Properties

Label 570.2.q.a.49.4
Level $570$
Weight $2$
Character 570.49
Analytic conductor $4.551$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 570 = 2 \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 570.q (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.55147291521\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{24})\)
Defining polynomial: \(x^{8} - x^{4} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 49.4
Root \(-0.965926 + 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 570.49
Dual form 570.2.q.a.349.4

$q$-expansion

\(f(q)\) \(=\) \(q+(0.866025 + 0.500000i) q^{2} +(0.866025 + 0.500000i) q^{3} +(0.500000 + 0.866025i) q^{4} +(1.81431 + 1.30701i) q^{5} +(0.500000 + 0.866025i) q^{6} -3.00000i q^{7} +1.00000i q^{8} +(0.500000 + 0.866025i) q^{9} +O(q^{10})\) \(q+(0.866025 + 0.500000i) q^{2} +(0.866025 + 0.500000i) q^{3} +(0.500000 + 0.866025i) q^{4} +(1.81431 + 1.30701i) q^{5} +(0.500000 + 0.866025i) q^{6} -3.00000i q^{7} +1.00000i q^{8} +(0.500000 + 0.866025i) q^{9} +(0.917738 + 2.03906i) q^{10} +2.00000 q^{11} +1.00000i q^{12} +(-2.98735 + 1.72474i) q^{13} +(1.50000 - 2.59808i) q^{14} +(0.917738 + 2.03906i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(4.24264 + 2.44949i) q^{17} +1.00000i q^{18} +(1.00000 - 4.24264i) q^{19} +(-0.224745 + 2.22474i) q^{20} +(1.50000 - 2.59808i) q^{21} +(1.73205 + 1.00000i) q^{22} +(-2.12132 + 1.22474i) q^{23} +(-0.500000 + 0.866025i) q^{24} +(1.58346 + 4.74264i) q^{25} -3.44949 q^{26} +1.00000i q^{27} +(2.59808 - 1.50000i) q^{28} +(-4.67423 - 8.09601i) q^{29} +(-0.224745 + 2.22474i) q^{30} -7.89898 q^{31} +(-0.866025 + 0.500000i) q^{32} +(1.73205 + 1.00000i) q^{33} +(2.44949 + 4.24264i) q^{34} +(3.92102 - 5.44294i) q^{35} +(-0.500000 + 0.866025i) q^{36} +4.55051i q^{37} +(2.98735 - 3.17423i) q^{38} -3.44949 q^{39} +(-1.30701 + 1.81431i) q^{40} +(-1.22474 + 2.12132i) q^{41} +(2.59808 - 1.50000i) q^{42} +(-0.476756 - 0.275255i) q^{43} +(1.00000 + 1.73205i) q^{44} +(-0.224745 + 2.22474i) q^{45} -2.44949 q^{46} +(-3.07483 + 1.77526i) q^{47} +(-0.866025 + 0.500000i) q^{48} -2.00000 q^{49} +(-1.00000 + 4.89898i) q^{50} +(2.44949 + 4.24264i) q^{51} +(-2.98735 - 1.72474i) q^{52} +(-2.68556 + 1.55051i) q^{53} +(-0.500000 + 0.866025i) q^{54} +(3.62863 + 2.61401i) q^{55} +3.00000 q^{56} +(2.98735 - 3.17423i) q^{57} -9.34847i q^{58} +(5.89898 - 10.2173i) q^{59} +(-1.30701 + 1.81431i) q^{60} +(-2.17423 - 3.76588i) q^{61} +(-6.84072 - 3.94949i) q^{62} +(2.59808 - 1.50000i) q^{63} -1.00000 q^{64} +(-7.67423 - 0.775255i) q^{65} +(1.00000 + 1.73205i) q^{66} +(-1.25529 + 0.724745i) q^{67} +4.89898i q^{68} -2.44949 q^{69} +(6.11717 - 2.75321i) q^{70} +(1.77526 - 3.07483i) q^{71} +(-0.866025 + 0.500000i) q^{72} +(10.3048 + 5.94949i) q^{73} +(-2.27526 + 3.94086i) q^{74} +(-1.00000 + 4.89898i) q^{75} +(4.17423 - 1.25529i) q^{76} -6.00000i q^{77} +(-2.98735 - 1.72474i) q^{78} +(8.39898 - 14.5475i) q^{79} +(-2.03906 + 0.917738i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(-2.12132 + 1.22474i) q^{82} +1.34847i q^{83} +3.00000 q^{84} +(4.49598 + 9.98930i) q^{85} +(-0.275255 - 0.476756i) q^{86} -9.34847i q^{87} +2.00000i q^{88} +(-5.77526 - 10.0030i) q^{89} +(-1.30701 + 1.81431i) q^{90} +(5.17423 + 8.96204i) q^{91} +(-2.12132 - 1.22474i) q^{92} +(-6.84072 - 3.94949i) q^{93} -3.55051 q^{94} +(7.35948 - 6.39047i) q^{95} -1.00000 q^{96} +(-16.1920 - 9.34847i) q^{97} +(-1.73205 - 1.00000i) q^{98} +(1.00000 + 1.73205i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q + 4q^{4} + 4q^{5} + 4q^{6} + 4q^{9} + O(q^{10}) \) \( 8q + 4q^{4} + 4q^{5} + 4q^{6} + 4q^{9} + 4q^{10} + 16q^{11} + 12q^{14} + 4q^{15} - 4q^{16} + 8q^{19} + 8q^{20} + 12q^{21} - 4q^{24} - 8q^{26} - 8q^{29} + 8q^{30} - 24q^{31} + 12q^{35} - 4q^{36} - 8q^{39} - 4q^{40} + 8q^{44} + 8q^{45} - 16q^{49} - 8q^{50} - 4q^{54} + 8q^{55} + 24q^{56} + 8q^{59} - 4q^{60} + 12q^{61} - 8q^{64} - 32q^{65} + 8q^{66} - 12q^{70} + 24q^{71} - 28q^{74} - 8q^{75} + 4q^{76} + 28q^{79} + 4q^{80} - 4q^{81} + 24q^{84} + 24q^{85} - 12q^{86} - 56q^{89} - 4q^{90} + 12q^{91} - 48q^{94} + 40q^{95} - 8q^{96} + 8q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/570\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(211\) \(457\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 + 0.500000i 0.612372 + 0.353553i
\(3\) 0.866025 + 0.500000i 0.500000 + 0.288675i
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) 1.81431 + 1.30701i 0.811386 + 0.584511i
\(6\) 0.500000 + 0.866025i 0.204124 + 0.353553i
\(7\) 3.00000i 1.13389i −0.823754 0.566947i \(-0.808125\pi\)
0.823754 0.566947i \(-0.191875\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0.500000 + 0.866025i 0.166667 + 0.288675i
\(10\) 0.917738 + 2.03906i 0.290214 + 0.644807i
\(11\) 2.00000 0.603023 0.301511 0.953463i \(-0.402509\pi\)
0.301511 + 0.953463i \(0.402509\pi\)
\(12\) 1.00000i 0.288675i
\(13\) −2.98735 + 1.72474i −0.828541 + 0.478358i −0.853353 0.521334i \(-0.825435\pi\)
0.0248121 + 0.999692i \(0.492101\pi\)
\(14\) 1.50000 2.59808i 0.400892 0.694365i
\(15\) 0.917738 + 2.03906i 0.236959 + 0.526483i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 4.24264 + 2.44949i 1.02899 + 0.594089i 0.916696 0.399586i \(-0.130846\pi\)
0.112296 + 0.993675i \(0.464180\pi\)
\(18\) 1.00000i 0.235702i
\(19\) 1.00000 4.24264i 0.229416 0.973329i
\(20\) −0.224745 + 2.22474i −0.0502545 + 0.497468i
\(21\) 1.50000 2.59808i 0.327327 0.566947i
\(22\) 1.73205 + 1.00000i 0.369274 + 0.213201i
\(23\) −2.12132 + 1.22474i −0.442326 + 0.255377i −0.704584 0.709621i \(-0.748866\pi\)
0.262258 + 0.964998i \(0.415533\pi\)
\(24\) −0.500000 + 0.866025i −0.102062 + 0.176777i
\(25\) 1.58346 + 4.74264i 0.316693 + 0.948528i
\(26\) −3.44949 −0.676501
\(27\) 1.00000i 0.192450i
\(28\) 2.59808 1.50000i 0.490990 0.283473i
\(29\) −4.67423 8.09601i −0.867984 1.50339i −0.864054 0.503399i \(-0.832082\pi\)
