Properties

Label 570.2.q.a.349.1
Level $570$
Weight $2$
Character 570.349
Analytic conductor $4.551$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 570 = 2 \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 570.q (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.55147291521\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{24})\)
Defining polynomial: \(x^{8} - x^{4} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 349.1
Root \(-0.258819 + 0.965926i\) of defining polynomial
Character \(\chi\) \(=\) 570.349
Dual form 570.2.q.a.49.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.866025 + 0.500000i) q^{2} +(-0.866025 + 0.500000i) q^{3} +(0.500000 - 0.866025i) q^{4} +(-2.03906 + 0.917738i) q^{5} +(0.500000 - 0.866025i) q^{6} -3.00000i q^{7} +1.00000i q^{8} +(0.500000 - 0.866025i) q^{9} +O(q^{10})\) \(q+(-0.866025 + 0.500000i) q^{2} +(-0.866025 + 0.500000i) q^{3} +(0.500000 - 0.866025i) q^{4} +(-2.03906 + 0.917738i) q^{5} +(0.500000 - 0.866025i) q^{6} -3.00000i q^{7} +1.00000i q^{8} +(0.500000 - 0.866025i) q^{9} +(1.30701 - 1.81431i) q^{10} +2.00000 q^{11} +1.00000i q^{12} +(2.98735 + 1.72474i) q^{13} +(1.50000 + 2.59808i) q^{14} +(1.30701 - 1.81431i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(-4.24264 + 2.44949i) q^{17} +1.00000i q^{18} +(1.00000 + 4.24264i) q^{19} +(-0.224745 + 2.22474i) q^{20} +(1.50000 + 2.59808i) q^{21} +(-1.73205 + 1.00000i) q^{22} +(2.12132 + 1.22474i) q^{23} +(-0.500000 - 0.866025i) q^{24} +(3.31552 - 3.74264i) q^{25} -3.44949 q^{26} +1.00000i q^{27} +(-2.59808 - 1.50000i) q^{28} +(-4.67423 + 8.09601i) q^{29} +(-0.224745 + 2.22474i) q^{30} -7.89898 q^{31} +(0.866025 + 0.500000i) q^{32} +(-1.73205 + 1.00000i) q^{33} +(2.44949 - 4.24264i) q^{34} +(2.75321 + 6.11717i) q^{35} +(-0.500000 - 0.866025i) q^{36} +4.55051i q^{37} +(-2.98735 - 3.17423i) q^{38} -3.44949 q^{39} +(-0.917738 - 2.03906i) q^{40} +(-1.22474 - 2.12132i) q^{41} +(-2.59808 - 1.50000i) q^{42} +(0.476756 - 0.275255i) q^{43} +(1.00000 - 1.73205i) q^{44} +(-0.224745 + 2.22474i) q^{45} -2.44949 q^{46} +(3.07483 + 1.77526i) q^{47} +(0.866025 + 0.500000i) q^{48} -2.00000 q^{49} +(-1.00000 + 4.89898i) q^{50} +(2.44949 - 4.24264i) q^{51} +(2.98735 - 1.72474i) q^{52} +(2.68556 + 1.55051i) q^{53} +(-0.500000 - 0.866025i) q^{54} +(-4.07812 + 1.83548i) q^{55} +3.00000 q^{56} +(-2.98735 - 3.17423i) q^{57} -9.34847i q^{58} +(5.89898 + 10.2173i) q^{59} +(-0.917738 - 2.03906i) q^{60} +(-2.17423 + 3.76588i) q^{61} +(6.84072 - 3.94949i) q^{62} +(-2.59808 - 1.50000i) q^{63} -1.00000 q^{64} +(-7.67423 - 0.775255i) q^{65} +(1.00000 - 1.73205i) q^{66} +(1.25529 + 0.724745i) q^{67} +4.89898i q^{68} -2.44949 q^{69} +(-5.44294 - 3.92102i) q^{70} +(1.77526 + 3.07483i) q^{71} +(0.866025 + 0.500000i) q^{72} +(-10.3048 + 5.94949i) q^{73} +(-2.27526 - 3.94086i) q^{74} +(-1.00000 + 4.89898i) q^{75} +(4.17423 + 1.25529i) q^{76} -6.00000i q^{77} +(2.98735 - 1.72474i) q^{78} +(8.39898 + 14.5475i) q^{79} +(1.81431 + 1.30701i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(2.12132 + 1.22474i) q^{82} +1.34847i q^{83} +3.00000 q^{84} +(6.40300 - 8.88828i) q^{85} +(-0.275255 + 0.476756i) q^{86} -9.34847i q^{87} +2.00000i q^{88} +(-5.77526 + 10.0030i) q^{89} +(-0.917738 - 2.03906i) q^{90} +(5.17423 - 8.96204i) q^{91} +(2.12132 - 1.22474i) q^{92} +(6.84072 - 3.94949i) q^{93} -3.55051 q^{94} +(-5.93269 - 7.73325i) q^{95} -1.00000 q^{96} +(16.1920 - 9.34847i) q^{97} +(1.73205 - 1.00000i) q^{98} +(1.00000 - 1.73205i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q + 4q^{4} + 4q^{5} + 4q^{6} + 4q^{9} + O(q^{10}) \) \( 8q + 4q^{4} + 4q^{5} + 4q^{6} + 4q^{9} + 4q^{10} + 16q^{11} + 12q^{14} + 4q^{15} - 4q^{16} + 8q^{19} + 8q^{20} + 12q^{21} - 4q^{24} - 8q^{26} - 8q^{29} + 8q^{30} - 24q^{31} + 12q^{35} - 4q^{36} - 8q^{39} - 4q^{40} + 8q^{44} + 8q^{45} - 16q^{49} - 8q^{50} - 4q^{54} + 8q^{55} + 24q^{56} + 8q^{59} - 4q^{60} + 12q^{61} - 8q^{64} - 32q^{65} + 8q^{66} - 12q^{70} + 24q^{71} - 28q^{74} - 8q^{75} + 4q^{76} + 28q^{79} + 4q^{80} - 4q^{81} + 24q^{84} + 24q^{85} - 12q^{86} - 56q^{89} - 4q^{90} + 12q^{91} - 48q^{94} + 40q^{95} - 8q^{96} + 8q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/570\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(211\) \(457\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 + 0.500000i −0.612372 + 0.353553i
\(3\) −0.866025 + 0.500000i −0.500000 + 0.288675i
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) −2.03906 + 0.917738i −0.911894 + 0.410425i
\(6\) 0.500000 0.866025i 0.204124 0.353553i
\(7\) 3.00000i 1.13389i −0.823754 0.566947i \(-0.808125\pi\)
0.823754 0.566947i \(-0.191875\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0.500000 0.866025i 0.166667 0.288675i
\(10\) 1.30701 1.81431i 0.413312 0.573736i
\(11\) 2.00000 0.603023 0.301511 0.953463i \(-0.402509\pi\)
0.301511 + 0.953463i \(0.402509\pi\)
\(12\) 1.00000i 0.288675i
\(13\) 2.98735 + 1.72474i 0.828541 + 0.478358i 0.853353 0.521334i \(-0.174565\pi\)
−0.0248121 + 0.999692i \(0.507899\pi\)
\(14\) 1.50000 + 2.59808i 0.400892 + 0.694365i
\(15\) 1.30701 1.81431i 0.337468 0.468454i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −4.24264 + 2.44949i −1.02899 + 0.594089i −0.916696 0.399586i \(-0.869154\pi\)
−0.112296 + 0.993675i \(0.535820\pi\)
\(18\) 1.00000i 0.235702i
\(19\) 1.00000 + 4.24264i 0.229416 + 0.973329i
\(20\) −0.224745 + 2.22474i −0.0502545 + 0.497468i
\(21\) 1.50000 + 2.59808i 0.327327 + 0.566947i
\(22\) −1.73205 + 1.00000i −0.369274 + 0.213201i
\(23\) 2.12132 + 1.22474i 0.442326 + 0.255377i 0.704584 0.709621i \(-0.251134\pi\)
−0.262258 + 0.964998i \(0.584467\pi\)
\(24\) −0.500000 0.866025i −0.102062 0.176777i
\(25\) 3.31552 3.74264i 0.663103 0.748528i
\(26\) −3.44949 −0.676501
\(27\) 1.00000i 0.192450i
\(28\) −2.59808 1.50000i −0.490990 0.283473i
\(29\) −4.67423 + 8.09601i −0.867984 + 1.50339i −0.00392972 + 0.999992i \(0.501251\pi\)
