Properties

 Label 570.2.q.b.349.2 Level $570$ Weight $2$ Character 570.349 Analytic conductor $4.551$ Analytic rank $0$ Dimension $12$ CM no Inner twists $4$

Learn more about

Newspace parameters

 Level: $$N$$ $$=$$ $$570 = 2 \cdot 3 \cdot 5 \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 570.q (of order $$6$$, degree $$2$$, minimal)

Newform invariants

 Self dual: no Analytic conductor: $$4.55147291521$$ Analytic rank: $$0$$ Dimension: $$12$$ Relative dimension: $$6$$ over $$\Q(\zeta_{6})$$ Coefficient field: 12.0.89539436150784.1 Defining polynomial: $$x^{12} - 2 x^{11} + 2 x^{10} - 8 x^{9} + 4 x^{8} + 16 x^{7} - 8 x^{6} + 20 x^{5} + 20 x^{4} - 24 x^{3} + 8 x^{2} - 8 x + 4$$ Coefficient ring: $$\Z[a_1, \ldots, a_{7}]$$ Coefficient ring index: $$2^{2}$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

 Embedding label 349.2 Root $$-0.147520 + 0.550552i$$ of defining polynomial Character $$\chi$$ $$=$$ 570.349 Dual form 570.2.q.b.49.2

$q$-expansion

 $$f(q)$$ $$=$$ $$q+(-0.866025 + 0.500000i) q^{2} +(-0.866025 + 0.500000i) q^{3} +(0.500000 - 0.866025i) q^{4} +(-0.445186 + 2.19130i) q^{5} +(0.500000 - 0.866025i) q^{6} +4.67513i q^{7} +1.00000i q^{8} +(0.500000 - 0.866025i) q^{9} +O(q^{10})$$ $$q+(-0.866025 + 0.500000i) q^{2} +(-0.866025 + 0.500000i) q^{3} +(0.500000 - 0.866025i) q^{4} +(-0.445186 + 2.19130i) q^{5} +(0.500000 - 0.866025i) q^{6} +4.67513i q^{7} +1.00000i q^{8} +(0.500000 - 0.866025i) q^{9} +(-0.710109 - 2.12032i) q^{10} -3.96239 q^{11} +1.00000i q^{12} +(0.698071 + 0.403032i) q^{13} +(-2.33757 - 4.04878i) q^{14} +(-0.710109 - 2.12032i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(4.01621 - 2.31876i) q^{17} +1.00000i q^{18} +(3.01270 + 3.15018i) q^{19} +(1.67513 + 1.48119i) q^{20} +(-2.33757 - 4.04878i) q^{21} +(3.43153 - 1.98119i) q^{22} +(-5.52574 - 3.19029i) q^{23} +(-0.500000 - 0.866025i) q^{24} +(-4.60362 - 1.95108i) q^{25} -0.806063 q^{26} +1.00000i q^{27} +(4.04878 + 2.33757i) q^{28} +(-2.03150 + 3.51866i) q^{29} +(1.67513 + 1.48119i) q^{30} +3.35026 q^{31} +(0.866025 + 0.500000i) q^{32} +(3.43153 - 1.98119i) q^{33} +(-2.31876 + 4.01621i) q^{34} +(-10.2446 - 2.08130i) q^{35} +(-0.500000 - 0.866025i) q^{36} -2.19394i q^{37} +(-4.18416 - 1.22179i) q^{38} -0.806063 q^{39} +(-2.19130 - 0.445186i) q^{40} +(-2.02785 - 3.51235i) q^{41} +(4.04878 + 2.33757i) q^{42} +(-6.36551 + 3.67513i) q^{43} +(-1.98119 + 3.43153i) q^{44} +(1.67513 + 1.48119i) q^{45} +6.38058 q^{46} +(-8.12382 - 4.69029i) q^{47} +(0.866025 + 0.500000i) q^{48} -14.8568 q^{49} +(4.96239 - 0.612127i) q^{50} +(-2.31876 + 4.01621i) q^{51} +(0.698071 - 0.403032i) q^{52} +(-1.34790 - 0.778209i) q^{53} +(-0.500000 - 0.866025i) q^{54} +(1.76400 - 8.68279i) q^{55} -4.67513 q^{56} +(-4.18416 - 1.22179i) q^{57} -4.06300i q^{58} +(3.94723 + 6.83680i) q^{59} +(-2.19130 - 0.445186i) q^{60} +(2.20299 - 3.81568i) q^{61} +(-2.90141 + 1.67513i) q^{62} +(4.04878 + 2.33757i) q^{63} -1.00000 q^{64} +(-1.19394 + 1.35026i) q^{65} +(-1.98119 + 3.43153i) q^{66} +(6.42008 + 3.70663i) q^{67} -4.63752i q^{68} +6.38058 q^{69} +(9.91276 - 3.31985i) q^{70} +(1.08427 + 1.87801i) q^{71} +(0.866025 + 0.500000i) q^{72} +(10.2463 - 5.91573i) q^{73} +(1.09697 + 1.90000i) q^{74} +(4.96239 - 0.612127i) q^{75} +(4.23449 - 1.03398i) q^{76} -18.5247i q^{77} +(0.698071 - 0.403032i) q^{78} +(-4.67513 - 8.09756i) q^{79} +(2.12032 - 0.710109i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(3.51235 + 2.02785i) q^{82} +9.92478i q^{83} -4.67513 q^{84} +(3.29314 + 9.83301i) q^{85} +(3.67513 - 6.36551i) q^{86} -4.06300i q^{87} -3.96239i q^{88} +(-9.13141 + 15.8161i) q^{89} +(-2.19130 - 0.445186i) q^{90} +(-1.88423 + 3.26358i) q^{91} +(-5.52574 + 3.19029i) q^{92} +(-2.90141 + 1.67513i) q^{93} +9.38058 q^{94} +(-8.24422 + 5.19931i) q^{95} -1.00000 q^{96} +(-10.7439 + 6.20299i) q^{97} +(12.8664 - 7.42842i) q^{98} +(-1.98119 + 3.43153i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$12q + 6q^{4} + 6q^{6} + 6q^{9} + O(q^{10})$$ $$12q + 6q^{4} + 6q^{6} + 6q^{9} - 2q^{10} - 4q^{11} - 18q^{14} - 2q^{15} - 6q^{16} + 6q^{19} - 18q^{21} - 6q^{24} - 2q^{25} - 8q^{26} - 16q^{29} + 4q^{34} + 2q^{35} - 6q^{36} - 8q^{39} + 2q^{40} + 10q^{41} - 2q^{44} + 28q^{46} - 56q^{49} + 16q^{50} + 4q^{51} - 6q^{54} - 8q^{55} - 36q^{56} + 8q^{59} + 2q^{60} - 28q^{61} - 12q^{64} - 16q^{65} - 2q^{66} + 28q^{69} + 16q^{70} + 44q^{71} + 14q^{74} + 16q^{75} - 12q^{76} - 36q^{79} - 6q^{81} - 36q^{84} - 32q^{85} + 24q^{86} + 6q^{89} + 2q^{90} + 64q^{94} - 12q^{95} - 12q^{96} - 2q^{99} + O(q^{100})$$

Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/570\mathbb{Z}\right)^\times$$.