−0.00392972 0.999992i \(-0.501251\pi\)
\(30\) −0.224745 + 2.22474i −0.0410326 + 0.406181i
\(31\) −7.89898 −1.41870 −0.709349 0.704857i \(-0.751011\pi\)
−0.709349 + 0.704857i \(0.751011\pi\)
\(32\) −0.866025 + 0.500000i −0.153093 + 0.0883883i
\(33\) 1.73205 + 1.00000i 0.301511 + 0.174078i
\(34\) 2.44949 + 4.24264i 0.420084 + 0.727607i
\(35\) 3.92102 5.44294i 0.662774 0.920025i
\(36\) −0.500000 + 0.866025i −0.0833333 + 0.144338i
\(37\) 4.55051i 0.748099i 0.927409 + 0.374050i \(0.122031\pi\)
−0.927409 + 0.374050i \(0.877969\pi\)
\(38\) 2.98735 3.17423i 0.484611 0.514929i
\(39\) −3.44949 −0.552360
\(40\) −1.30701 + 1.81431i −0.206656 + 0.286868i
\(41\) −1.22474 + 2.12132i −0.191273 + 0.331295i −0.945672 0.325121i \(-0.894595\pi\)
0.754399 + 0.656416i \(0.227928\pi\)
\(42\) 2.59808 1.50000i 0.400892 0.231455i
\(43\) −0.476756 0.275255i −0.0727046 0.0419760i 0.463207 0.886250i \(-0.346699\pi\)
−0.535912 + 0.844274i \(0.680032\pi\)
\(44\) 1.00000 + 1.73205i 0.150756 + 0.261116i
\(45\) −0.224745 + 2.22474i −0.0335030 + 0.331645i
\(46\) −2.44949 −0.361158
\(47\) −3.07483 + 1.77526i −0.448510 + 0.258948i −0.707201 0.707013i \(-0.750042\pi\)
0.258691 + 0.965960i \(0.416709\pi\)
\(48\) −0.866025 + 0.500000i −0.125000 + 0.0721688i
\(49\) −2.00000 −0.285714
\(50\) −1.00000 + 4.89898i −0.141421 + 0.692820i
\(51\) 2.44949 + 4.24264i 0.342997 + 0.594089i
\(52\) −2.98735 1.72474i −0.414270 0.239179i
\(53\) −2.68556 + 1.55051i −0.368890 + 0.212979i −0.672974 0.739667i \(-0.734983\pi\)
0.304083 + 0.952645i \(0.401650\pi\)
\(54\) −0.500000 + 0.866025i −0.0680414 + 0.117851i
\(55\) 3.62863 + 2.61401i 0.489284 + 0.352474i
\(56\) 3.00000 0.400892
\(57\) 2.98735 3.17423i 0.395684 0.420438i
\(58\) 9.34847i 1.22751i
\(59\) 5.89898 10.2173i 0.767982 1.33018i −0.170674 0.985328i \(-0.554594\pi\)
0.938656 0.344856i \(-0.112072\pi\)
\(60\) −1.30701 + 1.81431i −0.168734 + 0.234227i
\(61\) −2.17423 3.76588i −0.278382 0.482172i 0.692601 0.721321i \(-0.256465\pi\)
−0.970983 + 0.239149i \(0.923132\pi\)
\(62\) −6.84072 3.94949i −0.868772 0.501586i
\(63\) 2.59808 1.50000i 0.327327 0.188982i
\(64\) −1.00000 −0.125000
\(65\) −7.67423 0.775255i −0.951872 0.0961586i
\(66\) 1.00000 + 1.73205i 0.123091 + 0.213201i
\(67\) −1.25529 + 0.724745i −0.153359 + 0.0885417i −0.574716 0.818353i \(-0.694887\pi\)
0.421357 + 0.906895i \(0.361554\pi\)
\(68\) 4.89898i 0.594089i
\(69\) −2.44949 −0.294884
\(70\) 6.11717 2.75321i 0.731142 0.329072i
\(71\) 1.77526 3.07483i 0.210684 0.364915i −0.741245 0.671235i \(-0.765764\pi\)
0.951929 + 0.306319i \(0.0990976\pi\)
\(72\) −0.866025 + 0.500000i −0.102062 + 0.0589256i
\(73\) 10.3048 + 5.94949i 1.20609 + 0.696335i 0.961902 0.273393i \(-0.0881461\pi\)
0.244185 + 0.969729i \(0.421479\pi\)
\(74\) −2.27526 + 3.94086i −0.264493 + 0.458115i
\(75\) −1.00000 + 4.89898i −0.115470 + 0.565685i
\(76\) 4.17423 1.25529i 0.478818 0.143992i
\(77\) 6.00000i 0.683763i
\(78\) −2.98735 1.72474i −0.338250 0.195289i
\(79\) 8.39898 14.5475i 0.944959 1.63672i 0.189126 0.981953i \(-0.439435\pi\)
0.755833 0.654764i \(-0.227232\pi\)
\(80\) −2.03906 + 0.917738i −0.227974 + 0.102606i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) −2.12132 + 1.22474i −0.234261 + 0.135250i
\(83\) 1.34847i 0.148014i 0.997258 + 0.0740069i \(0.0235787\pi\)
−0.997258 + 0.0740069i \(0.976421\pi\)
\(84\) 3.00000 0.327327
\(85\) 4.49598 + 9.98930i 0.487657 + 1.08349i
\(86\) −0.275255 0.476756i −0.0296815 0.0514099i
\(87\) 9.34847i 1.00226i
\(88\) 2.00000i 0.213201i
\(89\) −5.77526 10.0030i −0.612176 1.06032i −0.990873 0.134799i \(-0.956961\pi\)
0.378697 0.925521i \(-0.376372\pi\)
\(90\) −1.30701 + 1.81431i −0.137771 + 0.191245i
\(91\) 5.17423 + 8.96204i 0.542407 + 0.939477i
\(92\) −2.12132 1.22474i −0.221163 0.127688i
\(93\) −6.84072 3.94949i −0.709349 0.409543i
\(94\) −3.55051 −0.366207
\(95\) 7.35948 6.39047i 0.755066 0.655649i
\(96\) −1.00000 −0.102062
\(97\) −16.1920 9.34847i −1.64405 0.949193i −0.979372 0.202064i \(-0.935235\pi\)
−0.664679 0.747129i \(-0.731431\pi\)
\(98\) −1.73205 1.00000i −0.174964 0.101015i
\(99\) 1.00000 + 1.73205i 0.100504 + 0.174078i
\(100\) −3.31552 + 3.74264i −0.331552 + 0.374264i
\(101\) 1.89898 + 3.28913i 0.188956 + 0.327281i 0.944902 0.327353i \(-0.106156\pi\)
−0.755947 + 0.654633i \(0.772823\pi\)
\(102\) 4.89898i 0.485071i
\(103\) 9.89898i 0.975375i 0.873018 + 0.487688i \(0.162160\pi\)
−0.873018 + 0.487688i \(0.837840\pi\)
\(104\) −1.72474 2.98735i −0.169125 0.292933i
\(105\) 6.11717 2.75321i 0.596975 0.268686i
\(106\) −3.10102 −0.301198
\(107\) 10.4495i 1.01019i −0.863064 0.505095i \(-0.831457\pi\)
0.863064 0.505095i \(-0.168543\pi\)
\(108\) −0.866025 + 0.500000i −0.0833333 + 0.0481125i
\(109\) −7.00000 + 12.1244i −0.670478 + 1.16130i 0.307290 + 0.951616i \(0.400578\pi\)
−0.977769 + 0.209687i \(0.932756\pi\)
\(110\) 1.83548 + 4.07812i 0.175006 + 0.388833i
\(111\) −2.27526 + 3.94086i −0.215958 + 0.374050i
\(112\) 2.59808 + 1.50000i 0.245495 + 0.141737i
\(113\) 14.8990i 1.40158i −0.713369 0.700789i \(-0.752831\pi\)
0.713369 0.700789i \(-0.247169\pi\)
\(114\) 4.17423 1.25529i 0.390953 0.117569i
\(115\) −5.44949 0.550510i −0.508168 0.0513353i
\(116\) 4.67423 8.09601i 0.433992 0.751696i
\(117\) −2.98735 1.72474i −0.276180 0.159453i
\(118\) 10.2173 5.89898i 0.940582 0.543045i
\(119\) 7.34847 12.7279i 0.673633 1.16677i
\(120\) −2.03906 + 0.917738i −0.186140 + 0.0837776i
\(121\) −7.00000 −0.636364
\(122\) 4.34847i 0.393692i
\(123\) −2.12132 + 1.22474i −0.191273 + 0.110432i
\(124\) −3.94949 6.84072i −0.354675 0.614315i
\(125\) −3.32577 + 10.6742i −0.297465 + 0.954733i
\(126\) 3.00000 0.267261
\(127\) −14.4600 + 8.34847i −1.28312 + 0.740807i −0.977417 0.211322i \(-0.932223\pi\)
−0.305699 + 0.952128i \(0.598890\pi\)
\(128\) −0.866025 0.500000i −0.0765466 0.0441942i
\(129\) −0.275255 0.476756i −0.0242349 0.0419760i
\(130\) −6.25845 4.50851i −0.548903 0.395422i