−0.864054 + 0.503399i \(0.832082\pi\)
\(30\) −0.224745 + 2.22474i −0.0410326 + 0.406181i
\(31\) −7.89898 −1.41870 −0.709349 0.704857i \(-0.751011\pi\)
−0.709349 + 0.704857i \(0.751011\pi\)
\(32\) 0.866025 + 0.500000i 0.153093 + 0.0883883i
\(33\) −1.73205 + 1.00000i −0.301511 + 0.174078i
\(34\) 2.44949 4.24264i 0.420084 0.727607i
\(35\) 2.75321 + 6.11717i 0.465378 + 1.03399i
\(36\) −0.500000 0.866025i −0.0833333 0.144338i
\(37\) 4.55051i 0.748099i 0.927409 + 0.374050i \(0.122031\pi\)
−0.927409 + 0.374050i \(0.877969\pi\)
\(38\) −2.98735 3.17423i −0.484611 0.514929i
\(39\) −3.44949 −0.552360
\(40\) −0.917738 2.03906i −0.145107 0.322403i
\(41\) −1.22474 2.12132i −0.191273 0.331295i 0.754399 0.656416i \(-0.227928\pi\)
−0.945672 + 0.325121i \(0.894595\pi\)
\(42\) −2.59808 1.50000i −0.400892 0.231455i
\(43\) 0.476756 0.275255i 0.0727046 0.0419760i −0.463207 0.886250i \(-0.653301\pi\)
0.535912 + 0.844274i \(0.319968\pi\)
\(44\) 1.00000 1.73205i 0.150756 0.261116i
\(45\) −0.224745 + 2.22474i −0.0335030 + 0.331645i
\(46\) −2.44949 −0.361158
\(47\) 3.07483 + 1.77526i 0.448510 + 0.258948i 0.707201 0.707013i \(-0.249958\pi\)
−0.258691 + 0.965960i \(0.583291\pi\)
\(48\) 0.866025 + 0.500000i 0.125000 + 0.0721688i
\(49\) −2.00000 −0.285714
\(50\) −1.00000 + 4.89898i −0.141421 + 0.692820i
\(51\) 2.44949 4.24264i 0.342997 0.594089i
\(52\) 2.98735 1.72474i 0.414270 0.239179i
\(53\) 2.68556 + 1.55051i 0.368890 + 0.212979i 0.672974 0.739667i \(-0.265017\pi\)
−0.304083 + 0.952645i \(0.598350\pi\)
\(54\) −0.500000 0.866025i −0.0680414 0.117851i
\(55\) −4.07812 + 1.83548i −0.549893 + 0.247495i
\(56\) 3.00000 0.400892
\(57\) −2.98735 3.17423i −0.395684 0.420438i
\(58\) 9.34847i 1.22751i
\(59\) 5.89898 + 10.2173i 0.767982 + 1.33018i 0.938656 + 0.344856i \(0.112072\pi\)
−0.170674 + 0.985328i \(0.554594\pi\)
\(60\) −0.917738 2.03906i −0.118479 0.263241i
\(61\) −2.17423 + 3.76588i −0.278382 + 0.482172i −0.970983 0.239149i \(-0.923132\pi\)
0.692601 + 0.721321i \(0.256465\pi\)
\(62\) 6.84072 3.94949i 0.868772 0.501586i
\(63\) −2.59808 1.50000i −0.327327 0.188982i
\(64\) −1.00000 −0.125000
\(65\) −7.67423 0.775255i −0.951872 0.0961586i
\(66\) 1.00000 1.73205i 0.123091 0.213201i
\(67\) 1.25529 + 0.724745i 0.153359 + 0.0885417i 0.574716 0.818353i \(-0.305113\pi\)
−0.421357 + 0.906895i \(0.638446\pi\)
\(68\) 4.89898i 0.594089i
\(69\) −2.44949 −0.294884
\(70\) −5.44294 3.92102i −0.650556 0.468652i
\(71\) 1.77526 + 3.07483i 0.210684 + 0.364915i 0.951929 0.306319i \(-0.0990976\pi\)
−0.741245 + 0.671235i \(0.765764\pi\)
\(72\) 0.866025 + 0.500000i 0.102062 + 0.0589256i
\(73\) −10.3048 + 5.94949i −1.20609 + 0.696335i −0.961902 0.273393i \(-0.911854\pi\)
−0.244185 + 0.969729i \(0.578521\pi\)
\(74\) −2.27526 3.94086i −0.264493 0.458115i
\(75\) −1.00000 + 4.89898i −0.115470 + 0.565685i
\(76\) 4.17423 + 1.25529i 0.478818 + 0.143992i
\(77\) 6.00000i 0.683763i
\(78\) 2.98735 1.72474i 0.338250 0.195289i
\(79\) 8.39898 + 14.5475i 0.944959 + 1.63672i 0.755833 + 0.654764i \(0.227232\pi\)
0.189126 + 0.981953i \(0.439435\pi\)
\(80\) 1.81431 + 1.30701i 0.202846 + 0.146128i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 2.12132 + 1.22474i 0.234261 + 0.135250i
\(83\) 1.34847i 0.148014i 0.997258 + 0.0740069i \(0.0235787\pi\)
−0.997258 + 0.0740069i \(0.976421\pi\)
\(84\) 3.00000 0.327327
\(85\) 6.40300 8.88828i 0.694503 0.964070i
\(86\) −0.275255 + 0.476756i −0.0296815 + 0.0514099i
\(87\) 9.34847i 1.00226i
\(88\) 2.00000i 0.213201i
\(89\) −5.77526 + 10.0030i −0.612176 + 1.06032i 0.378697 + 0.925521i \(0.376372\pi\)
−0.990873 + 0.134799i \(0.956961\pi\)
\(90\) −0.917738 2.03906i −0.0967380 0.214936i
\(91\) 5.17423 8.96204i 0.542407 0.939477i
\(92\) 2.12132 1.22474i 0.221163 0.127688i
\(93\) 6.84072 3.94949i 0.709349 0.409543i
\(94\) −3.55051 −0.366207
\(95\) −5.93269 7.73325i −0.608681 0.793415i
\(96\) −1.00000 −0.102062
\(97\) 16.1920 9.34847i 1.64405 0.949193i 0.664679 0.747129i \(-0.268569\pi\)
0.979372 0.202064i \(-0.0647648\pi\)
\(98\) 1.73205 1.00000i 0.174964 0.101015i
\(99\) 1.00000 1.73205i 0.100504 0.174078i
\(100\) −1.58346 4.74264i −0.158346 0.474264i
\(101\) 1.89898 3.28913i 0.188956 0.327281i −0.755947 0.654633i \(-0.772823\pi\)
0.944902 + 0.327353i \(0.106156\pi\)
\(102\) 4.89898i 0.485071i
\(103\) 9.89898i 0.975375i 0.873018 + 0.487688i \(0.162160\pi\)
−0.873018 + 0.487688i \(0.837840\pi\)
\(104\) −1.72474 + 2.98735i −0.169125 + 0.292933i
\(105\) −5.44294 3.92102i −0.531176 0.382653i
\(106\) −3.10102 −0.301198
\(107\) 10.4495i 1.01019i −0.863064 0.505095i \(-0.831457\pi\)
0.863064 0.505095i \(-0.168543\pi\)
\(108\) 0.866025 + 0.500000i 0.0833333 + 0.0481125i
\(109\) −7.00000 12.1244i −0.670478 1.16130i −0.977769 0.209687i \(-0.932756\pi\)
0.307290 0.951616i \(-0.400578\pi\)
\(110\) 2.61401 3.62863i 0.249236 0.345976i
\(111\) −2.27526 3.94086i −0.215958 0.374050i
\(112\) −2.59808 + 1.50000i −0.245495 + 0.141737i
\(113\) 14.8990i 1.40158i −0.713369 0.700789i \(-0.752831\pi\)
0.713369 0.700789i \(-0.247169\pi\)
\(114\) 4.17423 + 1.25529i 0.390953 + 0.117569i
\(115\) −5.44949 0.550510i −0.508168 0.0513353i
\(116\) 4.67423 + 8.09601i 0.433992 + 0.751696i
\(117\) 2.98735 1.72474i 0.276180 0.159453i
\(118\) −10.2173 5.89898i −0.940582 0.543045i
\(119\) 7.34847 + 12.7279i 0.673633 + 1.16677i
\(120\) 1.81431 + 1.30701i 0.165623 + 0.119313i
\(121\) −7.00000 −0.636364
\(122\) 4.34847i 0.393692i
\(123\) 2.12132 + 1.22474i 0.191273 + 0.110432i
\(124\) −3.94949 + 6.84072i −0.354675 + 0.614315i
\(125\) −3.32577 + 10.6742i −0.297465 + 0.954733i
\(126\) 3.00000 0.267261
\(127\) 14.4600 + 8.34847i 1.28312 + 0.740807i 0.977417 0.211322i \(-0.0677767\pi\)
0.305699 + 0.952128i \(0.401110\pi\)
\(128\) 0.866025 0.500000i 0.0765466 0.0441942i
\(129\) −0.275255 + 0.476756i −0.0242349 + 0.0419760i
\(130\) 7.03371 3.16573i 0.616897 0.277653i
