Properties

 Label 570.2.q.a.49.4 Level $570$ Weight $2$ Character 570.49 Analytic conductor $4.551$ Analytic rank $0$ Dimension $8$ CM no Inner twists $4$

Related objects

Newspace parameters

 Level: $$N$$ $$=$$ $$570 = 2 \cdot 3 \cdot 5 \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 570.q (of order $$6$$, degree $$2$$, minimal)

Newform invariants

 Self dual: no Analytic conductor: $$4.55147291521$$ Analytic rank: $$0$$ Dimension: $$8$$ Relative dimension: $$4$$ over $$\Q(\zeta_{6})$$ Coefficient field: $$\Q(\zeta_{24})$$ Defining polynomial: $$x^{8} - x^{4} + 1$$ Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$3^{2}$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

 Embedding label 49.4 Root $$-0.965926 + 0.258819i$$ of defining polynomial Character $$\chi$$ $$=$$ 570.49 Dual form 570.2.q.a.349.4

$q$-expansion

 $$f(q)$$ $$=$$ $$q+(0.866025 + 0.500000i) q^{2} +(0.866025 + 0.500000i) q^{3} +(0.500000 + 0.866025i) q^{4} +(1.81431 + 1.30701i) q^{5} +(0.500000 + 0.866025i) q^{6} -3.00000i q^{7} +1.00000i q^{8} +(0.500000 + 0.866025i) q^{9} +O(q^{10})$$ $$q+(0.866025 + 0.500000i) q^{2} +(0.866025 + 0.500000i) q^{3} +(0.500000 + 0.866025i) q^{4} +(1.81431 + 1.30701i) q^{5} +(0.500000 + 0.866025i) q^{6} -3.00000i q^{7} +1.00000i q^{8} +(0.500000 + 0.866025i) q^{9} +(0.917738 + 2.03906i) q^{10} +2.00000 q^{11} +1.00000i q^{12} +(-2.98735 + 1.72474i) q^{13} +(1.50000 - 2.59808i) q^{14} +(0.917738 + 2.03906i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(4.24264 + 2.44949i) q^{17} +1.00000i q^{18} +(1.00000 - 4.24264i) q^{19} +(-0.224745 + 2.22474i) q^{20} +(1.50000 - 2.59808i) q^{21} +(1.73205 + 1.00000i) q^{22} +(-2.12132 + 1.22474i) q^{23} +(-0.500000 + 0.866025i) q^{24} +(1.58346 + 4.74264i) q^{25} -3.44949 q^{26} +1.00000i q^{27} +(2.59808 - 1.50000i) q^{28} +(-4.67423 - 8.09601i) q^{29} +(-0.224745 + 2.22474i) q^{30} -7.89898 q^{31} +(-0.866025 + 0.500000i) q^{32} +(1.73205 + 1.00000i) q^{33} +(2.44949 + 4.24264i) q^{34} +(3.92102 - 5.44294i) q^{35} +(-0.500000 + 0.866025i) q^{36} +4.55051i q^{37} +(2.98735 - 3.17423i) q^{38} -3.44949 q^{39} +(-1.30701 + 1.81431i) q^{40} +(-1.22474 + 2.12132i) q^{41} +(2.59808 - 1.50000i) q^{42} +(-0.476756 - 0.275255i) q^{43} +(1.00000 + 1.73205i) q^{44} +(-0.224745 + 2.22474i) q^{45} -2.44949 q^{46} +(-3.07483 + 1.77526i) q^{47} +(-0.866025 + 0.500000i) q^{48} -2.00000 q^{49} +(-1.00000 + 4.89898i) q^{50} +(2.44949 + 4.24264i) q^{51} +(-2.98735 - 1.72474i) q^{52} +(-2.68556 + 1.55051i) q^{53} +(-0.500000 + 0.866025i) q^{54} +(3.62863 + 2.61401i) q^{55} +3.00000 q^{56} +(2.98735 - 3.17423i) q^{57} -9.34847i q^{58} +(5.89898 - 10.2173i) q^{59} +(-1.30701 + 1.81431i) q^{60} +(-2.17423 - 3.76588i) q^{61} +(-6.84072 - 3.94949i) q^{62} +(2.59808 - 1.50000i) q^{63} -1.00000 q^{64} +(-7.67423 - 0.775255i) q^{65} +(1.00000 + 1.73205i) q^{66} +(-1.25529 + 0.724745i) q^{67} +4.89898i q^{68} -2.44949 q^{69} +(6.11717 - 2.75321i) q^{70} +(1.77526 - 3.07483i) q^{71} +(-0.866025 + 0.500000i) q^{72} +(10.3048 + 5.94949i) q^{73} +(-2.27526 + 3.94086i) q^{74} +(-1.00000 + 4.89898i) q^{75} +(4.17423 - 1.25529i) q^{76} -6.00000i q^{77} +(-2.98735 - 1.72474i) q^{78} +(8.39898 - 14.5475i) q^{79} +(-2.03906 + 0.917738i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(-2.12132 + 1.22474i) q^{82} +1.34847i q^{83} +3.00000 q^{84} +(4.49598 + 9.98930i) q^{85} +(-0.275255 - 0.476756i) q^{86} -9.34847i q^{87} +2.00000i q^{88} +(-5.77526 - 10.0030i) q^{89} +(-1.30701 + 1.81431i) q^{90} +(5.17423 + 8.96204i) q^{91} +(-2.12132 - 1.22474i) q^{92} +(-6.84072 - 3.94949i) q^{93} -3.55051 q^{94} +(7.35948 - 6.39047i) q^{95} -1.00000 q^{96} +(-16.1920 - 9.34847i) q^{97} +(-1.73205 - 1.00000i) q^{98} +(1.00000 + 1.73205i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$8q + 4q^{4} + 4q^{5} + 4q^{6} + 4q^{9} + O(q^{10})$$ $$8q + 4q^{4} + 4q^{5} + 4q^{6} + 4q^{9} + 4q^{10} + 16q^{11} + 12q^{14} + 4q^{15} - 4q^{16} + 8q^{19} + 8q^{20} + 12q^{21} - 4q^{24} - 8q^{26} - 8q^{29} + 8q^{30} - 24q^{31} + 12q^{35} - 4q^{36} - 8q^{39} - 4q^{40} + 8q^{44} + 8q^{45} - 16q^{49} - 8q^{50} - 4q^{54} + 8q^{55} + 24q^{56} + 8q^{59} - 4q^{60} + 12q^{61} - 8q^{64} - 32q^{65} + 8q^{66} - 12q^{70} + 24q^{71} - 28q^{74} - 8q^{75} + 4q^{76} + 28q^{79} + 4q^{80} - 4q^{81} + 24q^{84} + 24q^{85} - 12q^{86} - 56q^{89} - 4q^{90} + 12q^{91} - 48q^{94} + 40q^{95} - 8q^{96} + 8q^{99} + O(q^{100})$$

Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/570\mathbb{Z}\right)^\times$$.