\(131\) −3.89898 + 6.75323i −0.340655 + 0.590032i −0.984555 0.175078i \(-0.943982\pi\)
0.643899 + 0.765110i \(0.277316\pi\)
\(132\) 2.00000i 0.174078i
\(133\) −12.7279 3.00000i −1.10365 0.260133i
\(134\) −1.44949 −0.125217
\(135\) −1.30701 + 1.81431i −0.112489 + 0.156151i
\(136\) −2.44949 + 4.24264i −0.210042 + 0.363803i
\(137\) −0.953512 + 0.550510i −0.0814640 + 0.0470333i −0.540179 0.841550i \(-0.681643\pi\)
0.458715 + 0.888584i \(0.348310\pi\)
\(138\) −2.12132 1.22474i −0.180579 0.104257i
\(139\) 3.27526 + 5.67291i 0.277804 + 0.481170i 0.970839 0.239734i \(-0.0770602\pi\)
−0.693035 + 0.720904i \(0.743727\pi\)
\(140\) 6.67423 + 0.674235i 0.564076 + 0.0569832i
\(141\) −3.55051 −0.299007
\(142\) 3.07483 1.77526i 0.258034 0.148976i
\(143\) −5.97469 + 3.44949i −0.499629 + 0.288461i
\(144\) −1.00000 −0.0833333
\(145\) 2.10102 20.7980i 0.174480 1.72718i
\(146\) 5.94949 + 10.3048i 0.492383 + 0.852833i
\(147\) −1.73205 1.00000i −0.142857 0.0824786i
\(148\) −3.94086 + 2.27526i −0.323936 + 0.187025i
\(149\) 1.89898 3.28913i 0.155570 0.269456i −0.777696 0.628640i \(-0.783612\pi\)
0.933267 + 0.359184i \(0.116945\pi\)
\(150\) −3.31552 + 3.74264i −0.270711 + 0.305585i
\(151\) 19.7980 1.61114 0.805568 0.592504i \(-0.201861\pi\)
0.805568 + 0.592504i \(0.201861\pi\)
\(152\) 4.24264 + 1.00000i 0.344124 + 0.0811107i
\(153\) 4.89898i 0.396059i
\(154\) 3.00000 5.19615i 0.241747 0.418718i
\(155\) −14.3312 10.3240i −1.15111 0.829245i
\(156\) −1.72474 2.98735i −0.138090 0.239179i
\(157\) 4.71940 + 2.72474i 0.376649 + 0.217458i 0.676359 0.736572i \(-0.263557\pi\)
−0.299710 + 0.954030i \(0.596890\pi\)
\(158\) 14.5475 8.39898i 1.15733 0.668187i
\(159\) −3.10102 −0.245927
\(160\) −2.22474 0.224745i −0.175882 0.0177676i
\(161\) 3.67423 + 6.36396i 0.289570 + 0.501550i
\(162\) −0.866025 + 0.500000i −0.0680414 + 0.0392837i
\(163\) 6.34847i 0.497250i 0.968600 + 0.248625i \(0.0799788\pi\)
−0.968600 + 0.248625i \(0.920021\pi\)
\(164\) −2.44949 −0.191273
\(165\) 1.83548 + 4.07812i 0.142892 + 0.317481i
\(166\) −0.674235 + 1.16781i −0.0523308 + 0.0906395i
\(167\) 13.6814 7.89898i 1.05870 0.611241i 0.133628 0.991032i \(-0.457337\pi\)
0.925073 + 0.379790i \(0.124004\pi\)
\(168\) 2.59808 + 1.50000i 0.200446 + 0.115728i
\(169\) −0.550510 + 0.953512i −0.0423469 + 0.0733471i
\(170\) −1.10102 + 10.8990i −0.0844444 + 0.835914i
\(171\) 4.17423 1.25529i 0.319212 0.0959948i
\(172\) 0.550510i 0.0419760i
\(173\) 3.85337 + 2.22474i 0.292966 + 0.169144i 0.639279 0.768975i \(-0.279233\pi\)
−0.346312 + 0.938119i \(0.612566\pi\)
\(174\) 4.67423 8.09601i 0.354353 0.613757i
\(175\) 14.2279 4.75039i 1.07553 0.359096i
\(176\) −1.00000 + 1.73205i −0.0753778 + 0.130558i
\(177\) 10.2173 5.89898i 0.767982 0.443394i
\(178\) 11.5505i 0.865747i
\(179\) 18.2474 1.36388 0.681939 0.731409i \(-0.261137\pi\)
0.681939 + 0.731409i \(0.261137\pi\)
\(180\) −2.03906 + 0.917738i −0.151982 + 0.0684041i
\(181\) 5.55051 + 9.61377i 0.412566 + 0.714586i 0.995170 0.0981710i \(-0.0312992\pi\)
−0.582603 + 0.812757i \(0.697966\pi\)
\(182\) 10.3485i 0.767080i
\(183\) 4.34847i 0.321448i
\(184\) −1.22474 2.12132i −0.0902894 0.156386i
\(185\) −5.94755 + 8.25605i −0.437273 + 0.606997i
\(186\) −3.94949 6.84072i −0.289591 0.501586i
\(187\) 8.48528 + 4.89898i 0.620505 + 0.358249i
\(188\) −3.07483 1.77526i −0.224255 0.129474i
\(189\) 3.00000 0.218218
\(190\) 9.56873 1.85457i 0.694189 0.134545i
\(191\) −14.6969 −1.06343 −0.531717 0.846922i \(-0.678453\pi\)
−0.531717 + 0.846922i \(0.678453\pi\)
\(192\) −0.866025 0.500000i −0.0625000 0.0360844i
\(193\) 1.81954 + 1.05051i 0.130973 + 0.0756174i 0.564055 0.825737i \(-0.309241\pi\)
−0.433082 + 0.901355i \(0.642574\pi\)
\(194\) −9.34847 16.1920i −0.671181 1.16252i
\(195\) −6.25845 4.50851i −0.448177 0.322861i
\(196\) −1.00000 1.73205i −0.0714286 0.123718i
\(197\) 16.6969i 1.18961i −0.803871 0.594804i \(-0.797230\pi\)
0.803871 0.594804i \(-0.202770\pi\)
\(198\) 2.00000i 0.142134i
\(199\) −4.05051 7.01569i −0.287133 0.497329i 0.685991 0.727610i \(-0.259369\pi\)
−0.973124 + 0.230281i \(0.926036\pi\)
\(200\) −4.74264 + 1.58346i −0.335355 + 0.111968i
\(201\) −1.44949 −0.102239
\(202\) 3.79796i 0.267223i
\(203\) −24.2880 + 14.0227i −1.70469 + 0.984201i
\(204\) −2.44949 + 4.24264i −0.171499 + 0.297044i
\(205\) −4.99465 + 2.24799i −0.348842 + 0.157006i
\(206\) −4.94949 + 8.57277i −0.344847 + 0.597293i
\(207\) −2.12132 1.22474i −0.147442 0.0851257i
\(208\) 3.44949i 0.239179i
\(209\) 2.00000 8.48528i 0.138343 0.586939i
\(210\) 6.67423 + 0.674235i 0.460566 + 0.0465266i
\(211\) −1.17423 + 2.03383i −0.0808376 + 0.140015i −0.903610 0.428356i \(-0.859093\pi\)
0.822772 + 0.568371i \(0.192426\pi\)
\(212\) −2.68556 1.55051i −0.184445 0.106489i
\(213\) 3.07483 1.77526i 0.210684 0.121638i
\(214\) 5.22474 9.04952i 0.357156 0.618613i
\(215\) −0.505224 1.12252i −0.0344560 0.0765554i
\(216\) −1.00000 −0.0680414
\(217\) 23.6969i 1.60865i
\(218\) −12.1244 + 7.00000i −0.821165 + 0.474100i
\(219\) 5.94949 + 10.3048i 0.402029 + 0.696335i
\(220\) −0.449490 + 4.44949i −0.0303046 + 0.299985i
\(221\) −16.8990 −1.13675
\(222\) −3.94086 + 2.27526i −0.264493 + 0.152705i
\(223\) 11.8619 + 6.84847i 0.794331 + 0.458607i 0.841485 0.540280i \(-0.181682\pi\)
−0.0471538 + 0.998888i \(0.515015\pi\)
\(224\) 1.50000 + 2.59808i 0.100223 + 0.173591i
\(225\) −3.31552 + 3.74264i −0.221034 + 0.249509i
\(226\) 7.44949 12.9029i 0.495533 0.858288i
\(227\) 13.3485i 0.885969i 0.896529 + 0.442985i \(0.146080\pi\)
−0.896529 + 0.442985i \(0.853920\pi\)
\(228\) 4.24264 + 1.00000i 0.280976 + 0.0662266i
\(229\) −27.0454 −1.78721 −0.893605 0.448853i \(-0.851833\pi\)
−0.893605 + 0.448853i \(0.851833\pi\)
\(230\) −4.44414 3.20150i −0.293038 0.211101i
\(231\) 3.00000 5.19615i 0.197386 0.341882i
\(232\) 8.09601 4.67423i 0.531529 0.306879i
\(233\) 12.6886 + 7.32577i 0.831258 + 0.479927i 0.854283 0.519808i \(-0.173997\pi\)
−0.0230254 + 0.999735i \(0.507330\pi\)