 $$n$$ $$191$$ $$211$$ $$457$$ $$\chi(n)$$ $$1$$ $$e\left(\frac{1}{3}\right)$$ $$-1$$

Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −0.866025 + 0.500000i −0.612372 + 0.353553i
$$3$$ −0.866025 + 0.500000i −0.500000 + 0.288675i
$$4$$ 0.500000 0.866025i 0.250000 0.433013i
$$5$$ −0.445186 + 2.19130i −0.199093 + 0.979981i
$$6$$ 0.500000 0.866025i 0.204124 0.353553i
$$7$$ 4.67513i 1.76703i 0.468400 + 0.883517i $$0.344831\pi$$
−0.468400 + 0.883517i $$0.655169\pi$$
$$8$$ 1.00000i 0.353553i
$$9$$ 0.500000 0.866025i 0.166667 0.288675i
$$10$$ −0.710109 2.12032i −0.224556 0.670503i
$$11$$ −3.96239 −1.19471 −0.597353 0.801979i $$-0.703781\pi$$
−0.597353 + 0.801979i $$0.703781\pi$$
$$12$$ 1.00000i 0.288675i
$$13$$ 0.698071 + 0.403032i 0.193610 + 0.111781i 0.593672 0.804707i $$-0.297678\pi$$
−0.400061 + 0.916488i $$0.631011\pi$$
$$14$$ −2.33757 4.04878i −0.624741 1.08208i
$$15$$ −0.710109 2.12032i −0.183349 0.547464i
$$16$$ −0.500000 0.866025i −0.125000 0.216506i
$$17$$ 4.01621 2.31876i 0.974074 0.562382i 0.0735981 0.997288i $$-0.476552\pi$$
0.900476 + 0.434906i $$0.143218\pi$$
$$18$$ 1.00000i 0.235702i
$$19$$ 3.01270 + 3.15018i 0.691160 + 0.722702i
$$20$$ 1.67513 + 1.48119i 0.374571 + 0.331205i
$$21$$ −2.33757 4.04878i −0.510099 0.883517i
$$22$$ 3.43153 1.98119i 0.731604 0.422392i
$$23$$ −5.52574 3.19029i −1.15220 0.665221i −0.202775 0.979225i $$-0.564996\pi$$
−0.949422 + 0.314004i $$0.898329\pi$$
$$24$$ −0.500000 0.866025i −0.102062 0.176777i
$$25$$ −4.60362 1.95108i −0.920724 0.390215i
$$26$$ −0.806063 −0.158082
$$27$$ 1.00000i 0.192450i
$$28$$ 4.04878 + 2.33757i 0.765148 + 0.441758i
$$29$$ −2.03150 + 3.51866i −0.377240 + 0.653400i −0.990660 0.136358i $$-0.956460\pi$$
0.613419 + 0.789757i $$0.289794\pi$$
$$30$$ 1.67513 + 1.48119i 0.305836 + 0.270428i
$$31$$ 3.35026 0.601725 0.300862 0.953668i $$-0.402726\pi$$
0.300862 + 0.953668i $$0.402726\pi$$
$$32$$ 0.866025 + 0.500000i 0.153093 + 0.0883883i
$$33$$ 3.43153 1.98119i 0.597353 0.344882i
$$34$$ −2.31876 + 4.01621i −0.397664 + 0.688774i
$$35$$ −10.2446 2.08130i −1.73166 0.351805i
$$36$$ −0.500000 0.866025i −0.0833333 0.144338i
$$37$$ 2.19394i 0.360681i −0.983604 0.180340i $$-0.942280\pi$$
0.983604 0.180340i $$-0.0577200\pi$$
$$38$$ −4.18416 1.22179i −0.678761 0.198201i
$$39$$ −0.806063 −0.129073
$$40$$ −2.19130 0.445186i −0.346475 0.0703902i
$$41$$ −2.02785 3.51235i −0.316698 0.548537i 0.663099 0.748532i $$-0.269241\pi$$
−0.979797 + 0.199995i $$0.935907\pi$$
$$42$$ 4.04878 + 2.33757i 0.624741 + 0.360694i
$$43$$ −6.36551 + 3.67513i −0.970732 + 0.560452i −0.899459 0.437005i $$-0.856039\pi$$
−0.0712725 + 0.997457i $$0.522706\pi$$
$$44$$ −1.98119 + 3.43153i −0.298676 + 0.517322i
$$45$$ 1.67513 + 1.48119i 0.249714 + 0.220803i
$$46$$ 6.38058 0.940765
$$47$$ −8.12382 4.69029i −1.18498 0.684149i −0.227819 0.973703i $$-0.573160\pi$$
−0.957162 + 0.289554i $$0.906493\pi$$
$$48$$ 0.866025 + 0.500000i 0.125000 + 0.0721688i
$$49$$ −14.8568 −2.12241
$$50$$ 4.96239 0.612127i 0.701788 0.0865678i
$$51$$ −2.31876 + 4.01621i −0.324691 + 0.562382i
$$52$$ 0.698071 0.403032i 0.0968051 0.0558904i
$$53$$ −1.34790 0.778209i −0.185148 0.106895i 0.404561 0.914511i $$-0.367424\pi$$
−0.589709 + 0.807616i $$0.700758\pi$$
$$54$$ −0.500000 0.866025i −0.0680414 0.117851i
$$55$$ 1.76400 8.68279i 0.237858 1.17079i
$$56$$ −4.67513 −0.624741
$$57$$ −4.18416 1.22179i −0.554206 0.161830i
$$58$$ 4.06300i 0.533499i
$$59$$ 3.94723 + 6.83680i 0.513886 + 0.890076i 0.999870 + 0.0161086i $$0.00512775\pi$$
−0.485985 + 0.873967i $$0.661539\pi$$
$$60$$ −2.19130 0.445186i −0.282896 0.0574733i
$$61$$ 2.20299 3.81568i 0.282063 0.488548i −0.689829 0.723972i $$-0.742314\pi$$
0.971893 + 0.235424i $$0.0756478\pi$$
$$62$$ −2.90141 + 1.67513i −0.368480 + 0.212742i
$$63$$ 4.04878 + 2.33757i 0.510099 + 0.294506i
$$64$$ −1.00000 −0.125000
$$65$$ −1.19394 + 1.35026i −0.148090 + 0.167479i
$$66$$ −1.98119 + 3.43153i −0.243868 + 0.422392i
$$67$$ 6.42008 + 3.70663i 0.784337 + 0.452837i 0.837965 0.545724i $$-0.183745\pi$$
−0.0536280 + 0.998561i $$0.517079\pi$$
$$68$$ 4.63752i 0.562382i
$$69$$ 6.38058 0.768131
$$70$$ 9.91276 3.31985i 1.18480 0.396798i
$$71$$ 1.08427 + 1.87801i 0.128679 + 0.222879i 0.923165 0.384403i $$-0.125593\pi$$
−0.794486 + 0.607283i $$0.792260\pi$$
$$72$$ 0.866025 + 0.500000i 0.102062 + 0.0589256i
$$73$$ 10.2463 5.91573i 1.19924 0.692384i 0.238857 0.971055i $$-0.423227\pi$$
0.960387 + 0.278671i $$0.0898940\pi$$
$$74$$ 1.09697 + 1.90000i 0.127520 + 0.220871i
$$75$$ 4.96239 0.612127i 0.573007 0.0706823i
$$76$$ 4.23449 1.03398i 0.485729 0.118606i
$$77$$ 18.5247i 2.11108i
$$78$$ 0.698071 0.403032i 0.0790410 0.0456344i
$$79$$ −4.67513 8.09756i −0.525993 0.911047i −0.999541 0.0302792i $$-0.990360\pi$$
0.473548 0.880768i $$-0.342973\pi$$
$$80$$ 2.12032 0.710109i 0.237059 0.0793926i
$$81$$ −0.500000 0.866025i −0.0555556 0.0962250i
$$82$$ 3.51235 + 2.02785i 0.387874 + 0.223939i
$$83$$ 9.92478i 1.08939i 0.838636 + 0.544693i $$0.183354\pi$$
−0.838636 + 0.544693i $$0.816646\pi$$
$$84$$ −4.67513 −0.510099
$$85$$ 3.29314 + 9.83301i 0.357192 + 1.06654i
$$86$$ 3.67513 6.36551i 0.396300 0.686411i
$$87$$ 4.06300i 0.435600i
$$88$$ 3.96239i 0.422392i
$$89$$ −9.13141 + 15.8161i −0.967928 + 1.67650i −0.266393 + 0.963865i $$0.585832\pi$$
−0.701535 + 0.712635i $$0.747502\pi$$
$$90$$ −2.19130 0.445186i −0.230984 0.0469268i
$$91$$ −1.88423 + 3.26358i −0.197521 + 0.342116i
$$92$$ −5.52574 + 3.19029i −0.576099 + 0.332611i
$$93$$ −2.90141 + 1.67513i −0.300862 + 0.173703i
$$94$$ 9.38058 0.967533
$$95$$ −8.24422 + 5.19931i −0.845839 + 0.533438i
$$96$$ −1.00000 −0.102062
$$97$$ −10.7439 + 6.20299i −1.09088 + 0.629818i −0.933810 0.357770i $$-0.883537\pi$$
−0.157067 + 0.987588i $$0.550204\pi$$
$$98$$ 12.8664 7.42842i 1.29970 0.750384i
$$99$$ −1.98119 + 3.43153i −0.199118 + 0.344882i
$$100$$ −3.99149 + 3.01131i −0.399149 + 0.301131i
$$101$$ 5.21933 9.04014i 0.519343 0.899528i −0.480405 0.877047i $$-0.659510\pi$$
0.999747 0.0224809i $$-0.00715649\pi$$
$$102$$ 4.63752i 0.459183i
$$103$$ 2.13093i 0.209967i −0.994474 0.104984i $$-0.966521\pi$$
0.994474 0.104984i $$-0.0334790\pi$$