 $$n$$ $$191$$ $$211$$ $$457$$ $$\chi(n)$$ $$1$$ $$e\left(\frac{2}{3}\right)$$ $$-1$$

Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0.866025 + 0.500000i 0.612372 + 0.353553i
$$3$$ 0.866025 + 0.500000i 0.500000 + 0.288675i
$$4$$ 0.500000 + 0.866025i 0.250000 + 0.433013i
$$5$$ 1.81431 + 1.30701i 0.811386 + 0.584511i
$$6$$ 0.500000 + 0.866025i 0.204124 + 0.353553i
$$7$$ 3.00000i 1.13389i −0.823754 0.566947i $$-0.808125\pi$$
0.823754 0.566947i $$-0.191875\pi$$
$$8$$ 1.00000i 0.353553i
$$9$$ 0.500000 + 0.866025i 0.166667 + 0.288675i
$$10$$ 0.917738 + 2.03906i 0.290214 + 0.644807i
$$11$$ 2.00000 0.603023 0.301511 0.953463i $$-0.402509\pi$$
0.301511 + 0.953463i $$0.402509\pi$$
$$12$$ 1.00000i 0.288675i
$$13$$ −2.98735 + 1.72474i −0.828541 + 0.478358i −0.853353 0.521334i $$-0.825435\pi$$
0.0248121 + 0.999692i $$0.492101\pi$$
$$14$$ 1.50000 2.59808i 0.400892 0.694365i
$$15$$ 0.917738 + 2.03906i 0.236959 + 0.526483i
$$16$$ −0.500000 + 0.866025i −0.125000 + 0.216506i
$$17$$ 4.24264 + 2.44949i 1.02899 + 0.594089i 0.916696 0.399586i $$-0.130846\pi$$
0.112296 + 0.993675i $$0.464180\pi$$
$$18$$ 1.00000i 0.235702i
$$19$$ 1.00000 4.24264i 0.229416 0.973329i
$$20$$ −0.224745 + 2.22474i −0.0502545 + 0.497468i
$$21$$ 1.50000 2.59808i 0.327327 0.566947i
$$22$$ 1.73205 + 1.00000i 0.369274 + 0.213201i
$$23$$ −2.12132 + 1.22474i −0.442326 + 0.255377i −0.704584 0.709621i $$-0.748866\pi$$
0.262258 + 0.964998i $$0.415533\pi$$
$$24$$ −0.500000 + 0.866025i −0.102062 + 0.176777i
$$25$$ 1.58346 + 4.74264i 0.316693 + 0.948528i
$$26$$ −3.44949 −0.676501
$$27$$ 1.00000i 0.192450i
$$28$$ 2.59808 1.50000i 0.490990 0.283473i
$$29$$ −4.67423 8.09601i −0.867984 1.50339i −0.864054 0.503399i $$-0.832082\pi$$
−0.00392972 0.999992i $$-0.501251\pi$$
$$30$$ −0.224745 + 2.22474i −0.0410326 + 0.406181i
$$31$$ −7.89898 −1.41870 −0.709349 0.704857i $$-0.751011\pi$$
−0.709349 + 0.704857i $$0.751011\pi$$
$$32$$ −0.866025 + 0.500000i −0.153093 + 0.0883883i
$$33$$ 1.73205 + 1.00000i 0.301511 + 0.174078i
$$34$$ 2.44949 + 4.24264i 0.420084 + 0.727607i
$$35$$ 3.92102 5.44294i 0.662774 0.920025i
$$36$$ −0.500000 + 0.866025i −0.0833333 + 0.144338i
$$37$$ 4.55051i 0.748099i 0.927409 + 0.374050i $$0.122031\pi$$
−0.927409 + 0.374050i $$0.877969\pi$$
$$38$$ 2.98735 3.17423i 0.484611 0.514929i
$$39$$ −3.44949 −0.552360
$$40$$ −1.30701 + 1.81431i −0.206656 + 0.286868i
$$41$$ −1.22474 + 2.12132i −0.191273 + 0.331295i −0.945672 0.325121i $$-0.894595\pi$$
0.754399 + 0.656416i $$0.227928\pi$$
$$42$$ 2.59808 1.50000i 0.400892 0.231455i
$$43$$ −0.476756 0.275255i −0.0727046 0.0419760i 0.463207 0.886250i $$-0.346699\pi$$
−0.535912 + 0.844274i $$0.680032\pi$$
$$44$$ 1.00000 + 1.73205i 0.150756 + 0.261116i
$$45$$ −0.224745 + 2.22474i −0.0335030 + 0.331645i
$$46$$ −2.44949 −0.361158
$$47$$ −3.07483 + 1.77526i −0.448510 + 0.258948i −0.707201 0.707013i $$-0.750042\pi$$
0.258691 + 0.965960i $$0.416709\pi$$
$$48$$ −0.866025 + 0.500000i −0.125000 + 0.0721688i
$$49$$ −2.00000 −0.285714
$$50$$ −1.00000 + 4.89898i −0.141421 + 0.692820i
$$51$$ 2.44949 + 4.24264i 0.342997 + 0.594089i
$$52$$ −2.98735 1.72474i −0.414270 0.239179i
$$53$$ −2.68556 + 1.55051i −0.368890 + 0.212979i −0.672974 0.739667i $$-0.734983\pi$$
0.304083 + 0.952645i $$0.401650\pi$$
$$54$$ −0.500000 + 0.866025i −0.0680414 + 0.117851i
$$55$$ 3.62863 + 2.61401i 0.489284 + 0.352474i
$$56$$ 3.00000 0.400892
$$57$$ 2.98735 3.17423i 0.395684 0.420438i
$$58$$ 9.34847i 1.22751i
$$59$$ 5.89898 10.2173i 0.767982 1.33018i −0.170674 0.985328i $$-0.554594\pi$$
0.938656 0.344856i $$-0.112072\pi$$
$$60$$ −1.30701 + 1.81431i −0.168734 + 0.234227i
$$61$$ −2.17423 3.76588i −0.278382 0.482172i 0.692601 0.721321i $$-0.256465\pi$$
−0.970983 + 0.239149i $$0.923132\pi$$
$$62$$ −6.84072 3.94949i −0.868772 0.501586i
$$63$$ 2.59808 1.50000i 0.327327 0.188982i
$$64$$ −1.00000 −0.125000
$$65$$ −7.67423 0.775255i −0.951872 0.0961586i
$$66$$ 1.00000 + 1.73205i 0.123091 + 0.213201i
$$67$$ −1.25529 + 0.724745i −0.153359 + 0.0885417i −0.574716 0.818353i $$-0.694887\pi$$
0.421357 + 0.906895i $$0.361554\pi$$
$$68$$ 4.89898i 0.594089i
$$69$$ −2.44949 −0.294884
$$70$$ 6.11717 2.75321i 0.731142 0.329072i
$$71$$ 1.77526 3.07483i 0.210684 0.364915i −0.741245 0.671235i $$-0.765764\pi$$
0.951929 + 0.306319i $$0.0990976\pi$$
$$72$$ −0.866025 + 0.500000i −0.102062 + 0.0589256i
$$73$$ 10.3048 + 5.94949i 1.20609 + 0.696335i 0.961902 0.273393i $$-0.0881461\pi$$
0.244185 + 0.969729i $$0.421479\pi$$
$$74$$ −2.27526 + 3.94086i −0.264493 + 0.458115i
$$75$$ −1.00000 + 4.89898i −0.115470 + 0.565685i
$$76$$ 4.17423 1.25529i 0.478818 0.143992i
$$77$$ 6.00000i 0.683763i
$$78$$ −2.98735 1.72474i −0.338250 0.195289i
$$79$$ 8.39898 14.5475i 0.944959 1.63672i 0.189126 0.981953i $$-0.439435\pi$$
0.755833 0.654764i $$-0.227232\pi$$
$$80$$ −2.03906 + 0.917738i −0.227974 + 0.102606i
$$81$$ −0.500000 + 0.866025i −0.0555556 + 0.0962250i
$$82$$ −2.12132 + 1.22474i −0.234261 + 0.135250i
$$83$$ 1.34847i 0.148014i 0.997258 + 0.0740069i $$0.0235787\pi$$
−0.997258 + 0.0740069i $$0.976421\pi$$
$$84$$ 3.00000 0.327327
$$85$$ 4.49598 + 9.98930i 0.487657 + 1.08349i
$$86$$ −0.275255 0.476756i −0.0296815 0.0514099i
$$87$$ 9.34847i 1.00226i
$$88$$ 2.00000i 0.213201i
$$89$$ −5.77526 10.0030i −0.612176 1.06032i −0.990873 0.134799i $$-0.956961\pi$$
0.378697 0.925521i $$-0.376372\pi$$
$$90$$ −1.30701 + 1.81431i −0.137771 + 0.191245i
$$91$$ 5.17423 + 8.96204i 0.542407 + 0.939477i
$$92$$ −2.12132 1.22474i −0.221163 0.127688i
$$93$$ −6.84072 3.94949i −0.709349 0.409543i
$$94$$ −3.55051 −0.366207
$$95$$ 7.35948 6.39047i 0.755066 0.655649i
$$96$$ −1.00000 −0.102062
$$97$$ −16.1920 9.34847i −1.64405 0.949193i −0.979372 0.202064i $$-0.935235\pi$$
−0.664679 0.747129i $$-0.731431\pi$$
$$98$$ −1.73205 1.00000i −0.174964 0.101015i
$$99$$ 1.00000 + 1.73205i 0.100504 + 0.174078i
$$100$$ −3.31552 + 3.74264i −0.331552 + 0.374264i
$$101$$ 1.89898 + 3.28913i 0.188956 + 0.327281i 0.944902 0.327353i $$-0.106156\pi$$
−0.755947 + 0.654633i $$0.772823\pi$$
$$102$$ 4.89898i 0.485071i
$$103$$ 9.89898i 0.975375i 0.873018 + 0.487688i $$0.162160\pi$$
−0.873018 + 0.487688i $$0.837840\pi$$