\(234\) −1.72474 2.98735i −0.112750 0.195289i
\(235\) −7.89898 0.797959i −0.515273 0.0520531i
\(236\) 11.7980 0.767982
\(237\) 14.5475 8.39898i 0.944959 0.545572i
\(238\) 12.7279 7.34847i 0.825029 0.476331i
\(239\) −8.65153 −0.559621 −0.279811 0.960055i \(-0.590272\pi\)
−0.279811 + 0.960055i \(0.590272\pi\)
\(240\) −2.22474 0.224745i −0.143607 0.0145072i
\(241\) −5.50000 9.52628i −0.354286 0.613642i 0.632709 0.774389i \(-0.281943\pi\)
−0.986996 + 0.160748i \(0.948609\pi\)
\(242\) −6.06218 3.50000i −0.389692 0.224989i
\(243\) −0.866025 + 0.500000i −0.0555556 + 0.0320750i
\(244\) 2.17423 3.76588i 0.139191 0.241086i
\(245\) −3.62863 2.61401i −0.231824 0.167003i
\(246\) −2.44949 −0.156174
\(247\) 4.33013 + 14.3990i 0.275519 + 0.916185i
\(248\) 7.89898i 0.501586i
\(249\) −0.674235 + 1.16781i −0.0427279 + 0.0740069i
\(250\) −8.21731 + 7.58128i −0.519709 + 0.479482i
\(251\) 10.3485 + 17.9241i 0.653190 + 1.13136i 0.982344 + 0.187082i \(0.0599029\pi\)
−0.329155 + 0.944276i \(0.606764\pi\)
\(252\) 2.59808 + 1.50000i 0.163663 + 0.0944911i
\(253\) −4.24264 + 2.44949i −0.266733 + 0.153998i
\(254\) −16.6969 −1.04766
\(255\) −1.10102 + 10.8990i −0.0689486 + 0.682521i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 21.7774 12.5732i 1.35844 0.784296i 0.369026 0.929419i \(-0.379691\pi\)
0.989414 + 0.145123i \(0.0463579\pi\)
\(258\) 0.550510i 0.0342733i
\(259\) 13.6515 0.848265
\(260\) −3.16573 7.03371i −0.196330 0.436212i
\(261\) 4.67423 8.09601i 0.289328 0.501131i
\(262\) −6.75323 + 3.89898i −0.417216 + 0.240880i
\(263\) 12.1244 + 7.00000i 0.747620 + 0.431638i 0.824833 0.565376i \(-0.191269\pi\)
−0.0772134 + 0.997015i \(0.524602\pi\)
\(264\) −1.00000 + 1.73205i −0.0615457 + 0.106600i
\(265\) −6.89898 0.696938i −0.423801 0.0428126i
\(266\) −9.52270 8.96204i −0.583874 0.549498i
\(267\) 11.5505i 0.706880i
\(268\) −1.25529 0.724745i −0.0766793 0.0442708i
\(269\) −13.2474 + 22.9453i −0.807711 + 1.39900i 0.106734 + 0.994288i \(0.465961\pi\)
−0.914445 + 0.404709i \(0.867373\pi\)
\(270\) −2.03906 + 0.917738i −0.124093 + 0.0558517i
\(271\) 2.55051 4.41761i 0.154932 0.268351i −0.778102 0.628138i \(-0.783817\pi\)
0.933034 + 0.359787i \(0.117151\pi\)
\(272\) −4.24264 + 2.44949i −0.257248 + 0.148522i
\(273\) 10.3485i 0.626318i
\(274\) −1.10102 −0.0665151
\(275\) 3.16693 + 9.48528i 0.190973 + 0.571984i
\(276\) −1.22474 2.12132i −0.0737210 0.127688i
\(277\) 32.4949i 1.95243i 0.216807 + 0.976215i \(0.430436\pi\)
−0.216807 + 0.976215i \(0.569564\pi\)
\(278\) 6.55051i 0.392873i
\(279\) −3.94949 6.84072i −0.236450 0.409543i
\(280\) 5.44294 + 3.92102i 0.325278 + 0.234326i
\(281\) 13.2247 + 22.9059i 0.788922 + 1.36645i 0.926628 + 0.375980i \(0.122694\pi\)
−0.137706 + 0.990473i \(0.543973\pi\)
\(282\) −3.07483 1.77526i −0.183104 0.105715i
\(283\) −7.70674 4.44949i −0.458118 0.264495i 0.253134 0.967431i \(-0.418539\pi\)
−0.711253 + 0.702936i \(0.751872\pi\)
\(284\) 3.55051 0.210684
\(285\) 9.56873 1.85457i 0.566803 0.109855i
\(286\) −6.89898 −0.407945
\(287\) 6.36396 + 3.67423i 0.375653 + 0.216883i
\(288\) −0.866025 0.500000i −0.0510310 0.0294628i
\(289\) 3.50000 + 6.06218i 0.205882 + 0.356599i
\(290\) 12.2185 16.9611i 0.717496 0.995987i
\(291\) −9.34847 16.1920i −0.548017 0.949193i
\(292\) 11.8990i 0.696335i
\(293\) 18.8990i 1.10409i 0.833814 + 0.552045i \(0.186152\pi\)
−0.833814 + 0.552045i \(0.813848\pi\)
\(294\) −1.00000 1.73205i −0.0583212 0.101015i
\(295\) 24.0567 10.8274i 1.40064 0.630397i
\(296\) −4.55051 −0.264493
\(297\) 2.00000i 0.116052i
\(298\) 3.28913 1.89898i 0.190534 0.110005i
\(299\) 4.22474 7.31747i 0.244323 0.423180i
\(300\) −4.74264 + 1.58346i −0.273816 + 0.0914214i
\(301\) −0.825765 + 1.43027i −0.0475963 + 0.0824393i
\(302\) 17.1455 + 9.89898i 0.986615 + 0.569622i
\(303\) 3.79796i 0.218187i
\(304\) 3.17423 + 2.98735i 0.182055 + 0.171336i
\(305\) 0.977296 9.67423i 0.0559598 0.553945i
\(306\) −2.44949 + 4.24264i −0.140028 + 0.242536i
\(307\) 1.90702 + 1.10102i 0.108840 + 0.0628386i 0.553432 0.832895i \(-0.313318\pi\)
−0.444592 + 0.895733i \(0.646651\pi\)
\(308\) 5.19615 3.00000i 0.296078 0.170941i
\(309\) −4.94949 + 8.57277i −0.281567 + 0.487688i
\(310\) −7.24919 16.1065i −0.411726 0.914786i
\(311\) 10.8990 0.618024 0.309012 0.951058i \(-0.400002\pi\)
0.309012 + 0.951058i \(0.400002\pi\)
\(312\) 3.44949i 0.195289i
\(313\) −13.0779 + 7.55051i −0.739205 + 0.426780i −0.821780 0.569805i \(-0.807019\pi\)
0.0825753 + 0.996585i \(0.473685\pi\)
\(314\) 2.72474 + 4.71940i 0.153766 + 0.266331i
\(315\) 6.67423 + 0.674235i 0.376051 + 0.0379888i
\(316\) 16.7980 0.944959
\(317\) −5.41045 + 3.12372i −0.303881 + 0.175446i −0.644185 0.764870i \(-0.722803\pi\)
0.340304 + 0.940315i \(0.389470\pi\)
\(318\) −2.68556 1.55051i −0.150599 0.0869483i
\(319\) −9.34847 16.1920i −0.523414 0.906579i
\(320\) −1.81431 1.30701i −0.101423 0.0730639i
\(321\) 5.22474 9.04952i 0.291617 0.505095i
\(322\) 7.34847i 0.409514i
\(323\) 14.6349 15.5505i 0.814310 0.865254i
\(324\) −1.00000 −0.0555556
\(325\) −12.9102 11.4368i −0.716129 0.634401i
\(326\) −3.17423 + 5.49794i −0.175805 + 0.304502i
\(327\) −12.1244 + 7.00000i −0.670478 + 0.387101i
\(328\) −2.12132 1.22474i −0.117130 0.0676252i
\(329\) 5.32577 + 9.22450i 0.293619 + 0.508563i
\(330\) −0.449490 + 4.44949i −0.0247436 + 0.244936i
\(331\) 23.2474 1.27780 0.638898 0.769292i \(-0.279391\pi\)
0.638898 + 0.769292i \(0.279391\pi\)
\(332\) −1.16781 + 0.674235i −0.0640918 + 0.0370034i
\(333\) −3.94086 + 2.27526i −0.215958 + 0.124683i
\(334\) 15.7980 0.864426
\(335\) −3.22474 0.325765i −0.176187 0.0177985i
\(336\) 1.50000 + 2.59808i 0.0818317 + 0.141737i
\(337\) −3.55159 2.05051i −0.193467 0.111698i 0.400137 0.916455i \(-0.368962\pi\)
−0.593605 + 0.804757i \(0.702296\pi\)
\(338\) −0.953512 + 0.550510i −0.0518642 + 0.0299438i
\(339\) 7.44949 12.9029i 0.404601 0.700789i
\(340\) −6.40300 + 8.88828i −0.347252 + 0.482035i
\(341\) −15.7980 −0.855507
