# Properties

 Label 570.2.n.a.179.9 Level $570$ Weight $2$ Character 570.179 Analytic conductor $4.551$ Analytic rank $0$ Dimension $80$ CM no Inner twists $8$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$570 = 2 \cdot 3 \cdot 5 \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 570.n (of order $$6$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$4.55147291521$$ Analytic rank: $$0$$ Dimension: $$80$$ Relative dimension: $$40$$ over $$\Q(\zeta_{6})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

## Embedding invariants

 Embedding label 179.9 Character $$\chi$$ $$=$$ 570.179 Dual form 570.2.n.a.449.9

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-0.866025 - 0.500000i) q^{2} +(-0.488805 - 1.66165i) q^{3} +(0.500000 + 0.866025i) q^{4} +(-1.56304 - 1.59903i) q^{5} +(-0.407506 + 1.68343i) q^{6} -1.83012i q^{7} -1.00000i q^{8} +(-2.52214 + 1.62444i) q^{9} +O(q^{10})$$ $$q+(-0.866025 - 0.500000i) q^{2} +(-0.488805 - 1.66165i) q^{3} +(0.500000 + 0.866025i) q^{4} +(-1.56304 - 1.59903i) q^{5} +(-0.407506 + 1.68343i) q^{6} -1.83012i q^{7} -1.00000i q^{8} +(-2.52214 + 1.62444i) q^{9} +(0.554116 + 2.16632i) q^{10} -0.0175522i q^{11} +(1.19463 - 1.25414i) q^{12} +(-1.18833 - 2.05825i) q^{13} +(-0.915058 + 1.58493i) q^{14} +(-1.89301 + 3.37884i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(0.822112 - 1.42394i) q^{17} +(2.99646 - 0.145739i) q^{18} +(-4.33467 - 0.458984i) q^{19} +(0.603283 - 2.15315i) q^{20} +(-3.04101 + 0.894570i) q^{21} +(-0.00877612 + 0.0152007i) q^{22} +(0.470036 + 0.814125i) q^{23} +(-1.66165 + 0.488805i) q^{24} +(-0.113813 + 4.99870i) q^{25} +2.37667i q^{26} +(3.93208 + 3.39687i) q^{27} +(1.58493 - 0.915058i) q^{28} +(0.234207 + 0.405658i) q^{29} +(3.32881 - 1.97965i) q^{30} +6.34473i q^{31} +(0.866025 - 0.500000i) q^{32} +(-0.0291656 + 0.00857962i) q^{33} +(-1.42394 + 0.822112i) q^{34} +(-2.92642 + 2.86055i) q^{35} +(-2.66788 - 1.37202i) q^{36} -3.63380 q^{37} +(3.52444 + 2.56482i) q^{38} +(-2.83923 + 2.98068i) q^{39} +(-1.59903 + 1.56304i) q^{40} +(3.33436 - 5.77528i) q^{41} +(3.08087 + 0.745783i) q^{42} +(-7.15578 - 4.13139i) q^{43} +(0.0152007 - 0.00877612i) q^{44} +(6.53974 + 1.49392i) q^{45} -0.940071i q^{46} +(3.00121 + 5.19826i) q^{47} +(1.68343 + 0.407506i) q^{48} +3.65067 q^{49} +(2.59792 - 4.27210i) q^{50} +(-2.76794 - 0.670031i) q^{51} +(1.18833 - 2.05825i) q^{52} +(-6.48959 + 3.74677i) q^{53} +(-1.70685 - 4.90782i) q^{54} +(-0.0280666 + 0.0274348i) q^{55} -1.83012 q^{56} +(1.35614 + 7.42704i) q^{57} -0.468414i q^{58} +(-5.69687 + 9.86726i) q^{59} +(-3.87266 + 0.0500261i) q^{60} +(4.23617 + 7.33727i) q^{61} +(3.17236 - 5.49469i) q^{62} +(2.97292 + 4.61581i) q^{63} -1.00000 q^{64} +(-1.43380 + 5.11732i) q^{65} +(0.0295480 + 0.00715264i) q^{66} +(-2.42123 - 4.19369i) q^{67} +1.64422 q^{68} +(1.12303 - 1.17898i) q^{69} +(3.96462 - 1.01410i) q^{70} +(4.63854 - 8.03419i) q^{71} +(1.62444 + 2.52214i) q^{72} +(-3.78470 - 2.18510i) q^{73} +(3.14696 + 1.81690i) q^{74} +(8.36171 - 2.25427i) q^{75} +(-1.76984 - 3.98342i) q^{76} -0.0321226 q^{77} +(3.94918 - 1.16173i) q^{78} +(-6.49918 - 3.75230i) q^{79} +(2.16632 - 0.554116i) q^{80} +(3.72237 - 8.19414i) q^{81} +(-5.77528 + 3.33436i) q^{82} -11.9877 q^{83} +(-2.29522 - 2.18630i) q^{84} +(-3.56192 + 0.911090i) q^{85} +(4.13139 + 7.15578i) q^{86} +(0.559579 - 0.587457i) q^{87} -0.0175522 q^{88} +(0.189295 + 0.327868i) q^{89} +(-4.91662 - 4.56364i) q^{90} +(-3.76685 + 2.17479i) q^{91} +(-0.470036 + 0.814125i) q^{92} +(10.5427 - 3.10133i) q^{93} -6.00243i q^{94} +(6.04133 + 7.64868i) q^{95} +(-1.25414 - 1.19463i) q^{96} +(1.26367 - 2.18875i) q^{97} +(-3.16158 - 1.82534i) q^{98} +(0.0285126 + 0.0442692i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$80q + 40q^{4} + O(q^{10})$$ $$80q + 40q^{4} + 30q^{15} - 40q^{16} + 8q^{19} + 8q^{25} - 4q^{30} + 48q^{39} + 12q^{45} - 128q^{49} - 36q^{54} + 12q^{55} + 30q^{60} - 24q^{61} - 80q^{64} + 4q^{66} + 36q^{70} + 16q^{76} + 24q^{79} + 32q^{81} - 8q^{85} - 54q^{90} + 24q^{91} - 60q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/570\mathbb{Z}\right)^\times$$.