$$104$$ −1.72474 2.98735i −0.169125 0.292933i
$$105$$ 6.11717 2.75321i 0.596975 0.268686i
$$106$$ −3.10102 −0.301198
$$107$$ 10.4495i 1.01019i −0.863064 0.505095i $$-0.831457\pi$$
0.863064 0.505095i $$-0.168543\pi$$
$$108$$ −0.866025 + 0.500000i −0.0833333 + 0.0481125i
$$109$$ −7.00000 + 12.1244i −0.670478 + 1.16130i 0.307290 + 0.951616i $$0.400578\pi$$
−0.977769 + 0.209687i $$0.932756\pi$$
$$110$$ 1.83548 + 4.07812i 0.175006 + 0.388833i
$$111$$ −2.27526 + 3.94086i −0.215958 + 0.374050i
$$112$$ 2.59808 + 1.50000i 0.245495 + 0.141737i
$$113$$ 14.8990i 1.40158i −0.713369 0.700789i $$-0.752831\pi$$
0.713369 0.700789i $$-0.247169\pi$$
$$114$$ 4.17423 1.25529i 0.390953 0.117569i
$$115$$ −5.44949 0.550510i −0.508168 0.0513353i
$$116$$ 4.67423 8.09601i 0.433992 0.751696i
$$117$$ −2.98735 1.72474i −0.276180 0.159453i
$$118$$ 10.2173 5.89898i 0.940582 0.543045i
$$119$$ 7.34847 12.7279i 0.673633 1.16677i
$$120$$ −2.03906 + 0.917738i −0.186140 + 0.0837776i
$$121$$ −7.00000 −0.636364
$$122$$ 4.34847i 0.393692i
$$123$$ −2.12132 + 1.22474i −0.191273 + 0.110432i
$$124$$ −3.94949 6.84072i −0.354675 0.614315i
$$125$$ −3.32577 + 10.6742i −0.297465 + 0.954733i
$$126$$ 3.00000 0.267261
$$127$$ −14.4600 + 8.34847i −1.28312 + 0.740807i −0.977417 0.211322i $$-0.932223\pi$$
−0.305699 + 0.952128i $$0.598890\pi$$
$$128$$ −0.866025 0.500000i −0.0765466 0.0441942i
$$129$$ −0.275255 0.476756i −0.0242349 0.0419760i
$$130$$ −6.25845 4.50851i −0.548903 0.395422i
$$131$$ −3.89898 + 6.75323i −0.340655 + 0.590032i −0.984555 0.175078i $$-0.943982\pi$$
0.643899 + 0.765110i $$0.277316\pi$$
$$132$$ 2.00000i 0.174078i
$$133$$ −12.7279 3.00000i −1.10365 0.260133i
$$134$$ −1.44949 −0.125217
$$135$$ −1.30701 + 1.81431i −0.112489 + 0.156151i
$$136$$ −2.44949 + 4.24264i −0.210042 + 0.363803i
$$137$$ −0.953512 + 0.550510i −0.0814640 + 0.0470333i −0.540179 0.841550i $$-0.681643\pi$$
0.458715 + 0.888584i $$0.348310\pi$$
$$138$$ −2.12132 1.22474i −0.180579 0.104257i
$$139$$ 3.27526 + 5.67291i 0.277804 + 0.481170i 0.970839 0.239734i $$-0.0770602\pi$$
−0.693035 + 0.720904i $$0.743727\pi$$
$$140$$ 6.67423 + 0.674235i 0.564076 + 0.0569832i
$$141$$ −3.55051 −0.299007
$$142$$ 3.07483 1.77526i 0.258034 0.148976i
$$143$$ −5.97469 + 3.44949i −0.499629 + 0.288461i
$$144$$ −1.00000 −0.0833333
$$145$$ 2.10102 20.7980i 0.174480 1.72718i
$$146$$ 5.94949 + 10.3048i 0.492383 + 0.852833i
$$147$$ −1.73205 1.00000i −0.142857 0.0824786i
$$148$$ −3.94086 + 2.27526i −0.323936 + 0.187025i
$$149$$ 1.89898 3.28913i 0.155570 0.269456i −0.777696 0.628640i $$-0.783612\pi$$
0.933267 + 0.359184i $$0.116945\pi$$
$$150$$ −3.31552 + 3.74264i −0.270711 + 0.305585i
$$151$$ 19.7980 1.61114 0.805568 0.592504i $$-0.201861\pi$$
0.805568 + 0.592504i $$0.201861\pi$$
$$152$$ 4.24264 + 1.00000i 0.344124 + 0.0811107i
$$153$$ 4.89898i 0.396059i
$$154$$ 3.00000 5.19615i 0.241747 0.418718i
$$155$$ −14.3312 10.3240i −1.15111 0.829245i
$$156$$ −1.72474 2.98735i −0.138090 0.239179i
$$157$$ 4.71940 + 2.72474i 0.376649 + 0.217458i 0.676359 0.736572i $$-0.263557\pi$$
−0.299710 + 0.954030i $$0.596890\pi$$
$$158$$ 14.5475 8.39898i 1.15733 0.668187i
$$159$$ −3.10102 −0.245927
$$160$$ −2.22474 0.224745i −0.175882 0.0177676i
$$161$$ 3.67423 + 6.36396i 0.289570 + 0.501550i
$$162$$ −0.866025 + 0.500000i −0.0680414 + 0.0392837i
$$163$$ 6.34847i 0.497250i 0.968600 + 0.248625i $$0.0799788\pi$$
−0.968600 + 0.248625i $$0.920021\pi$$
$$164$$ −2.44949 −0.191273
$$165$$ 1.83548 + 4.07812i 0.142892 + 0.317481i
$$166$$ −0.674235 + 1.16781i −0.0523308 + 0.0906395i
$$167$$ 13.6814 7.89898i 1.05870 0.611241i 0.133628 0.991032i $$-0.457337\pi$$
0.925073 + 0.379790i $$0.124004\pi$$
$$168$$ 2.59808 + 1.50000i 0.200446 + 0.115728i
$$169$$ −0.550510 + 0.953512i −0.0423469 + 0.0733471i
$$170$$ −1.10102 + 10.8990i −0.0844444 + 0.835914i
$$171$$ 4.17423 1.25529i 0.319212 0.0959948i
$$172$$ 0.550510i 0.0419760i
$$173$$ 3.85337 + 2.22474i 0.292966 + 0.169144i 0.639279 0.768975i $$-0.279233\pi$$
−0.346312 + 0.938119i $$0.612566\pi$$
$$174$$ 4.67423 8.09601i 0.354353 0.613757i
$$175$$ 14.2279 4.75039i 1.07553 0.359096i
$$176$$ −1.00000 + 1.73205i −0.0753778 + 0.130558i
$$177$$ 10.2173 5.89898i 0.767982 0.443394i
$$178$$ 11.5505i 0.865747i
$$179$$ 18.2474 1.36388 0.681939 0.731409i $$-0.261137\pi$$
0.681939 + 0.731409i $$0.261137\pi$$
$$180$$ −2.03906 + 0.917738i −0.151982 + 0.0684041i
$$181$$ 5.55051 + 9.61377i 0.412566 + 0.714586i 0.995170 0.0981710i $$-0.0312992\pi$$
−0.582603 + 0.812757i $$0.697966\pi$$
$$182$$ 10.3485i 0.767080i
$$183$$ 4.34847i 0.321448i
$$184$$ −1.22474 2.12132i −0.0902894 0.156386i
$$185$$ −5.94755 + 8.25605i −0.437273 + 0.606997i
$$186$$ −3.94949 6.84072i −0.289591 0.501586i
$$187$$ 8.48528 + 4.89898i 0.620505 + 0.358249i
$$188$$ −3.07483 1.77526i −0.224255 0.129474i
$$189$$ 3.00000 0.218218
$$190$$ 9.56873 1.85457i 0.694189 0.134545i
$$191$$ −14.6969 −1.06343 −0.531717 0.846922i $$-0.678453\pi$$
−0.531717 + 0.846922i $$0.678453\pi$$
$$192$$ −0.866025 0.500000i −0.0625000 0.0360844i
$$193$$ 1.81954 + 1.05051i 0.130973 + 0.0756174i 0.564055 0.825737i $$-0.309241\pi$$
−0.433082 + 0.901355i $$0.642574\pi$$
$$194$$ −9.34847 16.1920i −0.671181 1.16252i
$$195$$ −6.25845 4.50851i −0.448177 0.322861i
$$196$$ −1.00000 1.73205i −0.0714286 0.123718i
$$197$$ 16.6969i 1.18961i −0.803871 0.594804i $$-0.797230\pi$$
0.803871 0.594804i $$-0.202770\pi$$
$$198$$ 2.00000i 0.142134i
$$199$$ −4.05051 7.01569i −0.287133 0.497329i 0.685991 0.727610i $$-0.259369\pi$$
−0.973124 + 0.230281i $$0.926036\pi$$
$$200$$ −4.74264 + 1.58346i −0.335355 + 0.111968i
$$201$$ −1.44949 −0.102239
$$202$$ 3.79796i 0.267223i
$$203$$ −24.2880 + 14.0227i −1.70469 + 0.984201i
$$204$$ −2.44949 + 4.24264i −0.171499 + 0.297044i
$$205$$ −4.99465 + 2.24799i −0.348842 + 0.157006i
$$206$$ −4.94949 + 8.57277i −0.344847 + 0.597293i
$$207$$ −2.12132 1.22474i −0.147442 0.0851257i
$$208$$ 3.44949i 0.239179i
$$209$$ 2.00000 8.48528i 0.138343 0.586939i
$$210$$ 6.67423 + 0.674235i 0.460566 + 0.0465266i
$$211$$ −1.17423 + 2.03383i −0.0808376 + 0.140015i −0.903610 0.428356i $$-0.859093\pi$$
0.822772 + 0.568371i $$0.192426\pi$$