\(131\) −3.89898 6.75323i −0.340655 0.590032i 0.643899 0.765110i \(-0.277316\pi\)
−0.984555 + 0.175078i \(0.943982\pi\)
\(132\) 2.00000i 0.174078i
\(133\) 12.7279 3.00000i 1.10365 0.260133i
\(134\) −1.44949 −0.125217
\(135\) −0.917738 2.03906i −0.0789863 0.175494i
\(136\) −2.44949 4.24264i −0.210042 0.363803i
\(137\) 0.953512 + 0.550510i 0.0814640 + 0.0470333i 0.540179 0.841550i \(-0.318357\pi\)
−0.458715 + 0.888584i \(0.651690\pi\)
\(138\) 2.12132 1.22474i 0.180579 0.104257i
\(139\) 3.27526 5.67291i 0.277804 0.481170i −0.693035 0.720904i \(-0.743727\pi\)
0.970839 + 0.239734i \(0.0770602\pi\)
\(140\) 6.67423 + 0.674235i 0.564076 + 0.0569832i
\(141\) −3.55051 −0.299007
\(142\) −3.07483 1.77526i −0.258034 0.148976i
\(143\) 5.97469 + 3.44949i 0.499629 + 0.288461i
\(144\) −1.00000 −0.0833333
\(145\) 2.10102 20.7980i 0.174480 1.72718i
\(146\) 5.94949 10.3048i 0.492383 0.852833i
\(147\) 1.73205 1.00000i 0.142857 0.0824786i
\(148\) 3.94086 + 2.27526i 0.323936 + 0.187025i
\(149\) 1.89898 + 3.28913i 0.155570 + 0.269456i 0.933267 0.359184i \(-0.116945\pi\)
−0.777696 + 0.628640i \(0.783612\pi\)
\(150\) −1.58346 4.74264i −0.129289 0.387235i
\(151\) 19.7980 1.61114 0.805568 0.592504i \(-0.201861\pi\)
0.805568 + 0.592504i \(0.201861\pi\)
\(152\) −4.24264 + 1.00000i −0.344124 + 0.0811107i
\(153\) 4.89898i 0.396059i
\(154\) 3.00000 + 5.19615i 0.241747 + 0.418718i
\(155\) 16.1065 7.24919i 1.29370 0.582269i
\(156\) −1.72474 + 2.98735i −0.138090 + 0.239179i
\(157\) −4.71940 + 2.72474i −0.376649 + 0.217458i −0.676359 0.736572i \(-0.736443\pi\)
0.299710 + 0.954030i \(0.403110\pi\)
\(158\) −14.5475 8.39898i −1.15733 0.668187i
\(159\) −3.10102 −0.245927
\(160\) −2.22474 0.224745i −0.175882 0.0177676i
\(161\) 3.67423 6.36396i 0.289570 0.501550i
\(162\) 0.866025 + 0.500000i 0.0680414 + 0.0392837i
\(163\) 6.34847i 0.497250i 0.968600 + 0.248625i \(0.0799788\pi\)
−0.968600 + 0.248625i \(0.920021\pi\)
\(164\) −2.44949 −0.191273
\(165\) 2.61401 3.62863i 0.203501 0.282488i
\(166\) −0.674235 1.16781i −0.0523308 0.0906395i
\(167\) −13.6814 7.89898i −1.05870 0.611241i −0.133628 0.991032i \(-0.542663\pi\)
−0.925073 + 0.379790i \(0.875996\pi\)
\(168\) −2.59808 + 1.50000i −0.200446 + 0.115728i
\(169\) −0.550510 0.953512i −0.0423469 0.0733471i
\(170\) −1.10102 + 10.8990i −0.0844444 + 0.835914i
\(171\) 4.17423 + 1.25529i 0.319212 + 0.0959948i
\(172\) 0.550510i 0.0419760i
\(173\) −3.85337 + 2.22474i −0.292966 + 0.169144i −0.639279 0.768975i \(-0.720767\pi\)
0.346312 + 0.938119i \(0.387434\pi\)
\(174\) 4.67423 + 8.09601i 0.354353 + 0.613757i
\(175\) −11.2279 9.94655i −0.848751 0.751888i
\(176\) −1.00000 1.73205i −0.0753778 0.130558i
\(177\) −10.2173 5.89898i −0.767982 0.443394i
\(178\) 11.5505i 0.865747i
\(179\) 18.2474 1.36388 0.681939 0.731409i \(-0.261137\pi\)
0.681939 + 0.731409i \(0.261137\pi\)
\(180\) 1.81431 + 1.30701i 0.135231 + 0.0974186i
\(181\) 5.55051 9.61377i 0.412566 0.714586i −0.582603 0.812757i \(-0.697966\pi\)
0.995170 + 0.0981710i \(0.0312992\pi\)
\(182\) 10.3485i 0.767080i
\(183\) 4.34847i 0.321448i
\(184\) −1.22474 + 2.12132i −0.0902894 + 0.156386i
\(185\) −4.17617 9.27875i −0.307038 0.682188i
\(186\) −3.94949 + 6.84072i −0.289591 + 0.501586i
\(187\) −8.48528 + 4.89898i −0.620505 + 0.358249i
\(188\) 3.07483 1.77526i 0.224255 0.129474i
\(189\) 3.00000 0.218218
\(190\) 9.00449 + 3.73085i 0.653254 + 0.270664i
\(191\) −14.6969 −1.06343 −0.531717 0.846922i \(-0.678453\pi\)
−0.531717 + 0.846922i \(0.678453\pi\)
\(192\) 0.866025 0.500000i 0.0625000 0.0360844i
\(193\) −1.81954 + 1.05051i −0.130973 + 0.0756174i −0.564055 0.825737i \(-0.690759\pi\)
0.433082 + 0.901355i \(0.357426\pi\)
\(194\) −9.34847 + 16.1920i −0.671181 + 1.16252i
\(195\) 7.03371 3.16573i 0.503694 0.226702i
\(196\) −1.00000 + 1.73205i −0.0714286 + 0.123718i
\(197\) 16.6969i 1.18961i −0.803871 0.594804i \(-0.797230\pi\)
0.803871 0.594804i \(-0.202770\pi\)
\(198\) 2.00000i 0.142134i
\(199\) −4.05051 + 7.01569i −0.287133 + 0.497329i −0.973124 0.230281i \(-0.926036\pi\)
0.685991 + 0.727610i \(0.259369\pi\)
\(200\) 3.74264 + 3.31552i 0.264645 + 0.234442i
\(201\) −1.44949 −0.102239
\(202\) 3.79796i 0.267223i
\(203\) 24.2880 + 14.0227i 1.70469 + 0.984201i
\(204\) −2.44949 4.24264i −0.171499 0.297044i
\(205\) 4.44414 + 3.20150i 0.310392 + 0.223603i
\(206\) −4.94949 8.57277i −0.344847 0.597293i
\(207\) 2.12132 1.22474i 0.147442 0.0851257i
\(208\) 3.44949i 0.239179i
\(209\) 2.00000 + 8.48528i 0.138343 + 0.586939i
\(210\) 6.67423 + 0.674235i 0.460566 + 0.0465266i
\(211\) −1.17423 2.03383i −0.0808376 0.140015i 0.822772 0.568371i \(-0.192426\pi\)
−0.903610 + 0.428356i \(0.859093\pi\)
\(212\) 2.68556 1.55051i 0.184445 0.106489i
\(213\) −3.07483 1.77526i −0.210684 0.121638i
\(214\) 5.22474 + 9.04952i 0.357156 + 0.618613i
\(215\) −0.719521 + 0.998798i −0.0490709 + 0.0681175i
\(216\) −1.00000 −0.0680414
\(217\) 23.6969i 1.60865i
\(218\) 12.1244 + 7.00000i 0.821165 + 0.474100i
\(219\) 5.94949 10.3048i 0.402029 0.696335i
\(220\) −0.449490 + 4.44949i −0.0303046 + 0.299985i
\(221\) −16.8990 −1.13675
\(222\) 3.94086 + 2.27526i 0.264493 + 0.152705i
\(223\) −11.8619 + 6.84847i −0.794331 + 0.458607i −0.841485 0.540280i \(-0.818318\pi\)
0.0471538 + 0.998888i \(0.484985\pi\)
\(224\) 1.50000 2.59808i 0.100223 0.173591i
\(225\) −1.58346 4.74264i −0.105564 0.316176i
\(226\) 7.44949 + 12.9029i 0.495533 + 0.858288i
\(227\) 13.3485i 0.885969i 0.896529 + 0.442985i \(0.146080\pi\)
−0.896529 + 0.442985i \(0.853920\pi\)
\(228\) −4.24264 + 1.00000i −0.280976 + 0.0662266i
\(229\) −27.0454 −1.78721 −0.893605 0.448853i \(-0.851833\pi\)
−0.893605 + 0.448853i \(0.851833\pi\)
\(230\) 4.99465 2.24799i 0.329338 0.148228i
\(231\) 3.00000 + 5.19615i 0.197386 + 0.341882i
\(232\) −8.09601 4.67423i −0.531529 0.306879i
\(233\) −12.6886 + 7.32577i −0.831258 + 0.479927i −0.854283 0.519808i \(-0.826003\pi\)
0.0230254 + 0.999735i \(0.492670\pi\)