 $$n$$ $$191$$ $$211$$ $$457$$ $$\chi(n)$$ $$-1$$ $$e\left(\frac{1}{6}\right)$$ $$-1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −0.866025 0.500000i −0.612372 0.353553i
$$3$$ −0.488805 1.66165i −0.282212 0.959352i
$$4$$ 0.500000 + 0.866025i 0.250000 + 0.433013i
$$5$$ −1.56304 1.59903i −0.699013 0.715109i
$$6$$ −0.407506 + 1.68343i −0.166364 + 0.687258i
$$7$$ 1.83012i 0.691719i −0.938286 0.345860i $$-0.887587\pi$$
0.938286 0.345860i $$-0.112413\pi$$
$$8$$ 1.00000i 0.353553i
$$9$$ −2.52214 + 1.62444i −0.840713 + 0.541481i
$$10$$ 0.554116 + 2.16632i 0.175227 + 0.685052i
$$11$$ 0.0175522i 0.00529220i −0.999996 0.00264610i $$-0.999158\pi$$
0.999996 0.00264610i $$-0.000842280\pi$$
$$12$$ 1.19463 1.25414i 0.344859 0.362039i
$$13$$ −1.18833 2.05825i −0.329584 0.570857i 0.652845 0.757492i $$-0.273575\pi$$
−0.982429 + 0.186635i $$0.940242\pi$$
$$14$$ −0.915058 + 1.58493i −0.244560 + 0.423590i
$$15$$ −1.89301 + 3.37884i −0.488772 + 0.872411i
$$16$$ −0.500000 + 0.866025i −0.125000 + 0.216506i
$$17$$ 0.822112 1.42394i 0.199391 0.345356i −0.748940 0.662638i $$-0.769437\pi$$
0.948331 + 0.317282i $$0.102770\pi$$
$$18$$ 2.99646 0.145739i 0.706272 0.0343510i
$$19$$ −4.33467 0.458984i −0.994441 0.105298i
$$20$$ 0.603283 2.15315i 0.134898 0.481459i
$$21$$ −3.04101 + 0.894570i −0.663602 + 0.195211i
$$22$$ −0.00877612 + 0.0152007i −0.00187107 + 0.00324080i
$$23$$ 0.470036 + 0.814125i 0.0980092 + 0.169757i 0.910861 0.412714i $$-0.135419\pi$$
−0.812851 + 0.582471i $$0.802086\pi$$
$$24$$ −1.66165 + 0.488805i −0.339182 + 0.0997769i
$$25$$ −0.113813 + 4.99870i −0.0227627 + 0.999741i
$$26$$ 2.37667i 0.466103i
$$27$$ 3.93208 + 3.39687i 0.756730 + 0.653728i
$$28$$ 1.58493 0.915058i 0.299523 0.172930i
$$29$$ 0.234207 + 0.405658i 0.0434911 + 0.0753288i 0.886952 0.461863i $$-0.152819\pi$$
−0.843460 + 0.537191i $$0.819485\pi$$
$$30$$ 3.32881 1.97965i 0.607755 0.361434i
$$31$$ 6.34473i 1.13955i 0.821802 + 0.569773i $$0.192969\pi$$
−0.821802 + 0.569773i $$0.807031\pi$$
$$32$$ 0.866025 0.500000i 0.153093 0.0883883i
$$33$$ −0.0291656 + 0.00857962i −0.00507708 + 0.00149352i
$$34$$ −1.42394 + 0.822112i −0.244204 + 0.140991i
$$35$$ −2.92642 + 2.86055i −0.494655 + 0.483520i
$$36$$ −2.66788 1.37202i −0.444646 0.228669i
$$37$$ −3.63380 −0.597393 −0.298697 0.954348i $$-0.596552\pi$$
−0.298697 + 0.954348i $$0.596552\pi$$
$$38$$ 3.52444 + 2.56482i 0.571740 + 0.416070i
$$39$$ −2.83923 + 2.98068i −0.454640 + 0.477290i
$$40$$ −1.59903 + 1.56304i −0.252829 + 0.247138i
$$41$$ 3.33436 5.77528i 0.520740 0.901948i −0.478969 0.877832i $$-0.658989\pi$$
0.999709 0.0241163i $$-0.00767719\pi$$
$$42$$ 3.08087 + 0.745783i 0.475389 + 0.115077i
$$43$$ −7.15578 4.13139i −1.09125 0.630031i −0.157338 0.987545i $$-0.550291\pi$$
−0.933908 + 0.357513i $$0.883625\pi$$
$$44$$ 0.0152007 0.00877612i 0.00229159 0.00132305i
$$45$$ 6.53974 + 1.49392i 0.974887 + 0.222700i
$$46$$ 0.940071i 0.138606i
$$47$$ 3.00121 + 5.19826i 0.437772 + 0.758244i 0.997517 0.0704212i $$-0.0224343\pi$$
−0.559745 + 0.828665i $$0.689101\pi$$
$$48$$ 1.68343 + 0.407506i 0.242982 + 0.0588184i
$$49$$ 3.65067 0.521525
$$50$$ 2.59792 4.27210i 0.367401 0.604166i
$$51$$ −2.76794 0.670031i −0.387589 0.0938231i
$$52$$ 1.18833 2.05825i 0.164792 0.285428i
$$53$$ −6.48959 + 3.74677i −0.891414 + 0.514658i −0.874405 0.485197i $$-0.838748\pi$$
−0.0170090 + 0.999855i $$0.505414\pi$$
$$54$$ −1.70685 4.90782i −0.232273 0.667869i
$$55$$ −0.0280666 + 0.0274348i −0.00378450 + 0.00369931i
$$56$$ −1.83012 −0.244560
$$57$$ 1.35614 + 7.42704i 0.179625 + 0.983735i
$$58$$ 0.468414i 0.0615057i
$$59$$ −5.69687 + 9.86726i −0.741669 + 1.28461i 0.210066 + 0.977687i $$0.432632\pi$$
−0.951735 + 0.306921i $$0.900701\pi$$
$$60$$ −3.87266 + 0.0500261i −0.499958 + 0.00645834i
$$61$$ 4.23617 + 7.33727i 0.542387 + 0.939441i 0.998766 + 0.0496560i $$0.0158125\pi$$
−0.456380 + 0.889785i $$0.650854\pi$$
$$62$$ 3.17236 5.49469i 0.402890 0.697827i
$$63$$ 2.97292 + 4.61581i 0.374553 + 0.581537i
$$64$$ −1.00000 −0.125000
$$65$$ −1.43380 + 5.11732i −0.177841 + 0.634725i
$$66$$ 0.0295480 + 0.00715264i 0.00363710 + 0.000880429i
$$67$$ −2.42123 4.19369i −0.295800 0.512341i 0.679370 0.733796i $$-0.262253\pi$$
−0.975171 + 0.221454i $$0.928920\pi$$
$$68$$ 1.64422 0.199391
$$69$$ 1.12303 1.17898i 0.135197 0.141933i
$$70$$ 3.96462 1.01410i 0.473863 0.121208i
$$71$$ 4.63854 8.03419i 0.550494 0.953483i −0.447745 0.894161i $$-0.647773\pi$$
0.998239 0.0593220i $$-0.0188939\pi$$