$$104$$ −0.403032 + 0.698071i −0.0395205 + 0.0684515i
$$105$$ 9.91276 3.31985i 0.967386 0.323984i
$$106$$ 1.55642 0.151173
$$107$$ 7.95746i 0.769277i −0.923067 0.384639i $$-0.874326\pi$$
0.923067 0.384639i $$-0.125674\pi$$
$$108$$ 0.866025 + 0.500000i 0.0833333 + 0.0481125i
$$109$$ 5.20299 + 9.01184i 0.498356 + 0.863177i 0.999998 0.00189769i $$-0.000604054\pi$$
−0.501643 + 0.865075i $$0.667271\pi$$
$$110$$ 2.81373 + 8.40152i 0.268278 + 0.801054i
$$111$$ 1.09697 + 1.90000i 0.104120 + 0.180340i
$$112$$ 4.04878 2.33757i 0.382574 0.220879i
$$113$$ 12.3004i 1.15713i 0.815637 + 0.578564i $$0.196387\pi$$
−0.815637 + 0.578564i $$0.803613\pi$$
$$114$$ 4.23449 1.03398i 0.396596 0.0968410i
$$115$$ 9.45088 10.6883i 0.881299 0.996690i
$$116$$ 2.03150 + 3.51866i 0.188620 + 0.326700i
$$117$$ 0.698071 0.403032i 0.0645367 0.0372603i
$$118$$ −6.83680 3.94723i −0.629379 0.363372i
$$119$$ 10.8405 + 18.7763i 0.993747 + 1.72122i
$$120$$ 2.12032 0.710109i 0.193558 0.0648238i
$$121$$ 4.70052 0.427320
$$122$$ 4.40597i 0.398898i
$$123$$ 3.51235 + 2.02785i 0.316698 + 0.182846i
$$124$$ 1.67513 2.90141i 0.150431 0.260554i
$$125$$ 6.32487 9.21933i 0.565713 0.824602i
$$126$$ −4.67513 −0.416494
$$127$$ 10.3754 + 5.99024i 0.920668 + 0.531548i 0.883848 0.467774i $$-0.154944\pi$$
0.0368202 + 0.999322i $$0.488277\pi$$
$$128$$ 0.866025 0.500000i 0.0765466 0.0441942i
$$129$$ 3.67513 6.36551i 0.323577 0.560452i
$$130$$ 0.358849 1.76633i 0.0314731 0.154917i
$$131$$ 6.30606 + 10.9224i 0.550963 + 0.954296i 0.998205 + 0.0598835i $$0.0190729\pi$$
−0.447242 + 0.894413i $$0.647594\pi$$
$$132$$ 3.96239i 0.344882i
$$133$$ −14.7275 + 14.0847i −1.27704 + 1.22130i
$$134$$ −7.41327 −0.640409
$$135$$ −2.19130 0.445186i −0.188597 0.0383155i
$$136$$ 2.31876 + 4.01621i 0.198832 + 0.344387i
$$137$$ 5.53206 + 3.19394i 0.472636 + 0.272876i 0.717342 0.696721i $$-0.245358\pi$$
−0.244707 + 0.969597i $$0.578692\pi$$
$$138$$ −5.52574 + 3.19029i −0.470383 + 0.271575i
$$139$$ −6.63752 + 11.4965i −0.562987 + 0.975122i 0.434247 + 0.900794i $$0.357015\pi$$
−0.997234 + 0.0743282i $$0.976319\pi$$
$$140$$ −6.92478 + 7.83146i −0.585250 + 0.661879i
$$141$$ 9.38058 0.789987
$$142$$ −1.87801 1.08427i −0.157599 0.0909901i
$$143$$ −2.76603 1.59697i −0.231307 0.133545i
$$144$$ −1.00000 −0.0833333
$$145$$ −6.80606 6.01810i −0.565213 0.499776i
$$146$$ −5.91573 + 10.2463i −0.489589 + 0.847993i
$$147$$ 12.8664 7.42842i 1.06120 0.612686i
$$148$$ −1.90000 1.09697i −0.156179 0.0901702i
$$149$$ 0.449692 + 0.778890i 0.0368402 + 0.0638091i 0.883858 0.467756i $$-0.154937\pi$$
−0.847017 + 0.531565i $$0.821604\pi$$
$$150$$ −3.99149 + 3.01131i −0.325904 + 0.245873i
$$151$$ −10.3757 −0.844359 −0.422179 0.906512i $$-0.638735\pi$$
−0.422179 + 0.906512i $$0.638735\pi$$
$$152$$ −3.15018 + 3.01270i −0.255514 + 0.244362i
$$153$$ 4.63752i 0.374921i
$$154$$ 9.26234 + 16.0428i 0.746381 + 1.29277i
$$155$$ −1.49149 + 7.34144i −0.119799 + 0.589679i
$$156$$ −0.403032 + 0.698071i −0.0322684 + 0.0558904i
$$157$$ 12.2534 7.07452i 0.977929 0.564608i 0.0762850 0.997086i $$-0.475694\pi$$
0.901644 + 0.432478i $$0.142361\pi$$
$$158$$ 8.09756 + 4.67513i 0.644208 + 0.371933i
$$159$$ 1.55642 0.123432
$$160$$ −1.48119 + 1.67513i −0.117099 + 0.132431i
$$161$$ 14.9150 25.8336i 1.17547 2.03597i
$$162$$ 0.866025 + 0.500000i 0.0680414 + 0.0392837i
$$163$$ 17.4617i 1.36770i 0.729621 + 0.683852i $$0.239697\pi$$
−0.729621 + 0.683852i $$0.760303\pi$$
$$164$$ −4.05571 −0.316698
$$165$$ 2.81373 + 8.40152i 0.219048 + 0.654058i
$$166$$ −4.96239 8.59511i −0.385156 0.667110i
$$167$$ 20.0979 + 11.6036i 1.55523 + 0.897910i 0.997702 + 0.0677489i $$0.0215817\pi$$
0.557523 + 0.830161i $$0.311752\pi$$
$$168$$ 4.04878 2.33757i 0.312370 0.180347i
$$169$$ −6.17513 10.6956i −0.475010 0.822742i
$$170$$ −7.76845 6.86907i −0.595813 0.526833i
$$171$$ 4.23449 1.03398i 0.323819 0.0790704i
$$172$$ 7.35026i 0.560452i
$$173$$ 16.6055 9.58721i 1.26250 0.728902i 0.288939 0.957348i $$-0.406698\pi$$
0.973557 + 0.228445i $$0.0733642\pi$$
$$174$$ 2.03150 + 3.51866i 0.154008 + 0.266749i
$$175$$ 9.12154 21.5225i 0.689524 1.62695i
$$176$$ 1.98119 + 3.43153i 0.149338 + 0.258661i
$$177$$ −6.83680 3.94723i −0.513886 0.296692i
$$178$$ 18.2628i 1.36886i
$$179$$ −18.3707 −1.37309 −0.686546 0.727086i $$-0.740874\pi$$
−0.686546 + 0.727086i $$0.740874\pi$$
$$180$$ 2.12032 0.710109i 0.158039 0.0529284i
$$181$$ 3.10966 5.38610i 0.231140 0.400345i −0.727004 0.686633i $$-0.759088\pi$$
0.958144 + 0.286288i $$0.0924213\pi$$
$$182$$ 3.76845i 0.279336i
$$183$$ 4.40597i 0.325699i
$$184$$ 3.19029 5.52574i 0.235191 0.407363i
$$185$$ 4.80758 + 0.976711i 0.353460 + 0.0718092i
$$186$$ 1.67513 2.90141i 0.122827 0.212742i
$$187$$ −15.9138 + 9.18783i −1.16373 + 0.671880i
$$188$$ −8.12382 + 4.69029i −0.592490 + 0.342075i
$$189$$ −4.67513 −0.340066
$$190$$ 4.54005 8.62485i 0.329370 0.625712i
$$191$$ 3.47627 0.251534 0.125767 0.992060i $$-0.459861\pi$$
0.125767 + 0.992060i $$0.459861\pi$$
$$192$$ 0.866025 0.500000i 0.0625000 0.0360844i
$$193$$ 7.57171 4.37153i 0.545024 0.314670i −0.202089 0.979367i $$-0.564773\pi$$
0.747112 + 0.664698i $$0.231440\pi$$
$$194$$ 6.20299 10.7439i 0.445348 0.771366i
$$195$$ 0.358849 1.76633i 0.0256977 0.126489i
$$196$$ −7.42842 + 12.8664i −0.530602 + 0.919029i
$$197$$ 12.6448i 0.900906i −0.892800 0.450453i $$-0.851263\pi$$
0.892800 0.450453i $$-0.148737\pi$$
$$198$$ 3.96239i 0.281595i
$$199$$ −2.18783 + 3.78943i −0.155091 + 0.268625i −0.933092 0.359637i $$-0.882900\pi$$
0.778001 + 0.628263i $$0.216234\pi$$
$$200$$ 1.95108 4.60362i 0.137962 0.325525i
$$201$$ −7.41327 −0.522891
$$202$$ 10.4387i 0.734461i
$$203$$ −16.4502 9.49754i −1.15458 0.666596i
$$204$$ 2.31876 + 4.01621i 0.162346 + 0.281191i
$$205$$ 8.59939 2.87999i 0.600608 0.201148i
$$206$$ 1.06547 + 1.84544i 0.0742346 + 0.128578i
$$207$$ −5.52574 + 3.19029i −0.384066 + 0.221740i
$$208$$ 0.806063i 0.0558904i
$$209$$ −11.9375 12.4823i −0.825732 0.863416i
$$210$$ −6.92478 + 7.83146i −0.477855 + 0.540422i
$$211$$ 6.65022 + 11.5185i 0.457820 + 0.792967i 0.998845 0.0480390i $$-0.0152972\pi$$
−0.541026 + 0.841006i $$0.681964\pi$$
$$212$$ −1.34790 + 0.778209i −0.0925739 + 0.0534476i