\(234\) −1.72474 + 2.98735i −0.112750 + 0.195289i
\(235\) −7.89898 0.797959i −0.515273 0.0520531i
\(236\) 11.7980 0.767982
\(237\) −14.5475 8.39898i −0.944959 0.545572i
\(238\) −12.7279 7.34847i −0.825029 0.476331i
\(239\) −8.65153 −0.559621 −0.279811 0.960055i \(-0.590272\pi\)
−0.279811 + 0.960055i \(0.590272\pi\)
\(240\) −2.22474 0.224745i −0.143607 0.0145072i
\(241\) −5.50000 + 9.52628i −0.354286 + 0.613642i −0.986996 0.160748i \(-0.948609\pi\)
0.632709 + 0.774389i \(0.281943\pi\)
\(242\) 6.06218 3.50000i 0.389692 0.224989i
\(243\) 0.866025 + 0.500000i 0.0555556 + 0.0320750i
\(244\) 2.17423 + 3.76588i 0.139191 + 0.241086i
\(245\) 4.07812 1.83548i 0.260541 0.117264i
\(246\) −2.44949 −0.156174
\(247\) −4.33013 + 14.3990i −0.275519 + 0.916185i
\(248\) 7.89898i 0.501586i
\(249\) −0.674235 1.16781i −0.0427279 0.0740069i
\(250\) −2.45692 10.9070i −0.155389 0.689822i
\(251\) 10.3485 17.9241i 0.653190 1.13136i −0.329155 0.944276i \(-0.606764\pi\)
0.982344 0.187082i \(-0.0599029\pi\)
\(252\) −2.59808 + 1.50000i −0.163663 + 0.0944911i
\(253\) 4.24264 + 2.44949i 0.266733 + 0.153998i
\(254\) −16.6969 −1.04766
\(255\) −1.10102 + 10.8990i −0.0689486 + 0.682521i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −21.7774 12.5732i −1.35844 0.784296i −0.369026 0.929419i \(-0.620309\pi\)
−0.989414 + 0.145123i \(0.953642\pi\)
\(258\) 0.550510i 0.0342733i
\(259\) 13.6515 0.848265
\(260\) −4.50851 + 6.25845i −0.279606 + 0.388133i
\(261\) 4.67423 + 8.09601i 0.289328 + 0.501131i
\(262\) 6.75323 + 3.89898i 0.417216 + 0.240880i
\(263\) −12.1244 + 7.00000i −0.747620 + 0.431638i −0.824833 0.565376i \(-0.808731\pi\)
0.0772134 + 0.997015i \(0.475398\pi\)
\(264\) −1.00000 1.73205i −0.0615457 0.106600i
\(265\) −6.89898 0.696938i −0.423801 0.0428126i
\(266\) −9.52270 + 8.96204i −0.583874 + 0.549498i
\(267\) 11.5505i 0.706880i
\(268\) 1.25529 0.724745i 0.0766793 0.0442708i
\(269\) −13.2474 22.9453i −0.807711 1.39900i −0.914445 0.404709i \(-0.867373\pi\)
0.106734 0.994288i \(-0.465961\pi\)
\(270\) 1.81431 + 1.30701i 0.110416 + 0.0795419i
\(271\) 2.55051 + 4.41761i 0.154932 + 0.268351i 0.933034 0.359787i \(-0.117151\pi\)
−0.778102 + 0.628138i \(0.783817\pi\)
\(272\) 4.24264 + 2.44949i 0.257248 + 0.148522i
\(273\) 10.3485i 0.626318i
\(274\) −1.10102 −0.0665151
\(275\) 6.63103 7.48528i 0.399866 0.451379i
\(276\) −1.22474 + 2.12132i −0.0737210 + 0.127688i
\(277\) 32.4949i 1.95243i 0.216807 + 0.976215i \(0.430436\pi\)
−0.216807 + 0.976215i \(0.569564\pi\)
\(278\) 6.55051i 0.392873i
\(279\) −3.94949 + 6.84072i −0.236450 + 0.409543i
\(280\) −6.11717 + 2.75321i −0.365571 + 0.164536i
\(281\) 13.2247 22.9059i 0.788922 1.36645i −0.137706 0.990473i \(-0.543973\pi\)
0.926628 0.375980i \(-0.122694\pi\)
\(282\) 3.07483 1.77526i 0.183104 0.105715i
\(283\) 7.70674 4.44949i 0.458118 0.264495i −0.253134 0.967431i \(-0.581461\pi\)
0.711253 + 0.702936i \(0.248128\pi\)
\(284\) 3.55051 0.210684
\(285\) 9.00449 + 3.73085i 0.533380 + 0.220996i
\(286\) −6.89898 −0.407945
\(287\) −6.36396 + 3.67423i −0.375653 + 0.216883i
\(288\) 0.866025 0.500000i 0.0510310 0.0294628i
\(289\) 3.50000 6.06218i 0.205882 0.356599i
\(290\) 8.57944 + 19.0621i 0.503802 + 1.11936i
\(291\) −9.34847 + 16.1920i −0.548017 + 0.949193i
\(292\) 11.8990i 0.696335i
\(293\) 18.8990i 1.10409i 0.833814 + 0.552045i \(0.186152\pi\)
−0.833814 + 0.552045i \(0.813848\pi\)
\(294\) −1.00000 + 1.73205i −0.0583212 + 0.101015i
\(295\) −21.4052 15.4200i −1.24626 0.897788i
\(296\) −4.55051 −0.264493
\(297\) 2.00000i 0.116052i
\(298\) −3.28913 1.89898i −0.190534 0.110005i
\(299\) 4.22474 + 7.31747i 0.244323 + 0.423180i
\(300\) 3.74264 + 3.31552i 0.216081 + 0.191421i
\(301\) −0.825765 1.43027i −0.0475963 0.0824393i
\(302\) −17.1455 + 9.89898i −0.986615 + 0.569622i
\(303\) 3.79796i 0.218187i
\(304\) 3.17423 2.98735i 0.182055 0.171336i
\(305\) 0.977296 9.67423i 0.0559598 0.553945i
\(306\) −2.44949 4.24264i −0.140028 0.242536i
\(307\) −1.90702 + 1.10102i −0.108840 + 0.0628386i −0.553432 0.832895i \(-0.686682\pi\)
0.444592 + 0.895733i \(0.353349\pi\)
\(308\) −5.19615 3.00000i −0.296078 0.170941i
\(309\) −4.94949 8.57277i −0.281567 0.487688i
\(310\) −10.3240 + 14.3312i −0.586365 + 0.813959i
\(311\) 10.8990 0.618024 0.309012 0.951058i \(-0.400002\pi\)
0.309012 + 0.951058i \(0.400002\pi\)
\(312\) 3.44949i 0.195289i
\(313\) 13.0779 + 7.55051i 0.739205 + 0.426780i 0.821780 0.569805i \(-0.192981\pi\)
−0.0825753 + 0.996585i \(0.526315\pi\)
\(314\) 2.72474 4.71940i 0.153766 0.266331i
\(315\) 6.67423 + 0.674235i 0.376051 + 0.0379888i
\(316\) 16.7980 0.944959
\(317\) 5.41045 + 3.12372i 0.303881 + 0.175446i 0.644185 0.764870i \(-0.277197\pi\)
−0.340304 + 0.940315i \(0.610530\pi\)
\(318\) 2.68556 1.55051i 0.150599 0.0869483i
\(319\) −9.34847 + 16.1920i −0.523414 + 0.906579i
\(320\) 2.03906 0.917738i 0.113987 0.0513031i
\(321\) 5.22474 + 9.04952i 0.291617 + 0.505095i
\(322\) 7.34847i 0.409514i
\(323\) −14.6349 15.5505i −0.814310 0.865254i
\(324\) −1.00000 −0.0555556
\(325\) 16.3597 5.46214i 0.907472 0.302985i
\(326\) −3.17423 5.49794i −0.175805 0.304502i
\(327\) 12.1244 + 7.00000i 0.670478 + 0.387101i
\(328\) 2.12132 1.22474i 0.117130 0.0676252i
\(329\) 5.32577 9.22450i 0.293619 0.508563i
\(330\) −0.449490 + 4.44949i −0.0247436 + 0.244936i
\(331\) 23.2474 1.27780 0.638898 0.769292i \(-0.279391\pi\)
0.638898 + 0.769292i \(0.279391\pi\)
\(332\) 1.16781 + 0.674235i 0.0640918 + 0.0370034i
\(333\) 3.94086 + 2.27526i 0.215958 + 0.124683i
\(334\) 15.7980 0.864426
\(335\) −3.22474 0.325765i −0.176187 0.0177985i
\(336\) 1.50000 2.59808i 0.0818317 0.141737i
\(337\) 3.55159 2.05051i 0.193467 0.111698i −0.400137 0.916455i \(-0.631038\pi\)
0.593605 + 0.804757i \(0.297704\pi\)
\(338\) 0.953512 + 0.550510i 0.0518642 + 0.0299438i
\(339\) 7.44949 + 12.9029i 0.404601 + 0.700789i
\(340\) −4.49598 9.98930i −0.243829 0.541746i
\(341\) −15.7980 −0.855507