$$72$$ 1.62444 + 2.52214i 0.191442 + 0.297237i
$$73$$ −3.78470 2.18510i −0.442966 0.255746i 0.261889 0.965098i $$-0.415654\pi$$
−0.704855 + 0.709352i $$0.748988\pi$$
$$74$$ 3.14696 + 1.81690i 0.365827 + 0.211210i
$$75$$ 8.36171 2.25427i 0.965527 0.260301i
$$76$$ −1.76984 3.98342i −0.203015 0.456930i
$$77$$ −0.0321226 −0.00366071
$$78$$ 3.94918 1.16173i 0.447157 0.131540i
$$79$$ −6.49918 3.75230i −0.731214 0.422167i 0.0876519 0.996151i $$-0.472064\pi$$
−0.818866 + 0.573984i $$0.805397\pi$$
$$80$$ 2.16632 0.554116i 0.242202 0.0619520i
$$81$$ 3.72237 8.19414i 0.413597 0.910460i
$$82$$ −5.77528 + 3.33436i −0.637773 + 0.368219i
$$83$$ −11.9877 −1.31583 −0.657913 0.753094i $$-0.728560\pi$$
−0.657913 + 0.753094i $$0.728560\pi$$
$$84$$ −2.29522 2.18630i −0.250429 0.238545i
$$85$$ −3.56192 + 0.911090i −0.386345 + 0.0988216i
$$86$$ 4.13139 + 7.15578i 0.445499 + 0.771628i
$$87$$ 0.559579 0.587457i 0.0599931 0.0629820i
$$88$$ −0.0175522 −0.00187107
$$89$$ 0.189295 + 0.327868i 0.0200652 + 0.0347539i 0.875884 0.482522i $$-0.160279\pi$$
−0.855818 + 0.517276i $$0.826946\pi$$
$$90$$ −4.91662 4.56364i −0.518258 0.481050i
$$91$$ −3.76685 + 2.17479i −0.394873 + 0.227980i
$$92$$ −0.470036 + 0.814125i −0.0490046 + 0.0848784i
$$93$$ 10.5427 3.10133i 1.09323 0.321593i
$$94$$ 6.00243i 0.619103i
$$95$$ 6.04133 + 7.64868i 0.619827 + 0.784739i
$$96$$ −1.25414 1.19463i −0.128000 0.121926i
$$97$$ 1.26367 2.18875i 0.128307 0.222234i −0.794714 0.606984i $$-0.792379\pi$$
0.923021 + 0.384750i $$0.125713\pi$$
$$98$$ −3.16158 1.82534i −0.319367 0.184387i
$$99$$ 0.0285126 + 0.0442692i 0.00286562 + 0.00444922i
$$100$$ −4.38591 + 2.40079i −0.438591 + 0.240079i
$$101$$ 4.40332 2.54226i 0.438147 0.252964i −0.264664 0.964341i $$-0.585261\pi$$
0.702811 + 0.711376i $$0.251928\pi$$
$$102$$ 2.06209 + 1.96423i 0.204177 + 0.194488i
$$103$$ −2.58734 −0.254938 −0.127469 0.991843i $$-0.540685\pi$$
−0.127469 + 0.991843i $$0.540685\pi$$
$$104$$ −2.05825 + 1.18833i −0.201828 + 0.116526i
$$105$$ 6.18366 + 3.46442i 0.603464 + 0.338093i
$$106$$ 7.49353 0.727836
$$107$$ 14.2675i 1.37929i −0.724146 0.689646i $$-0.757766\pi$$
0.724146 0.689646i $$-0.242234\pi$$
$$108$$ −0.975733 + 5.10372i −0.0938899 + 0.491106i
$$109$$ −14.7909 8.53953i −1.41671 0.817938i −0.420703 0.907199i $$-0.638216\pi$$
−0.996008 + 0.0892602i $$0.971550\pi$$
$$110$$ 0.0380238 0.00972597i 0.00362543 0.000927335i
$$111$$ 1.77622 + 6.03809i 0.168591 + 0.573110i
$$112$$ 1.58493 + 0.915058i 0.149762 + 0.0864649i
$$113$$ 13.8676i 1.30456i −0.757980 0.652278i $$-0.773813\pi$$
0.757980 0.652278i $$-0.226187\pi$$
$$114$$ 2.53907 7.11007i 0.237806 0.665919i
$$115$$ 0.567129 2.02411i 0.0528851 0.188749i
$$116$$ −0.234207 + 0.405658i −0.0217456 + 0.0376644i
$$117$$ 6.34066 + 3.26082i 0.586194 + 0.301463i
$$118$$ 9.86726 5.69687i 0.908355 0.524439i
$$119$$ −2.60598 1.50456i −0.238889 0.137923i
$$120$$ 3.37884 + 1.89301i 0.308444 + 0.172807i
$$121$$ 10.9997 0.999972
$$122$$ 8.47235i 0.767050i
$$123$$ −11.2263 2.71754i −1.01224 0.245033i
$$124$$ −5.49469 + 3.17236i −0.493438 + 0.284887i
$$125$$ 8.17099 7.63118i 0.730835 0.682554i
$$126$$ −0.266719 5.48387i −0.0237612 0.488542i
$$127$$ −8.97167 15.5394i −0.796107 1.37890i −0.922134 0.386872i $$-0.873556\pi$$
0.126026 0.992027i $$-0.459778\pi$$
$$128$$ 0.866025 + 0.500000i 0.0765466 + 0.0441942i
$$129$$ −3.36713 + 13.9098i −0.296459 + 1.22469i
$$130$$ 3.80037 3.71483i 0.333314 0.325812i
$$131$$ −3.22196 1.86020i −0.281504 0.162526i 0.352600 0.935774i $$-0.385298\pi$$
−0.634104 + 0.773248i $$0.718631\pi$$
$$132$$ −0.0220130 0.0209684i −0.00191598 0.00182506i
$$133$$ −0.839994 + 7.93295i −0.0728367 + 0.687874i
$$134$$ 4.84246i 0.418325i
$$135$$ −0.714298 11.5970i −0.0614770 0.998109i
$$136$$ −1.42394 0.822112i −0.122102 0.0704955i
$$137$$ 0.467172 + 0.809165i 0.0399132 + 0.0691316i 0.885292 0.465036i $$-0.153959\pi$$
−0.845379 + 0.534167i $$0.820625\pi$$
$$138$$ −1.56207 + 0.459511i −0.132972 + 0.0391162i
$$139$$ −5.01682 8.68939i −0.425521 0.737024i 0.570948 0.820986i $$-0.306576\pi$$
−0.996469 + 0.0839623i $$0.973242\pi$$
$$140$$ −3.94051 1.10408i −0.333034 0.0933117i
$$141$$ 7.17066 7.52789i 0.603878 0.633963i
$$142$$ −8.03419 + 4.63854i −0.674214 + 0.389258i
$$143$$ −0.0361270 + 0.0208579i −0.00302109 + 0.00174423i
$$144$$ −0.145739 2.99646i −0.0121449 0.249705i
$$145$$ 0.282586 1.00856i 0.0234675 0.0837567i
$$146$$ 2.18510 + 3.78470i 0.180840 + 0.313224i
$$147$$ −1.78447 6.06613i −0.147180 0.500326i