\(342\) 4.24264 + 1.00000i 0.229416 + 0.0540738i
\(343\) 15.0000i 0.809924i
\(344\) 0.275255 0.476756i 0.0148408 0.0257050i
\(345\) −4.44414 3.20150i −0.239265 0.172363i
\(346\) 2.22474 + 3.85337i 0.119603 + 0.207159i
\(347\) −24.6773 14.2474i −1.32475 0.764843i −0.340265 0.940329i \(-0.610517\pi\)
−0.984482 + 0.175486i \(0.943850\pi\)
\(348\) 8.09601 4.67423i 0.433992 0.250565i
\(349\) 26.5505 1.42122 0.710608 0.703588i \(-0.248420\pi\)
0.710608 + 0.703588i \(0.248420\pi\)
\(350\) 14.6969 + 3.00000i 0.785584 + 0.160357i
\(351\) −1.72474 2.98735i −0.0920601 0.159453i
\(352\) −1.73205 + 1.00000i −0.0923186 + 0.0533002i
\(353\) 21.1464i 1.12551i 0.826623 + 0.562755i \(0.190259\pi\)
−0.826623 + 0.562755i \(0.809741\pi\)
\(354\) 11.7980 0.627054
\(355\) 7.23970 3.25844i 0.384243 0.172940i
\(356\) 5.77526 10.0030i 0.306088 0.530160i
\(357\) 12.7279 7.34847i 0.673633 0.388922i
\(358\) 15.8028 + 9.12372i 0.835202 + 0.482204i
\(359\) −10.1237 + 17.5348i −0.534310 + 0.925452i 0.464887 + 0.885370i \(0.346095\pi\)
−0.999196 + 0.0400814i \(0.987238\pi\)
\(360\) −2.22474 0.224745i −0.117254 0.0118451i
\(361\) −17.0000 8.48528i −0.894737 0.446594i
\(362\) 11.1010i 0.583457i
\(363\) −6.06218 3.50000i −0.318182 0.183702i
\(364\) −5.17423 + 8.96204i −0.271204 + 0.469738i
\(365\) 10.9201 + 24.2627i 0.571586 + 1.26997i
\(366\) 2.17423 3.76588i 0.113649 0.196846i
\(367\) −14.3725 + 8.29796i −0.750238 + 0.433150i −0.825780 0.563993i \(-0.809265\pi\)
0.0755421 + 0.997143i \(0.475931\pi\)
\(368\) 2.44949i 0.127688i
\(369\) −2.44949 −0.127515
\(370\) −9.27875 + 4.17617i −0.482379 + 0.217109i
\(371\) 4.65153 + 8.05669i 0.241495 + 0.418282i
\(372\) 7.89898i 0.409543i
\(373\) 25.1010i 1.29968i 0.760070 + 0.649841i \(0.225164\pi\)
−0.760070 + 0.649841i \(0.774836\pi\)
\(374\) 4.89898 + 8.48528i 0.253320 + 0.438763i
\(375\) −8.21731 + 7.58128i −0.424340 + 0.391495i
\(376\) −1.77526 3.07483i −0.0915518 0.158572i
\(377\) 27.9271 + 16.1237i 1.43832 + 0.830414i
\(378\) 2.59808 + 1.50000i 0.133631 + 0.0771517i
\(379\) −8.75255 −0.449588 −0.224794 0.974406i \(-0.572171\pi\)
−0.224794 + 0.974406i \(0.572171\pi\)
\(380\) 9.21405 + 3.17826i 0.472671 + 0.163041i
\(381\) −16.6969 −0.855410
\(382\) −12.7279 7.34847i −0.651217 0.375980i
\(383\) −1.16781 0.674235i −0.0596722 0.0344518i 0.469867 0.882737i \(-0.344302\pi\)
−0.529539 + 0.848285i \(0.677635\pi\)
\(384\) −0.500000 0.866025i −0.0255155 0.0441942i
\(385\) 7.84204 10.8859i 0.399668 0.554796i
\(386\) 1.05051 + 1.81954i 0.0534696 + 0.0926120i
\(387\) 0.550510i 0.0279840i
\(388\) 18.6969i 0.949193i
\(389\) 7.12372 + 12.3387i 0.361187 + 0.625595i 0.988157 0.153449i \(-0.0490382\pi\)
−0.626969 + 0.779044i \(0.715705\pi\)
\(390\) −3.16573 7.03371i −0.160303 0.356166i
\(391\) −12.0000 −0.606866
\(392\) 2.00000i 0.101015i
\(393\) −6.75323 + 3.89898i −0.340655 + 0.196677i
\(394\) 8.34847 14.4600i 0.420590 0.728483i
\(395\) 34.2520 15.4161i 1.72341 0.775669i
\(396\) −1.00000 + 1.73205i −0.0502519 + 0.0870388i
\(397\) 8.00853 + 4.62372i 0.401936 + 0.232058i 0.687319 0.726356i \(-0.258787\pi\)
−0.285383 + 0.958414i \(0.592121\pi\)
\(398\) 8.10102i 0.406067i
\(399\) −9.52270 8.96204i −0.476731 0.448663i
\(400\) −4.89898 1.00000i −0.244949 0.0500000i
\(401\) −16.1464 + 27.9664i −0.806314 + 1.39658i 0.109086 + 0.994032i \(0.465208\pi\)
−0.915400 + 0.402545i \(0.868126\pi\)
\(402\) −1.25529 0.724745i −0.0626084 0.0361470i
\(403\) 23.5970 13.6237i 1.17545 0.678646i
\(404\) −1.89898 + 3.28913i −0.0944778 + 0.163640i
\(405\) −2.03906 + 0.917738i −0.101322 + 0.0456028i
\(406\) −28.0454 −1.39187
\(407\) 9.10102i 0.451121i
\(408\) −4.24264 + 2.44949i −0.210042 + 0.121268i
\(409\) −5.55051 9.61377i −0.274455 0.475370i 0.695542 0.718485i \(-0.255164\pi\)
−0.969997 + 0.243115i \(0.921831\pi\)
\(410\) −5.44949 0.550510i −0.269131 0.0271878i
\(411\) −1.10102 −0.0543093
\(412\) −8.57277 + 4.94949i −0.422350 + 0.243844i
\(413\) −30.6520 17.6969i −1.50829 0.870809i
\(414\) −1.22474 2.12132i −0.0601929 0.104257i
\(415\) −1.76246 + 2.44655i −0.0865157 + 0.120096i
\(416\) 1.72474 2.98735i 0.0845626 0.146467i
\(417\) 6.55051i 0.320780i
\(418\) 5.97469 6.34847i 0.292232 0.310514i
\(419\) 26.0454 1.27240 0.636201 0.771524i \(-0.280505\pi\)
0.636201 + 0.771524i \(0.280505\pi\)
\(420\) 5.44294 + 3.92102i 0.265588 + 0.191326i
\(421\) 10.7980 18.7026i 0.526260 0.911510i −0.473272 0.880917i \(-0.656927\pi\)
0.999532 0.0305930i \(-0.00973959\pi\)
\(422\) −2.03383 + 1.17423i −0.0990055 + 0.0571608i
\(423\) −3.07483 1.77526i −0.149503 0.0863159i
\(424\) −1.55051 2.68556i −0.0752994 0.130422i
\(425\) −4.89898 + 24.0000i −0.237635 + 1.16417i
\(426\) 3.55051 0.172023
\(427\) −11.2977 + 6.52270i −0.546732 + 0.315656i
\(428\) 9.04952 5.22474i 0.437425 0.252548i
\(429\) −6.89898 −0.333086
\(430\) 0.123724 1.22474i 0.00596652 0.0590624i
\(431\) −15.1237 26.1951i −0.728484 1.26177i −0.957524 0.288354i \(-0.906892\pi\)
0.229040 0.973417i \(-0.426441\pi\)
\(432\) −0.866025 0.500000i −0.0416667 0.0240563i
\(433\) −16.2795 + 9.39898i −0.782343 + 0.451686i −0.837260 0.546805i \(-0.815844\pi\)
0.0549168 + 0.998491i \(0.482511\pi\)
\(434\) −11.8485 + 20.5222i −0.568745 + 0.985095i
\(435\) 12.2185 16.9611i 0.585833 0.813220i
\(436\) −14.0000 −0.670478
\(437\) 3.07483 + 10.2247i 0.147089 + 0.489116i
\(438\) 11.8990i 0.568555i
\(439\) −8.74745 + 15.1510i −0.417493 + 0.723119i −0.995687 0.0927806i \(-0.970424\pi\)
0.578194 + 0.815900i \(0.303758\pi\)
\(440\) −2.61401 + 3.62863i −0.124618 + 0.172988i
\(441\) −1.00000 1.73205i −0.0476190 0.0824786i
\(442\) −14.6349 8.44949i −0.696113 0.401901i
\(443\) 8.48528 4.89898i 0.403148 0.232758i −0.284693 0.958619i \(-0.591892\pi\)
0.687841 + 0.725861i \(0.258558\pi\)
\(444\) −4.55051 −0.215958
\(445\) 2.59592 25.6969i 0.123058 1.21815i
\(446\) 6.84847 + 11.8619i 0.324284 + 0.561677i
\(447\) 3.28913 1.89898i 0.155570 0.0898186i