$$212$$ −2.68556 1.55051i −0.184445 0.106489i
$$213$$ 3.07483 1.77526i 0.210684 0.121638i
$$214$$ 5.22474 9.04952i 0.357156 0.618613i
$$215$$ −0.505224 1.12252i −0.0344560 0.0765554i
$$216$$ −1.00000 −0.0680414
$$217$$ 23.6969i 1.60865i
$$218$$ −12.1244 + 7.00000i −0.821165 + 0.474100i
$$219$$ 5.94949 + 10.3048i 0.402029 + 0.696335i
$$220$$ −0.449490 + 4.44949i −0.0303046 + 0.299985i
$$221$$ −16.8990 −1.13675
$$222$$ −3.94086 + 2.27526i −0.264493 + 0.152705i
$$223$$ 11.8619 + 6.84847i 0.794331 + 0.458607i 0.841485 0.540280i $$-0.181682\pi$$
−0.0471538 + 0.998888i $$0.515015\pi$$
$$224$$ 1.50000 + 2.59808i 0.100223 + 0.173591i
$$225$$ −3.31552 + 3.74264i −0.221034 + 0.249509i
$$226$$ 7.44949 12.9029i 0.495533 0.858288i
$$227$$ 13.3485i 0.885969i 0.896529 + 0.442985i $$0.146080\pi$$
−0.896529 + 0.442985i $$0.853920\pi$$
$$228$$ 4.24264 + 1.00000i 0.280976 + 0.0662266i
$$229$$ −27.0454 −1.78721 −0.893605 0.448853i $$-0.851833\pi$$
−0.893605 + 0.448853i $$0.851833\pi$$
$$230$$ −4.44414 3.20150i −0.293038 0.211101i
$$231$$ 3.00000 5.19615i 0.197386 0.341882i
$$232$$ 8.09601 4.67423i 0.531529 0.306879i
$$233$$ 12.6886 + 7.32577i 0.831258 + 0.479927i 0.854283 0.519808i $$-0.173997\pi$$
−0.0230254 + 0.999735i $$0.507330\pi$$
$$234$$ −1.72474 2.98735i −0.112750 0.195289i
$$235$$ −7.89898 0.797959i −0.515273 0.0520531i
$$236$$ 11.7980 0.767982
$$237$$ 14.5475 8.39898i 0.944959 0.545572i
$$238$$ 12.7279 7.34847i 0.825029 0.476331i
$$239$$ −8.65153 −0.559621 −0.279811 0.960055i $$-0.590272\pi$$
−0.279811 + 0.960055i $$0.590272\pi$$
$$240$$ −2.22474 0.224745i −0.143607 0.0145072i
$$241$$ −5.50000 9.52628i −0.354286 0.613642i 0.632709 0.774389i $$-0.281943\pi$$
−0.986996 + 0.160748i $$0.948609\pi$$
$$242$$ −6.06218 3.50000i −0.389692 0.224989i
$$243$$ −0.866025 + 0.500000i −0.0555556 + 0.0320750i
$$244$$ 2.17423 3.76588i 0.139191 0.241086i
$$245$$ −3.62863 2.61401i −0.231824 0.167003i
$$246$$ −2.44949 −0.156174
$$247$$ 4.33013 + 14.3990i 0.275519 + 0.916185i
$$248$$ 7.89898i 0.501586i
$$249$$ −0.674235 + 1.16781i −0.0427279 + 0.0740069i
$$250$$ −8.21731 + 7.58128i −0.519709 + 0.479482i
$$251$$ 10.3485 + 17.9241i 0.653190 + 1.13136i 0.982344 + 0.187082i $$0.0599029\pi$$
−0.329155 + 0.944276i $$0.606764\pi$$
$$252$$ 2.59808 + 1.50000i 0.163663 + 0.0944911i
$$253$$ −4.24264 + 2.44949i −0.266733 + 0.153998i
$$254$$ −16.6969 −1.04766
$$255$$ −1.10102 + 10.8990i −0.0689486 + 0.682521i
$$256$$ −0.500000 0.866025i −0.0312500 0.0541266i
$$257$$ 21.7774 12.5732i 1.35844 0.784296i 0.369026 0.929419i $$-0.379691\pi$$
0.989414 + 0.145123i $$0.0463579\pi$$
$$258$$ 0.550510i 0.0342733i
$$259$$ 13.6515 0.848265
$$260$$ −3.16573 7.03371i −0.196330 0.436212i
$$261$$ 4.67423 8.09601i 0.289328 0.501131i
$$262$$ −6.75323 + 3.89898i −0.417216 + 0.240880i
$$263$$ 12.1244 + 7.00000i 0.747620 + 0.431638i 0.824833 0.565376i $$-0.191269\pi$$
−0.0772134 + 0.997015i $$0.524602\pi$$
$$264$$ −1.00000 + 1.73205i −0.0615457 + 0.106600i
$$265$$ −6.89898 0.696938i −0.423801 0.0428126i
$$266$$ −9.52270 8.96204i −0.583874 0.549498i
$$267$$ 11.5505i 0.706880i
$$268$$ −1.25529 0.724745i −0.0766793 0.0442708i
$$269$$ −13.2474 + 22.9453i −0.807711 + 1.39900i 0.106734 + 0.994288i $$0.465961\pi$$
−0.914445 + 0.404709i $$0.867373\pi$$
$$270$$ −2.03906 + 0.917738i −0.124093 + 0.0558517i
$$271$$ 2.55051 4.41761i 0.154932 0.268351i −0.778102 0.628138i $$-0.783817\pi$$
0.933034 + 0.359787i $$0.117151\pi$$
$$272$$ −4.24264 + 2.44949i −0.257248 + 0.148522i
$$273$$ 10.3485i 0.626318i
$$274$$ −1.10102 −0.0665151
$$275$$ 3.16693 + 9.48528i 0.190973 + 0.571984i
$$276$$ −1.22474 2.12132i −0.0737210 0.127688i
$$277$$ 32.4949i 1.95243i 0.216807 + 0.976215i $$0.430436\pi$$
−0.216807 + 0.976215i $$0.569564\pi$$
$$278$$ 6.55051i 0.392873i
$$279$$ −3.94949 6.84072i −0.236450 0.409543i
$$280$$ 5.44294 + 3.92102i 0.325278 + 0.234326i
$$281$$ 13.2247 + 22.9059i 0.788922 + 1.36645i 0.926628 + 0.375980i $$0.122694\pi$$
−0.137706 + 0.990473i $$0.543973\pi$$
$$282$$ −3.07483 1.77526i −0.183104 0.105715i
$$283$$ −7.70674 4.44949i −0.458118 0.264495i 0.253134 0.967431i $$-0.418539\pi$$
−0.711253 + 0.702936i $$0.751872\pi$$
$$284$$ 3.55051 0.210684
$$285$$ 9.56873 1.85457i 0.566803 0.109855i
$$286$$ −6.89898 −0.407945
$$287$$ 6.36396 + 3.67423i 0.375653 + 0.216883i
$$288$$ −0.866025 0.500000i −0.0510310 0.0294628i
$$289$$ 3.50000 + 6.06218i 0.205882 + 0.356599i
$$290$$ 12.2185 16.9611i 0.717496 0.995987i
$$291$$ −9.34847 16.1920i −0.548017 0.949193i
$$292$$ 11.8990i 0.696335i
$$293$$ 18.8990i 1.10409i 0.833814 + 0.552045i $$0.186152\pi$$
−0.833814 + 0.552045i $$0.813848\pi$$
$$294$$ −1.00000 1.73205i −0.0583212 0.101015i
$$295$$ 24.0567 10.8274i 1.40064 0.630397i
$$296$$ −4.55051 −0.264493
$$297$$ 2.00000i 0.116052i
$$298$$ 3.28913 1.89898i 0.190534 0.110005i
$$299$$ 4.22474 7.31747i 0.244323 0.423180i
$$300$$ −4.74264 + 1.58346i −0.273816 + 0.0914214i
$$301$$ −0.825765 + 1.43027i −0.0475963 + 0.0824393i
$$302$$ 17.1455 + 9.89898i 0.986615 + 0.569622i
$$303$$ 3.79796i 0.218187i
$$304$$ 3.17423 + 2.98735i 0.182055 + 0.171336i
$$305$$ 0.977296 9.67423i 0.0559598 0.553945i
$$306$$ −2.44949 + 4.24264i −0.140028 + 0.242536i
$$307$$ 1.90702 + 1.10102i 0.108840 + 0.0628386i 0.553432 0.832895i $$-0.313318\pi$$
−0.444592 + 0.895733i $$0.646651\pi$$
$$308$$ 5.19615 3.00000i 0.296078 0.170941i
$$309$$ −4.94949 + 8.57277i −0.281567 + 0.487688i
$$310$$ −7.24919 16.1065i −0.411726 0.914786i
$$311$$ 10.8990 0.618024 0.309012 0.951058i $$-0.400002\pi$$
0.309012 + 0.951058i $$0.400002\pi$$
$$312$$ 3.44949i 0.195289i
$$313$$ −13.0779 + 7.55051i −0.739205 + 0.426780i −0.821780 0.569805i $$-0.807019\pi$$
0.0825753 + 0.996585i $$0.473685\pi$$
$$314$$ 2.72474 + 4.71940i 0.153766 + 0.266331i
$$315$$ 6.67423 + 0.674235i 0.376051 + 0.0379888i
$$316$$ 16.7980 0.944959
$$317$$ −5.41045 + 3.12372i −0.303881 + 0.175446i −0.644185 0.764870i $$-0.722803\pi$$
0.340304 + 0.940315i $$0.389470\pi$$
$$318$$ −2.68556 1.55051i −0.150599 0.0869483i
$$319$$ −9.34847 16.1920i −0.523414 0.906579i
$$320$$ −1.81431 1.30701i −0.101423 0.0730639i
$$321$$ 5.22474 9.04952i 0.291617 0.505095i
$$322$$ 7.34847i 0.409514i