$$148$$ −1.81690 3.14696i −0.149348 0.258679i
$$149$$ −2.25005 1.29906i −0.184331 0.106424i 0.404995 0.914319i $$-0.367273\pi$$
−0.589326 + 0.807895i $$0.700607\pi$$
$$150$$ −8.36859 2.22860i −0.683293 0.181964i
$$151$$ 15.5474i 1.26523i −0.774468 0.632613i $$-0.781982\pi$$
0.774468 0.632613i $$-0.218018\pi$$
$$152$$ −0.458984 + 4.33467i −0.0372285 + 0.351588i
$$153$$ 0.239627 + 4.92685i 0.0193727 + 0.398312i
$$154$$ 0.0278190 + 0.0160613i 0.00224172 + 0.00129426i
$$155$$ 10.1454 9.91706i 0.814900 0.796557i
$$156$$ −4.00095 0.968506i −0.320333 0.0775425i
$$157$$ 13.0792 + 7.55130i 1.04384 + 0.602659i 0.920918 0.389757i $$-0.127441\pi$$
0.122919 + 0.992417i $$0.460774\pi$$
$$158$$ 3.75230 + 6.49918i 0.298517 + 0.517047i
$$159$$ 9.39794 + 8.95197i 0.745305 + 0.709937i
$$160$$ −2.15315 0.603283i −0.170221 0.0476937i
$$161$$ 1.48994 0.860220i 0.117424 0.0677948i
$$162$$ −7.32074 + 5.23515i −0.575172 + 0.411312i
$$163$$ 0.621054i 0.0486447i 0.999704 + 0.0243223i $$0.00774280\pi$$
−0.999704 + 0.0243223i $$0.992257\pi$$
$$164$$ 6.66872 0.520740
$$165$$ 0.0593061 + 0.0332265i 0.00461697 + 0.00258668i
$$166$$ 10.3817 + 5.99387i 0.805775 + 0.465214i
$$167$$ −14.3389 + 8.27857i −1.10958 + 0.640615i −0.938720 0.344681i $$-0.887987\pi$$
−0.170857 + 0.985296i $$0.554654\pi$$
$$168$$ 0.894570 + 3.04101i 0.0690176 + 0.234619i
$$169$$ 3.67573 6.36655i 0.282748 0.489734i
$$170$$ 3.54026 + 0.991933i 0.271526 + 0.0760778i
$$171$$ 11.6782 5.88380i 0.893056 0.449945i
$$172$$ 8.26278i 0.630031i
$$173$$ 14.7771 + 8.53156i 1.12348 + 0.648643i 0.942288 0.334805i $$-0.108670\pi$$
0.181194 + 0.983447i $$0.442004\pi$$
$$174$$ −0.778338 + 0.228963i −0.0590056 + 0.0173576i
$$175$$ 9.14821 + 0.208292i 0.691540 + 0.0157454i
$$176$$ 0.0152007 + 0.00877612i 0.00114579 + 0.000661525i
$$177$$ 19.1806 + 4.64301i 1.44170 + 0.348990i
$$178$$ 0.378589i 0.0283765i
$$179$$ −21.4936 −1.60651 −0.803255 0.595636i $$-0.796900\pi$$
−0.803255 + 0.595636i $$0.796900\pi$$
$$180$$ 1.97610 + 6.41054i 0.147290 + 0.477813i
$$181$$ 8.09138 4.67156i 0.601427 0.347234i −0.168176 0.985757i $$-0.553788\pi$$
0.769603 + 0.638523i $$0.220454\pi$$
$$182$$ 4.34958 0.322412
$$183$$ 10.1213 10.6255i 0.748187 0.785461i
$$184$$ 0.814125 0.470036i 0.0600181 0.0346515i
$$185$$ 5.67978 + 5.81057i 0.417585 + 0.427201i
$$186$$ −10.6809 2.58551i −0.783162 0.189579i
$$187$$ −0.0249933 0.0144299i −0.00182769 0.00105522i
$$188$$ −3.00121 + 5.19826i −0.218886 + 0.379122i
$$189$$ 6.21667 7.19617i 0.452196 0.523444i
$$190$$ −1.40760 9.64462i −0.102118 0.699694i
$$191$$ 13.3659i 0.967125i −0.875310 0.483562i $$-0.839343\pi$$
0.875310 0.483562i $$-0.160657\pi$$
$$192$$ 0.488805 + 1.66165i 0.0352765 + 0.119919i
$$193$$ −6.79547 + 11.7701i −0.489149 + 0.847231i −0.999922 0.0124848i $$-0.996026\pi$$
0.510773 + 0.859716i $$0.329359\pi$$
$$194$$ −2.18875 + 1.26367i −0.157143 + 0.0907265i
$$195$$ 9.20402 0.118895i 0.659114 0.00851428i
$$196$$ 1.82534 + 3.16158i 0.130381 + 0.225827i
$$197$$ −3.55021 −0.252942 −0.126471 0.991970i $$-0.540365\pi$$
−0.126471 + 0.991970i $$0.540365\pi$$
$$198$$ −0.00255804 0.0525945i −0.000181792 0.00373773i
$$199$$ −2.21798 3.84166i −0.157229 0.272328i 0.776640 0.629945i $$-0.216923\pi$$
−0.933868 + 0.357617i $$0.883589\pi$$
$$200$$ 4.99870 + 0.113813i 0.353462 + 0.00804781i
$$201$$ −5.78493 + 6.07313i −0.408037 + 0.428365i
$$202$$ −5.08452 −0.357746
$$203$$ 0.742401 0.428626i 0.0521064 0.0300836i
$$204$$ −0.803705 2.73212i −0.0562706 0.191287i
$$205$$ −14.4466 + 3.69524i −1.00900 + 0.258087i
$$206$$ 2.24070 + 1.29367i 0.156117 + 0.0901342i
$$207$$ −2.50799 1.28979i −0.174318 0.0896467i
$$208$$ 2.37667 0.164792
$$209$$ −0.00805619 + 0.0760831i −0.000557258 + 0.00526278i
$$210$$ −3.62300 6.09211i −0.250011 0.420395i
$$211$$ 14.2113 + 8.20491i 0.978348 + 0.564849i 0.901771 0.432214i $$-0.142268\pi$$
0.0765769 + 0.997064i $$0.475601\pi$$
$$212$$ −6.48959 3.74677i −0.445707 0.257329i
$$213$$ −15.6173 3.78047i −1.07008 0.259033i
$$214$$ −7.13376 + 12.3560i −0.487654 + 0.844641i
$$215$$ 4.57854 + 17.8999i 0.312254 + 1.22076i
$$216$$ 3.39687 3.93208i 0.231128 0.267544i
$$217$$ 11.6116 0.788246
$$218$$ 8.53953 + 14.7909i 0.578370 + 1.00177i
$$219$$ −1.78088 + 7.35692i −0.120341 + 0.497135i
$$220$$ −0.0377926 0.0105890i −0.00254797 0.000713908i
$$221$$ −3.90777 −0.262865
$$222$$ 1.48079 6.11725i 0.0993844 0.410563i
$$223$$ −12.0170 + 20.8140i −0.804718 + 1.39381i 0.111764 + 0.993735i $$0.464350\pi$$