\(342\) −4.24264 + 1.00000i −0.229416 + 0.0540738i
\(343\) 15.0000i 0.809924i
\(344\) 0.275255 + 0.476756i 0.0148408 + 0.0257050i
\(345\) 4.99465 2.24799i 0.268903 0.121028i
\(346\) 2.22474 3.85337i 0.119603 0.207159i
\(347\) 24.6773 14.2474i 1.32475 0.764843i 0.340265 0.940329i \(-0.389483\pi\)
0.984482 + 0.175486i \(0.0561498\pi\)
\(348\) −8.09601 4.67423i −0.433992 0.250565i
\(349\) 26.5505 1.42122 0.710608 0.703588i \(-0.248420\pi\)
0.710608 + 0.703588i \(0.248420\pi\)
\(350\) 14.6969 + 3.00000i 0.785584 + 0.160357i
\(351\) −1.72474 + 2.98735i −0.0920601 + 0.159453i
\(352\) 1.73205 + 1.00000i 0.0923186 + 0.0533002i
\(353\) 21.1464i 1.12551i 0.826623 + 0.562755i \(0.190259\pi\)
−0.826623 + 0.562755i \(0.809741\pi\)
\(354\) 11.7980 0.627054
\(355\) −6.44174 4.64054i −0.341892 0.246294i
\(356\) 5.77526 + 10.0030i 0.306088 + 0.530160i
\(357\) −12.7279 7.34847i −0.673633 0.388922i
\(358\) −15.8028 + 9.12372i −0.835202 + 0.482204i
\(359\) −10.1237 17.5348i −0.534310 0.925452i −0.999196 0.0400814i \(-0.987238\pi\)
0.464887 0.885370i \(-0.346095\pi\)
\(360\) −2.22474 0.224745i −0.117254 0.0118451i
\(361\) −17.0000 + 8.48528i −0.894737 + 0.446594i
\(362\) 11.1010i 0.583457i
\(363\) 6.06218 3.50000i 0.318182 0.183702i
\(364\) −5.17423 8.96204i −0.271204 0.469738i
\(365\) 15.5521 21.5885i 0.814032 1.12999i
\(366\) 2.17423 + 3.76588i 0.113649 + 0.196846i
\(367\) 14.3725 + 8.29796i 0.750238 + 0.433150i 0.825780 0.563993i \(-0.190735\pi\)
−0.0755421 + 0.997143i \(0.524069\pi\)
\(368\) 2.44949i 0.127688i
\(369\) −2.44949 −0.127515
\(370\) 8.25605 + 5.94755i 0.429212 + 0.309198i
\(371\) 4.65153 8.05669i 0.241495 0.418282i
\(372\) 7.89898i 0.409543i
\(373\) 25.1010i 1.29968i 0.760070 + 0.649841i \(0.225164\pi\)
−0.760070 + 0.649841i \(0.774836\pi\)
\(374\) 4.89898 8.48528i 0.253320 0.438763i
\(375\) −2.45692 10.9070i −0.126875 0.563237i
\(376\) −1.77526 + 3.07483i −0.0915518 + 0.158572i
\(377\) −27.9271 + 16.1237i −1.43832 + 0.830414i
\(378\) −2.59808 + 1.50000i −0.133631 + 0.0771517i
\(379\) −8.75255 −0.449588 −0.224794 0.974406i \(-0.572171\pi\)
−0.224794 + 0.974406i \(0.572171\pi\)
\(380\) −9.66354 + 1.27123i −0.495729 + 0.0652129i
\(381\) −16.6969 −0.855410
\(382\) 12.7279 7.34847i 0.651217 0.375980i
\(383\) 1.16781 0.674235i 0.0596722 0.0344518i −0.469867 0.882737i \(-0.655698\pi\)
0.529539 + 0.848285i \(0.322365\pi\)
\(384\) −0.500000 + 0.866025i −0.0255155 + 0.0441942i
\(385\) 5.50643 + 12.2343i 0.280633 + 0.623520i
\(386\) 1.05051 1.81954i 0.0534696 0.0926120i
\(387\) 0.550510i 0.0279840i
\(388\) 18.6969i 0.949193i
\(389\) 7.12372 12.3387i 0.361187 0.625595i −0.626969 0.779044i \(-0.715705\pi\)
0.988157 + 0.153449i \(0.0490382\pi\)
\(390\) −4.50851 + 6.25845i −0.228297 + 0.316909i
\(391\) −12.0000 −0.606866
\(392\) 2.00000i 0.101015i
\(393\) 6.75323 + 3.89898i 0.340655 + 0.196677i
\(394\) 8.34847 + 14.4600i 0.420590 + 0.728483i
\(395\) −30.4768 21.9551i −1.53345 1.10468i
\(396\) −1.00000 1.73205i −0.0502519 0.0870388i
\(397\) −8.00853 + 4.62372i −0.401936 + 0.232058i −0.687319 0.726356i \(-0.741213\pi\)
0.285383 + 0.958414i \(0.407879\pi\)
\(398\) 8.10102i 0.406067i
\(399\) −9.52270 + 8.96204i −0.476731 + 0.448663i
\(400\) −4.89898 1.00000i −0.244949 0.0500000i
\(401\) −16.1464 27.9664i −0.806314 1.39658i −0.915400 0.402545i \(-0.868126\pi\)
0.109086 0.994032i \(-0.465208\pi\)
\(402\) 1.25529 0.724745i 0.0626084 0.0361470i
\(403\) −23.5970 13.6237i −1.17545 0.678646i
\(404\) −1.89898 3.28913i −0.0944778 0.163640i
\(405\) 1.81431 + 1.30701i 0.0901539 + 0.0649457i
\(406\) −28.0454 −1.39187
\(407\) 9.10102i 0.451121i
\(408\) 4.24264 + 2.44949i 0.210042 + 0.121268i
\(409\) −5.55051 + 9.61377i −0.274455 + 0.475370i −0.969997 0.243115i \(-0.921831\pi\)
0.695542 + 0.718485i \(0.255164\pi\)
\(410\) −5.44949 0.550510i −0.269131 0.0271878i
\(411\) −1.10102 −0.0543093
\(412\) 8.57277 + 4.94949i 0.422350 + 0.243844i
\(413\) 30.6520 17.6969i 1.50829 0.870809i
\(414\) −1.22474 + 2.12132i −0.0601929 + 0.104257i
\(415\) −1.23754 2.74961i −0.0607485 0.134973i
\(416\) 1.72474 + 2.98735i 0.0845626 + 0.146467i
\(417\) 6.55051i 0.320780i
\(418\) −5.97469 6.34847i −0.292232 0.310514i
\(419\) 26.0454 1.27240 0.636201 0.771524i \(-0.280505\pi\)
0.636201 + 0.771524i \(0.280505\pi\)
\(420\) −6.11717 + 2.75321i −0.298488 + 0.134343i
\(421\) 10.7980 + 18.7026i 0.526260 + 0.911510i 0.999532 + 0.0305930i \(0.00973959\pi\)
−0.473272 + 0.880917i \(0.656927\pi\)
\(422\) 2.03383 + 1.17423i 0.0990055 + 0.0571608i
\(423\) 3.07483 1.77526i 0.149503 0.0863159i
\(424\) −1.55051 + 2.68556i −0.0752994 + 0.130422i
\(425\) −4.89898 + 24.0000i −0.237635 + 1.16417i
\(426\) 3.55051 0.172023
\(427\) 11.2977 + 6.52270i 0.546732 + 0.315656i
\(428\) −9.04952 5.22474i −0.437425 0.252548i
\(429\) −6.89898 −0.333086
\(430\) 0.123724 1.22474i 0.00596652 0.0590624i
\(431\) −15.1237 + 26.1951i −0.728484 + 1.26177i 0.229040 + 0.973417i \(0.426441\pi\)
−0.957524 + 0.288354i \(0.906892\pi\)
\(432\) 0.866025 0.500000i 0.0416667 0.0240563i
\(433\) 16.2795 + 9.39898i 0.782343 + 0.451686i 0.837260 0.546805i \(-0.184156\pi\)
−0.0549168 + 0.998491i \(0.517489\pi\)
\(434\) −11.8485 20.5222i −0.568745 0.985095i
\(435\) 8.57944 + 19.0621i 0.411353 + 0.913956i
\(436\) −14.0000 −0.670478
\(437\) −3.07483 + 10.2247i −0.147089 + 0.489116i
\(438\) 11.8990i 0.568555i
\(439\) −8.74745 15.1510i −0.417493 0.723119i 0.578194 0.815900i \(-0.303758\pi\)
−0.995687 + 0.0927806i \(0.970424\pi\)
\(440\) −1.83548 4.07812i −0.0875029 0.194417i
\(441\) −1.00000 + 1.73205i −0.0476190 + 0.0824786i
\(442\) 14.6349 8.44949i 0.696113 0.401901i
\(443\) −8.48528 4.89898i −0.403148 0.232758i 0.284693 0.958619i \(-0.408108\pi\)
−0.687841 + 0.725861i \(0.741442\pi\)
\(444\) −4.55051 −0.215958
\(445\) 2.59592 25.6969i 0.123058 1.21815i
\(446\) 6.84847 11.8619i 0.324284 0.561677i
\(447\) −3.28913 1.89898i −0.155570 0.0898186i
\(448\) 3.00000i 0.141737i
