597 + 4.36296i −0.659004 + 0.163739i
\(711\) −7.07838 −0.265460
\(712\) −8.07532 4.66229i −0.302635 0.174727i
\(713\) −7.90829 4.56585i −0.296168 0.170992i
\(714\) −13.4524 −0.503443
\(715\) −12.3896 + 3.07838i −0.463346 + 0.115125i
\(716\) −10.9299 + 18.9312i −0.408471 + 0.707493i
\(717\) −0.135754 + 0.0783777i −0.00506983 + 0.00292707i
\(718\) 0.695636 + 0.401626i 0.0259609 + 0.0149885i
\(719\) −18.1701 31.4715i −0.677630 1.17369i −0.975693 0.219143i \(-0.929674\pi\)
0.298063 0.954546i \(-0.403660\pi\)
\(720\) 1.60976 1.55199i 0.0599920 0.0578394i
\(721\) 2.65983 0.0990571
\(722\) −18.9293 1.63809i −0.704474 0.0609632i
\(723\) 25.5936i 0.951835i
\(724\) −2.66342 4.61318i −0.0989853 0.171448i
\(725\) 33.7084 + 21.1397i 1.25190 + 0.785107i
\(726\) 0.0783777 0.135754i 0.00290887 0.00503831i
\(727\) 25.7020 14.8390i 0.953233 0.550350i 0.0591495 0.998249i \(-0.481161\pi\)
0.894084 + 0.447900i \(0.147828\pi\)
\(728\) −5.23898 3.02472i −0.194169 0.112104i
\(729\) −1.00000 −0.0370370
\(730\) −3.18568 12.8215i −0.117907 0.474545i
\(731\) 9.65142 16.7167i 0.356971 0.618291i
\(732\) 11.9948 + 6.92522i 0.443342 + 0.255963i
\(733\) 29.8248i 1.10160i −0.834636 0.550802i \(-0.814322\pi\)
0.834636 0.550802i \(-0.185678\pi\)
\(734\) −2.93600 −0.108370
\(735\) 3.41549 11.8748i 0.125982 0.438007i
\(736\) 4.23400 + 7.33350i 0.156067 + 0.270316i
\(737\) −26.1385 15.0911i −0.962826 0.555888i
\(738\) 10.3307 5.96441i 0.380277 0.219553i
\(739\) −26.6737 46.2002i −0.981207 1.69950i −0.657709 0.753272i \(-0.728474\pi\)
−0.323498 0.946229i \(-0.604859\pi\)
\(740\) −10.2195 + 2.53919i −0.375678 + 0.0933424i
\(741\) 2.23707 7.10678i 0.0821809 0.261074i
\(742\) 44.2762i 1.62543i
\(743\) −7.56947 + 4.37024i −0.277697 + 0.160328i −0.632380 0.774658i \(-0.717922\pi\)
0.354683 + 0.934986i \(0.384589\pi\)
\(744\) −0.539189 0.933903i −0.0197676 0.0342385i
\(745\) 22.1296 + 6.36506i 0.810767 + 0.233198i
\(746\) −12.7576 22.0968i −0.467089 0.809021i
\(747\) 4.05330 + 2.34017i 0.148302 + 0.0856225i
\(748\) 12.6959i 0.464210i
\(749\) 34.7682 1.27040
\(750\) 10.9417 2.29783i 0.399533 0.0839049i
\(751\) −19.4101 + 33.6193i −0.708286 + 1.22679i 0.257206 + 0.966356i \(0.417198\pi\)
−0.965492 + 0.260431i \(0.916135\pi\)
\(752\) 5.46800i 0.199397i
\(753\) 10.6537i 0.388242i
\(754\) −6.80098 + 11.7797i −0.247677 + 0.428990i
\(755\) 7.55932 7.28808i 0.275112 0.265240i
\(756\) −1.76959 + 3.06503i −0.0643595 + 0.111474i
\(757\) −44.1922 + 25.5144i −1.60619 + 0.927336i −0.615981 + 0.787761i \(0.711240\pi\)
−0.990212 + 0.139575i \(0.955426\pi\)
\(758\) 23.0828 13.3268i 0.838404 0.484053i
\(759\) −28.2846 −1.02667
\(760\) 8.72422 4.34602i 0.316461 0.157647i
\(761\) −24.2546 −0.879229 −0.439614 0.898187i \(-0.644885\pi\)
−0.439614 + 0.898187i \(0.644885\pi\)
\(762\) 16.1160 9.30458i 0.583821 0.337069i
\(763\) −24.0618 + 13.8921i −0.871095 + 0.502927i
\(764\) 4.49693 7.78891i 0.162693 0.281793i
\(765\) 5.89911 + 6.11866i 0.213283 + 0.221220i
\(766\) 4.82571 8.35837i 0.174360 0.302000i
\(767\) 10.0267i 0.362042i
\(768\) 1.00000i 0.0360844i
\(769\) 8.02472 13.8992i 0.289379 0.501219i −0.684283 0.729217i \(-0.739885\pi\)
0.973662 + 0.227998i \(0.0732179\pi\)
\(770\) 25.4038 + 7.30678i 0.915488 + 0.263318i
\(771\) −19.3874 −0.698218
\(772\) 2.33299i 0.0839660i
\(773\) 6.20751 + 3.58391i 0.223269 + 0.128904i 0.607463 0.794348i \(-0.292187\pi\)
−0.384194 + 0.923252i \(0.625521\pi\)
\(774\) −2.53919 4.39800i −0.0912693 0.158083i
\(775\) 0.196940