Properties

Label 570.2.q.b
Level $570$
Weight $2$
Character orbit 570.q
Analytic conductor $4.551$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 570 = 2 \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 570.q (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.55147291521\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: 12.0.89539436150784.1
Defining polynomial: \(x^{12} - 2 x^{11} + 2 x^{10} - 8 x^{9} + 4 x^{8} + 16 x^{7} - 8 x^{6} + 20 x^{5} + 20 x^{4} - 24 x^{3} + 8 x^{2} - 8 x + 4\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -\beta_{3} - \beta_{4} ) q^{2} + ( -\beta_{3} - \beta_{4} ) q^{3} + ( 1 - \beta_{8} ) q^{4} + ( \beta_{1} - \beta_{6} - \beta_{7} - \beta_{11} ) q^{5} + ( 1 - \beta_{8} ) q^{6} + ( -3 \beta_{4} + \beta_{9} ) q^{7} -\beta_{4} q^{8} + ( 1 - \beta_{8} ) q^{9} +O(q^{10})\) \( q + ( -\beta_{3} - \beta_{4} ) q^{2} + ( -\beta_{3} - \beta_{4} ) q^{3} + ( 1 - \beta_{8} ) q^{4} + ( \beta_{1} - \beta_{6} - \beta_{7} - \beta_{11} ) q^{5} + ( 1 - \beta_{8} ) q^{6} + ( -3 \beta_{4} + \beta_{9} ) q^{7} -\beta_{4} q^{8} + ( 1 - \beta_{8} ) q^{9} + ( \beta_{5} - \beta_{10} ) q^{10} + ( -1 - 2 \beta_{2} ) q^{11} -\beta_{4} q^{12} + ( \beta_{3} + \beta_{5} + \beta_{6} ) q^{13} + ( -\beta_{1} - 3 \beta_{8} + \beta_{11} ) q^{14} + ( \beta_{5} - \beta_{10} ) q^{15} -\beta_{8} q^{16} + ( -\beta_{5} + 2 \beta_{6} + 2 \beta_{7} - \beta_{9} ) q^{17} -\beta_{4} q^{18} + ( 1 + 2 \beta_{1} + \beta_{2} - \beta_{8} + 2 \beta_{10} - \beta_{11} ) q^{19} + ( \beta_{1} - \beta_{7} ) q^{20} + ( -\beta_{1} - 3 \beta_{8} + \beta_{11} ) q^{21} + ( \beta_{3} + \beta_{4} + 2 \beta_{6} + 2 \beta_{7} ) q^{22} + ( -4 \beta_{3} - 3 \beta_{5} - 5 \beta_{6} ) q^{23} -\beta_{8} q^{24} + ( -1 - 2 \beta_{3} - 2 \beta_{6} + \beta_{8} + 2 \beta_{10} + 2 \beta_{11} ) q^{25} + ( -1 + \beta_{1} - \beta_{2} ) q^{26} -\beta_{4} q^{27} + ( 3 \beta_{3} - \beta_{5} ) q^{28} + ( -2 + 2 \beta_{8} - 2 \beta_{10} - 3 \beta_{11} ) q^{29} + ( \beta_{1} - \beta_{7} ) q^{30} + 2 \beta_{1} q^{31} + \beta_{3} q^{32} + ( \beta_{3} + \beta_{4} + 2 \beta_{6} + 2 \beta_{7} ) q^{33} + ( 2 \beta_{10} - \beta_{11} ) q^{34} + ( -4 \beta_{2} - 3 \beta_{3} - 3 \beta_{4} + 2 \beta_{5} - \beta_{6} - \beta_{7} - \beta_{8} + 2 \beta_{9} - 4 \beta_{10} ) q^{35} -\beta_{8} q^{36} + ( 2 \beta_{4} - \beta_{7} - \beta_{9} ) q^{37} + ( -\beta_{4} + 2 \beta_{5} - \beta_{6} + \beta_{7} + \beta_{9} ) q^{38} + ( -1 + \beta_{1} - \beta_{2} ) q^{39} + ( -\beta_{2} + \beta_{5} + \beta_{9} - \beta_{10} ) q^{40} + ( 2 \beta_{1} - 5 \beta_{2} - 5 \beta_{10} - 2 \beta_{11} ) q^{41} + ( 3 \beta_{3} - \beta_{5} ) q^{42} + ( -4 \beta_{3} - 4 \beta_{4} + 2 \beta_{5} + 2 \beta_{9} ) q^{43} + ( -1 + \beta_{8} + 2 \beta_{10} ) q^{44} + ( \beta_{1} - \beta_{7} ) q^{45} + ( 4 - 3 \beta_{1} + 5 \beta_{2} ) q^{46} + ( -7 \beta_{3} - 3 \beta_{5} - 5 \beta_{6} ) q^{47} + \beta_{3} q^{48} + ( -5 - 5 \beta_{1} - \beta_{2} ) q^{49} + ( 2 + 2 \beta_{2} + \beta_{4} + 2 \beta_{7} + 2 \beta_{9} ) q^{50} + ( 2 \beta_{10} - \beta_{11} ) q^{51} + ( \beta_{3} + \beta_{4} + \beta_{5} + \beta_{6} + \beta_{7} + \beta_{9} ) q^{52} + ( -6 \beta_{3} + 3 \beta_{6} ) q^{53} -\beta_{8} q^{54} + ( -\beta_{1} - 2 \beta_{2} + 4 \beta_{3} + 4 \beta_{4} - 2 \beta_{5} - \beta_{6} - \beta_{7} - 2 \beta_{8} - 2 \beta_{9} - 2 \beta_{10} + \beta_{11} ) q^{55} + ( -3 - \beta_{1} ) q^{56} + ( -\beta_{4} + 2 \beta_{5} - \beta_{6} + \beta_{7} + \beta_{9} ) q^{57} + ( 2 \beta_{4} - 2 \beta_{7} - 3 \beta_{9} ) q^{58} + ( 5 \beta_{1} - \beta_{2} + \beta_{8} - \beta_{10} - 5 \beta_{11} ) q^{59} + ( -\beta_{2} + \beta_{5} + \beta_{9} - \beta_{10} ) q^{60} + ( -3 + 3 \beta_{8} - 5 \beta_{10} ) q^{61} + ( 2 \beta_{5} + 2 \beta_{9} ) q^{62} + ( 3 \beta_{3} - \beta_{5} ) q^{63} - q^{64} + ( -1 - \beta_{1} + \beta_{2} + 2 \beta_{4} + 2 \beta_{9} ) q^{65} + ( -1 + \beta_{8} + 2 \beta_{10} ) q^{66} + ( 2 \beta_{3} - 5 \beta_{5} - 2 \beta_{6} ) q^{67} + ( 2 \beta_{7} - \beta_{9} ) q^{68} + ( 4 - 3 \beta_{1} + 5 \beta_{2} ) q^{69} + ( 3 + \beta_{3} + 4 \beta_{6} - 3 \beta_{8} - \beta_{10} + 2 \beta_{11} ) q^{70} + ( -2 \beta_{1} - \beta_{2} + 7 \beta_{8} - \beta_{10} + 2 \beta_{11} ) q^{71} + \beta_{3} q^{72} + ( 7 \beta_{3} + 7 \beta_{4} - 2 \beta_{5} + \beta_{6} + \beta_{7} - 2 \beta_{9} ) q^{73} + ( \beta_{1} - \beta_{2} + 2 \beta_{8} - \beta_{10} - \beta_{11} ) q^{74} + ( 2 + 2 \beta_{2} + \beta_{4} + 2 \beta_{7} + 2 \beta_{9} ) q^{75} + ( \beta_{1} + 2 \beta_{2} - \beta_{8} + \beta_{10} + \beta_{11} ) q^{76} + ( 5 \beta_{4} + 8 \beta_{7} - \beta_{9} ) q^{77} + ( \beta_{3} + \beta_{4} + \beta_{5} + \beta_{6} + \beta_{7} + \beta_{9} ) q^{78} + ( -2 \beta_{1} - 6 \beta_{8} + 2 \beta_{11} ) q^{79} + ( \beta_{6} + \beta_{11} ) q^{80} -\beta_{8} q^{81} + ( 2 \beta_{5} + 5 \beta_{6} ) q^{82} + ( -4 \beta_{4} - 4 \beta_{7} ) q^{83} + ( -3 - \beta_{1} ) q^{84} + ( -5 + 5 \beta_{3} + \beta_{5} + 3 \beta_{6} + 5 \beta_{8} - \beta_{10} - 2 \beta_{11} ) q^{85} + ( 4 - 4 \beta_{8} + 2 \beta_{11} ) q^{86} + ( 2 \beta_{4} - 2 \beta_{7} - 3 \beta_{9} ) q^{87} + ( \beta_{4} + 2 \beta_{7} ) q^{88} + ( -1 + \beta_{8} + 6 \beta_{10} - 5 \beta_{11} ) q^{89} + ( -\beta_{2} + \beta_{5} + \beta_{9} - \beta_{10} ) q^{90} + ( -1 + \beta_{8} + 3 \beta_{10} + \beta_{11} ) q^{91} + ( -4 \beta_{3} - 4 \beta_{4} - 3 \beta_{5} - 5 \beta_{6} - 5 \beta_{7} - 3 \beta_{9} ) q^{92} + ( 2 \beta_{5} + 2 \beta_{9} ) q^{93} + ( 7 - 3 \beta_{1} + 5 \beta_{2} ) q^{94} + ( -5 - 4 \beta_{3} + \beta_{4} + \beta_{5} - \beta_{6} - 3 \beta_{7} + 7 \beta_{8} - \beta_{9} + 3 \beta_{10} + 2 \beta_{11} ) q^{95} - q^{96} + ( -5 \beta_{3} - 5 \beta_{4} - 5 \beta_{6} - 5 \beta_{7} ) q^{97} + ( 5 \beta_{3} + 5 \beta_{4} - 5 \beta_{5} + \beta_{6} + \beta_{7} - 5 \beta_{9} ) q^{98} + ( -1 + \beta_{8} + 2 \beta_{10} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12q + 6q^{4} + 6q^{6} + 6q^{9} + O(q^{10}) \) \( 12q + 6q^{4} + 6q^{6} + 6q^{9} - 2q^{10} - 4q^{11} - 18q^{14} - 2q^{15} - 6q^{16} + 6q^{19} - 18q^{21} - 6q^{24} - 2q^{25} - 8q^{26} - 16q^{29} + 4q^{34} + 2q^{35} - 6q^{36} - 8q^{39} + 2q^{40} + 10q^{41} - 2q^{44} + 28q^{46} - 56q^{49} + 16q^{50} + 4q^{51} - 6q^{54} - 8q^{55} - 36q^{56} + 8q^{59} + 2q^{60} - 28q^{61} - 12q^{64} - 16q^{65} - 2q^{66} + 28q^{69} + 16q^{70} + 44q^{71} + 14q^{74} + 16q^{75} - 12q^{76} - 36q^{79} - 6q^{81} - 36q^{84} - 32q^{85} + 24q^{86} + 6q^{89} + 2q^{90} + 64q^{94} - 12q^{95} - 12q^{96} - 2q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{12} - 2 x^{11} + 2 x^{10} - 8 x^{9} + 4 x^{8} + 16 x^{7} - 8 x^{6} + 20 x^{5} + 20 x^{4} - 24 x^{3} + 8 x^{2} - 8 x + 4\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\((\)\( -\nu^{11} + \nu^{10} - 4 \nu^{9} + 28 \nu^{8} - 18 \nu^{7} + 22 \nu^{6} - 94 \nu^{5} - 146 \nu^{4} + 144 \nu^{3} - 48 \nu^{2} + 48 \nu + 748 \)\()/460\)
\(\beta_{2}\)\(=\)\((\)\( -5 \nu^{11} + 5 \nu^{10} - 20 \nu^{9} + 94 \nu^{8} - 44 \nu^{7} + 64 \nu^{6} - 286 \nu^{5} - 454 \nu^{4} + 444 \nu^{3} - 148 \nu^{2} + 148 \nu + 612 \)\()/460\)
\(\beta_{3}\)\(=\)\((\)\( 12 \nu^{11} - 43 \nu^{10} + 43 \nu^{9} - 103 \nu^{8} + 166 \nu^{7} + 264 \nu^{6} - 414 \nu^{5} + 110 \nu^{4} - 50 \nu^{3} - 1370 \nu^{2} + 12 \nu - 12 \)\()/460\)
\(\beta_{4}\)\(=\)\((\)\( 31 \nu^{11} - 31 \nu^{10} + 9 \nu^{9} - 201 \nu^{8} - 109 \nu^{7} + 560 \nu^{6} + 246 \nu^{5} + 524 \nu^{4} + 1148 \nu^{3} + 154 \nu^{2} - 154 \nu - 142 \)\()/230\)
\(\beta_{5}\)\(=\)\((\)\( -12 \nu^{11} + 43 \nu^{10} - 43 \nu^{9} + 103 \nu^{8} - 166 \nu^{7} - 264 \nu^{6} + 414 \nu^{5} - 110 \nu^{4} + 50 \nu^{3} + 1140 \nu^{2} - 12 \nu + 12 \)\()/230\)
\(\beta_{6}\)\(=\)\((\)\( 32 \nu^{11} - 107 \nu^{10} + 107 \nu^{9} - 267 \nu^{8} + 412 \nu^{7} + 658 \nu^{6} - 1058 \nu^{5} + 278 \nu^{4} - 118 \nu^{3} - 1982 \nu^{2} + 32 \nu - 32 \)\()/460\)