−0.916482 + 0.400077i $$0.868983\pi$$
$$224$$ −0.915058 1.58493i −0.0611399 0.105897i
$$225$$ −7.83305 12.7923i −0.522204 0.852821i
$$226$$ −6.93381 + 12.0097i −0.461230 + 0.798874i
$$227$$ 29.1059i 1.93183i −0.258868 0.965913i $$-0.583349\pi$$
0.258868 0.965913i $$-0.416651\pi$$
$$228$$ −5.75393 + 4.88797i −0.381064 + 0.323714i
$$229$$ −10.8460 −0.716724 −0.358362 0.933583i $$-0.616665\pi$$
−0.358362 + 0.933583i $$0.616665\pi$$
$$230$$ −1.50320 + 1.46937i −0.0991184 + 0.0968873i
$$231$$ 0.0157017 + 0.0533765i 0.00103310 + 0.00351191i
$$232$$ 0.405658 0.234207i 0.0266328 0.0153764i
$$233$$ 2.19705 3.80540i 0.143934 0.249300i −0.785041 0.619444i $$-0.787358\pi$$
0.928975 + 0.370144i $$0.120692\pi$$
$$234$$ −3.86076 5.99429i −0.252386 0.391859i
$$235$$ 3.62117 12.9241i 0.236219 0.843077i
$$236$$ −11.3937 −0.741669
$$237$$ −3.05817 + 12.6335i −0.198649 + 0.820632i
$$238$$ 1.50456 + 2.60598i 0.0975262 + 0.168920i
$$239$$ 22.9719i 1.48593i 0.669332 + 0.742963i $$0.266580\pi$$
−0.669332 + 0.742963i $$0.733420\pi$$
$$240$$ −1.97965 3.32881i −0.127786 0.214874i
$$241$$ −1.60542 + 0.926892i −0.103414 + 0.0597064i −0.550815 0.834627i $$-0.685683\pi$$
0.447401 + 0.894334i $$0.352350\pi$$
$$242$$ −9.52601 5.49985i −0.612355 0.353543i
$$243$$ −15.4353 2.17993i −0.990174 0.139843i
$$244$$ −4.23617 + 7.33727i −0.271193 + 0.469721i
$$245$$ −5.70615 5.83755i −0.364552 0.372947i
$$246$$ 8.36352 + 7.96663i 0.533239 + 0.507934i
$$247$$ 4.20632 + 9.46727i 0.267642 + 0.602388i
$$248$$ 6.34473 0.402890
$$249$$ 5.85967 + 19.9194i 0.371341 + 1.26234i
$$250$$ −10.8919 + 2.52330i −0.688863 + 0.159588i
$$251$$ −22.8209 + 13.1757i −1.44044 + 0.831641i −0.997879 0.0650960i $$-0.979265\pi$$
−0.442565 + 0.896737i $$0.645931\pi$$
$$252$$ −2.51095 + 4.88253i −0.158175 + 0.307570i
$$253$$ 0.0142897 0.00825017i 0.000898387 0.000518684i
$$254$$ 17.9433i 1.12587i
$$255$$ 3.25500 + 5.47331i 0.203836 + 0.342752i
$$256$$ −0.500000 0.866025i −0.0312500 0.0541266i
$$257$$ 2.74183 1.58300i 0.171031 0.0987446i −0.412041 0.911165i $$-0.635184\pi$$
0.583072 + 0.812421i $$0.301851\pi$$
$$258$$ 9.87093 10.3627i 0.614538 0.645153i
$$259$$ 6.65028i 0.413228i
$$260$$ −5.14863 + 1.31695i −0.319304 + 0.0816737i
$$261$$ −1.24967 0.642671i −0.0773526 0.0397803i
$$262$$ 1.86020 + 3.22196i 0.114924 + 0.199053i
$$263$$ −5.05171 + 8.74981i −0.311502 + 0.539537i −0.978688 0.205355i $$-0.934165\pi$$
0.667186 + 0.744891i $$0.267499\pi$$
$$264$$ 0.00857962 + 0.0291656i 0.000528039 + 0.00179502i
$$265$$ 16.1347 + 4.52072i 0.991146 + 0.277706i
$$266$$ 4.69393 6.45014i 0.287803 0.395483i
$$267$$ 0.452273 0.474805i 0.0276786 0.0290576i
$$268$$ 2.42123 4.19369i 0.147900 0.256171i
$$269$$ 6.12619 10.6109i 0.373520 0.646956i −0.616584 0.787289i $$-0.711484\pi$$
0.990104 + 0.140333i $$0.0448172\pi$$
$$270$$ −5.17989 + 10.4004i −0.315238 + 0.632950i
$$271$$ −4.49464 + 7.78495i −0.273030 + 0.472902i −0.969636 0.244552i $$-0.921359\pi$$
0.696606 + 0.717454i $$0.254693\pi$$
$$272$$ 0.822112 + 1.42394i 0.0498479 + 0.0863390i
$$273$$ 5.45498 + 5.19612i 0.330151 + 0.314483i
$$274$$ 0.934343i 0.0564458i
$$275$$ 0.0877384 + 0.00199768i 0.00529083 + 0.000120464i
$$276$$ 1.58254 + 0.383084i 0.0952580 + 0.0230590i
$$277$$ 30.5006i 1.83260i 0.400489 + 0.916302i $$0.368840\pi$$
−0.400489 + 0.916302i $$0.631160\pi$$
$$278$$ 10.0336i 0.601778i
$$279$$ −10.3066 16.0023i −0.617042 0.958032i
$$280$$ 2.86055 + 2.92642i 0.170950 + 0.174887i
$$281$$ −14.5706 25.2370i −0.869209 1.50551i −0.862806 0.505535i $$-0.831295\pi$$
−0.00640302 0.999980i $$-0.502038\pi$$
$$282$$ −9.97392 + 2.93402i −0.593938 + 0.174718i
$$283$$ 22.6635 + 13.0848i 1.34720 + 0.777808i 0.987852 0.155395i $$-0.0496650\pi$$
0.359350 + 0.933203i $$0.382998\pi$$
$$284$$ 9.27709 0.550494
$$285$$ 9.75638 13.7773i 0.577918 0.816095i
$$286$$ 0.0417158 0.00246671
$$287$$ −10.5694 6.10227i −0.623895 0.360206i
$$288$$ −1.37202 + 2.66788i −0.0808468 + 0.157206i
$$289$$ 7.14826 + 12.3812i 0.420486 + 0.728303i
$$290$$ −0.749009 + 0.732149i −0.0439833 + 0.0429933i
$$291$$ −4.25461 1.02991i −0.249410 0.0603743i
$$292$$ 4.37019i 0.255746i
$$293$$ 25.0368i 1.46266i −0.682021 0.731332i $$-0.738899\pi$$
0.682021 0.731332i $$-0.261101\pi$$
$$294$$ −1.48767 + 6.14566i −0.0867627 + 0.358422i
$$295$$ 24.6825 6.31345i 1.43707 0.367583i
$$296$$ 3.63380i 0.211210i
$$297$$ 0.0596226 0.0690169i 0.00345966 0.00400476i
$$298$$ 1.29906 + 2.25005i 0.0752528 + 0.130342i