$$323$$ 14.6349 15.5505i 0.814310 0.865254i
$$324$$ −1.00000 −0.0555556
$$325$$ −12.9102 11.4368i −0.716129 0.634401i
$$326$$ −3.17423 + 5.49794i −0.175805 + 0.304502i
$$327$$ −12.1244 + 7.00000i −0.670478 + 0.387101i
$$328$$ −2.12132 1.22474i −0.117130 0.0676252i
$$329$$ 5.32577 + 9.22450i 0.293619 + 0.508563i
$$330$$ −0.449490 + 4.44949i −0.0247436 + 0.244936i
$$331$$ 23.2474 1.27780 0.638898 0.769292i $$-0.279391\pi$$
0.638898 + 0.769292i $$0.279391\pi$$
$$332$$ −1.16781 + 0.674235i −0.0640918 + 0.0370034i
$$333$$ −3.94086 + 2.27526i −0.215958 + 0.124683i
$$334$$ 15.7980 0.864426
$$335$$ −3.22474 0.325765i −0.176187 0.0177985i
$$336$$ 1.50000 + 2.59808i 0.0818317 + 0.141737i
$$337$$ −3.55159 2.05051i −0.193467 0.111698i 0.400137 0.916455i $$-0.368962\pi$$
−0.593605 + 0.804757i $$0.702296\pi$$
$$338$$ −0.953512 + 0.550510i −0.0518642 + 0.0299438i
$$339$$ 7.44949 12.9029i 0.404601 0.700789i
$$340$$ −6.40300 + 8.88828i −0.347252 + 0.482035i
$$341$$ −15.7980 −0.855507
$$342$$ 4.24264 + 1.00000i 0.229416 + 0.0540738i
$$343$$ 15.0000i 0.809924i
$$344$$ 0.275255 0.476756i 0.0148408 0.0257050i
$$345$$ −4.44414 3.20150i −0.239265 0.172363i
$$346$$ 2.22474 + 3.85337i 0.119603 + 0.207159i
$$347$$ −24.6773 14.2474i −1.32475 0.764843i −0.340265 0.940329i $$-0.610517\pi$$
−0.984482 + 0.175486i $$0.943850\pi$$
$$348$$ 8.09601 4.67423i 0.433992 0.250565i
$$349$$ 26.5505 1.42122 0.710608 0.703588i $$-0.248420\pi$$
0.710608 + 0.703588i $$0.248420\pi$$
$$350$$ 14.6969 + 3.00000i 0.785584 + 0.160357i
$$351$$ −1.72474 2.98735i −0.0920601 0.159453i
$$352$$ −1.73205 + 1.00000i −0.0923186 + 0.0533002i
$$353$$ 21.1464i 1.12551i 0.826623 + 0.562755i $$0.190259\pi$$
−0.826623 + 0.562755i $$0.809741\pi$$
$$354$$ 11.7980 0.627054
$$355$$ 7.23970 3.25844i 0.384243 0.172940i
$$356$$ 5.77526 10.0030i 0.306088 0.530160i
$$357$$ 12.7279 7.34847i 0.673633 0.388922i
$$358$$ 15.8028 + 9.12372i 0.835202 + 0.482204i
$$359$$ −10.1237 + 17.5348i −0.534310 + 0.925452i 0.464887 + 0.885370i $$0.346095\pi$$
−0.999196 + 0.0400814i $$0.987238\pi$$
$$360$$ −2.22474 0.224745i −0.117254 0.0118451i
$$361$$ −17.0000 8.48528i −0.894737 0.446594i
$$362$$ 11.1010i 0.583457i
$$363$$ −6.06218 3.50000i −0.318182 0.183702i
$$364$$ −5.17423 + 8.96204i −0.271204 + 0.469738i
$$365$$ 10.9201 + 24.2627i 0.571586 + 1.26997i
$$366$$ 2.17423 3.76588i 0.113649 0.196846i
$$367$$ −14.3725 + 8.29796i −0.750238 + 0.433150i −0.825780 0.563993i $$-0.809265\pi$$
0.0755421 + 0.997143i $$0.475931\pi$$
$$368$$ 2.44949i 0.127688i
$$369$$ −2.44949 −0.127515
$$370$$ −9.27875 + 4.17617i −0.482379 + 0.217109i
$$371$$ 4.65153 + 8.05669i 0.241495 + 0.418282i
$$372$$ 7.89898i 0.409543i
$$373$$ 25.1010i 1.29968i 0.760070 + 0.649841i $$0.225164\pi$$
−0.760070 + 0.649841i $$0.774836\pi$$
$$374$$ 4.89898 + 8.48528i 0.253320 + 0.438763i
$$375$$ −8.21731 + 7.58128i −0.424340 + 0.391495i
$$376$$ −1.77526 3.07483i −0.0915518 0.158572i
$$377$$ 27.9271 + 16.1237i 1.43832 + 0.830414i
$$378$$ 2.59808 + 1.50000i 0.133631 + 0.0771517i
$$379$$ −8.75255 −0.449588 −0.224794 0.974406i $$-0.572171\pi$$
−0.224794 + 0.974406i $$0.572171\pi$$
$$380$$ 9.21405 + 3.17826i 0.472671 + 0.163041i
$$381$$ −16.6969 −0.855410
$$382$$ −12.7279 7.34847i −0.651217 0.375980i
$$383$$ −1.16781 0.674235i −0.0596722 0.0344518i 0.469867 0.882737i $$-0.344302\pi$$
−0.529539 + 0.848285i $$0.677635\pi$$
$$384$$ −0.500000 0.866025i −0.0255155 0.0441942i
$$385$$ 7.84204 10.8859i 0.399668 0.554796i
$$386$$ 1.05051 + 1.81954i 0.0534696 + 0.0926120i
$$387$$ 0.550510i 0.0279840i
$$388$$ 18.6969i 0.949193i
$$389$$ 7.12372 + 12.3387i 0.361187 + 0.625595i 0.988157 0.153449i $$-0.0490382\pi$$
−0.626969 + 0.779044i $$0.715705\pi$$
$$390$$ −3.16573 7.03371i −0.160303 0.356166i
$$391$$ −12.0000 −0.606866
$$392$$ 2.00000i 0.101015i
$$393$$ −6.75323 + 3.89898i −0.340655 + 0.196677i
$$394$$ 8.34847 14.4600i 0.420590 0.728483i
$$395$$ 34.2520 15.4161i 1.72341 0.775669i
$$396$$ −1.00000 + 1.73205i −0.0502519 + 0.0870388i
$$397$$ 8.00853 + 4.62372i 0.401936 + 0.232058i 0.687319 0.726356i $$-0.258787\pi$$
−0.285383 + 0.958414i $$0.592121\pi$$
$$398$$ 8.10102i 0.406067i
$$399$$ −9.52270 8.96204i −0.476731 0.448663i
$$400$$ −4.89898 1.00000i −0.244949 0.0500000i
$$401$$ −16.1464 + 27.9664i −0.806314 + 1.39658i 0.109086 + 0.994032i $$0.465208\pi$$
−0.915400 + 0.402545i $$0.868126\pi$$
$$402$$ −1.25529 0.724745i −0.0626084 0.0361470i
$$403$$ 23.5970 13.6237i 1.17545 0.678646i
$$404$$ −1.89898 + 3.28913i −0.0944778 + 0.163640i
$$405$$ −2.03906 + 0.917738i −0.101322 + 0.0456028i
$$406$$ −28.0454 −1.39187
$$407$$ 9.10102i 0.451121i
$$408$$ −4.24264 + 2.44949i −0.210042 + 0.121268i
$$409$$ −5.55051 9.61377i −0.274455 0.475370i 0.695542 0.718485i $$-0.255164\pi$$
−0.969997 + 0.243115i $$0.921831\pi$$
$$410$$ −5.44949 0.550510i −0.269131 0.0271878i
$$411$$ −1.10102 −0.0543093
$$412$$ −8.57277 + 4.94949i −0.422350 + 0.243844i
$$413$$ −30.6520 17.6969i −1.50829 0.870809i
$$414$$ −1.22474 2.12132i −0.0601929 0.104257i
$$415$$ −1.76246 + 2.44655i −0.0865157 + 0.120096i
$$416$$ 1.72474 2.98735i 0.0845626 0.146467i
$$417$$ 6.55051i 0.320780i
$$418$$ 5.97469 6.34847i 0.292232 0.310514i
$$419$$ 26.0454 1.27240 0.636201 0.771524i $$-0.280505\pi$$
0.636201 + 0.771524i $$0.280505\pi$$
$$420$$ 5.44294 + 3.92102i 0.265588 + 0.191326i
$$421$$ 10.7980 18.7026i 0.526260 0.911510i −0.473272 0.880917i $$-0.656927\pi$$
0.999532 0.0305930i $$-0.00973959\pi$$
$$422$$ −2.03383 + 1.17423i −0.0990055 + 0.0571608i
$$423$$ −3.07483 1.77526i −0.149503 0.0863159i
$$424$$ −1.55051 2.68556i −0.0752994 0.130422i
$$425$$ −4.89898 + 24.0000i −0.237635 + 1.16417i
$$426$$ 3.55051 0.172023
$$427$$ −11.2977 + 6.52270i −0.546732 + 0.315656i
$$428$$ 9.04952 5.22474i 0.437425 0.252548i
$$429$$ −6.89898 −0.333086
$$430$$ 0.123724 1.22474i 0.00596652 0.0590624i
$$431$$ −15.1237 26.1951i −0.728484 1.26177i −0.957524 0.288354i $$-0.906892\pi$$
0.229040 0.973417i $$-0.426441\pi$$
$$432$$ −0.866025 0.500000i −0.0416667 0.0240563i
$$433$$ −16.2795 + 9.39898i −0.782343 + 0.451686i −0.837260 0.546805i $$-0.815844\pi$$
0.0549168 + 0.998491i $$0.482511\pi$$