$$213$$ −1.87801 1.08427i −0.128679 0.0742931i
$$214$$ 3.97873 + 6.89137i 0.271981 + 0.471084i
$$215$$ −5.21949 15.5849i −0.355966 1.06288i
$$216$$ −1.00000 −0.0680414
$$217$$ 15.6629i 1.06327i
$$218$$ −9.01184 5.20299i −0.610359 0.352391i
$$219$$ −5.91573 + 10.2463i −0.399748 + 0.692384i
$$220$$ −6.63752 5.86907i −0.447501 0.395692i
$$221$$ 3.73813 0.251454
$$222$$ −1.90000 1.09697i −0.127520 0.0736237i
$$223$$ −1.57468 + 0.909141i −0.105448 + 0.0608806i −0.551797 0.833979i $$-0.686058\pi$$
0.446348 + 0.894859i $$0.352724\pi$$
$$224$$ −2.33757 + 4.04878i −0.156185 + 0.270521i
$$225$$ −3.99149 + 3.01131i −0.266099 + 0.200754i
$$226$$ −6.15022 10.6525i −0.409106 0.708593i
$$227$$ 12.8691i 0.854150i 0.904216 + 0.427075i $$0.140456\pi$$
−0.904216 + 0.427075i $$0.859544\pi$$
$$228$$ −3.15018 + 3.01270i −0.208626 + 0.199521i
$$229$$ −16.1114 −1.06467 −0.532336 0.846533i $$-0.678686\pi$$
−0.532336 + 0.846533i $$0.678686\pi$$
$$230$$ −2.84055 + 13.9818i −0.187300 + 0.921931i
$$231$$ 9.26234 + 16.0428i 0.609417 + 1.05554i
$$232$$ −3.51866 2.03150i −0.231012 0.133375i
$$233$$ −1.90632 + 1.10062i −0.124887 + 0.0721037i −0.561142 0.827719i $$-0.689638\pi$$
0.436255 + 0.899823i $$0.356305\pi$$
$$234$$ −0.403032 + 0.698071i −0.0263470 + 0.0456344i
$$235$$ 13.8945 15.7137i 0.906375 1.02505i
$$236$$ 7.89446 0.513886
$$237$$ 8.09756 + 4.67513i 0.525993 + 0.303682i
$$238$$ −18.7763 10.8405i −1.21709 0.702686i
$$239$$ −4.70052 −0.304052 −0.152026 0.988377i $$-0.548580\pi$$
−0.152026 + 0.988377i $$0.548580\pi$$
$$240$$ −1.48119 + 1.67513i −0.0956107 + 0.108129i
$$241$$ −12.6405 + 21.8939i −0.814244 + 1.41031i 0.0956262 + 0.995417i $$0.469515\pi$$
−0.909870 + 0.414894i $$0.863819\pi$$
$$242$$ −4.07077 + 2.35026i −0.261679 + 0.151081i
$$243$$ 0.866025 + 0.500000i 0.0555556 + 0.0320750i
$$244$$ −2.20299 3.81568i −0.141032 0.244274i
$$245$$ 6.61407 32.5559i 0.422557 2.07992i
$$246$$ −4.05571 −0.258583
$$247$$ 0.833453 + 3.41327i 0.0530313 + 0.217181i
$$248$$ 3.35026i 0.212742i
$$249$$ −4.96239 8.59511i −0.314479 0.544693i
$$250$$ −0.867833 + 11.1466i −0.0548866 + 0.704973i
$$251$$ 6.21933 10.7722i 0.392561 0.679935i −0.600226 0.799831i $$-0.704923\pi$$
0.992787 + 0.119896i $$0.0382560\pi$$
$$252$$ 4.04878 2.33757i 0.255049 0.147253i
$$253$$ 21.8951 + 12.6412i 1.37654 + 0.794743i
$$254$$ −11.9805 −0.751723
$$255$$ −7.76845 6.86907i −0.486479 0.430158i
$$256$$ −0.500000 + 0.866025i −0.0312500 + 0.0541266i
$$257$$ −22.7011 13.1065i −1.41606 0.817561i −0.420107 0.907475i $$-0.638008\pi$$
−0.995950 + 0.0899138i $$0.971341\pi$$
$$258$$ 7.35026i 0.457607i
$$259$$ 10.2569 0.637335
$$260$$ 0.572393 + 1.70911i 0.0354983 + 0.105995i
$$261$$ 2.03150 + 3.51866i 0.125747 + 0.217800i
$$262$$ −10.9224 6.30606i −0.674790 0.389590i
$$263$$ −5.03329 + 2.90597i −0.310366 + 0.179190i −0.647090 0.762413i $$-0.724014\pi$$
0.336724 + 0.941603i $$0.390681\pi$$
$$264$$ 1.98119 + 3.43153i 0.121934 + 0.211196i
$$265$$ 2.30536 2.60720i 0.141617 0.160159i
$$266$$ 5.71203 19.5615i 0.350227 1.19939i
$$267$$ 18.2628i 1.11767i
$$268$$ 6.42008 3.70663i 0.392169 0.226419i
$$269$$ 11.7501 + 20.3518i 0.716418 + 1.24087i 0.962410 + 0.271600i $$0.0875528\pi$$
−0.245992 + 0.969272i $$0.579114\pi$$
$$270$$ 2.12032 0.710109i 0.129038 0.0432158i
$$271$$ −16.3430 28.3069i −0.992765 1.71952i −0.600372 0.799721i $$-0.704981\pi$$
−0.392393 0.919798i $$-0.628353\pi$$
$$272$$ −4.01621 2.31876i −0.243518 0.140595i
$$273$$ 3.76845i 0.228077i
$$274$$ −6.38787 −0.385906
$$275$$ 18.2413 + 7.73092i 1.09999 + 0.466192i
$$276$$ 3.19029 5.52574i 0.192033 0.332611i
$$277$$ 19.6688i 1.18178i 0.806751 + 0.590892i $$0.201224\pi$$
−0.806751 + 0.590892i $$0.798776\pi$$
$$278$$ 13.2750i 0.796184i
$$279$$ 1.67513 2.90141i 0.100287 0.173703i
$$280$$ 2.08130 10.2446i 0.124382 0.612234i
$$281$$ 5.79631 10.0395i 0.345779 0.598906i −0.639716 0.768611i $$-0.720948\pi$$
0.985495 + 0.169705i $$0.0542815\pi$$
$$282$$ −8.12382 + 4.69029i −0.483766 + 0.279303i
$$283$$ −25.4621 + 14.7005i −1.51356 + 0.873855i −0.513688 + 0.857977i $$0.671721\pi$$
−0.999874 + 0.0158784i $$0.994946\pi$$
$$284$$ 2.16854 0.128679
$$285$$ 4.54005 8.62485i 0.268929 0.510892i
$$286$$ 3.19394 0.188861
$$287$$ 16.4207 9.48049i 0.969282 0.559615i
$$288$$ 0.866025 0.500000i 0.0510310 0.0294628i
$$289$$ 2.25329 3.90282i 0.132547 0.229578i
$$290$$ 8.90327 + 1.80879i 0.522818 + 0.106216i
$$291$$ 6.20299 10.7439i 0.363625 0.629818i
$$292$$ 11.8315i 0.692384i
$$293$$ 22.2628i 1.30061i 0.759674 + 0.650304i $$0.225358\pi$$
−0.759674 + 0.650304i $$0.774642\pi$$
$$294$$ −7.42842 + 12.8664i −0.433235 + 0.750384i
$$295$$ −16.7388 + 5.60593i −0.974568 + 0.326390i
$$296$$ 2.19394 0.127520
$$297$$ 3.96239i 0.229921i
$$298$$ −0.778890 0.449692i −0.0451199 0.0260500i
$$299$$ −2.57158 4.45410i −0.148718 0.257587i
$$300$$ 1.95108 4.60362i 0.112645 0.265790i
$$301$$ −17.1817 29.7596i −0.990338 1.71532i
$$302$$ 8.98558 5.18783i 0.517062 0.298526i
$$303$$ 10.4387i 0.599685i
$$304$$ 1.22179 4.18416i 0.0700745 0.239978i
$$305$$ 7.38058 + 6.52610i 0.422611 + 0.373683i
$$306$$ 2.31876 + 4.01621i 0.132555 + 0.229591i
$$307$$ −27.0744 + 15.6314i −1.54522 + 0.892132i −0.546721 + 0.837315i $$0.684124\pi$$
−0.998496 + 0.0548168i $$0.982543\pi$$
$$308$$ −16.0428 9.26234i −0.914126 0.527771i
$$309$$ 1.06547 + 1.84544i 0.0606123 + 0.104984i
$$310$$ −2.37905 7.10362i −0.135121 0.403458i
$$311$$ −17.7889 −1.00872 −0.504359 0.863494i $$-0.668271\pi$$
−0.504359 + 0.863494i $$0.668271\pi$$
$$312$$ 0.806063i 0.0456344i
$$313$$ 5.40177 + 3.11871i 0.305326 + 0.176280i 0.644833 0.764323i $$-0.276927\pi$$
−0.339507 + 0.940604i $$0.610260\pi$$
$$314$$ −7.07452 + 12.2534i −0.399238 + 0.691501i
$$315$$ −6.92478 + 7.83146i −0.390167 + 0.441253i
$$316$$ −9.35026 −0.525993
$$317$$ 11.9018 + 6.87153i 0.668474 + 0.385944i 0.795498 0.605956i $$-0.207209\pi$$
−0.127024 + 0.991900i $$0.540543\pi$$
$$318$$ −1.34790 + 0.778209i −0.0755863 + 0.0436398i
$$319$$ 8.04960 13.9423i 0.450691 0.780620i
$$320$$ 0.445186 2.19130i 0.0248867 0.122498i
$$321$$ 3.97873 + 6.89137i 0.222071 + 0.384639i
$$322$$ 29.8300i 1.66236i