$$299$$ 1.11712 1.93491i 0.0646046 0.111898i
$$300$$ 6.13312 + 6.11432i 0.354096 + 0.353010i
$$301$$ −7.56093 + 13.0959i −0.435805 + 0.754836i
$$302$$ −7.77368 + 13.4644i −0.447325 + 0.774790i
$$303$$ −6.37671 6.07410i −0.366332 0.348948i
$$304$$ 2.56482 3.52444i 0.147103 0.202140i
$$305$$ 5.11123 18.2422i 0.292668 1.04455i
$$306$$ 2.25590 4.38659i 0.128961 0.250765i
$$307$$ 11.4277 19.7934i 0.652213 1.12967i −0.330371 0.943851i $$-0.607174\pi$$
0.982585 0.185816i $$-0.0594927\pi$$
$$308$$ −0.0160613 0.0278190i −0.000915179 0.00158514i
$$309$$ 1.26470 + 4.29924i 0.0719465 + 0.244575i
$$310$$ −13.7447 + 3.51571i −0.780648 + 0.199679i
$$311$$ 28.2446i 1.60160i 0.598930 + 0.800802i $$0.295593\pi$$
−0.598930 + 0.800802i $$0.704407\pi$$
$$312$$ 2.98068 + 2.83923i 0.168748 + 0.160740i
$$313$$ 6.78155 3.91533i 0.383316 0.221308i −0.295944 0.955205i $$-0.595634\pi$$
0.679260 + 0.733898i $$0.262301\pi$$
$$314$$ −7.55130 13.0792i −0.426145 0.738104i
$$315$$ 2.73404 11.9685i 0.154046 0.674348i
$$316$$ 7.50460i 0.422167i
$$317$$ −15.3593 + 8.86769i −0.862663 + 0.498059i −0.864903 0.501939i $$-0.832620\pi$$
0.00223995 + 0.999997i $$0.499287\pi$$
$$318$$ −3.66288 12.4516i −0.205404 0.698251i
$$319$$ 0.00712020 0.00411085i 0.000398655 0.000230164i
$$320$$ 1.56304 + 1.59903i 0.0873766 + 0.0893887i
$$321$$ −23.7076 + 6.97403i −1.32323 + 0.389253i
$$322$$ −1.72044 −0.0958764
$$323$$ −4.21715 + 5.79497i −0.234648 + 0.322441i
$$324$$ 8.95752 0.873400i 0.497640 0.0485222i
$$325$$ 10.4239 5.70587i 0.578211 0.316505i
$$326$$ 0.310527 0.537848i 0.0171985 0.0297887i
$$327$$ −6.95981 + 28.7514i −0.384879 + 1.58996i
$$328$$ −5.77528 3.33436i −0.318887 0.184109i
$$329$$ 9.51342 5.49257i 0.524492 0.302815i
$$330$$ −0.0347474 0.0584280i −0.00191278 0.00321636i
$$331$$ 11.1421i 0.612427i 0.951963 + 0.306213i $$0.0990621\pi$$
−0.951963 + 0.306213i $$0.900938\pi$$
$$332$$ −5.99387 10.3817i −0.328956 0.569769i
$$333$$ 9.16495 5.90290i 0.502236 0.323477i
$$334$$ 16.5571 0.905966
$$335$$ −2.92138 + 10.4265i −0.159612 + 0.569663i
$$336$$ 0.745783 3.08087i 0.0406858 0.168075i
$$337$$ −3.30626 + 5.72662i −0.180104 + 0.311949i −0.941916 0.335849i $$-0.890977\pi$$
0.761812 + 0.647798i $$0.224310\pi$$
$$338$$ −6.36655 + 3.67573i −0.346294 + 0.199933i
$$339$$ −23.0431 + 6.77856i −1.25153 + 0.368161i
$$340$$ −2.56999 2.62917i −0.139377 0.142587i
$$341$$ 0.111364 0.00603070
$$342$$ −13.0555 0.743597i −0.705963 0.0402091i
$$343$$ 19.4920i 1.05247i
$$344$$ −4.13139 + 7.15578i −0.222750 + 0.385814i
$$345$$ −3.64058 + 0.0470281i −0.196002 + 0.00253191i
$$346$$ −8.53156 14.7771i −0.458660 0.794422i
$$347$$ 4.05301 7.02002i 0.217577 0.376855i −0.736490 0.676449i $$-0.763518\pi$$
0.954067 + 0.299594i $$0.0968513\pi$$
$$348$$ 0.788542 + 0.190881i 0.0422703 + 0.0102323i
$$349$$ −4.32430 −0.231474 −0.115737 0.993280i $$-0.536923\pi$$
−0.115737 + 0.993280i $$0.536923\pi$$
$$350$$ −7.81844 4.75449i −0.417913 0.254138i
$$351$$ 2.31899 12.1298i 0.123779 0.647443i
$$352$$ −0.00877612 0.0152007i −0.000467769 0.000810199i
$$353$$ −3.82099 −0.203371 −0.101685 0.994817i $$-0.532424\pi$$
−0.101685 + 0.994817i $$0.532424\pi$$
$$354$$ −14.2893 13.6112i −0.759470 0.723430i
$$355$$ −20.0972 + 5.14058i −1.06665 + 0.272834i
$$356$$ −0.189295 + 0.327868i −0.0100326 + 0.0173770i
$$357$$ −1.22623 + 5.06565i −0.0648992 + 0.268103i
$$358$$ 18.6140 + 10.7468i 0.983782 + 0.567987i
$$359$$ −15.9731 9.22208i −0.843029 0.486723i 0.0152639 0.999884i $$-0.495141\pi$$
−0.858293 + 0.513161i $$0.828475\pi$$
$$360$$ 1.49392 6.53974i 0.0787363 0.344675i
$$361$$ 18.5787 + 3.97908i 0.977825 + 0.209425i
$$362$$ −9.34312 −0.491063
$$363$$ −5.37670 18.2776i −0.282204 0.959325i
$$364$$ −3.76685 2.17479i −0.197436 0.113990i
$$365$$ 2.42159 + 9.46725i 0.126752 + 0.495539i
$$366$$ −14.0780 + 4.14133i −0.735871 + 0.216471i
$$367$$ 1.09348 0.631323i 0.0570794 0.0329548i −0.471189 0.882032i $$-0.656175\pi$$
0.528268 + 0.849078i $$0.322842\pi$$
$$368$$ −0.940071 −0.0490046
$$369$$ 0.971892 + 19.9826i 0.0505947 + 1.04025i
$$370$$ −2.01355 7.87199i −0.104679 0.409245i
$$371$$ 6.85702 + 11.8767i 0.355999 + 0.616608i
$$372$$ 7.95718 + 7.57957i 0.412561 + 0.392983i
$$373$$ −1.22155 −0.0632497 −0.0316248 0.999500i $$-0.510068\pi$$
−0.0316248 + 0.999500i $$0.510068\pi$$
$$374$$ 0.0144299 + 0.0249933i 0.000746153 + 0.00129237i
$$375$$ −16.6743 9.84714i −0.861060 0.508504i
$$376$$ 5.19826 3.00121i 0.268080 0.154776i
$$377$$ 0.556631 0.964114i 0.0286680 0.0496544i