$$434$$ −11.8485 + 20.5222i −0.568745 + 0.985095i
$$435$$ 12.2185 16.9611i 0.585833 0.813220i
$$436$$ −14.0000 −0.670478
$$437$$ 3.07483 + 10.2247i 0.147089 + 0.489116i
$$438$$ 11.8990i 0.568555i
$$439$$ −8.74745 + 15.1510i −0.417493 + 0.723119i −0.995687 0.0927806i $$-0.970424\pi$$
0.578194 + 0.815900i $$0.303758\pi$$
$$440$$ −2.61401 + 3.62863i −0.124618 + 0.172988i
$$441$$ −1.00000 1.73205i −0.0476190 0.0824786i
$$442$$ −14.6349 8.44949i −0.696113 0.401901i
$$443$$ 8.48528 4.89898i 0.403148 0.232758i −0.284693 0.958619i $$-0.591892\pi$$
0.687841 + 0.725861i $$0.258558\pi$$
$$444$$ −4.55051 −0.215958
$$445$$ 2.59592 25.6969i 0.123058 1.21815i
$$446$$ 6.84847 + 11.8619i 0.324284 + 0.561677i
$$447$$ 3.28913 1.89898i 0.155570 0.0898186i
$$448$$ 3.00000i 0.141737i
$$449$$ 10.6969 0.504820 0.252410 0.967620i $$-0.418777\pi$$
0.252410 + 0.967620i $$0.418777\pi$$
$$450$$ −4.74264 + 1.58346i −0.223570 + 0.0746452i
$$451$$ −2.44949 + 4.24264i −0.115342 + 0.199778i
$$452$$ 12.9029 7.44949i 0.606901 0.350395i
$$453$$ 17.1455 + 9.89898i 0.805568 + 0.465095i
$$454$$ −6.67423 + 11.5601i −0.313237 + 0.542543i
$$455$$ −2.32577 + 23.0227i −0.109034 + 1.07932i
$$456$$ 3.17423 + 2.98735i 0.148647 + 0.139895i
$$457$$ 14.1010i 0.659618i −0.944048 0.329809i $$-0.893016\pi$$
0.944048 0.329809i $$-0.106984\pi$$
$$458$$ −23.4220 13.5227i −1.09444 0.631874i
$$459$$ −2.44949 + 4.24264i −0.114332 + 0.198030i
$$460$$ −2.24799 4.99465i −0.104813 0.232877i
$$461$$ 12.1237 20.9989i 0.564658 0.978017i −0.432423 0.901671i $$-0.642341\pi$$
0.997081 0.0763458i $$-0.0243253\pi$$
$$462$$ 5.19615 3.00000i 0.241747 0.139573i
$$463$$ 39.2929i 1.82609i −0.407854 0.913047i $$-0.633723\pi$$
0.407854 0.913047i $$-0.366277\pi$$
$$464$$ 9.34847 0.433992
$$465$$ −7.24919 16.1065i −0.336173 0.746920i
$$466$$ 7.32577 + 12.6886i 0.339360 + 0.587788i
$$467$$ 3.55051i 0.164298i −0.996620 0.0821490i $$-0.973822\pi$$
0.996620 0.0821490i $$-0.0261783\pi$$
$$468$$ 3.44949i 0.159453i
$$469$$ 2.17423 + 3.76588i 0.100397 + 0.173892i
$$470$$ −6.44174 4.64054i −0.297135 0.214052i
$$471$$ 2.72474 + 4.71940i 0.125550 + 0.217458i
$$472$$ 10.2173 + 5.89898i 0.470291 + 0.271523i
$$473$$ −0.953512 0.550510i −0.0438425 0.0253125i
$$474$$ 16.7980 0.771556
$$475$$ 21.7048 1.97543i 0.995884 0.0906389i
$$476$$ 14.6969 0.673633
$$477$$ −2.68556 1.55051i −0.122963 0.0709930i
$$478$$ −7.49245 4.32577i −0.342696 0.197856i
$$479$$ 14.3485 + 24.8523i 0.655598 + 1.13553i 0.981743 + 0.190210i $$0.0609168\pi$$
−0.326145 + 0.945320i $$0.605750\pi$$
$$480$$ −1.81431 1.30701i −0.0828117 0.0596564i
$$481$$ −7.84847 13.5939i −0.357859 0.619831i
$$482$$ 11.0000i 0.501036i
$$483$$ 7.34847i 0.334367i
$$484$$ −3.50000 6.06218i −0.159091 0.275554i
$$485$$ −17.1589 38.1241i −0.779145 1.73113i
$$486$$ −1.00000 −0.0453609
$$487$$ 34.8990i 1.58142i −0.612188 0.790712i $$-0.709711\pi$$
0.612188 0.790712i $$-0.290289\pi$$
$$488$$ 3.76588 2.17423i 0.170474 0.0984230i
$$489$$ −3.17423 + 5.49794i −0.143544 + 0.248625i
$$490$$ −1.83548 4.07812i −0.0829183 0.184231i
$$491$$ 5.02270 8.69958i 0.226671 0.392606i −0.730148 0.683289i $$-0.760549\pi$$
0.956820 + 0.290682i $$0.0938823\pi$$
$$492$$ −2.12132 1.22474i −0.0956365 0.0552158i
$$493$$ 45.7980i 2.06264i
$$494$$ −3.44949 + 14.6349i −0.155200 + 0.658457i
$$495$$ −0.449490 + 4.44949i −0.0202031 + 0.199990i
$$496$$ 3.94949 6.84072i 0.177337 0.307157i
$$497$$ −9.22450 5.32577i −0.413775 0.238893i
$$498$$ −1.16781 + 0.674235i −0.0523308 + 0.0302132i
$$499$$ −16.4217 + 28.4432i −0.735136 + 1.27329i 0.219528 + 0.975606i $$0.429548\pi$$
−0.954664 + 0.297686i $$0.903785\pi$$
$$500$$ −10.9070 + 2.45692i −0.487778 + 0.109877i
$$501$$ 15.7980 0.705801
$$502$$ 20.6969i 0.923750i
$$503$$ −5.02118 + 2.89898i −0.223883 + 0.129259i −0.607747 0.794131i $$-0.707927\pi$$
0.383864 + 0.923390i $$0.374593\pi$$
$$504$$ 1.50000 + 2.59808i 0.0668153 + 0.115728i
$$505$$ −0.853572 + 8.44949i −0.0379834 + 0.375997i
$$506$$ −4.89898 −0.217786
$$507$$ −0.953512 + 0.550510i −0.0423469 + 0.0244490i
$$508$$ −14.4600 8.34847i −0.641558 0.370403i
$$509$$ −7.22474 12.5136i −0.320231 0.554657i 0.660304 0.750998i $$-0.270427\pi$$
−0.980536 + 0.196341i $$0.937094\pi$$
$$510$$ −6.40300 + 8.88828i −0.283530 + 0.393580i
$$511$$ 17.8485 30.9145i 0.789570 1.36757i
$$512$$ 1.00000i 0.0441942i
$$513$$ 4.24264 + 1.00000i 0.187317 + 0.0441511i
$$514$$ 25.1464 1.10916
$$515$$ −12.9380 + 17.9598i −0.570118 + 0.791405i
$$516$$ 0.275255 0.476756i 0.0121174 0.0209880i
$$517$$ −6.14966 + 3.55051i −0.270462 + 0.156151i
$$518$$ 11.8226 + 6.82577i 0.519454 + 0.299907i
$$519$$ 2.22474 + 3.85337i 0.0976555 + 0.169144i
$$520$$ 0.775255 7.67423i 0.0339972 0.336537i
$$521$$ 18.2474 0.799435 0.399718 0.916638i $$-0.369108\pi$$
0.399718 + 0.916638i $$0.369108\pi$$
$$522$$ 8.09601 4.67423i 0.354353 0.204586i
$$523$$ 14.1582 8.17423i 0.619094 0.357434i −0.157422 0.987531i $$-0.550318\pi$$
0.776516 + 0.630097i $$0.216985\pi$$
$$524$$ −7.79796 −0.340655
$$525$$ 14.6969 + 3.00000i 0.641427 + 0.130931i
$$526$$ 7.00000 + 12.1244i 0.305215 + 0.528647i
$$527$$ −33.5125 19.3485i −1.45983 0.842833i
$$528$$ −1.73205 + 1.00000i −0.0753778 + 0.0435194i
$$529$$ −8.50000 + 14.7224i −0.369565 + 0.640106i
$$530$$ −5.62622 4.05306i −0.244387 0.176054i
$$531$$ 11.7980 0.511988
$$532$$ −3.76588 12.5227i −0.163272 0.542928i
$$533$$ 8.44949i 0.365988i
$$534$$ 5.77526 10.0030i 0.249920 0.432874i
$$535$$ 13.6576 18.9586i 0.590468 0.819654i
$$536$$ −0.724745 1.25529i −0.0313042 0.0542205i
$$537$$ 15.8028 + 9.12372i 0.681939 + 0.393718i
$$538$$ −22.9453 + 13.2474i −0.989240 + 0.571138i
$$539$$ −4.00000 −0.172292
$$540$$ −2.22474 0.224745i −0.0957378 0.00967148i
$$541$$ 7.17423 + 12.4261i 0.308444 + 0.534241i 0.978022 0.208500i $$-0.0668583\pi$$
−0.669578 + 0.742742i $$0.733525\pi$$
$$542$$ 4.41761 2.55051i 0.189753 0.109554i
$$543$$ 11.1010i 0.476390i
$$544$$ −4.89898 −0.210042
$$545$$ −28.5468 + 12.8483i −1.22281 + 0.550362i
$$546$$ −5.17423 + 8.96204i −0.221437 + 0.383540i
$$547$$ −12.2512 + 7.07321i −0.523822 + 0.302429i −0.738497 0.674257i $$-0.764464\pi$$
0.214675 + 0.976686i $$0.431131\pi$$
$$548$$ −0.953512 0.550510i −0.0407320 0.0235166i