$$323$$ 19.4041 + 5.66608i 1.07968 + 0.315269i
$$324$$ −1.00000 −0.0555556
$$325$$ −2.42731 3.21740i −0.134643 0.178469i
$$326$$ −8.73084 15.1223i −0.483557 0.837544i
$$327$$ −9.01184 5.20299i −0.498356 0.287726i
$$328$$ 3.51235 2.02785i 0.193937 0.111970i
$$329$$ 21.9277 37.9799i 1.20891 2.09390i
$$330$$ −6.63752 5.86907i −0.365383 0.323082i
$$331$$ −1.56230 −0.0858716 −0.0429358 0.999078i $$-0.513671\pi$$
−0.0429358 + 0.999078i $$0.513671\pi$$
$$332$$ 8.59511 + 4.96239i 0.471718 + 0.272346i
$$333$$ −1.90000 1.09697i −0.104120 0.0601135i
$$334$$ −23.2071 −1.26984
$$335$$ −10.9805 + 12.4182i −0.599928 + 0.678478i
$$336$$ −2.33757 + 4.04878i −0.127525 + 0.220879i
$$337$$ 11.2909 6.51881i 0.615055 0.355102i −0.159886 0.987135i $$-0.551113\pi$$
0.774941 + 0.632033i $$0.217779\pi$$
$$338$$ 10.6956 + 6.17513i 0.581766 + 0.335883i
$$339$$ −6.15022 10.6525i −0.334034 0.578564i
$$340$$ 10.1622 + 2.06456i 0.551123 + 0.111967i
$$341$$ −13.2750 −0.718884
$$342$$ −3.15018 + 3.01270i −0.170342 + 0.162908i
$$343$$ 36.7318i 1.98333i
$$344$$ −3.67513 6.36551i −0.198150 0.343205i
$$345$$ −2.84055 + 13.9818i −0.152930 + 0.752754i
$$346$$ −9.58721 + 16.6055i −0.515412 + 0.892719i
$$347$$ −21.2610 + 12.2750i −1.14135 + 0.658959i −0.946764 0.321927i $$-0.895669\pi$$
−0.194585 + 0.980886i $$0.562336\pi$$
$$348$$ −3.51866 2.03150i −0.188620 0.108900i
$$349$$ −6.86907 −0.367693 −0.183846 0.982955i $$-0.558855\pi$$
−0.183846 + 0.982955i $$0.558855\pi$$
$$350$$ 2.86177 + 23.1998i 0.152968 + 1.24008i
$$351$$ −0.403032 + 0.698071i −0.0215122 + 0.0372603i
$$352$$ −3.43153 1.98119i −0.182901 0.105598i
$$353$$ 29.1368i 1.55080i 0.631473 + 0.775398i $$0.282451\pi$$
−0.631473 + 0.775398i $$0.717549\pi$$
$$354$$ 7.89446 0.419586
$$355$$ −4.59800 + 1.53990i −0.244037 + 0.0817295i
$$356$$ 9.13141 + 15.8161i 0.483964 + 0.838250i
$$357$$ −18.7763 10.8405i −0.993747 0.573740i
$$358$$ 15.9095 9.18536i 0.840844 0.485462i
$$359$$ 10.4223 + 18.0520i 0.550069 + 0.952747i 0.998269 + 0.0588138i $$0.0187318\pi$$
−0.448200 + 0.893933i $$0.647935\pi$$
$$360$$ −1.48119 + 1.67513i −0.0780658 + 0.0882871i
$$361$$ −0.847322 + 18.9811i −0.0445959 + 0.999005i
$$362$$ 6.21933i 0.326881i
$$363$$ −4.07077 + 2.35026i −0.213660 + 0.123357i
$$364$$ 1.88423 + 3.26358i 0.0987603 + 0.171058i
$$365$$ 8.40162 + 25.0864i 0.439761 + 1.31308i
$$366$$ −2.20299 3.81568i −0.115152 0.199449i
$$367$$ −23.1758 13.3806i −1.20977 0.698461i −0.247060 0.969000i $$-0.579465\pi$$
−0.962709 + 0.270540i $$0.912798\pi$$
$$368$$ 6.38058i 0.332611i
$$369$$ −4.05571 −0.211132
$$370$$ −4.65184 + 1.55793i −0.241838 + 0.0809931i
$$371$$ 3.63823 6.30159i 0.188887 0.327162i
$$372$$ 3.35026i 0.173703i
$$373$$ 27.6312i 1.43069i −0.698772 0.715344i $$-0.746270\pi$$
0.698772 0.715344i $$-0.253730\pi$$
$$374$$ 9.18783 15.9138i 0.475091 0.822882i
$$375$$ −0.867833 + 11.1466i −0.0448147 + 0.575608i
$$376$$ 4.69029 8.12382i 0.241883 0.418954i
$$377$$ −2.83627 + 1.63752i −0.146075 + 0.0843365i
$$378$$ 4.04878 2.33757i 0.208247 0.120231i
$$379$$ 28.4387 1.46080 0.730398 0.683022i $$-0.239335\pi$$
0.730398 + 0.683022i $$0.239335\pi$$
$$380$$ 0.380626 + 9.73936i 0.0195257 + 0.499619i
$$381$$ −11.9805 −0.613779
$$382$$ −3.01054 + 1.73813i −0.154033 + 0.0889307i
$$383$$ 14.7601 8.52175i 0.754206 0.435441i −0.0730058 0.997332i $$-0.523259\pi$$
0.827212 + 0.561891i $$0.189926\pi$$
$$384$$ −0.500000 + 0.866025i −0.0255155 + 0.0441942i
$$385$$ 40.5932 + 8.24694i 2.06882 + 0.420303i
$$386$$ −4.37153 + 7.57171i −0.222505 + 0.385390i
$$387$$ 7.35026i 0.373635i
$$388$$ 12.4060i 0.629818i
$$389$$ 1.28115 2.21901i 0.0649568 0.112508i −0.831718 0.555198i $$-0.812642\pi$$
0.896675 + 0.442690i $$0.145976\pi$$
$$390$$ 0.572393 + 1.70911i 0.0289842 + 0.0865442i
$$391$$ −29.5901 −1.49643
$$392$$ 14.8568i 0.750384i
$$393$$ −10.9224 6.30606i −0.550963 0.318099i
$$394$$ 6.32241 + 10.9507i 0.318518 + 0.551690i
$$395$$ 19.8255 6.63970i 0.997530 0.334080i
$$396$$ 1.98119 + 3.43153i 0.0995588 + 0.172441i
$$397$$ −18.6367 + 10.7599i −0.935347 + 0.540023i −0.888499 0.458879i $$-0.848251\pi$$
−0.0468484 + 0.998902i $$0.514918\pi$$
$$398$$ 4.37565i 0.219332i
$$399$$ 5.71203 19.5615i 0.285959 0.979301i
$$400$$ 0.612127 + 4.96239i 0.0306063 + 0.248119i
$$401$$ 13.9502 + 24.1624i 0.696638 + 1.20661i 0.969625 + 0.244595i $$0.0786550\pi$$
−0.272987 + 0.962018i $$0.588012\pi$$
$$402$$ 6.42008 3.70663i 0.320204 0.184870i
$$403$$ 2.33872 + 1.35026i 0.116500 + 0.0672613i
$$404$$ −5.21933 9.04014i −0.259671 0.449764i
$$405$$ 2.12032 0.710109i 0.105359 0.0352856i
$$406$$ 18.9951 0.942710
$$407$$ 8.69323i 0.430907i
$$408$$ −4.01621 2.31876i −0.198832 0.114796i
$$409$$ 18.6543 32.3103i 0.922398 1.59764i 0.126704 0.991941i $$-0.459560\pi$$
0.795694 0.605699i $$-0.207107\pi$$
$$410$$ −6.00729 + 6.79384i −0.296679 + 0.335524i
$$411$$ −6.38787 −0.315091
$$412$$ −1.84544 1.06547i −0.0909184 0.0524918i
$$413$$ −31.9629 + 18.4538i −1.57279 + 0.908053i
$$414$$ 3.19029 5.52574i 0.156794 0.271575i
$$415$$ −21.7482 4.41838i −1.06758 0.216890i
$$416$$ 0.403032 + 0.698071i 0.0197603 + 0.0342258i
$$417$$ 13.2750i 0.650081i
$$418$$ 16.5793 + 4.84121i 0.810919 + 0.236791i
$$419$$ 16.5271 0.807399 0.403700 0.914892i $$-0.367724\pi$$
0.403700 + 0.914892i $$0.367724\pi$$
$$420$$ 2.08130 10.2446i 0.101557 0.499887i
$$421$$ 10.4902 + 18.1696i 0.511263 + 0.885534i 0.999915 + 0.0130548i $$0.00415559\pi$$
−0.488652 + 0.872479i $$0.662511\pi$$
$$422$$ −11.5185 6.65022i −0.560712 0.323727i
$$423$$ −8.12382 + 4.69029i −0.394994 + 0.228050i
$$424$$ 0.778209 1.34790i 0.0377931 0.0654597i
$$425$$ −23.0132 + 2.83875i −1.11630 + 0.137700i
$$426$$ 2.16854 0.105066
$$427$$ 17.8388 + 10.2992i 0.863281 + 0.498415i
$$428$$ −6.89137 3.97873i −0.333107 0.192319i
$$429$$ 3.19394 0.154205
$$430$$ 12.3127 + 10.8872i 0.593769 + 0.525026i
$$431$$ 8.69640 15.0626i 0.418891 0.725540i −0.576937 0.816788i $$-0.695752\pi$$
0.995828 + 0.0912482i $$0.0290857\pi$$
$$432$$ 0.866025 0.500000i 0.0416667 0.0240563i
$$433$$ 0.124800 + 0.0720532i 0.00599750 + 0.00346266i 0.502996 0.864289i $$-0.332231\pi$$
−0.496998 + 0.867752i $$0.665564\pi$$
$$434$$ −7.83146 13.5645i −0.375922 0.651116i