\(448\) 3.00000i 0.141737i
\(449\) 10.6969 0.504820 0.252410 0.967620i \(-0.418777\pi\)
0.252410 + 0.967620i \(0.418777\pi\)
\(450\) −4.74264 + 1.58346i −0.223570 + 0.0746452i
\(451\) −2.44949 + 4.24264i −0.115342 + 0.199778i
\(452\) 12.9029 7.44949i 0.606901 0.350395i
\(453\) 17.1455 + 9.89898i 0.805568 + 0.465095i
\(454\) −6.67423 + 11.5601i −0.313237 + 0.542543i
\(455\) −2.32577 + 23.0227i −0.109034 + 1.07932i
\(456\) 3.17423 + 2.98735i 0.148647 + 0.139895i
\(457\) 14.1010i 0.659618i −0.944048 0.329809i \(-0.893016\pi\)
0.944048 0.329809i \(-0.106984\pi\)
\(458\) −23.4220 13.5227i −1.09444 0.631874i
\(459\) −2.44949 + 4.24264i −0.114332 + 0.198030i
\(460\) −2.24799 4.99465i −0.104813 0.232877i
\(461\) 12.1237 20.9989i 0.564658 0.978017i −0.432423 0.901671i \(-0.642341\pi\)
0.997081 0.0763458i \(-0.0243253\pi\)
\(462\) 5.19615 3.00000i 0.241747 0.139573i
\(463\) 39.2929i 1.82609i −0.407854 0.913047i \(-0.633723\pi\)
0.407854 0.913047i \(-0.366277\pi\)
\(464\) 9.34847 0.433992
\(465\) −7.24919 16.1065i −0.336173 0.746920i
\(466\) 7.32577 + 12.6886i 0.339360 + 0.587788i
\(467\) 3.55051i 0.164298i −0.996620 0.0821490i \(-0.973822\pi\)
0.996620 0.0821490i \(-0.0261783\pi\)
\(468\) 3.44949i 0.159453i
\(469\) 2.17423 + 3.76588i 0.100397 + 0.173892i
\(470\) −6.44174 4.64054i −0.297135 0.214052i
\(471\) 2.72474 + 4.71940i 0.125550 + 0.217458i
\(472\) 10.2173 + 5.89898i 0.470291 + 0.271523i
\(473\) −0.953512 0.550510i −0.0438425 0.0253125i
\(474\) 16.7980 0.771556
\(475\) 21.7048 1.97543i 0.995884 0.0906389i
\(476\) 14.6969 0.673633
\(477\) −2.68556 1.55051i −0.122963 0.0709930i
\(478\) −7.49245 4.32577i −0.342696 0.197856i
\(479\) 14.3485 + 24.8523i 0.655598 + 1.13553i 0.981743 + 0.190210i \(0.0609168\pi\)
−0.326145 + 0.945320i \(0.605750\pi\)
\(480\) −1.81431 1.30701i −0.0828117 0.0596564i
\(481\) −7.84847 13.5939i −0.357859 0.619831i
\(482\) 11.0000i 0.501036i
\(483\) 7.34847i 0.334367i
\(484\) −3.50000 6.06218i −0.159091 0.275554i
\(485\) −17.1589 38.1241i −0.779145 1.73113i
\(486\) −1.00000 −0.0453609
\(487\) 34.8990i 1.58142i −0.612188 0.790712i \(-0.709711\pi\)
0.612188 0.790712i \(-0.290289\pi\)
\(488\) 3.76588 2.17423i 0.170474 0.0984230i
\(489\) −3.17423 + 5.49794i −0.143544 + 0.248625i
\(490\) −1.83548 4.07812i −0.0829183 0.184231i
\(491\) 5.02270 8.69958i 0.226671 0.392606i −0.730148 0.683289i \(-0.760549\pi\)
0.956820 + 0.290682i \(0.0938823\pi\)
\(492\) −2.12132 1.22474i −0.0956365 0.0552158i
\(493\) 45.7980i 2.06264i
\(494\) −3.44949 + 14.6349i −0.155200 + 0.658457i
\(495\) −0.449490 + 4.44949i −0.0202031 + 0.199990i
\(496\) 3.94949 6.84072i 0.177337 0.307157i
\(497\) −9.22450 5.32577i −0.413775 0.238893i
\(498\) −1.16781 + 0.674235i −0.0523308 + 0.0302132i
\(499\) −16.4217 + 28.4432i −0.735136 + 1.27329i 0.219528 + 0.975606i \(0.429548\pi\)
−0.954664 + 0.297686i \(0.903785\pi\)
\(500\) −10.9070 + 2.45692i −0.487778 + 0.109877i
\(501\) 15.7980 0.705801
\(502\) 20.6969i 0.923750i
\(503\) −5.02118 + 2.89898i −0.223883 + 0.129259i −0.607747 0.794131i \(-0.707927\pi\)
0.383864 + 0.923390i \(0.374593\pi\)
\(504\) 1.50000 + 2.59808i 0.0668153 + 0.115728i
\(505\) −0.853572 + 8.44949i −0.0379834 + 0.375997i
\(506\) −4.89898 −0.217786
\(507\) −0.953512 + 0.550510i −0.0423469 + 0.0244490i
\(508\) −14.4600 8.34847i −0.641558 0.370403i
\(509\) −7.22474 12.5136i −0.320231 0.554657i 0.660304 0.750998i \(-0.270427\pi\)
−0.980536 + 0.196341i \(0.937094\pi\)
\(510\) −6.40300 + 8.88828i −0.283530 + 0.393580i
\(511\) 17.8485 30.9145i 0.789570 1.36757i
\(512\) 1.00000i 0.0441942i
\(513\) 4.24264 + 1.00000i 0.187317 + 0.0441511i
\(514\) 25.1464 1.10916
\(515\) −12.9380 + 17.9598i −0.570118 + 0.791405i
\(516\) 0.275255 0.476756i 0.0121174 0.0209880i
\(517\) −6.14966 + 3.55051i −0.270462 + 0.156151i
\(518\) 11.8226 + 6.82577i 0.519454 + 0.299907i
\(519\) 2.22474 + 3.85337i 0.0976555 + 0.169144i
\(520\) 0.775255 7.67423i 0.0339972 0.336537i
\(521\) 18.2474 0.799435 0.399718 0.916638i \(-0.369108\pi\)
0.399718 + 0.916638i \(0.369108\pi\)
\(522\) 8.09601 4.67423i 0.354353 0.204586i
\(523\) 14.1582 8.17423i 0.619094 0.357434i −0.157422 0.987531i \(-0.550318\pi\)
0.776516 + 0.630097i \(0.216985\pi\)
\(524\) −7.79796 −0.340655
\(525\) 14.6969 + 3.00000i 0.641427 + 0.130931i
\(526\) 7.00000 + 12.1244i 0.305215 + 0.528647i
\(527\) −33.5125 19.3485i −1.45983 0.842833i
\(528\) −1.73205 + 1.00000i −0.0753778 + 0.0435194i
\(529\) −8.50000 + 14.7224i −0.369565 + 0.640106i
\(530\) −5.62622 4.05306i −0.244387 0.176054i
\(531\) 11.7980 0.511988
\(532\) −3.76588 12.5227i −0.163272 0.542928i
\(533\) 8.44949i 0.365988i
\(534\) 5.77526 10.0030i 0.249920 0.432874i
\(535\) 13.6576 18.9586i 0.590468 0.819654i
\(536\) −0.724745 1.25529i −0.0313042 0.0542205i
\(537\) 15.8028 + 9.12372i 0.681939 + 0.393718i
\(538\) −22.9453 + 13.2474i −0.989240 + 0.571138i
\(539\) −4.00000 −0.172292
\(540\) −2.22474 0.224745i −0.0957378 0.00967148i
\(541\) 7.17423 + 12.4261i 0.308444 + 0.534241i 0.978022 0.208500i \(-0.0668583\pi\)
−0.669578 + 0.742742i \(0.733525\pi\)
\(542\) 4.41761 2.55051i 0.189753 0.109554i
\(543\) 11.1010i 0.476390i
\(544\) −4.89898 −0.210042
\(545\) −28.5468 + 12.8483i −1.22281 + 0.550362i
\(546\) −5.17423 + 8.96204i −0.221437 + 0.383540i
\(547\) −12.2512 + 7.07321i −0.523822 + 0.302429i −0.738497 0.674257i \(-0.764464\pi\)
0.214675 + 0.976686i \(0.431131\pi\)
\(548\) −0.953512 0.550510i −0.0407320 0.0235166i
\(549\) 2.17423 3.76588i 0.0927941 0.160724i
\(550\) −2.00000 + 9.79796i −0.0852803 + 0.417786i
\(551\) −39.0227 + 11.7351i −1.66242 + 0.499931i
\(552\) 2.44949i 0.104257i
\(553\) −43.6424 25.1969i −1.85586 1.07148i
\(554\) −16.2474 + 28.1414i −0.690288 + 1.19561i
\(555\) −9.27875 + 4.17617i −0.393861 + 0.177269i
\(556\) −3.27526 + 5.67291i −0.138902 + 0.240585i
\(557\) 31.8198 18.3712i 1.34825 0.778412i 0.360247 0.932857i \(-0.382692\pi\)
0.988001 + 0.154445i \(0.0493591\pi\)