$$549$$ 2.17423 3.76588i 0.0927941 0.160724i
$$550$$ −2.00000 + 9.79796i −0.0852803 + 0.417786i
$$551$$ −39.0227 + 11.7351i −1.66242 + 0.499931i
$$552$$ 2.44949i 0.104257i
$$553$$ −43.6424 25.1969i −1.85586 1.07148i
$$554$$ −16.2474 + 28.1414i −0.690288 + 1.19561i
$$555$$ −9.27875 + 4.17617i −0.393861 + 0.177269i
$$556$$ −3.27526 + 5.67291i −0.138902 + 0.240585i
$$557$$ 31.8198 18.3712i 1.34825 0.778412i 0.360247 0.932857i $$-0.382692\pi$$
0.988001 + 0.154445i $$0.0493591\pi$$
$$558$$ 7.89898i 0.334390i
$$559$$ 1.89898 0.0803183
$$560$$ 2.75321 + 6.11717i 0.116344 + 0.258498i
$$561$$ 4.89898 + 8.48528i 0.206835 + 0.358249i
$$562$$ 26.4495i 1.11570i
$$563$$ 25.5959i 1.07874i 0.842069 + 0.539370i $$0.181337\pi$$
−0.842069 + 0.539370i $$0.818663\pi$$
$$564$$ −1.77526 3.07483i −0.0747517 0.129474i
$$565$$ 19.4731 27.0314i 0.819238 1.13722i
$$566$$ −4.44949 7.70674i −0.187026 0.323939i
$$567$$ 2.59808 + 1.50000i 0.109109 + 0.0629941i
$$568$$ 3.07483 + 1.77526i 0.129017 + 0.0744881i
$$569$$ 32.8990 1.37920 0.689598 0.724192i $$-0.257787\pi$$
0.689598 + 0.724192i $$0.257787\pi$$
$$570$$ 9.21405 + 3.17826i 0.385934 + 0.133123i
$$571$$ −20.5505 −0.860012 −0.430006 0.902826i $$-0.641489\pi$$
−0.430006 + 0.902826i $$0.641489\pi$$
$$572$$ −5.97469 3.44949i −0.249814 0.144230i
$$573$$ −12.7279 7.34847i −0.531717 0.306987i
$$574$$ 3.67423 + 6.36396i 0.153360 + 0.265627i
$$575$$ −9.16756 8.12132i −0.382314 0.338682i
$$576$$ −0.500000 0.866025i −0.0208333 0.0360844i
$$577$$ 22.0000i 0.915872i −0.888985 0.457936i $$-0.848589\pi$$
0.888985 0.457936i $$-0.151411\pi$$
$$578$$ 7.00000i 0.291162i
$$579$$ 1.05051 + 1.81954i 0.0436577 + 0.0756174i
$$580$$ 19.0621 8.57944i 0.791509 0.356242i
$$581$$ 4.04541 0.167832
$$582$$ 18.6969i 0.775013i
$$583$$ −5.37113 + 3.10102i −0.222449 + 0.128431i
$$584$$ −5.94949 + 10.3048i −0.246192 + 0.426416i
$$585$$ −3.16573 7.03371i −0.130887 0.290808i
$$586$$ −9.44949 + 16.3670i −0.390355 + 0.676114i
$$587$$ −27.9664 16.1464i −1.15430 0.666434i −0.204367 0.978894i $$-0.565514\pi$$
−0.949931 + 0.312460i $$0.898847\pi$$
$$588$$ 2.00000i 0.0824786i
$$589$$ −7.89898 + 33.5125i −0.325472 + 1.38086i
$$590$$ 26.2474 + 2.65153i 1.08059 + 0.109162i
$$591$$ 8.34847 14.4600i 0.343410 0.594804i
$$592$$ −3.94086 2.27526i −0.161968 0.0935124i
$$593$$ 16.5813 9.57321i 0.680912 0.393125i −0.119287 0.992860i $$-0.538061\pi$$
0.800199 + 0.599735i $$0.204727\pi$$
$$594$$ −1.00000 + 1.73205i −0.0410305 + 0.0710669i
$$595$$ 29.9679 13.4879i 1.22856 0.552951i
$$596$$ 3.79796 0.155570
$$597$$ 8.10102i 0.331553i
$$598$$ 7.31747 4.22474i 0.299234 0.172763i
$$599$$ −15.1237 26.1951i −0.617939 1.07030i −0.989861 0.142037i $$-0.954635\pi$$
0.371923 0.928264i $$-0.378699\pi$$
$$600$$ −4.89898 1.00000i −0.200000 0.0408248i
$$601$$ −15.0000 −0.611863 −0.305931 0.952054i $$-0.598968\pi$$
−0.305931 + 0.952054i $$0.598968\pi$$
$$602$$ −1.43027 + 0.825765i −0.0582934 + 0.0336557i
$$603$$ −1.25529 0.724745i −0.0511196 0.0295139i
$$604$$ 9.89898 + 17.1455i 0.402784 + 0.697642i
$$605$$ −12.7002 9.14905i −0.516336 0.371962i
$$606$$ −1.89898 + 3.28913i −0.0771408 + 0.133612i
$$607$$ 27.0000i 1.09590i 0.836512 + 0.547948i $$0.184591\pi$$
−0.836512 + 0.547948i $$0.815409\pi$$
$$608$$ 1.25529 + 4.17423i 0.0509089 + 0.169288i
$$609$$ −28.0454 −1.13646
$$610$$ 5.68348 7.88948i 0.230117 0.319436i
$$611$$ 6.12372 10.6066i 0.247739 0.429097i
$$612$$ −4.24264 + 2.44949i −0.171499 + 0.0990148i
$$613$$ −26.7593 15.4495i −1.08080 0.623999i −0.149686 0.988734i $$-0.547826\pi$$
−0.931112 + 0.364735i $$0.881160\pi$$
$$614$$ 1.10102 + 1.90702i 0.0444336 + 0.0769612i
$$615$$ −5.44949 0.550510i −0.219745 0.0221987i
$$616$$ 6.00000 0.241747
$$617$$ 7.74607 4.47219i 0.311845 0.180044i −0.335907 0.941895i $$-0.609043\pi$$
0.647752 + 0.761851i $$0.275709\pi$$
$$618$$ −8.57277 + 4.94949i −0.344847 + 0.199098i
$$619$$ 11.0454 0.443952 0.221976 0.975052i $$-0.428749\pi$$
0.221976 + 0.975052i $$0.428749\pi$$
$$620$$ 1.77526 17.5732i 0.0712960 0.705757i
$$621$$ −1.22474 2.12132i −0.0491473 0.0851257i
$$622$$ 9.43879 + 5.44949i 0.378461 + 0.218505i
$$623$$ −30.0091 + 17.3258i −1.20229 + 0.694142i
$$624$$ 1.72474 2.98735i 0.0690451 0.119590i
$$625$$ −19.9853 + 15.0196i −0.799411 + 0.600784i
$$626$$ −15.1010 −0.603558
$$627$$ 5.97469 6.34847i 0.238606 0.253533i
$$628$$ 5.44949i 0.217458i
$$629$$ −11.1464 + 19.3062i −0.444437 + 0.769788i
$$630$$ 5.44294 + 3.92102i 0.216852 + 0.156217i
$$631$$ −20.9495 36.2856i −0.833986 1.44451i −0.894853 0.446360i $$-0.852720\pi$$
0.0608673 0.998146i $$-0.480613\pi$$
$$632$$ 14.5475 + 8.39898i 0.578667 + 0.334093i
$$633$$ −2.03383 + 1.17423i −0.0808376 + 0.0466716i
$$634$$ −6.24745 −0.248118
$$635$$ −37.1464 3.75255i −1.47411 0.148915i
$$636$$ −1.55051 2.68556i −0.0614817 0.106489i
$$637$$ 5.97469 3.44949i 0.236726 0.136674i
$$638$$ 18.6969i 0.740219i
$$639$$ 3.55051 0.140456
$$640$$ −0.917738 2.03906i −0.0362768 0.0806008i
$$641$$ 21.1237 36.5874i 0.834337 1.44511i −0.0602322 0.998184i $$-0.519184\pi$$
0.894569 0.446930i $$-0.147483\pi$$
$$642$$ 9.04952 5.22474i 0.357156 0.206204i
$$643$$ 31.4787 + 18.1742i 1.24140 + 0.716722i 0.969379 0.245570i $$-0.0789751\pi$$
0.272020 + 0.962292i $$0.412308\pi$$
$$644$$ −3.67423 + 6.36396i −0.144785 + 0.250775i
$$645$$ 0.123724 1.22474i 0.00487164 0.0482243i
$$646$$ 20.4495 6.14966i 0.804574 0.241955i
$$647$$ 31.8434i 1.25189i −0.779866 0.625946i $$-0.784713\pi$$
0.779866 0.625946i $$-0.215287\pi$$
$$648$$ −0.866025 0.500000i −0.0340207 0.0196419i
$$649$$ 11.7980 20.4347i 0.463110 0.802131i
$$650$$ −5.46214 16.3597i −0.214243 0.641680i
$$651$$ −11.8485 + 20.5222i −0.464378 + 0.804327i
$$652$$ −5.49794 + 3.17423i −0.215316 + 0.124313i
$$653$$ 2.44949i 0.0958559i 0.998851 + 0.0479280i $$0.0152618\pi$$
−0.998851 + 0.0479280i $$0.984738\pi$$
$$654$$ −14.0000 −0.547443
$$655$$ −15.9005 + 7.15648i −0.621284 + 0.279627i
$$656$$ −1.22474 2.12132i −0.0478183 0.0828236i
$$657$$ 11.8990i 0.464223i
$$658$$ 10.6515i 0.415240i
$$659$$ 0.348469 + 0.603566i 0.0135744 + 0.0235116i 0.872733 0.488198i $$-0.162346\pi$$
−0.859158 + 0.511710i $$0.829012\pi$$