\(449\) 10.6969 0.504820 0.252410 0.967620i \(-0.418777\pi\)
0.252410 + 0.967620i \(0.418777\pi\)
\(450\) 3.74264 + 3.31552i 0.176430 + 0.156295i
\(451\) −2.44949 4.24264i −0.115342 0.199778i
\(452\) −12.9029 7.44949i −0.606901 0.350395i
\(453\) −17.1455 + 9.89898i −0.805568 + 0.465095i
\(454\) −6.67423 11.5601i −0.313237 0.542543i
\(455\) −2.32577 + 23.0227i −0.109034 + 1.07932i
\(456\) 3.17423 2.98735i 0.148647 0.139895i
\(457\) 14.1010i 0.659618i −0.944048 0.329809i \(-0.893016\pi\)
0.944048 0.329809i \(-0.106984\pi\)
\(458\) 23.4220 13.5227i 1.09444 0.631874i
\(459\) −2.44949 4.24264i −0.114332 0.198030i
\(460\) −3.20150 + 4.44414i −0.149271 + 0.207209i
\(461\) 12.1237 + 20.9989i 0.564658 + 0.978017i 0.997081 + 0.0763458i \(0.0243253\pi\)
−0.432423 + 0.901671i \(0.642341\pi\)
\(462\) −5.19615 3.00000i −0.241747 0.139573i
\(463\) 39.2929i 1.82609i −0.407854 0.913047i \(-0.633723\pi\)
0.407854 0.913047i \(-0.366277\pi\)
\(464\) 9.34847 0.433992
\(465\) −10.3240 + 14.3312i −0.478765 + 0.664595i
\(466\) 7.32577 12.6886i 0.339360 0.587788i
\(467\) 3.55051i 0.164298i −0.996620 0.0821490i \(-0.973822\pi\)
0.996620 0.0821490i \(-0.0261783\pi\)
\(468\) 3.44949i 0.159453i
\(469\) 2.17423 3.76588i 0.100397 0.173892i
\(470\) 7.23970 3.25844i 0.333942 0.150300i
\(471\) 2.72474 4.71940i 0.125550 0.217458i
\(472\) −10.2173 + 5.89898i −0.470291 + 0.271523i
\(473\) 0.953512 0.550510i 0.0438425 0.0253125i
\(474\) 16.7980 0.771556
\(475\) 19.1942 + 10.3239i 0.880690 + 0.473693i
\(476\) 14.6969 0.673633
\(477\) 2.68556 1.55051i 0.122963 0.0709930i
\(478\) 7.49245 4.32577i 0.342696 0.197856i
\(479\) 14.3485 24.8523i 0.655598 1.13553i −0.326145 0.945320i \(-0.605750\pi\)
0.981743 0.190210i \(-0.0609168\pi\)
\(480\) 2.03906 0.917738i 0.0930698 0.0418888i
\(481\) −7.84847 + 13.5939i −0.357859 + 0.619831i
\(482\) 11.0000i 0.501036i
\(483\) 7.34847i 0.334367i
\(484\) −3.50000 + 6.06218i −0.159091 + 0.275554i
\(485\) −24.4370 + 33.9221i −1.10963 + 1.54032i
\(486\) −1.00000 −0.0453609
\(487\) 34.8990i 1.58142i −0.612188 0.790712i \(-0.709711\pi\)
0.612188 0.790712i \(-0.290289\pi\)
\(488\) −3.76588 2.17423i −0.170474 0.0984230i
\(489\) −3.17423 5.49794i −0.143544 0.248625i
\(490\) −2.61401 + 3.62863i −0.118089 + 0.163925i
\(491\) 5.02270 + 8.69958i 0.226671 + 0.392606i 0.956820 0.290682i \(-0.0938823\pi\)
−0.730148 + 0.683289i \(0.760549\pi\)
\(492\) 2.12132 1.22474i 0.0956365 0.0552158i
\(493\) 45.7980i 2.06264i
\(494\) −3.44949 14.6349i −0.155200 0.658457i
\(495\) −0.449490 + 4.44949i −0.0202031 + 0.199990i
\(496\) 3.94949 + 6.84072i 0.177337 + 0.307157i
\(497\) 9.22450 5.32577i 0.413775 0.238893i
\(498\) 1.16781 + 0.674235i 0.0523308 + 0.0302132i
\(499\) −16.4217 28.4432i −0.735136 1.27329i −0.954664 0.297686i \(-0.903785\pi\)
0.219528 0.975606i \(-0.429548\pi\)
\(500\) 7.58128 + 8.21731i 0.339045 + 0.367489i
\(501\) 15.7980 0.705801
\(502\) 20.6969i 0.923750i
\(503\) 5.02118 + 2.89898i 0.223883 + 0.129259i 0.607747 0.794131i \(-0.292073\pi\)
−0.383864 + 0.923390i \(0.625407\pi\)
\(504\) 1.50000 2.59808i 0.0668153 0.115728i
\(505\) −0.853572 + 8.44949i −0.0379834 + 0.375997i
\(506\) −4.89898 −0.217786
\(507\) 0.953512 + 0.550510i 0.0423469 + 0.0244490i
\(508\) 14.4600 8.34847i 0.641558 0.370403i
\(509\) −7.22474 + 12.5136i −0.320231 + 0.554657i −0.980536 0.196341i \(-0.937094\pi\)
0.660304 + 0.750998i \(0.270427\pi\)
\(510\) −4.49598 9.98930i −0.199085 0.442334i
\(511\) 17.8485 + 30.9145i 0.789570 + 1.36757i
\(512\) 1.00000i 0.0441942i
\(513\) −4.24264 + 1.00000i −0.187317 + 0.0441511i
\(514\) 25.1464 1.10916
\(515\) −9.08467 20.1846i −0.400318 0.889439i
\(516\) 0.275255 + 0.476756i 0.0121174 + 0.0209880i
\(517\) 6.14966 + 3.55051i 0.270462 + 0.156151i
\(518\) −11.8226 + 6.82577i −0.519454 + 0.299907i
\(519\) 2.22474 3.85337i 0.0976555 0.169144i
\(520\) 0.775255 7.67423i 0.0339972 0.336537i
\(521\) 18.2474 0.799435 0.399718 0.916638i \(-0.369108\pi\)
0.399718 + 0.916638i \(0.369108\pi\)
\(522\) −8.09601 4.67423i −0.354353 0.204586i
\(523\) −14.1582 8.17423i −0.619094 0.357434i 0.157422 0.987531i \(-0.449682\pi\)
−0.776516 + 0.630097i \(0.783015\pi\)
\(524\) −7.79796 −0.340655
\(525\) 14.6969 + 3.00000i 0.641427 + 0.130931i
\(526\) 7.00000 12.1244i 0.305215 0.528647i
\(527\) 33.5125 19.3485i 1.45983 0.842833i
\(528\) 1.73205 + 1.00000i 0.0753778 + 0.0435194i
\(529\) −8.50000 14.7224i −0.369565 0.640106i
\(530\) 6.32316 2.84592i 0.274661 0.123619i
\(531\) 11.7980 0.511988
\(532\) 3.76588 12.5227i 0.163272 0.542928i
\(533\) 8.44949i 0.365988i
\(534\) 5.77526 + 10.0030i 0.249920 + 0.432874i
\(535\) 9.58989 + 21.3071i 0.414607 + 0.921187i
\(536\) −0.724745 + 1.25529i −0.0313042 + 0.0542205i
\(537\) −15.8028 + 9.12372i −0.681939 + 0.393718i
\(538\) 22.9453 + 13.2474i 0.989240 + 0.571138i
\(539\) −4.00000 −0.172292
\(540\) −2.22474 0.224745i −0.0957378 0.00967148i
\(541\) 7.17423 12.4261i 0.308444 0.534241i −0.669578 0.742742i \(-0.733525\pi\)
0.978022 + 0.208500i \(0.0668583\pi\)
\(542\) −4.41761 2.55051i −0.189753 0.109554i
\(543\) 11.1010i 0.476390i
\(544\) −4.89898 −0.210042
\(545\) 25.4004 + 18.2981i 1.08803 + 0.783805i
\(546\) −5.17423 8.96204i −0.221437 0.383540i
\(547\) 12.2512 + 7.07321i 0.523822 + 0.302429i 0.738497 0.674257i \(-0.235536\pi\)
−0.214675 + 0.976686i \(0.568869\pi\)
\(548\) 0.953512 0.550510i 0.0407320 0.0235166i
\(549\) 2.17423 + 3.76588i 0.0927941 + 0.160724i
\(550\) −2.00000 + 9.79796i −0.0852803 + 0.417786i
\(551\) −39.0227 11.7351i −1.66242 0.499931i
\(552\) 2.44949i 0.104257i
\(553\) 43.6424 25.1969i 1.85586 1.07148i
\(554\) −16.2474 28.1414i −0.690288 1.19561i
\(555\) 8.25605 + 5.94755i 0.350450 + 0.252459i
\(556\) −3.27526 5.67291i −0.138902 0.240585i
\(557\) −31.8198 18.3712i −1.34825 0.778412i −0.360247 0.932857i \(-0.617308\pi\)
−0.988001 + 0.154445i \(0.950641\pi\)
\(558\) 7.89898i 0.334390i
\(559\) 1.89898 0.0803183