\(\beta_{7}\)\(=\)\((\)\( 81 \nu^{11} - 81 \nu^{10} + 48 \nu^{9} - 566 \nu^{8} - 244 \nu^{7} + 1208 \nu^{6} + 806 \nu^{5} + 1614 \nu^{4} + 3424 \nu^{3} + 484 \nu^{2} - 484 \nu - 420 \)\()/460\)
\(\beta_{8}\)\(=\)\((\)\( 3 \nu^{11} - 5 \nu^{10} + 5 \nu^{9} - 23 \nu^{8} + 4 \nu^{7} + 46 \nu^{6} - 12 \nu^{5} + 74 \nu^{4} + 86 \nu^{3} - 38 \nu^{2} + 32 \nu - 12 \)\()/20\)
\(\beta_{9}\)\(=\)\((\)\( -101 \nu^{11} + 101 \nu^{10} - 36 \nu^{9} + 666 \nu^{8} + 344 \nu^{7} - 1734 \nu^{6} - 846 \nu^{5} - 1774 \nu^{4} - 3856 \nu^{3} - 524 \nu^{2} + 524 \nu + 476 \)\()/460\)
\(\beta_{10}\)\(=\)\((\)\( 117 \nu^{11} - 195 \nu^{10} + 195 \nu^{9} - 941 \nu^{8} + 250 \nu^{7} + 1700 \nu^{6} - 92 \nu^{5} + 2510 \nu^{4} + 2790 \nu^{3} - 1294 \nu^{2} + 1060 \nu - 1060 \)\()/460\)
\(\beta_{11}\)\(=\)\((\)\( -60 \nu^{11} + 100 \nu^{10} - 100 \nu^{9} + 469 \nu^{8} - 94 \nu^{7} - 906 \nu^{6} + 184 \nu^{5} - 1424 \nu^{4} - 1636 \nu^{3} + 732 \nu^{2} - 612 \nu + 612 \)\()/230\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(\beta_{11} + \beta_{10} - \beta_{9} + \beta_{8} - \beta_{7} - \beta_{6} - \beta_{5} - \beta_{4} - \beta_{3} + \beta_{2} - \beta_{1}\)\()/2\)
\(\nu^{2}\)\(=\)\(-\beta_{5} - 2 \beta_{3}\)
\(\nu^{3}\)\(=\)\(2 \beta_{9} + \beta_{7} + 2 \beta_{4} + \beta_{2} - 2 \beta_{1} + 2\)
\(\nu^{4}\)\(=\)\(5 \beta_{11} + \beta_{10} + 7 \beta_{8} + \beta_{2} - 5 \beta_{1}\)
\(\nu^{5}\)\(=\)\(8 \beta_{11} + 3 \beta_{10} + 9 \beta_{8} - 3 \beta_{6} - 8 \beta_{5} - 9 \beta_{3} - 9\)
\(\nu^{6}\)\(=\)\(22 \beta_{9} + 6 \beta_{7} + 28 \beta_{4}\)
\(\nu^{7}\)\(=\)\(33 \beta_{11} + 11 \beta_{10} + 33 \beta_{9} + 39 \beta_{8} + 11 \beta_{7} + 11 \beta_{6} + 33 \beta_{5} + 39 \beta_{4} + 39 \beta_{3} + 11 \beta_{2} - 33 \beta_{1}\)
\(\nu^{8}\)\(=\)\(94 \beta_{11} + 28 \beta_{10} + 116 \beta_{8} - 116\)
\(\nu^{9}\)\(=\)\(138 \beta_{9} + 44 \beta_{7} + 166 \beta_{4} - 44 \beta_{2} + 138 \beta_{1} - 166\)
\(\nu^{10}\)\(=\)\(398 \beta_{9} + 122 \beta_{7} + 122 \beta_{6} + 398 \beta_{5} + 486 \beta_{4} + 486 \beta_{3}\)
\(\nu^{11}\)\(=\)\(580 \beta_{11} + 182 \beta_{10} + 702 \beta_{8} + 182 \beta_{6} + 580 \beta_{5} + 702 \beta_{3} - 702\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/570\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(211\) \(457\)
\(\chi(n)\) \(1\) \(-1 + \beta_{8}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
49.1
−0.531325 1.98293i
−0.147520 0.550552i
0.312819 + 1.16746i
−1.16746 + 0.312819i
1.98293 0.531325i