$$435$$ 8.90327 + 1.80879i 0.426879 + 0.0867251i
$$436$$ 10.4060 0.498356
$$437$$ −6.59739 27.0185i −0.315596 1.29247i
$$438$$ 11.8315i 0.565329i
$$439$$ 15.5381 + 26.9128i 0.741593 + 1.28448i 0.951770 + 0.306813i $$0.0992625\pi$$
−0.210177 + 0.977663i $$0.567404\pi$$
$$440$$ 8.68279 + 1.76400i 0.413936 + 0.0840955i
$$441$$ −7.42842 + 12.8664i −0.353734 + 0.612686i
$$442$$ −3.23732 + 1.86907i −0.153984 + 0.0889025i
$$443$$ 26.7774 + 15.4599i 1.27223 + 0.734523i 0.975408 0.220409i $$-0.0707392\pi$$
0.296824 + 0.954932i $$0.404073\pi$$
$$444$$ 2.19394 0.104120
$$445$$ −30.5926 27.0508i −1.45023 1.28233i
$$446$$ 0.909141 1.57468i 0.0430491 0.0745632i
$$447$$ −0.778890 0.449692i −0.0368402 0.0212697i
$$448$$ 4.67513i 0.220879i
$$449$$ 3.40009 0.160460 0.0802301 0.996776i $$-0.474434\pi$$
0.0802301 + 0.996776i $$0.474434\pi$$
$$450$$ 1.95108 4.60362i 0.0919746 0.217017i
$$451$$ 8.03515 + 13.9173i 0.378360 + 0.655339i
$$452$$ 10.6525 + 6.15022i 0.501051 + 0.289282i
$$453$$ 8.98558 5.18783i 0.422179 0.243745i
$$454$$ −6.43453 11.1449i −0.301988 0.523058i
$$455$$ −6.31265 5.58181i −0.295942 0.261679i
$$456$$ 1.22179 4.18416i 0.0572156 0.195941i
$$457$$ 9.11634i 0.426445i 0.977004 + 0.213222i $$0.0683959\pi$$
−0.977004 + 0.213222i $$0.931604\pi$$
$$458$$ 13.9529 8.05571i 0.651976 0.376419i
$$459$$ 2.31876 + 4.01621i 0.108230 + 0.187461i
$$460$$ −4.53090 13.5289i −0.211255 0.630786i
$$461$$ −2.13823 3.70352i −0.0995871 0.172490i 0.811927 0.583759i $$-0.198419\pi$$
−0.911514 + 0.411269i $$0.865086\pi$$
$$462$$ −16.0428 9.26234i −0.746381 0.430923i
$$463$$ 29.4871i 1.37038i −0.728364 0.685190i $$-0.759719\pi$$
0.728364 0.685190i $$-0.240281\pi$$
$$464$$ 4.06300 0.188620
$$465$$ −2.37905 7.10362i −0.110326 0.329422i
$$466$$ 1.10062 1.90632i 0.0509850 0.0883087i
$$467$$ 15.9575i 0.738423i −0.929345 0.369212i $$-0.879628\pi$$
0.929345 0.369212i $$-0.120372\pi$$
$$468$$ 0.806063i 0.0372603i
$$469$$ −17.3290 + 30.0147i −0.800179 + 1.38595i
$$470$$ −4.17611 + 20.5557i −0.192629 + 0.948163i
$$471$$ −7.07452 + 12.2534i −0.325976 + 0.564608i
$$472$$ −6.83680 + 3.94723i −0.314689 + 0.181686i
$$473$$ 25.2226 14.5623i 1.15974 0.669575i
$$474$$ −9.35026 −0.429472
$$475$$ −7.72305 20.3802i −0.354358 0.935110i
$$476$$ 21.6810 0.993747
$$477$$ −1.34790 + 0.778209i −0.0617160 + 0.0356317i
$$478$$ 4.07077 2.35026i 0.186193 0.107498i
$$479$$ 10.5410 18.2576i 0.481632 0.834211i −0.518146 0.855292i $$-0.673378\pi$$
0.999778 + 0.0210814i $$0.00671090\pi$$
$$480$$ 0.445186 2.19130i 0.0203199 0.100019i
$$481$$ 0.884226 1.53152i 0.0403172 0.0698315i
$$482$$ 25.2809i 1.15151i
$$483$$ 29.8300i 1.35731i
$$484$$ 2.35026 4.07077i 0.106830 0.185035i
$$485$$ −8.80959 26.3046i −0.400023 1.19443i
$$486$$ −1.00000 −0.0453609
$$487$$ 10.2365i 0.463859i −0.972733 0.231929i $$-0.925496\pi$$
0.972733 0.231929i $$-0.0745038\pi$$
$$488$$ 3.81568 + 2.20299i 0.172728 + 0.0997245i
$$489$$ −8.73084 15.1223i −0.394822 0.683852i
$$490$$ 10.5500 + 31.5012i 0.476599 + 1.42308i
$$491$$ −3.68901 6.38956i −0.166483 0.288357i 0.770698 0.637200i $$-0.219908\pi$$
−0.937181 + 0.348844i $$0.886574\pi$$
$$492$$ 3.51235 2.02785i 0.158349 0.0914228i
$$493$$ 18.8423i 0.848613i
$$494$$ −2.42842 2.53925i −0.109260 0.114246i
$$495$$ −6.63752 5.86907i −0.298334 0.263795i
$$496$$ −1.67513 2.90141i −0.0752156 0.130277i
$$497$$ −8.77996 + 5.06911i −0.393835 + 0.227381i
$$498$$ 8.59511 + 4.96239i 0.385156 + 0.222370i
$$499$$ −13.1944 22.8534i −0.590663 1.02306i −0.994143 0.108070i $$-0.965533\pi$$
0.403480 0.914988i $$-0.367800\pi$$
$$500$$ −4.82174 10.0872i −0.215635 0.451112i
$$501$$ −23.2071 −1.03682
$$502$$ 12.4387i 0.555164i
$$503$$ 27.0701 + 15.6289i 1.20700 + 0.696860i 0.962102 0.272689i $$-0.0879131\pi$$
0.244895 + 0.969550i $$0.421246\pi$$
$$504$$ −2.33757 + 4.04878i −0.104123 + 0.180347i
$$505$$ 17.4861 + 15.4617i 0.778122 + 0.688036i
$$506$$ −25.2823 −1.12394
$$507$$ 10.6956 + 6.17513i 0.475010 + 0.274247i
$$508$$ 10.3754 5.99024i 0.460334 0.265774i
$$509$$ 1.79384 3.10703i 0.0795108 0.137717i −0.823528 0.567275i $$-0.807998\pi$$
0.903039 + 0.429559i $$0.141331\pi$$
$$510$$ 10.1622 + 2.06456i 0.449990 + 0.0914203i
$$511$$ 27.6568 + 47.9030i 1.22346 + 2.11910i
$$512$$ 1.00000i 0.0441942i
$$513$$ −3.15018 + 3.01270i −0.139084 + 0.133014i
$$514$$ 26.2130 1.15621
$$515$$ 4.66952 + 0.948662i 0.205764 + 0.0418031i
$$516$$ −3.67513 6.36551i −0.161789 0.280226i
$$517$$ 32.1897 + 18.5847i 1.41570 + 0.817356i
$$518$$ −8.88277 + 5.12847i −0.390287 + 0.225332i
$$519$$ −9.58721 + 16.6055i −0.420832 + 0.728902i
$$520$$ −1.35026 1.19394i −0.0592129 0.0523576i
$$521$$ 1.56134 0.0684036 0.0342018 0.999415i $$-0.489111\pi$$
0.0342018 + 0.999415i $$0.489111\pi$$
$$522$$ −3.51866 2.03150i −0.154008 0.0889164i
$$523$$ −11.2025 6.46779i −0.489853 0.282817i 0.234660 0.972077i $$-0.424602\pi$$
−0.724513 + 0.689261i $$0.757935\pi$$
$$524$$ 12.6121 0.550963
$$525$$ 2.86177 + 23.1998i 0.124898 + 1.01252i
$$526$$ 2.90597 5.03329i 0.126706 0.219462i
$$527$$ 13.4554 7.76845i 0.586124 0.338399i
$$528$$ −3.43153 1.98119i −0.149338 0.0862204i
$$529$$ 8.85589 + 15.3389i 0.385039 + 0.666907i
$$530$$ −0.692896 + 3.41058i −0.0300975 + 0.148146i
$$531$$ 7.89446 0.342590
$$532$$ 4.83399 + 19.7968i 0.209580 + 0.858299i
$$533$$ 3.26916i 0.141603i
$$534$$ 9.13141 + 15.8161i 0.395155 + 0.684428i
$$535$$ 17.4372 + 3.54256i 0.753877 + 0.153158i
$$536$$ −3.70663 + 6.42008i −0.160102 + 0.277305i
$$537$$ 15.9095 9.18536i 0.686546 0.396378i
$$538$$ −20.3518 11.7501i −0.877429 0.506584i
$$539$$ 58.8686 2.53565
$$540$$ −1.48119 + 1.67513i −0.0637405 + 0.0720862i
$$541$$ −16.3004 + 28.2332i −0.700810 + 1.21384i 0.267372 + 0.963593i $$0.413845\pi$$
−0.968182 + 0.250246i $$0.919489\pi$$
$$542$$ 28.3069 + 16.3430i 1.21588 + 0.701991i
$$543$$ 6.21933i 0.266897i
$$544$$ 4.63752 0.198832
$$545$$ −22.0640 + 7.38937i −0.945116 + 0.316526i
$$546$$ 1.88423 + 3.26358i 0.0806374 + 0.139668i
$$547$$ 24.6599 + 14.2374i 1.05438 + 0.608748i 0.923873 0.382699i $$-0.125005\pi$$
0.130510 + 0.991447i $$0.458339\pi$$
$$548$$ 5.53206 3.19394i 0.236318 0.136438i