$$378$$ −8.98188 + 3.12373i −0.461978 + 0.160668i
$$379$$ 36.6243i 1.88126i −0.339428 0.940632i $$-0.610233\pi$$
0.339428 0.940632i $$-0.389767\pi$$
$$380$$ −3.60329 + 9.05628i −0.184845 + 0.464578i
$$381$$ −21.4356 + 22.5035i −1.09818 + 1.15289i
$$382$$ −6.68296 + 11.5752i −0.341930 + 0.592240i
$$383$$ 16.6952 + 9.63898i 0.853085 + 0.492529i 0.861691 0.507434i $$-0.169406\pi$$
−0.00860539 + 0.999963i $$0.502739\pi$$
$$384$$ 0.407506 1.68343i 0.0207954 0.0859072i
$$385$$ 0.0502090 + 0.0513652i 0.00255889 + 0.00261781i
$$386$$ 11.7701 6.79547i 0.599083 0.345880i
$$387$$ 24.7591 1.20421i 1.25857 0.0612133i
$$388$$ 2.52735 0.128307
$$389$$ 20.0424 11.5715i 1.01619 0.586697i 0.103192 0.994661i $$-0.467095\pi$$
0.912998 + 0.407964i $$0.133761\pi$$
$$390$$ −8.03037 4.49905i −0.406633 0.227818i
$$391$$ 1.54569 0.0781688
$$392$$ 3.65067i 0.184387i
$$393$$ −1.51608 + 6.26304i −0.0764763 + 0.315928i
$$394$$ 3.07457 + 1.77510i 0.154895 + 0.0894284i
$$395$$ 4.15842 + 16.2574i 0.209233 + 0.817998i
$$396$$ −0.0240819 + 0.0468272i −0.00121016 + 0.00235316i
$$397$$ 23.9763 + 13.8427i 1.20334 + 0.694746i 0.961295 0.275520i $$-0.0888502\pi$$
0.242040 + 0.970266i $$0.422184\pi$$
$$398$$ 4.43597i 0.222355i
$$399$$ 13.5923 2.48189i 0.680468 0.124250i
$$400$$ −4.27210 2.59792i −0.213605 0.129896i
$$401$$ −7.69191 + 13.3228i −0.384115 + 0.665307i −0.991646 0.128989i $$-0.958827\pi$$
0.607531 + 0.794296i $$0.292160\pi$$
$$402$$ 8.04646 2.36702i 0.401321 0.118056i
$$403$$ 13.0591 7.53965i 0.650518 0.375577i
$$404$$ 4.40332 + 2.54226i 0.219074 + 0.126482i
$$405$$ −18.9209 + 6.85557i −0.940188 + 0.340656i
$$406$$ −0.857251 −0.0425447
$$407$$ 0.0637813i 0.00316152i
$$408$$ −0.670031 + 2.76794i −0.0331715 + 0.137033i
$$409$$ 18.9652 10.9496i 0.937770 0.541422i 0.0485092 0.998823i $$-0.484553\pi$$
0.889260 + 0.457401i $$0.151220\pi$$
$$410$$ 14.3588 + 4.02313i 0.709128 + 0.198688i
$$411$$ 1.11619 1.17180i 0.0550576 0.0578005i
$$412$$ −1.29367 2.24070i −0.0637345 0.110391i
$$413$$ 18.0582 + 10.4259i 0.888588 + 0.513027i
$$414$$ 1.52709 + 2.37099i 0.0750524 + 0.116528i
$$415$$ 18.7373 + 19.1688i 0.919778 + 0.940959i
$$416$$ −2.05825 1.18833i −0.100914 0.0582628i
$$417$$ −11.9864 + 12.5836i −0.586979 + 0.616221i
$$418$$ 0.0450184 0.0618618i 0.00220192 0.00302576i
$$419$$ 13.0710i 0.638559i −0.947661 0.319279i $$-0.896559\pi$$
0.947661 0.319279i $$-0.103441\pi$$
$$420$$ 0.0915536 + 7.08742i 0.00446736 + 0.345831i
$$421$$ −16.8330 9.71851i −0.820388 0.473651i 0.0301623 0.999545i $$-0.490398\pi$$
−0.850550 + 0.525894i $$0.823731\pi$$
$$422$$ −8.20491 14.2113i −0.399409 0.691796i
$$423$$ −16.0137 8.23543i −0.778615 0.400420i
$$424$$ 3.74677 + 6.48959i 0.181959 + 0.315162i
$$425$$ 7.02429 + 4.27156i 0.340728 + 0.207201i
$$426$$ 11.6348 + 11.0826i 0.563707 + 0.536956i
$$427$$ 13.4281 7.75269i 0.649829 0.375179i
$$428$$ 12.3560 7.13376i 0.597251 0.344823i
$$429$$ 0.0523175 + 0.0498348i 0.00252591 + 0.00240605i
$$430$$ 4.98480 17.7910i 0.240388 0.857958i
$$431$$ 7.00669 + 12.1359i 0.337500 + 0.584567i 0.983962 0.178379i $$-0.0570853\pi$$
−0.646462 + 0.762946i $$0.723752\pi$$
$$432$$ −4.90782 + 1.70685i −0.236127 + 0.0821209i
$$433$$ −10.0290 17.3707i −0.481962 0.834783i 0.517823 0.855488i $$-0.326742\pi$$
−0.999786 + 0.0207044i $$0.993409\pi$$
$$434$$ −10.0559 5.80579i −0.482700 0.278687i
$$435$$ −1.81401 + 0.0234329i −0.0869750 + 0.00112352i
$$436$$ 17.0791i 0.817938i
$$437$$ −1.66378 3.74470i −0.0795892 0.179133i
$$438$$ 5.22075 5.48084i 0.249457 0.261885i
$$439$$ 25.6443 + 14.8057i 1.22394 + 0.706640i 0.965755 0.259457i $$-0.0835435\pi$$
0.258181 + 0.966097i $$0.416877\pi$$
$$440$$ 0.0274348 + 0.0280666i 0.00130790 + 0.00133802i
$$441$$ −9.20751 + 5.93031i −0.438453 + 0.282396i
$$442$$ 3.38423 + 1.95389i 0.160971 + 0.0929369i
$$443$$ −17.1231 29.6581i −0.813542 1.40910i −0.910370 0.413796i $$-0.864203\pi$$
0.0968274 0.995301i $$-0.469131\pi$$
$$444$$ −4.34103 + 4.55730i −0.206016 + 0.216280i
$$445$$ 0.228397 0.815159i 0.0108270 0.0386423i
$$446$$ 20.8140 12.0170i 0.985574 0.569021i
$$447$$ −1.05875 + 4.37377i −0.0500773 + 0.206872i
$$448$$ 1.83012i 0.0864649i
$$449$$ 24.2472 1.14430 0.572148 0.820150i $$-0.306110\pi$$
0.572148 + 0.820150i $$0.306110\pi$$
$$450$$ 0.387468 + 14.9950i 0.0182654 + 0.706871i
$$451$$ −0.101369 0.0585255i −0.00477329 0.00275586i
$$452$$ 12.0097 6.93381i 0.564889 0.326139i
$$453$$ −25.8342 + 7.59963i −1.21380 + 0.357062i
$$454$$ −14.5529 + 25.2064i −0.683004 + 1.18300i