\(560\) 3.92102 5.44294i 0.165693 0.230006i
\(561\) 4.89898 8.48528i 0.206835 0.358249i
\(562\) 26.4495i 1.11570i
\(563\) 25.5959i 1.07874i 0.842069 + 0.539370i \(0.181337\pi\)
−0.842069 + 0.539370i \(0.818663\pi\)
\(564\) −1.77526 + 3.07483i −0.0747517 + 0.129474i
\(565\) 13.6734 + 30.3799i 0.575242 + 1.27809i
\(566\) −4.44949 + 7.70674i −0.187026 + 0.323939i
\(567\) −2.59808 + 1.50000i −0.109109 + 0.0629941i
\(568\) −3.07483 + 1.77526i −0.129017 + 0.0744881i
\(569\) 32.8990 1.37920 0.689598 0.724192i \(-0.257787\pi\)
0.689598 + 0.724192i \(0.257787\pi\)
\(570\) −9.66354 + 1.27123i −0.404761 + 0.0532461i
\(571\) −20.5505 −0.860012 −0.430006 0.902826i \(-0.641489\pi\)
−0.430006 + 0.902826i \(0.641489\pi\)
\(572\) 5.97469 3.44949i 0.249814 0.144230i
\(573\) 12.7279 7.34847i 0.531717 0.306987i
\(574\) 3.67423 6.36396i 0.153360 0.265627i
\(575\) 11.6170 3.87868i 0.484464 0.161752i
\(576\) −0.500000 + 0.866025i −0.0208333 + 0.0360844i
\(577\) 22.0000i 0.915872i −0.888985 0.457936i \(-0.848589\pi\)
0.888985 0.457936i \(-0.151411\pi\)
\(578\) 7.00000i 0.291162i
\(579\) 1.05051 1.81954i 0.0436577 0.0756174i
\(580\) −16.9611 12.2185i −0.704269 0.507346i
\(581\) 4.04541 0.167832
\(582\) 18.6969i 0.775013i
\(583\) 5.37113 + 3.10102i 0.222449 + 0.128431i
\(584\) −5.94949 10.3048i −0.246192 0.426416i
\(585\) −4.50851 + 6.25845i −0.186404 + 0.258755i
\(586\) −9.44949 16.3670i −0.390355 0.676114i
\(587\) 27.9664 16.1464i 1.15430 0.666434i 0.204367 0.978894i \(-0.434486\pi\)
0.949931 + 0.312460i \(0.101153\pi\)
\(588\) 2.00000i 0.0824786i
\(589\) −7.89898 33.5125i −0.325472 1.38086i
\(590\) 26.2474 + 2.65153i 1.08059 + 0.109162i
\(591\) 8.34847 + 14.4600i 0.343410 + 0.594804i
\(592\) 3.94086 2.27526i 0.161968 0.0935124i
\(593\) −16.5813 9.57321i −0.680912 0.393125i 0.119287 0.992860i \(-0.461939\pi\)
−0.800199 + 0.599735i \(0.795273\pi\)
\(594\) −1.00000 1.73205i −0.0410305 0.0710669i
\(595\) −26.6648 19.2090i −1.09315 0.787492i
\(596\) 3.79796 0.155570
\(597\) 8.10102i 0.331553i
\(598\) −7.31747 4.22474i −0.299234 0.172763i
\(599\) −15.1237 + 26.1951i −0.617939 + 1.07030i 0.371923 + 0.928264i \(0.378699\pi\)
−0.989861 + 0.142037i \(0.954635\pi\)
\(600\) −4.89898 1.00000i −0.200000 0.0408248i
\(601\) −15.0000 −0.611863 −0.305931 0.952054i \(-0.598968\pi\)
−0.305931 + 0.952054i \(0.598968\pi\)
\(602\) 1.43027 + 0.825765i 0.0582934 + 0.0336557i
\(603\) 1.25529 0.724745i 0.0511196 0.0295139i
\(604\) 9.89898 17.1455i 0.402784 0.697642i
\(605\) 14.2734 6.42416i 0.580296 0.261179i
\(606\) −1.89898 3.28913i −0.0771408 0.133612i
\(607\) 27.0000i 1.09590i 0.836512 + 0.547948i \(0.184591\pi\)
−0.836512 + 0.547948i \(0.815409\pi\)
\(608\) −1.25529 + 4.17423i −0.0509089 + 0.169288i
\(609\) −28.0454 −1.13646
\(610\) 3.99075 + 8.86678i 0.161581 + 0.359005i
\(611\) 6.12372 + 10.6066i 0.247739 + 0.429097i
\(612\) 4.24264 + 2.44949i 0.171499 + 0.0990148i
\(613\) 26.7593 15.4495i 1.08080 0.623999i 0.149686 0.988734i \(-0.452174\pi\)
0.931112 + 0.364735i \(0.118840\pi\)
\(614\) 1.10102 1.90702i 0.0444336 0.0769612i
\(615\) −5.44949 0.550510i −0.219745 0.0221987i
\(616\) 6.00000 0.241747
\(617\) −7.74607 4.47219i −0.311845 0.180044i 0.335907 0.941895i \(-0.390957\pi\)
−0.647752 + 0.761851i \(0.724291\pi\)
\(618\) 8.57277 + 4.94949i 0.344847 + 0.199098i
\(619\) 11.0454 0.443952 0.221976 0.975052i \(-0.428749\pi\)
0.221976 + 0.975052i \(0.428749\pi\)
\(620\) 1.77526 17.5732i 0.0712960 0.705757i
\(621\) −1.22474 + 2.12132i −0.0491473 + 0.0851257i
\(622\) −9.43879 + 5.44949i −0.378461 + 0.218505i
\(623\) 30.0091 + 17.3258i 1.20229 + 0.694142i
\(624\) 1.72474 + 2.98735i 0.0690451 + 0.119590i
\(625\) −3.01472 24.8176i −0.120589 0.992703i
\(626\) −15.1010 −0.603558
\(627\) −5.97469 6.34847i −0.238606 0.253533i
\(628\) 5.44949i 0.217458i
\(629\) −11.1464 19.3062i −0.444437 0.769788i
\(630\) −6.11717 + 2.75321i −0.243714 + 0.109691i
\(631\) −20.9495 + 36.2856i −0.833986 + 1.44451i 0.0608673 + 0.998146i \(0.480613\pi\)
−0.894853 + 0.446360i \(0.852720\pi\)
\(632\) −14.5475 + 8.39898i −0.578667 + 0.334093i
\(633\) 2.03383 + 1.17423i 0.0808376 + 0.0466716i
\(634\) −6.24745 −0.248118
\(635\) −37.1464 3.75255i −1.47411 0.148915i
\(636\) −1.55051 + 2.68556i −0.0614817 + 0.106489i
\(637\) −5.97469 3.44949i −0.236726 0.136674i
\(638\) 18.6969i 0.740219i
\(639\) 3.55051 0.140456
\(640\) −1.30701 + 1.81431i −0.0516640 + 0.0717170i
\(641\) 21.1237 + 36.5874i 0.834337 + 1.44511i 0.894569 + 0.446930i \(0.147483\pi\)
−0.0602322 + 0.998184i \(0.519184\pi\)
\(642\) −9.04952 5.22474i −0.357156 0.206204i
\(643\) −31.4787 + 18.1742i −1.24140 + 0.716722i −0.969379 0.245570i \(-0.921025\pi\)
−0.272020 + 0.962292i \(0.587692\pi\)
\(644\) −3.67423 6.36396i −0.144785 0.250775i
\(645\) 0.123724 1.22474i 0.00487164 0.0482243i
\(646\) 20.4495 + 6.14966i 0.804574 + 0.241955i
\(647\) 31.8434i 1.25189i −0.779866 0.625946i \(-0.784713\pi\)
0.779866 0.625946i \(-0.215287\pi\)
\(648\) 0.866025 0.500000i 0.0340207 0.0196419i
\(649\) 11.7980 + 20.4347i 0.463110 + 0.802131i
\(650\) −11.4368 + 12.9102i −0.448590 + 0.506380i
\(651\) −11.8485 20.5222i −0.464378 0.804327i
\(652\) 5.49794 + 3.17423i 0.215316 + 0.124313i
\(653\) 2.44949i 0.0958559i 0.998851 + 0.0479280i \(0.0152618\pi\)
−0.998851 + 0.0479280i \(0.984738\pi\)
\(654\) −14.0000 −0.547443
\(655\) 14.1479 + 10.1920i 0.552806 + 0.398234i
\(656\) −1.22474 + 2.12132i −0.0478183 + 0.0828236i
\(657\) 11.8990i 0.464223i
\(658\) 10.6515i 0.415240i
\(659\) 0.348469 0.603566i 0.0135744 0.0235116i −0.859158 0.511710i \(-0.829012\pi\)
0.872733 + 0.488198i \(0.162346\pi\)
\(660\) −1.83548 4.07812i −0.0714458 0.158740i
\(661\) 3.44949 5.97469i 0.134170 0.232389i −0.791110 0.611673i \(-0.790497\pi\)
0.925280 + 0.379285i \(0.123830\pi\)
\(662\) −20.1329 + 11.6237i −0.782487 + 0.451769i
\(663\) 14.6349 8.44949i 0.568374 0.328151i
\(664\) −1.34847 −0.0523308