$$549$$ −2.20299 3.81568i −0.0940211 0.162849i
$$550$$ −19.6629 + 2.42548i −0.838429 + 0.103423i
$$551$$ −17.2047 + 4.20106i −0.732947 + 0.178971i
$$552$$ 6.38058i 0.271575i
$$553$$ 37.8572 21.8568i 1.60985 0.929448i
$$554$$ −9.83440 17.0337i −0.417823 0.723691i
$$555$$ −4.65184 + 1.55793i −0.197460 + 0.0661306i
$$556$$ 6.63752 + 11.4965i 0.281494 + 0.487561i
$$557$$ −24.3934 14.0836i −1.03358 0.596740i −0.115574 0.993299i $$-0.536871\pi$$
−0.918009 + 0.396559i $$0.870204\pi$$
$$558$$ 3.35026i 0.141828i
$$559$$ −5.92478 −0.250591
$$560$$ 3.31985 + 9.91276i 0.140289 + 0.418891i
$$561$$ 9.18783 15.9138i 0.387910 0.671880i
$$562$$ 11.5926i 0.489005i
$$563$$ 7.02776i 0.296185i −0.988974 0.148092i $$-0.952687\pi$$
0.988974 0.148092i $$-0.0473133\pi$$
$$564$$ 4.69029 8.12382i 0.197497 0.342075i
$$565$$ −26.9540 5.47599i −1.13396 0.230376i
$$566$$ 14.7005 25.4621i 0.617909 1.07025i
$$567$$ 4.04878 2.33757i 0.170033 0.0981685i
$$568$$ −1.87801 + 1.08427i −0.0787997 + 0.0454950i
$$569$$ −21.5320 −0.902668 −0.451334 0.892355i $$-0.649052\pi$$
−0.451334 + 0.892355i $$0.649052\pi$$
$$570$$ 0.380626 + 9.73936i 0.0159427 + 0.407937i
$$571$$ 14.1417 0.591813 0.295907 0.955217i $$-0.404378\pi$$
0.295907 + 0.955217i $$0.404378\pi$$
$$572$$ −2.76603 + 1.59697i −0.115654 + 0.0667726i
$$573$$ −3.01054 + 1.73813i −0.125767 + 0.0726116i
$$574$$ −9.48049 + 16.4207i −0.395708 + 0.685386i
$$575$$ 19.2139 + 25.4680i 0.801276 + 1.06209i
$$576$$ −0.500000 + 0.866025i −0.0208333 + 0.0360844i
$$577$$ 4.22918i 0.176063i −0.996118 0.0880315i $$-0.971942\pi$$
0.996118 0.0880315i $$-0.0280576\pi$$
$$578$$ 4.50659i 0.187449i
$$579$$ −4.37153 + 7.57171i −0.181675 + 0.314670i
$$580$$ −8.61486 + 2.88517i −0.357713 + 0.119800i
$$581$$ −46.3996 −1.92498
$$582$$ 12.4060i 0.514244i
$$583$$ 5.34089 + 3.08356i 0.221197 + 0.127708i
$$584$$ 5.91573 + 10.2463i 0.244795 + 0.423997i
$$585$$ 0.572393 + 1.70911i 0.0236655 + 0.0706630i
$$586$$ −11.1314 19.2802i −0.459834 0.796456i
$$587$$ 2.11194 1.21933i 0.0871691 0.0503271i −0.455782 0.890092i $$-0.650640\pi$$
0.542951 + 0.839764i $$0.317307\pi$$
$$588$$ 14.8568i 0.612686i
$$589$$ 10.0933 + 10.5539i 0.415888 + 0.434868i
$$590$$ 11.6932 13.2243i 0.481403 0.544434i
$$591$$ 6.32241 + 10.9507i 0.260069 + 0.450453i
$$592$$ −1.90000 + 1.09697i −0.0780897 + 0.0450851i
$$593$$ 2.19785 + 1.26893i 0.0902549 + 0.0521087i 0.544448 0.838794i $$-0.316739\pi$$
−0.454193 + 0.890903i $$0.650072\pi$$
$$594$$ 1.98119 + 3.43153i 0.0812894 + 0.140797i
$$595$$ −45.9706 + 15.3959i −1.88461 + 0.631169i
$$596$$ 0.899385 0.0368402
$$597$$ 4.37565i 0.179084i
$$598$$ 4.45410 + 2.57158i 0.182142 + 0.105160i
$$599$$ −14.1776 + 24.5563i −0.579281 + 1.00334i 0.416281 + 0.909236i $$0.363333\pi$$
−0.995562 + 0.0941078i $$0.970000\pi$$
$$600$$ 0.612127 + 4.96239i 0.0249900 + 0.202589i
$$601$$ 23.5705 0.961463 0.480731 0.876868i $$-0.340371\pi$$
0.480731 + 0.876868i $$0.340371\pi$$
$$602$$ 29.7596 + 17.1817i 1.21291 + 0.700275i
$$603$$ 6.42008 3.70663i 0.261446 0.150946i
$$604$$ −5.18783 + 8.98558i −0.211090 + 0.365618i
$$605$$ −2.09261 + 10.3003i −0.0850767 + 0.418766i
$$606$$ −5.21933 9.04014i −0.212021 0.367231i
$$607$$ 20.5042i 0.832241i −0.909310 0.416120i $$-0.863390\pi$$
0.909310 0.416120i $$-0.136610\pi$$
$$608$$ 1.03398 + 4.23449i 0.0419334 + 0.171731i
$$609$$ 18.9951 0.769719
$$610$$ −9.65482 1.96148i −0.390912 0.0794180i
$$611$$ −3.78067 6.54831i −0.152950 0.264916i
$$612$$ −4.01621 2.31876i −0.162346 0.0937303i
$$613$$ 0.211935 0.122361i 0.00855999 0.00494211i −0.495714 0.868486i $$-0.665094\pi$$
0.504274 + 0.863544i $$0.331760\pi$$
$$614$$ 15.6314 27.0744i 0.630832 1.09263i
$$615$$ −6.00729 + 6.79384i −0.242237 + 0.273954i
$$616$$ 18.5247 0.746381
$$617$$ −0.401053 0.231548i −0.0161458 0.00932177i 0.491905 0.870649i $$-0.336301\pi$$
−0.508051 + 0.861327i $$0.669634\pi$$
$$618$$ −1.84544 1.06547i −0.0742346 0.0428593i
$$619$$ 11.1685 0.448902 0.224451 0.974485i $$-0.427941\pi$$
0.224451 + 0.974485i $$0.427941\pi$$
$$620$$ 5.61213 + 4.96239i 0.225388 + 0.199294i
$$621$$ 3.19029 5.52574i 0.128022 0.221740i
$$622$$ 15.4057 8.89446i 0.617711 0.356635i
$$623$$ −73.9422 42.6905i −2.96243 1.71036i
$$624$$ 0.403032 + 0.698071i 0.0161342 + 0.0279452i
$$625$$ 17.3866 + 17.9640i 0.695464 + 0.718561i
$$626$$ −6.23743 −0.249298
$$627$$ 16.5793 + 4.84121i 0.662113 + 0.193339i
$$628$$ 14.1490i 0.564608i
$$629$$ −5.08721 8.81131i −0.202840 0.351330i
$$630$$ 2.08130 10.2446i 0.0829212 0.408156i
$$631$$ 20.9695 36.3202i 0.834781 1.44588i −0.0594281 0.998233i $$-0.518928\pi$$
0.894209 0.447650i $$-0.147739\pi$$
$$632$$ 8.09756 4.67513i 0.322104 0.185967i
$$633$$ −11.5185 6.65022i −0.457820 0.264322i
$$634$$ −13.7431 −0.545807
$$635$$ −17.7454 + 20.0689i −0.704206 + 0.796409i
$$636$$ 0.778209 1.34790i 0.0308580 0.0534476i
$$637$$ −10.3711 5.98778i −0.410920 0.237245i
$$638$$ 16.0992i 0.637373i
$$639$$ 2.16854 0.0857863
$$640$$ 0.710109 + 2.12032i 0.0280695 + 0.0838129i
$$641$$ 12.5999 + 21.8237i 0.497666 + 0.861984i 0.999996 0.00269246i $$-0.000857038\pi$$
−0.502330 + 0.864676i $$0.667524\pi$$
$$642$$ −6.89137 3.97873i −0.271981 0.157028i
$$643$$ −18.4581 + 10.6568i −0.727917 + 0.420263i −0.817660 0.575702i $$-0.804729\pi$$
0.0897424 + 0.995965i $$0.471396\pi$$
$$644$$ −14.9150 25.8336i −0.587734 1.01799i
$$645$$ 12.3127 + 10.8872i 0.484810 + 0.428682i
$$646$$ −19.6375 + 4.79510i −0.772628 + 0.188661i
$$647$$ 22.0132i 0.865427i 0.901531 + 0.432714i $$0.142444\pi$$
−0.901531 + 0.432714i $$0.857556\pi$$
$$648$$ 0.866025 0.500000i 0.0340207 0.0196419i
$$649$$ −15.6405 27.0901i −0.613942 1.06338i
$$650$$ 3.71081 + 1.57269i 0.145550 + 0.0616860i
$$651$$ −7.83146 13.5645i −0.306939 0.531634i
$$652$$ 15.1223 + 8.73084i 0.592233 + 0.341926i
$$653$$ 33.6785i 1.31794i 0.752169 + 0.658970i $$0.229008\pi$$
−0.752169 + 0.658970i $$0.770992\pi$$
$$654$$ 10.4060 0.406906
$$655$$ −26.7417 + 8.95598i −1.04489 + 0.349939i
$$656$$ −2.02785 + 3.51235i −0.0791744 + 0.137134i
$$657$$ 11.8315i 0.461589i
$$658$$ 43.8554i 1.70966i
$$659$$ −22.9538 + 39.7572i −0.894154 + 1.54872i −0.0593053 + 0.998240i $$0.518889\pi$$
−0.834848 + 0.550480i $$0.814445\pi$$