\(558\) 7.89898i 0.334390i
\(559\) 1.89898 0.0803183
\(560\) 2.75321 + 6.11717i 0.116344 + 0.258498i
\(561\) 4.89898 + 8.48528i 0.206835 + 0.358249i
\(562\) 26.4495i 1.11570i
\(563\) 25.5959i 1.07874i 0.842069 + 0.539370i \(0.181337\pi\)
−0.842069 + 0.539370i \(0.818663\pi\)
\(564\) −1.77526 3.07483i −0.0747517 0.129474i
\(565\) 19.4731 27.0314i 0.819238 1.13722i
\(566\) −4.44949 7.70674i −0.187026 0.323939i
\(567\) 2.59808 + 1.50000i 0.109109 + 0.0629941i
\(568\) 3.07483 + 1.77526i 0.129017 + 0.0744881i
\(569\) 32.8990 1.37920 0.689598 0.724192i \(-0.257787\pi\)
0.689598 + 0.724192i \(0.257787\pi\)
\(570\) 9.21405 + 3.17826i 0.385934 + 0.133123i
\(571\) −20.5505 −0.860012 −0.430006 0.902826i \(-0.641489\pi\)
−0.430006 + 0.902826i \(0.641489\pi\)
\(572\) −5.97469 3.44949i −0.249814 0.144230i
\(573\) −12.7279 7.34847i −0.531717 0.306987i
\(574\) 3.67423 + 6.36396i 0.153360 + 0.265627i
\(575\) −9.16756 8.12132i −0.382314 0.338682i
\(576\) −0.500000 0.866025i −0.0208333 0.0360844i
\(577\) 22.0000i 0.915872i −0.888985 0.457936i \(-0.848589\pi\)
0.888985 0.457936i \(-0.151411\pi\)
\(578\) 7.00000i 0.291162i
\(579\) 1.05051 + 1.81954i 0.0436577 + 0.0756174i
\(580\) 19.0621 8.57944i 0.791509 0.356242i
\(581\) 4.04541 0.167832
\(582\) 18.6969i 0.775013i
\(583\) −5.37113 + 3.10102i −0.222449 + 0.128431i
\(584\) −5.94949 + 10.3048i −0.246192 + 0.426416i
\(585\) −3.16573 7.03371i −0.130887 0.290808i
\(586\) −9.44949 + 16.3670i −0.390355 + 0.676114i
\(587\) −27.9664 16.1464i −1.15430 0.666434i −0.204367 0.978894i \(-0.565514\pi\)
−0.949931 + 0.312460i \(0.898847\pi\)
\(588\) 2.00000i 0.0824786i
\(589\) −7.89898 + 33.5125i −0.325472 + 1.38086i
\(590\) 26.2474 + 2.65153i 1.08059 + 0.109162i
\(591\) 8.34847 14.4600i 0.343410 0.594804i
\(592\) −3.94086 2.27526i −0.161968 0.0935124i
\(593\) 16.5813 9.57321i 0.680912 0.393125i −0.119287 0.992860i \(-0.538061\pi\)
0.800199 + 0.599735i \(0.204727\pi\)
\(594\) −1.00000 + 1.73205i −0.0410305 + 0.0710669i
\(595\) 29.9679 13.4879i 1.22856 0.552951i
\(596\) 3.79796 0.155570
\(597\) 8.10102i 0.331553i
\(598\) 7.31747 4.22474i 0.299234 0.172763i
\(599\) −15.1237 26.1951i −0.617939 1.07030i −0.989861 0.142037i \(-0.954635\pi\)
0.371923 0.928264i \(-0.378699\pi\)
\(600\) −4.89898 1.00000i −0.200000 0.0408248i
\(601\) −15.0000 −0.611863 −0.305931 0.952054i \(-0.598968\pi\)
−0.305931 + 0.952054i \(0.598968\pi\)
\(602\) −1.43027 + 0.825765i −0.0582934 + 0.0336557i
\(603\) −1.25529 0.724745i −0.0511196 0.0295139i
\(604\) 9.89898 + 17.1455i 0.402784 + 0.697642i
\(605\) −12.7002 9.14905i −0.516336 0.371962i
\(606\) −1.89898 + 3.28913i −0.0771408 + 0.133612i
\(607\) 27.0000i 1.09590i 0.836512 + 0.547948i \(0.184591\pi\)
−0.836512 + 0.547948i \(0.815409\pi\)
\(608\) 1.25529 + 4.17423i 0.0509089 + 0.169288i
\(609\) −28.0454 −1.13646
\(610\) 5.68348 7.88948i 0.230117 0.319436i
\(611\) 6.12372 10.6066i 0.247739 0.429097i
\(612\) −4.24264 + 2.44949i −0.171499 + 0.0990148i
\(613\) −26.7593 15.4495i −1.08080 0.623999i −0.149686 0.988734i \(-0.547826\pi\)
−0.931112 + 0.364735i \(0.881160\pi\)
\(614\) 1.10102 + 1.90702i 0.0444336 + 0.0769612i
\(615\) −5.44949 0.550510i −0.219745 0.0221987i
\(616\) 6.00000 0.241747
\(617\) 7.74607 4.47219i 0.311845 0.180044i −0.335907 0.941895i \(-0.609043\pi\)
0.647752 + 0.761851i \(0.275709\pi\)
\(618\) −8.57277 + 4.94949i −0.344847 + 0.199098i
\(619\) 11.0454 0.443952 0.221976 0.975052i \(-0.428749\pi\)
0.221976 + 0.975052i \(0.428749\pi\)
\(620\) 1.77526 17.5732i 0.0712960 0.705757i
\(621\) −1.22474 2.12132i −0.0491473 0.0851257i
\(622\) 9.43879 + 5.44949i 0.378461 + 0.218505i
\(623\) −30.0091 + 17.3258i −1.20229 + 0.694142i
\(624\) 1.72474 2.98735i 0.0690451 0.119590i
\(625\) −19.9853 + 15.0196i −0.799411 + 0.600784i
\(626\) −15.1010 −0.603558
\(627\) 5.97469 6.34847i 0.238606 0.253533i
\(628\) 5.44949i 0.217458i
\(629\) −11.1464 + 19.3062i −0.444437 + 0.769788i
\(630\) 5.44294 + 3.92102i 0.216852 + 0.156217i
\(631\) −20.9495 36.2856i −0.833986 1.44451i −0.894853 0.446360i \(-0.852720\pi\)
0.0608673 0.998146i \(-0.480613\pi\)
\(632\) 14.5475 + 8.39898i 0.578667 + 0.334093i
\(633\) −2.03383 + 1.17423i −0.0808376 + 0.0466716i
\(634\) −6.24745 −0.248118
\(635\) −37.1464 3.75255i −1.47411 0.148915i
\(636\) −1.55051 2.68556i −0.0614817 0.106489i
\(637\) 5.97469 3.44949i 0.236726 0.136674i
\(638\) 18.6969i 0.740219i
\(639\) 3.55051 0.140456
\(640\) −0.917738 2.03906i −0.0362768 0.0806008i
\(641\) 21.1237 36.5874i 0.834337 1.44511i −0.0602322 0.998184i \(-0.519184\pi\)
0.894569 0.446930i \(-0.147483\pi\)
\(642\) 9.04952 5.22474i 0.357156 0.206204i
\(643\) 31.4787 + 18.1742i 1.24140 + 0.716722i 0.969379 0.245570i \(-0.0789751\pi\)
0.272020 + 0.962292i \(0.412308\pi\)
\(644\) −3.67423 + 6.36396i −0.144785 + 0.250775i
\(645\) 0.123724 1.22474i 0.00487164 0.0482243i
\(646\) 20.4495 6.14966i 0.804574 0.241955i
\(647\) 31.8434i 1.25189i −0.779866 0.625946i \(-0.784713\pi\)
0.779866 0.625946i \(-0.215287\pi\)
\(648\) −0.866025 0.500000i −0.0340207 0.0196419i
\(649\) 11.7980 20.4347i 0.463110 0.802131i
\(650\) −5.46214 16.3597i −0.214243 0.641680i
\(651\) −11.8485 + 20.5222i −0.464378 + 0.804327i
\(652\) −5.49794 + 3.17423i −0.215316 + 0.124313i
\(653\) 2.44949i 0.0958559i 0.998851 + 0.0479280i \(0.0152618\pi\)
−0.998851 + 0.0479280i \(0.984738\pi\)
\(654\) −14.0000 −0.547443
\(655\) −15.9005 + 7.15648i −0.621284 + 0.279627i
\(656\) −1.22474 2.12132i −0.0478183 0.0828236i
\(657\) 11.8990i 0.464223i
\(658\) 10.6515i 0.415240i
\(659\) 0.348469 + 0.603566i 0.0135744 + 0.0235116i 0.872733 0.488198i \(-0.162346\pi\)
−0.859158 + 0.511710i \(0.829012\pi\)
\(660\) −2.61401 + 3.62863i −0.101750 + 0.141244i
\(661\) 3.44949 + 5.97469i 0.134170 + 0.232389i 0.925280 0.379285i \(-0.123830\pi\)
−0.791110 + 0.611673i \(0.790497\pi\)
\(662\) 20.1329 + 11.6237i 0.782487 + 0.451769i
\(663\) −14.6349 8.44949i −0.568374 0.328151i