0.550552 0.147520i
−0.531325 + 1.98293i
−0.147520 + 0.550552i
0.312819 1.16746i
−1.16746 0.312819i
1.98293 + 0.531325i
0.550552 + 0.147520i
−0.866025 0.500000i −0.866025 0.500000i 0.500000 + 0.866025i −0.837733 + 2.07321i 0.500000 + 0.866025i 0.785680i 1.00000i 0.500000 + 0.866025i 1.76210 1.37659i
49.2 −0.866025 0.500000i −0.866025 0.500000i 0.500000 + 0.866025i −0.445186 2.19130i 0.500000 + 0.866025i 4.67513i 1.00000i 0.500000 + 0.866025i −0.710109 + 2.12032i
49.3 −0.866025 0.500000i −0.866025 0.500000i 0.500000 + 0.866025i 2.14894 + 0.618092i 0.500000 + 0.866025i 3.53919i 1.00000i 0.500000 + 0.866025i −1.55199 1.60976i
49.4 0.866025 + 0.500000i 0.866025 + 0.500000i 0.500000 + 0.866025i −1.60976 1.55199i 0.500000 + 0.866025i 3.53919i 1.00000i 0.500000 + 0.866025i −0.618092 2.14894i
49.5 0.866025 + 0.500000i 0.866025 + 0.500000i 0.500000 + 0.866025i −1.37659 + 1.76210i 0.500000 + 0.866025i 0.785680i 1.00000i 0.500000 + 0.866025i −2.07321 + 0.837733i
49.6 0.866025 + 0.500000i 0.866025 + 0.500000i 0.500000 + 0.866025i 2.12032 0.710109i 0.500000 + 0.866025i 4.67513i 1.00000i 0.500000 + 0.866025i 2.19130 + 0.445186i
349.1 −0.866025 + 0.500000i −0.866025 + 0.500000i 0.500000 0.866025i −0.837733 2.07321i 0.500000 0.866025i 0.785680i 1.00000i 0.500000 0.866025i 1.76210 + 1.37659i
349.2 −0.866025 + 0.500000i −0.866025 + 0.500000i 0.500000 0.866025i −0.445186 + 2.19130i 0.500000 0.866025i 4.67513i 1.00000i 0.500000 0.866025i −0.710109 2.12032i
349.3 −0.866025 + 0.500000i −0.866025 + 0.500000i 0.500000 0.866025i 2.14894 0.618092i 0.500000 0.866025i 3.53919i 1.00000i 0.500000 0.866025i −1.55199 + 1.60976i
349.4 0.866025 0.500000i 0.866025 0.500000i 0.500000 0.866025i −1.60976 + 1.55199i 0.500000 0.866025i 3.53919i 1.00000i 0.500000 0.866025i −0.618092 + 2.14894i
349.5 0.866025 0.500000i 0.866025 0.500000i 0.500000 0.866025i −1.37659 1.76210i 0.500000 0.866025i 0.785680i 1.00000i 0.500000 0.866025i −2.07321 0.837733i
349.6 0.866025 0.500000i 0.866025 0.500000i 0.500000 0.866025i 2.12032 + 0.710109i 0.500000 0.866025i 4.67513i 1.00000i 0.500000 0.866025i 2.19130 0.445186i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 349.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
19.c even 3 1 inner
95.i even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 570.2.q.b 12
3.b odd 2 1 1710.2.t.b 12
5.b even 2 1 inner 570.2.q.b 12
15.d odd 2 1 1710.2.t.b 12
19.c even 3 1 inner 570.2.q.b 12
57.h odd 6 1 1710.2.t.b 12
95.i even 6 1 inner 570.2.q.b 12
285.n odd 6 1 1710.2.t.b 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