$$660$$ 8.68279 + 1.76400i 0.337977 + 0.0686637i
$$661$$ −7.24472 + 12.5482i −0.281787 + 0.488069i −0.971825 0.235704i $$-0.924260\pi$$
0.690038 + 0.723773i $$0.257594\pi$$
$$662$$ 1.35299 0.781148i 0.0525854 0.0303602i
$$663$$ −3.23732 + 1.86907i −0.125727 + 0.0725886i
$$664$$ −9.92478 −0.385156
$$665$$ −24.3075 38.5428i −0.942603 1.49463i
$$666$$ 2.19394 0.0850133
$$667$$ 22.4511 12.9622i 0.869311 0.501897i
$$668$$ 20.0979 11.6036i 0.777613 0.448955i
$$669$$ 0.909141 1.57468i 0.0351494 0.0608806i
$$670$$ 3.30029 16.2447i 0.127501 0.627588i
$$671$$ −8.72909 + 15.1192i −0.336983 + 0.583671i
$$672$$ 4.67513i 0.180347i
$$673$$ 19.8397i 0.764764i −0.924004 0.382382i $$-0.875104\pi$$
0.924004 0.382382i $$-0.124896\pi$$
$$674$$ −6.51881 + 11.2909i −0.251095 + 0.434909i
$$675$$ 1.95108 4.60362i 0.0750970 0.177193i
$$676$$ −12.3503 −0.475010
$$677$$ 10.3479i 0.397702i −0.980030 0.198851i $$-0.936279\pi$$
0.980030 0.198851i $$-0.0637209\pi$$
$$678$$ 10.6525 + 6.15022i 0.409106 + 0.236198i
$$679$$ −28.9998 50.2291i −1.11291 1.92761i
$$680$$ −9.83301 + 3.29314i −0.377079 + 0.126286i
$$681$$ −6.43453 11.1449i −0.246572 0.427075i
$$682$$ 11.4965 6.63752i 0.440225 0.254164i
$$683$$ 40.3307i 1.54321i −0.636100 0.771607i $$-0.719453\pi$$
0.636100 0.771607i $$-0.280547\pi$$
$$684$$ 1.22179 4.18416i 0.0467164 0.159985i
$$685$$ −9.46168 + 10.7005i −0.361512 + 0.408846i
$$686$$ 18.3659 + 31.8107i 0.701213 + 1.21454i
$$687$$ 13.9529 8.05571i 0.532336 0.307344i
$$688$$ 6.36551 + 3.67513i 0.242683 + 0.140113i
$$689$$ −0.627285 1.08649i −0.0238977 0.0413920i
$$690$$ −4.53090 13.5289i −0.172489 0.515035i
$$691$$ 45.8202 1.74308 0.871541 0.490322i $$-0.163121\pi$$
0.871541 + 0.490322i $$0.163121\pi$$
$$692$$ 19.1744i 0.728902i
$$693$$ −16.0428 9.26234i −0.609417 0.351847i
$$694$$ 12.2750 21.2610i 0.465954 0.807056i
$$695$$ −22.2374 19.6629i −0.843514 0.745857i
$$696$$ 4.06300 0.154008
$$697$$ −16.2886 9.40422i −0.616974 0.356210i
$$698$$ 5.94879 3.43453i 0.225165 0.129999i
$$699$$ 1.10062 1.90632i 0.0416291 0.0721037i
$$700$$ −14.0783 18.6607i −0.532109 0.705310i
$$701$$ 18.6375 + 32.2811i 0.703929 + 1.21924i 0.967077 + 0.254486i $$0.0819062\pi$$
−0.263147 + 0.964756i $$0.584760\pi$$
$$702$$ 0.806063i 0.0304229i
$$703$$ 6.91130 6.60966i 0.260665 0.249288i
$$704$$ 3.96239 0.149338
$$705$$ −4.17611 + 20.5557i −0.157281 + 0.774172i
$$706$$ −14.5684 25.2332i −0.548289 0.949665i
$$707$$ 42.2639 + 24.4010i 1.58950 + 0.917696i
$$708$$ −6.83680 + 3.94723i −0.256943 + 0.148346i
$$709$$ 22.8356 39.5524i 0.857608 1.48542i −0.0165958 0.999862i $$-0.505283\pi$$
0.874204 0.485559i $$-0.161384\pi$$
$$710$$ 3.21203 3.63259i 0.120546 0.136329i
$$711$$ −9.35026 −0.350662
$$712$$ −15.8161 9.13141i −0.592732 0.342214i
$$713$$ −18.5127 10.6883i −0.693306 0.400280i
$$714$$ 21.6810 0.811391
$$715$$ 4.73084 5.35026i 0.176923 0.200088i
$$716$$ −9.18536 + 15.9095i −0.343273 + 0.594567i
$$717$$ 4.07077 2.35026i 0.152026 0.0877721i
$$718$$ −18.0520 10.4223i −0.673694 0.388957i
$$719$$ −14.5188 25.1473i −0.541460 0.937836i −0.998821 0.0485550i $$-0.984538\pi$$
0.457360 0.889281i $$-0.348795\pi$$
$$720$$ 0.445186 2.19130i 0.0165911 0.0816650i
$$721$$ 9.96239 0.371019
$$722$$ −8.75675 16.8618i −0.325892 0.627530i
$$723$$ 25.2809i 0.940207i
$$724$$ −3.10966 5.38610i −0.115570 0.200173i
$$725$$ 16.2174 12.2350i 0.602301 0.454395i
$$726$$ 2.35026 4.07077i 0.0872264 0.151081i
$$727$$ 11.6107 6.70346i 0.430618 0.248618i −0.268992 0.963143i $$-0.586690\pi$$
0.699610 + 0.714525i $$0.253357\pi$$
$$728$$ −3.26358 1.88423i −0.120956 0.0698341i
$$729$$ −1.00000 −0.0370370
$$730$$ −19.8192 17.5247i −0.733543 0.648618i
$$731$$ −17.0435 + 29.5202i −0.630376 + 1.09184i
$$732$$ 3.81568 + 2.20299i 0.141032 + 0.0814247i
$$733$$ 8.72829i 0.322387i 0.986923 + 0.161193i $$0.0515343\pi$$
−0.986923 + 0.161193i $$0.948466\pi$$
$$734$$ 26.7612 0.987772
$$735$$ 10.5500 + 31.5012i 0.389142 + 1.16194i
$$736$$ −3.19029 5.52574i −0.117596 0.203682i
$$737$$ −25.4388 14.6871i −0.937052 0.541007i
$$738$$ 3.51235 2.02785i 0.129291 0.0746464i
$$739$$ −16.1661 28.0005i −0.594679 1.03001i −0.993592 0.113025i $$-0.963946\pi$$
0.398913 0.916989i $$-0.369387\pi$$
$$740$$ 3.24965 3.67513i 0.119459 0.135100i
$$741$$ −2.42842 2.53925i −0.0892104 0.0932816i
$$742$$ 7.27645i 0.267127i
$$743$$ 40.5255 23.3974i 1.48674 0.858367i 0.486850 0.873486i $$-0.338146\pi$$
0.999886 + 0.0151182i $$0.00481244\pi$$
$$744$$ −1.67513 2.90141i −0.0614133 0.106371i
$$745$$ −1.90698 + 0.638661i −0.0698664 + 0.0233987i
$$746$$ 13.8156 + 23.9293i 0.505825 + 0.876114i
$$747$$ 8.59511 + 4.96239i 0.314479 + 0.181564i
$$748$$ 18.3757i 0.671880i
$$749$$ 37.2022 1.35934
$$750$$ −4.82174 10.0872i −0.176065 0.368331i
$$751$$ 19.6180 33.9794i 0.715871 1.23993i −0.246751 0.969079i $$-0.579363\pi$$
0.962623 0.270846i $$-0.0873036\pi$$
$$752$$ 9.38058i 0.342075i
$$753$$ 12.4387i 0.453290i
$$754$$ 1.63752 2.83627i 0.0596349 0.103291i
$$755$$ 4.61910 22.7362i 0.168106 0.827455i
$$756$$ −2.33757 + 4.04878i −0.0850164 + 0.147253i
$$757$$ −3.30977 + 1.91090i −0.120296 + 0.0694527i −0.558940 0.829208i $$-0.688792\pi$$
0.438645 + 0.898661i $$0.355459\pi$$
$$758$$ −24.6286 + 14.2193i −0.894551 + 0.516469i
$$759$$ −25.2823 −0.917691
$$760$$ −5.19931 8.24422i −0.188599 0.299049i
$$761$$ −28.3928 −1.02924 −0.514619 0.857419i $$-0.672067\pi$$
−0.514619 + 0.857419i $$0.672067\pi$$
$$762$$ 10.3754 5.99024i 0.375861 0.217004i
$$763$$ −42.1315 + 24.3246i −1.52526 + 0.880611i
$$764$$ 1.73813 3.01054i 0.0628835 0.108917i
$$765$$ 10.1622 + 2.06456i 0.367415 + 0.0746444i
$$766$$ −8.52175 + 14.7601i −0.307903 + 0.533304i
$$767$$ 6.36344i 0.229770i
$$768$$ 1.00000i 0.0360844i
$$769$$ 3.11577 5.39668i 0.112358 0.194609i −0.804363 0.594139i $$-0.797493\pi$$
0.916720 + 0.399529i $$0.130826\pi$$
$$770$$ −39.2782 + 13.1545i −1.41549 + 0.474057i
$$771$$ 26.2130 0.944038
$$772$$ 8.74306i 0.314670i
$$773$$ 21.6189 + 12.4817i 0.777577 + 0.448935i 0.835571 0.549382i $$-0.185137\pi$$
−0.0579936 + 0.998317i $$0.518470\pi$$
$$774$$ −3.67513 6.36551i −0.132100 0.228804i
$$775$$ −15.4233 6.53662i −0.554022