$$660$$ −2.61401 + 3.62863i −0.101750 + 0.141244i
$$661$$ 3.44949 + 5.97469i 0.134170 + 0.232389i 0.925280 0.379285i $$-0.123830\pi$$
−0.791110 + 0.611673i $$0.790497\pi$$
$$662$$ 20.1329 + 11.6237i 0.782487 + 0.451769i
$$663$$ −14.6349 8.44949i −0.568374 0.328151i
$$664$$ −1.34847 −0.0523308
$$665$$ −19.1714 22.0784i −0.743436 0.856165i
$$666$$ −4.55051 −0.176329
$$667$$ 19.8311 + 11.4495i 0.767863 + 0.443326i
$$668$$ 13.6814 + 7.89898i 0.529351 + 0.305621i
$$669$$ 6.84847 + 11.8619i 0.264777 + 0.458607i
$$670$$ −2.62983 1.89449i −0.101599 0.0731907i
$$671$$ −4.34847 7.53177i −0.167871 0.290761i
$$672$$ 3.00000i 0.115728i
$$673$$ 10.3031i 0.397154i −0.980085 0.198577i $$-0.936368\pi$$
0.980085 0.198577i $$-0.0636320\pi$$
$$674$$ −2.05051 3.55159i −0.0789827 0.136802i
$$675$$ −4.74264 + 1.58346i −0.182544 + 0.0609476i
$$676$$ −1.10102 −0.0423469
$$677$$ 6.85357i 0.263404i −0.991289 0.131702i $$-0.957956\pi$$
0.991289 0.131702i $$-0.0420442\pi$$
$$678$$ 12.9029 7.44949i 0.495533 0.286096i
$$679$$ −28.0454 + 48.5761i −1.07628 + 1.86418i
$$680$$ −9.98930 + 4.49598i −0.383072 + 0.172413i
$$681$$ −6.67423 + 11.5601i −0.255757 + 0.442985i
$$682$$ −13.6814 7.89898i −0.523889 0.302468i
$$683$$ 39.1918i 1.49963i 0.661645 + 0.749817i $$0.269858\pi$$
−0.661645 + 0.749817i $$0.730142\pi$$
$$684$$ 3.17423 + 2.98735i 0.121370 + 0.114224i
$$685$$ −2.44949 0.247449i −0.0935902 0.00945453i
$$686$$ 7.50000 12.9904i 0.286351 0.495975i
$$687$$ −23.4220 13.5227i −0.893605 0.515923i
$$688$$ 0.476756 0.275255i 0.0181761 0.0104940i
$$689$$ 5.34847 9.26382i 0.203760 0.352923i
$$690$$ −2.24799 4.99465i −0.0855795 0.190143i
$$691$$ 0.404082 0.0153720 0.00768600 0.999970i $$-0.497553\pi$$
0.00768600 + 0.999970i $$0.497553\pi$$
$$692$$ 4.44949i 0.169144i
$$693$$ 5.19615 3.00000i 0.197386 0.113961i
$$694$$ −14.2474 24.6773i −0.540826 0.936738i
$$695$$ −1.47219 + 14.5732i −0.0558435 + 0.552794i
$$696$$ 9.34847 0.354353
$$697$$ −10.3923 + 6.00000i −0.393637 + 0.227266i
$$698$$ 22.9934 + 13.2753i 0.870314 + 0.502476i
$$699$$ 7.32577 + 12.6886i 0.277086 + 0.479927i
$$700$$ 11.2279 + 9.94655i 0.424376 + 0.375944i
$$701$$ 9.10102 15.7634i 0.343741 0.595377i −0.641383 0.767221i $$-0.721639\pi$$
0.985124 + 0.171844i $$0.0549725\pi$$
$$702$$ 3.44949i 0.130193i
$$703$$ 19.3062 + 4.55051i 0.728146 + 0.171626i
$$704$$ −2.00000 −0.0753778
$$705$$ −6.44174 4.64054i −0.242610 0.174773i
$$706$$ −10.5732 + 18.3133i −0.397928 + 0.689232i
$$707$$ 9.86739 5.69694i 0.371101 0.214255i
$$708$$ 10.2173 + 5.89898i 0.383991 + 0.221697i
$$709$$ −20.6237 35.7213i −0.774540 1.34154i −0.935053 0.354509i $$-0.884648\pi$$
0.160512 0.987034i $$-0.448685\pi$$
$$710$$ 7.89898 + 0.797959i 0.296443 + 0.0299469i
$$711$$ 16.7980 0.629973
$$712$$ 10.0030 5.77526i 0.374880 0.216437i
$$713$$ 16.7563 9.67423i 0.627527 0.362303i
$$714$$ 14.6969 0.550019
$$715$$ −15.3485 1.55051i −0.574000 0.0579858i
$$716$$ 9.12372 + 15.8028i 0.340970 + 0.590577i
$$717$$ −7.49245 4.32577i −0.279811 0.161549i
$$718$$ −17.5348 + 10.1237i −0.654393 + 0.377814i
$$719$$ 16.7753 29.0556i 0.625611 1.08359i −0.362811 0.931863i $$-0.618183\pi$$
0.988422 0.151728i $$-0.0484838\pi$$
$$720$$ −1.81431 1.30701i −0.0676155 0.0487093i
$$721$$ 29.6969 1.10597
$$722$$ −10.4798 15.8485i −0.390017 0.589819i
$$723$$ 11.0000i 0.409094i
$$724$$ −5.55051 + 9.61377i −0.206283 + 0.357293i
$$725$$ 30.9950 34.9880i 1.15113 1.29942i
$$726$$ −3.50000 6.06218i −0.129897 0.224989i
$$727$$ 23.2077 + 13.3990i 0.860726 + 0.496941i 0.864255 0.503053i $$-0.167790\pi$$
−0.00352905 + 0.999994i $$0.501123\pi$$
$$728$$ −8.96204 + 5.17423i −0.332155 + 0.191770i
$$729$$ −1.00000 −0.0370370
$$730$$ −2.67423 + 26.4722i −0.0989779 + 0.979780i
$$731$$ −1.34847 2.33562i −0.0498749 0.0863859i
$$732$$ 3.76588 2.17423i 0.139191 0.0803620i
$$733$$ 30.6969i 1.13382i 0.823781 + 0.566909i $$0.191861\pi$$
−0.823781 + 0.566909i $$0.808139\pi$$
$$734$$ −16.5959 −0.612567
$$735$$ −1.83548 4.07812i −0.0677025 0.150424i
$$736$$ 1.22474 2.12132i 0.0451447 0.0781929i
$$737$$ −2.51059 + 1.44949i −0.0924788 + 0.0533926i
$$738$$ −2.12132 1.22474i −0.0780869 0.0450835i
$$739$$ 10.8258 18.7508i 0.398232 0.689758i −0.595276 0.803522i $$-0.702957\pi$$
0.993508 + 0.113763i $$0.0362905\pi$$
$$740$$ −10.1237 1.02270i −0.372156 0.0375953i
$$741$$ −3.44949 + 14.6349i −0.126720 + 0.537628i
$$742$$ 9.30306i 0.341526i
$$743$$ −39.8372 23.0000i −1.46148 0.843788i −0.462404 0.886669i $$-0.653013\pi$$
−0.999080 + 0.0428813i $$0.986346\pi$$
$$744$$ 3.94949 6.84072i 0.144795 0.250793i
$$745$$ 7.74426 3.48553i 0.283728 0.127700i
$$746$$ −12.5505 + 21.7381i −0.459507 + 0.795889i
$$747$$ −1.16781 + 0.674235i −0.0427279 + 0.0246690i
$$748$$ 9.79796i 0.358249i
$$749$$ −31.3485 −1.14545
$$750$$ −10.9070 + 2.45692i −0.398269 + 0.0897140i
$$751$$ 10.1515 + 17.5830i 0.370435 + 0.641612i 0.989632 0.143623i $$-0.0458754\pi$$
−0.619198 + 0.785235i $$0.712542\pi$$
$$752$$ 3.55051i 0.129474i
$$753$$ 20.6969i 0.754238i
$$754$$ 16.1237 + 27.9271i 0.587191 + 1.01705i
$$755$$ 35.9197 + 25.8761i 1.30725 + 0.941727i
$$756$$ 1.50000 + 2.59808i 0.0545545 + 0.0944911i
$$757$$ −10.6941 6.17423i −0.388683 0.224406i 0.292906 0.956141i $$-0.405378\pi$$
−0.681589 + 0.731735i $$0.738711\pi$$
$$758$$ −7.57993 4.37628i −0.275316 0.158953i
$$759$$ −4.89898 −0.177822
$$760$$ 6.39047 + 7.35948i 0.231807 + 0.266956i
$$761$$ 34.8990 1.26509 0.632544 0.774525i $$-0.282011\pi$$
0.632544 + 0.774525i $$0.282011\pi$$
$$762$$ −14.4600 8.34847i −0.523830 0.302433i
$$763$$ 36.3731 + 21.0000i 1.31679 + 0.760251i
$$764$$ −7.34847 12.7279i −0.265858 0.460480i
$$765$$ −6.40300 + 8.88828i −0.231501 + 0.321357i
$$766$$ −0.674235 1.16781i −0.0243611 0.0421946i
$$767$$ 40.6969i 1.46948i
$$768$$ 1.00000i 0.0360844i
$$769$$ 0.297959 + 0.516080i 0.0107447 + 0.0186103i 0.871348 0.490666i $$-0.163246\pi$$
−0.860603 + 0.509276i $$0.829913\pi$$
$$770$$ 12.2343 5.50643i 0.440895 0.198438i
$$771$$ 25.1464 0.905626
$$772$$ 2.10102i 0.0756174i
$$773$$ 33.6875 19.4495i 1.21166 0.699550i 0.248536 0.968623i $$-0.420051\pi$$
0.963120 + 0.269073i $$0.0867174\pi$$
$$774$$ 0.275255 0.476756i 0.00989384 0.0171366i