570.2.q.b 12 1.a even 1 1 trivial
570.2.q.b 12 5.b even 2 1 inner
570.2.q.b 12 19.c even 3 1 inner
570.2.q.b 12 95.i even 6 1 inner
1710.2.t.b 12 3.b odd 2 1
1710.2.t.b 12 15.d odd 2 1
1710.2.t.b 12 57.h odd 6 1
1710.2.t.b 12 285.n odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{6} + 35 T_{7}^{4} + 295 T_{7}^{2} + 169 \) acting on \(S_{2}^{\mathrm{new}}(570, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( ( 1 - T^{2} + T^{4} )^{3} \)
$3$ \( ( 1 - T^{2} + T^{4} )^{3} \)
$5$ \( 15625 + 625 T^{2} - 4000 T^{3} + 150 T^{4} - 80 T^{5} + 501 T^{6} - 16 T^{7} + 6 T^{8} - 32 T^{9} + T^{10} + T^{12} \)
$7$ \( ( 169 + 295 T^{2} + 35 T^{4} + T^{6} )^{2} \)
$11$ \( ( -5 - 13 T + T^{2} + T^{3} )^{4} \)
$13$ \( 256 - 512 T^{2} + 832 T^{4} - 352 T^{6} + 112 T^{8} - 12 T^{10} + T^{12} \)
$17$ \( 6250000 - 1500000 T^{2} + 250000 T^{4} - 21400 T^{6} + 1336 T^{8} - 44 T^{10} + T^{12} \)
$19$ \( ( 6859 - 1083 T + 456 T^{2} - 25 T^{3} + 24 T^{4} - 3 T^{5} + T^{6} )^{2} \)
$23$ \( 58120048561 - 2941911443 T^{2} + 101902414 T^{4} - 1897423 T^{6} + 25822 T^{8} - 195 T^{10} + T^{12} \)
$29$ \( ( 16900 + 2080 T + 1296 T^{2} + 132 T^{3} + 80 T^{4} + 8 T^{5} + T^{6} )^{2} \)
$31$ \( ( 16 - 16 T + T^{3} )^{4} \)
$37$ \( ( 1 + 107 T^{2} + 27 T^{4} + T^{6} )^{2} \)
$41$ \( ( 19321 + 9869 T + 4346 T^{2} + 633 T^{3} + 96 T^{4} - 5 T^{5} + T^{6} )^{2} \)
$43$ \( 65536 - 360448 T^{2} + 1961984 T^{4} - 112128 T^{6} + 4992 T^{8} - 80 T^{10} + T^{12} \)
$47$ \( 147763360000 - 7632646400 T^{2} + 292779136 T^{4} - 4473184 T^{6} + 49840 T^{8} - 264 T^{10} + T^{12} \)
$53$ \( 332150625 - 146146275 T^{2} + 60531786 T^{4} - 1623483 T^{6} + 34830 T^{8} - 207 T^{10} + T^{12} \)
$59$ \( ( 204304 - 39776 T + 9552 T^{2} - 552 T^{3} + 104 T^{4} - 4 T^{5} + T^{6} )^{2} \)
$61$ \( ( 77284 + 5004 T + 4216 T^{2} + 304 T^{3} + 214 T^{4} + 14 T^{5} + T^{6} )^{2} \)
$67$ \( 102627966736 - 4561869440 T^{2} + 136143552 T^{4} - 2321208 T^{6} + 29024 T^{8} - 208 T^{10} + T^{12} \)
$71$ \( ( 42436 - 28428 T + 14512 T^{2} - 2624 T^{3} + 346 T^{4} - 22 T^{5} + T^{6} )^{2} \)
$73$ \( 623201296 - 144291920 T^{2} + 28914880 T^{4} - 990472 T^{6} + 26620 T^{8} - 180 T^{10} + T^{12} \)
$79$ \( ( 10816 + 9568 T + 6592 T^{2} + 1448 T^{3} + 232 T^{4} + 18 T^{5} + T^{6} )^{2} \)
$83$ \( ( 16384 + 3072 T^{2} + 128 T^{4} + T^{6} )^{2} \)
$89$ \( ( 4133089 - 563141 T + 82828 T^{2} - 3235 T^{3} + 286 T^{4} - 3 T^{5} + T^{6} )^{2} \)
$97$ \( 3906250000 - 468750000 T^{2} + 43750000 T^{4} - 1375000 T^{6} + 32500 T^{8} - 200 T^{10} + T^{12} \)
show more
show less