\(665\) −23.1998 + 17.7981i −0.899648 + 0.690179i
\(666\) −4.55051 −0.176329
\(667\) −19.8311 + 11.4495i −0.767863 + 0.443326i
\(668\) −13.6814 + 7.89898i −0.529351 + 0.305621i
\(669\) 6.84847 11.8619i 0.264777 0.458607i
\(670\) 2.95559 1.33025i 0.114185 0.0513921i
\(671\) −4.34847 + 7.53177i −0.167871 + 0.290761i
\(672\) 3.00000i 0.115728i
\(673\) 10.3031i 0.397154i −0.980085 0.198577i \(-0.936368\pi\)
0.980085 0.198577i \(-0.0636320\pi\)
\(674\) −2.05051 + 3.55159i −0.0789827 + 0.136802i
\(675\) 3.74264 + 3.31552i 0.144054 + 0.127614i
\(676\) −1.10102 −0.0423469
\(677\) 6.85357i 0.263404i −0.991289 0.131702i \(-0.957956\pi\)
0.991289 0.131702i \(-0.0420442\pi\)
\(678\) −12.9029 7.44949i −0.495533 0.286096i
\(679\) −28.0454 48.5761i −1.07628 1.86418i
\(680\) 8.88828 + 6.40300i 0.340850 + 0.245544i
\(681\) −6.67423 11.5601i −0.255757 0.442985i
\(682\) 13.6814 7.89898i 0.523889 0.302468i
\(683\) 39.1918i 1.49963i 0.661645 + 0.749817i \(0.269858\pi\)
−0.661645 + 0.749817i \(0.730142\pi\)
\(684\) 3.17423 2.98735i 0.121370 0.114224i
\(685\) −2.44949 0.247449i −0.0935902 0.00945453i
\(686\) 7.50000 + 12.9904i 0.286351 + 0.495975i
\(687\) 23.4220 13.5227i 0.893605 0.515923i
\(688\) −0.476756 0.275255i −0.0181761 0.0104940i
\(689\) 5.34847 + 9.26382i 0.203760 + 0.352923i
\(690\) −3.20150 + 4.44414i −0.121879 + 0.169186i
\(691\) 0.404082 0.0153720 0.00768600 0.999970i \(-0.497553\pi\)
0.00768600 + 0.999970i \(0.497553\pi\)
\(692\) 4.44949i 0.169144i
\(693\) −5.19615 3.00000i −0.197386 0.113961i
\(694\) −14.2474 + 24.6773i −0.540826 + 0.936738i
\(695\) −1.47219 + 14.5732i −0.0558435 + 0.552794i
\(696\) 9.34847 0.354353
\(697\) 10.3923 + 6.00000i 0.393637 + 0.227266i
\(698\) −22.9934 + 13.2753i −0.870314 + 0.502476i
\(699\) 7.32577 12.6886i 0.277086 0.479927i
\(700\) −14.2279 + 4.75039i −0.537765 + 0.179548i
\(701\) 9.10102 + 15.7634i 0.343741 + 0.595377i 0.985124 0.171844i \(-0.0549725\pi\)
−0.641383 + 0.767221i \(0.721639\pi\)
\(702\) 3.44949i 0.130193i
\(703\) −19.3062 + 4.55051i −0.728146 + 0.171626i
\(704\) −2.00000 −0.0753778
\(705\) 7.23970 3.25844i 0.272663 0.122720i
\(706\) −10.5732 18.3133i −0.397928 0.689232i
\(707\) −9.86739 5.69694i −0.371101 0.214255i
\(708\) −10.2173 + 5.89898i −0.383991 + 0.221697i
\(709\) −20.6237 + 35.7213i −0.774540 + 1.34154i 0.160512 + 0.987034i \(0.448685\pi\)
−0.935053 + 0.354509i \(0.884648\pi\)
\(710\) 7.89898 + 0.797959i 0.296443 + 0.0299469i
\(711\) 16.7980 0.629973
\(712\) −10.0030 5.77526i −0.374880 0.216437i
\(713\) −16.7563 9.67423i −0.627527 0.362303i
\(714\) 14.6969 0.550019
\(715\) −15.3485 1.55051i −0.574000 0.0579858i
\(716\) 9.12372 15.8028i 0.340970 0.590577i
\(717\) 7.49245 4.32577i 0.279811 0.161549i
\(718\) 17.5348 + 10.1237i 0.654393 + 0.377814i
\(719\) 16.7753 + 29.0556i 0.625611 + 1.08359i 0.988422 + 0.151728i \(0.0484838\pi\)
−0.362811 + 0.931863i \(0.618183\pi\)
\(720\) 2.03906 0.917738i 0.0759912 0.0342021i
\(721\) 29.6969 1.10597
\(722\) 10.4798 15.8485i 0.390017 0.589819i
\(723\) 11.0000i 0.409094i
\(724\) −5.55051 9.61377i −0.206283 0.357293i
\(725\) 14.8030 + 44.3364i 0.549768 + 1.64661i
\(726\) −3.50000 + 6.06218i −0.129897 + 0.224989i
\(727\) −23.2077 + 13.3990i −0.860726 + 0.496941i −0.864255 0.503053i \(-0.832210\pi\)
0.00352905 + 0.999994i \(0.498877\pi\)
\(728\) 8.96204 + 5.17423i 0.332155 + 0.191770i
\(729\) −1.00000 −0.0370370
\(730\) −2.67423 + 26.4722i −0.0989779 + 0.979780i
\(731\) −1.34847 + 2.33562i −0.0498749 + 0.0863859i
\(732\) −3.76588 2.17423i −0.139191 0.0803620i
\(733\) 30.6969i 1.13382i 0.823781 + 0.566909i \(0.191861\pi\)
−0.823781 + 0.566909i \(0.808139\pi\)
\(734\) −16.5959 −0.612567
\(735\) −2.61401 + 3.62863i −0.0964194 + 0.133844i
\(736\) 1.22474 + 2.12132i 0.0451447 + 0.0781929i
\(737\) 2.51059 + 1.44949i 0.0924788 + 0.0533926i
\(738\) 2.12132 1.22474i 0.0780869 0.0450835i
\(739\) 10.8258 + 18.7508i 0.398232 + 0.689758i 0.993508 0.113763i \(-0.0362905\pi\)
−0.595276 + 0.803522i \(0.702957\pi\)
\(740\) −10.1237 1.02270i −0.372156 0.0375953i
\(741\) −3.44949 14.6349i −0.126720 0.537628i
\(742\) 9.30306i 0.341526i
\(743\) 39.8372 23.0000i 1.46148 0.843788i 0.462404 0.886669i \(-0.346987\pi\)
0.999080 + 0.0428813i \(0.0136537\pi\)
\(744\) 3.94949 + 6.84072i 0.144795 + 0.250793i
\(745\) −6.89069 4.96396i −0.252455 0.181865i
\(746\) −12.5505 21.7381i −0.459507 0.795889i
\(747\) 1.16781 + 0.674235i 0.0427279 + 0.0246690i
\(748\) 9.79796i 0.358249i
\(749\) −31.3485 −1.14545
\(750\) 7.58128 + 8.21731i 0.276829 + 0.300054i
\(751\) 10.1515 17.5830i 0.370435 0.641612i −0.619198 0.785235i \(-0.712542\pi\)
0.989632 + 0.143623i \(0.0458754\pi\)
\(752\) 3.55051i 0.129474i
\(753\) 20.6969i 0.754238i
\(754\) 16.1237 27.9271i 0.587191 1.01705i
\(755\) −40.3692 + 18.1693i −1.46919 + 0.661250i
\(756\) 1.50000 2.59808i 0.0545545 0.0944911i
\(757\) 10.6941 6.17423i 0.388683 0.224406i −0.292906 0.956141i \(-0.594622\pi\)
0.681589 + 0.731735i \(0.261289\pi\)
\(758\) 7.57993 4.37628i 0.275316 0.158953i
\(759\) −4.89898 −0.177822
\(760\) 7.73325 5.93269i 0.280515 0.215201i
\(761\) 34.8990 1.26509 0.632544 0.774525i \(-0.282011\pi\)
0.632544 + 0.774525i \(0.282011\pi\)
\(762\) 14.4600 8.34847i 0.523830 0.302433i
\(763\) −36.3731 + 21.0000i −1.31679 + 0.760251i
\(764\) −7.34847 + 12.7279i −0.265858 + 0.460480i
\(765\) −4.49598 9.98930i −0.162552 0.361164i
\(766\) −0.674235 + 1.16781i −0.0243611 + 0.0421946i
\(767\) 40.6969i 1.46948i
\(768\) 1.00000i 0.0360844i
\(769\) 0.297959 0.516080i 0.0107447 0.0186103i −0.860603 0.509276i \(-0.829913\pi\)
0.871348 + 0.490666i \(0.163246\pi\)
\(770\) −10.8859 7.84204i −0.392300 0.282608i
\(771\) 25.1464 0.905626
\(772\) 2.10102i 0.0756174i
\(773\) −33.6875 19.4495i −1.21166 0.699550i −0.248536 0.968623i \(-0.579949\pi\)
−0.963120 + 0.269073i \(0.913283\pi\)
\(774\) 0.275255 + 0.476756i 0.00989384 + 0.0171366i
\(775\) <