\(664\) −1.34847 −0.0523308
\(665\) −19.1714 22.0784i −0.743436 0.856165i
\(666\) −4.55051 −0.176329
\(667\) 19.8311 + 11.4495i 0.767863 + 0.443326i
\(668\) 13.6814 + 7.89898i 0.529351 + 0.305621i
\(669\) 6.84847 + 11.8619i 0.264777 + 0.458607i
\(670\) −2.62983 1.89449i −0.101599 0.0731907i
\(671\) −4.34847 7.53177i −0.167871 0.290761i
\(672\) 3.00000i 0.115728i
\(673\) 10.3031i 0.397154i −0.980085 0.198577i \(-0.936368\pi\)
0.980085 0.198577i \(-0.0636320\pi\)
\(674\) −2.05051 3.55159i −0.0789827 0.136802i
\(675\) −4.74264 + 1.58346i −0.182544 + 0.0609476i
\(676\) −1.10102 −0.0423469
\(677\) 6.85357i 0.263404i −0.991289 0.131702i \(-0.957956\pi\)
0.991289 0.131702i \(-0.0420442\pi\)
\(678\) 12.9029 7.44949i 0.495533 0.286096i
\(679\) −28.0454 + 48.5761i −1.07628 + 1.86418i
\(680\) −9.98930 + 4.49598i −0.383072 + 0.172413i
\(681\) −6.67423 + 11.5601i −0.255757 + 0.442985i
\(682\) −13.6814 7.89898i −0.523889 0.302468i
\(683\) 39.1918i 1.49963i 0.661645 + 0.749817i \(0.269858\pi\)
−0.661645 + 0.749817i \(0.730142\pi\)
\(684\) 3.17423 + 2.98735i 0.121370 + 0.114224i
\(685\) −2.44949 0.247449i −0.0935902 0.00945453i
\(686\) 7.50000 12.9904i 0.286351 0.495975i
\(687\) −23.4220 13.5227i −0.893605 0.515923i
\(688\) 0.476756 0.275255i 0.0181761 0.0104940i
\(689\) 5.34847 9.26382i 0.203760 0.352923i
\(690\) −2.24799 4.99465i −0.0855795 0.190143i
\(691\) 0.404082 0.0153720 0.00768600 0.999970i \(-0.497553\pi\)
0.00768600 + 0.999970i \(0.497553\pi\)
\(692\) 4.44949i 0.169144i
\(693\) 5.19615 3.00000i 0.197386 0.113961i
\(694\) −14.2474 24.6773i −0.540826 0.936738i
\(695\) −1.47219 + 14.5732i −0.0558435 + 0.552794i
\(696\) 9.34847 0.354353
\(697\) −10.3923 + 6.00000i −0.393637 + 0.227266i
\(698\) 22.9934 + 13.2753i 0.870314 + 0.502476i
\(699\) 7.32577 + 12.6886i 0.277086 + 0.479927i
\(700\) 11.2279 + 9.94655i 0.424376 + 0.375944i
\(701\) 9.10102 15.7634i 0.343741 0.595377i −0.641383 0.767221i \(-0.721639\pi\)
0.985124 + 0.171844i \(0.0549725\pi\)
\(702\) 3.44949i 0.130193i
\(703\) 19.3062 + 4.55051i 0.728146 + 0.171626i
\(704\) −2.00000 −0.0753778
\(705\) −6.44174 4.64054i −0.242610 0.174773i
\(706\) −10.5732 + 18.3133i −0.397928 + 0.689232i
\(707\) 9.86739 5.69694i 0.371101 0.214255i
\(708\) 10.2173 + 5.89898i 0.383991 + 0.221697i
\(709\) −20.6237 35.7213i −0.774540 1.34154i −0.935053 0.354509i \(-0.884648\pi\)
0.160512 0.987034i \(-0.448685\pi\)
\(710\) 7.89898 + 0.797959i 0.296443 + 0.0299469i
\(711\) 16.7980 0.629973
\(712\) 10.0030 5.77526i 0.374880 0.216437i
\(713\) 16.7563 9.67423i 0.627527 0.362303i
\(714\) 14.6969 0.550019
\(715\) −15.3485 1.55051i −0.574000 0.0579858i
\(716\) 9.12372 + 15.8028i 0.340970 + 0.590577i
\(717\) −7.49245 4.32577i −0.279811 0.161549i
\(718\) −17.5348 + 10.1237i −0.654393 + 0.377814i
\(719\) 16.7753 29.0556i 0.625611 1.08359i −0.362811 0.931863i \(-0.618183\pi\)
0.988422 0.151728i \(-0.0484838\pi\)
\(720\) −1.81431 1.30701i −0.0676155 0.0487093i
\(721\) 29.6969 1.10597
\(722\) −10.4798 15.8485i −0.390017 0.589819i
\(723\) 11.0000i 0.409094i
\(724\) −5.55051 + 9.61377i −0.206283 + 0.357293i
\(725\) 30.9950 34.9880i 1.15113 1.29942i
\(726\) −3.50000 6.06218i −0.129897 0.224989i
\(727\) 23.2077 + 13.3990i 0.860726 + 0.496941i 0.864255 0.503053i \(-0.167790\pi\)
−0.00352905 + 0.999994i \(0.501123\pi\)
\(728\) −8.96204 + 5.17423i −0.332155 + 0.191770i
\(729\) −1.00000 −0.0370370
\(730\) −2.67423 + 26.4722i −0.0989779 + 0.979780i
\(731\) −1.34847 2.33562i −0.0498749 0.0863859i
\(732\) 3.76588 2.17423i 0.139191 0.0803620i
\(733\) 30.6969i 1.13382i 0.823781 + 0.566909i \(0.191861\pi\)
−0.823781 + 0.566909i \(0.808139\pi\)
\(734\) −16.5959 −0.612567
\(735\) −1.83548 4.07812i −0.0677025 0.150424i
\(736\) 1.22474 2.12132i 0.0451447 0.0781929i
\(737\) −2.51059 + 1.44949i −0.0924788 + 0.0533926i
\(738\) −2.12132 1.22474i −0.0780869 0.0450835i
\(739\) 10.8258 18.7508i 0.398232 0.689758i −0.595276 0.803522i \(-0.702957\pi\)
0.993508 + 0.113763i \(0.0362905\pi\)
\(740\) −10.1237 1.02270i −0.372156 0.0375953i
\(741\) −3.44949 + 14.6349i −0.126720 + 0.537628i
\(742\) 9.30306i 0.341526i
\(743\) −39.8372 23.0000i −1.46148 0.843788i −0.462404 0.886669i \(-0.653013\pi\)
−0.999080 + 0.0428813i \(0.986346\pi\)
\(744\) 3.94949 6.84072i 0.144795 0.250793i
\(745\) 7.74426 3.48553i 0.283728 0.127700i
\(746\) −12.5505 + 21.7381i −0.459507 + 0.795889i
\(747\) −1.16781 + 0.674235i −0.0427279 + 0.0246690i
\(748\) 9.79796i 0.358249i
\(749\) −31.3485 −1.14545
\(750\) −10.9070 + 2.45692i −0.398269 + 0.0897140i
\(751\) 10.1515 + 17.5830i 0.370435 + 0.641612i 0.989632 0.143623i \(-0.0458754\pi\)
−0.619198 + 0.785235i \(0.712542\pi\)
\(752\) 3.55051i 0.129474i
\(753\) 20.6969i 0.754238i
\(754\) 16.1237 + 27.9271i 0.587191 + 1.01705i
\(755\) 35.9197 + 25.8761i 1.30725 + 0.941727i
\(756\) 1.50000 + 2.59808i 0.0545545 + 0.0944911i
\(757\) −10.6941 6.17423i −0.388683 0.224406i 0.292906 0.956141i \(-0.405378\pi\)
−0.681589 + 0.731735i \(0.738711\pi\)
\(758\) −7.57993 4.37628i −0.275316 0.158953i
\(759\) −4.89898 −0.177822
\(760\) 6.39047 + 7.35948i 0.231807 + 0.266956i
\(761\) 34.8990 1.26509 0.632544 0.774525i \(-0.282011\pi\)
0.632544 + 0.774525i \(0.282011\pi\)
\(762\) −14.4600 8.34847i −0.523830 0.302433i
\(763\) 36.3731 + 21.0000i 1.31679 + 0.760251i
\(764\) −7.34847 12.7279i −0.265858 0.460480i
\(765\) −6.40300 + 8.88828i −0.231501 + 0.321357i
\(766\) −0.674235 1.16781i −0.0243611 0.0421946i
\(767\) 40.6969i 1.46948i
\(768\) 1.00000i 0.0360844i
\(769\) 0.297959 + 0.516080i 0.0107447 + 0.0186103i 0.871348 0.490666i \(-0.163246\pi\)
−0.860603 + 0.509276i \(0.829913\pi\)
\(770\) 12.2343 5.50643i 0.440895 0.198438i
\(771\) 25.1464 0.905626
\(772\) 2.10102i 0.0756174i
\(773\) 33.6875 19.4495i 1.21166 0.699550i 0.248536 0.968623i \(-0.420051\pi\)
0.963120 + 0.269073i \(0.0867174\pi\)
\(774\) 0.275255 0.476756i 0.00989384 0.0171366i