$$455$$ 9.36529 + 2.62403i 0.439051 + 0.123016i
$$456$$ 7.42704 1.35614i 0.347803 0.0635070i
$$457$$ 26.4451i 1.23705i 0.785765 + 0.618525i $$0.212269\pi$$
−0.785765 + 0.618525i $$0.787731\pi$$
$$458$$ 9.39292 + 5.42300i 0.438902 + 0.253400i
$$459$$ 8.06955 2.80644i 0.376654 0.130994i
$$460$$ 2.03650 0.520908i 0.0949522 0.0242875i
$$461$$ 0.564904 + 0.326148i 0.0263102 + 0.0151902i 0.513097 0.858330i $$-0.328498\pi$$
−0.486787 + 0.873521i $$0.661831\pi$$
$$462$$ 0.0130902 0.0540762i 0.000609009 0.00251585i
$$463$$ 6.47173i 0.300767i 0.988628 + 0.150383i $$0.0480508\pi$$
−0.988628 + 0.150383i $$0.951949\pi$$
$$464$$ −0.468414 −0.0217456
$$465$$ −21.4378 12.0106i −0.994153 0.556978i
$$466$$ −3.80540 + 2.19705i −0.176282 + 0.101776i
$$467$$ −6.40986 −0.296613 −0.148307 0.988941i $$-0.547382\pi$$
−0.148307 + 0.988941i $$0.547382\pi$$
$$468$$ 0.346372 + 7.12158i 0.0160111 + 0.329195i
$$469$$ −7.67495 + 4.43113i −0.354396 + 0.204611i
$$470$$ −9.59808 + 9.38204i −0.442727 + 0.432761i
$$471$$ 6.15440 25.4242i 0.283580 1.17148i
$$472$$ 9.86726 + 5.69687i 0.454178 + 0.262220i
$$473$$ −0.0725152 + 0.125600i −0.00333425 + 0.00577509i
$$474$$ 8.96519 9.41183i 0.411785 0.432300i
$$475$$ 2.78767 21.6155i 0.127907 0.991786i
$$476$$ 3.00912i 0.137923i
$$477$$ 10.2812 19.9918i 0.470746 0.915363i
$$478$$ 11.4859 19.8942i 0.525354 0.909941i
$$479$$ 6.63996 3.83358i 0.303388 0.175161i −0.340576 0.940217i $$-0.610622\pi$$
0.643964 + 0.765056i $$0.277289\pi$$
$$480$$ 0.0500261 + 3.87266i 0.00228337 + 0.176762i
$$481$$ 4.31817 + 7.47929i 0.196891 + 0.341026i
$$482$$ 1.85378 0.0844376
$$483$$ −2.15767 2.05528i −0.0981776 0.0935185i
$$484$$ 5.49985 + 9.52601i 0.249993 + 0.433001i
$$485$$ −5.47505 + 1.40044i −0.248609 + 0.0635908i
$$486$$ 12.2774 + 9.60552i 0.556913 + 0.435715i
$$487$$ −38.4027 −1.74019 −0.870095 0.492884i $$-0.835943\pi$$
−0.870095 + 0.492884i $$0.835943\pi$$
$$488$$ 7.33727 4.23617i 0.332143 0.191763i
$$489$$ 1.03197 0.303574i 0.0466674 0.0137281i
$$490$$ 2.02289 + 7.90854i 0.0913851 + 0.357271i
$$491$$ 24.2445 + 13.9976i 1.09414 + 0.631701i 0.934675 0.355503i $$-0.115690\pi$$
0.159463 + 0.987204i $$0.449024\pi$$
$$492$$ −3.25971 11.0811i −0.146959 0.499573i
$$493$$ 0.770177 0.0346870
$$494$$ 1.09085 10.3021i 0.0490797 0.463512i
$$495$$ 0.0262216 0.114787i 0.00117857 0.00515930i
$$496$$ −5.49469 3.17236i −0.246719 0.142443i
$$497$$ −14.7035 8.48908i −0.659543 0.380787i
$$498$$ 4.88507 20.1805i 0.218905 0.904311i
$$499$$ 7.50172 12.9934i 0.335823 0.581662i −0.647820 0.761794i $$-0.724319\pi$$
0.983643 + 0.180131i $$0.0576523\pi$$
$$500$$ 10.6943 + 3.26069i 0.478263 + 0.145823i
$$501$$ 20.7650 + 19.7796i 0.927711 + 0.883686i
$$502$$ 26.3513 1.17612
$$503$$ 6.09363 + 10.5545i 0.271701 + 0.470601i 0.969298 0.245890i $$-0.0790803\pi$$
−0.697596 + 0.716491i $$0.745747\pi$$
$$504$$ 4.61581 2.97292i 0.205604 0.132424i
$$505$$ −10.9477 3.06741i −0.487168 0.136498i
$$506$$ −0.0165003 −0.000733530
$$507$$ −12.3757 2.99576i −0.549622 0.133046i
$$508$$ 8.97167 15.5394i 0.398054 0.689449i
$$509$$ −10.5618 18.2935i −0.468142 0.810846i 0.531195 0.847250i $$-0.321743\pi$$
−0.999337 + 0.0364036i $$0.988410\pi$$
$$510$$ −0.0822541 6.36752i −0.00364227 0.281959i
$$511$$ −3.99898 + 6.92644i −0.176905 + 0.306408i
$$512$$ 1.00000i 0.0441942i
$$513$$ −15.4852 16.5291i −0.683687 0.729776i
$$514$$ −3.16599 −0.139646
$$515$$ 4.04411 + 4.13724i 0.178205 + 0.182309i
$$516$$ −13.7298 + 4.03889i −0.604422 + 0.177802i
$$517$$ 0.0912410 0.0526780i 0.00401278 0.00231678i
$$518$$ 3.32514 5.75931i 0.146098 0.253050i
$$519$$ 6.95332 28.7246i 0.305217 1.26087i
$$520$$ 5.11732 + 1.43380i 0.224409 + 0.0628764i
$$521$$ 13.3244 0.583755 0.291877 0.956456i $$-0.405720\pi$$
0.291877 + 0.956456i $$0.405720\pi$$
$$522$$ 0.760911 + 1.18140i 0.0333042 + 0.0517087i
$$523$$ −8.64305 14.9702i −0.377934 0.654601i 0.612827 0.790217i $$-0.290032\pi$$
−0.990762 + 0.135616i $$0.956699\pi$$
$$524$$ 3.72040i 0.162526i
$$525$$ −4.12559 15.3029i −0.180055 0.667874i
$$526$$ 8.74981 5.05171i 0.381510 0.220265i
$$527$$ 9.03451 + 5.21608i 0.393549 + 0.227216i
$$528$$ 0.00715264 0.0295480i 0.000311279 0.00128591i
$$529$$ 11.0581 19.1532i 0.480788 0.832750i
$$530$$ −11.7127 11.9824i −0.508767 0.520482i
$$531$$ −1.66051 34.1408i −0.0720599 1.48159i
$$532$$ −7.29013 + 3.23902i −0.316067 + 0.140429i
$$533$$ −15.8493 −0.686511
$$534$$ −0.629082 + 0.185056i −0.0272230 + 0.00800817i
$$535$$ −22.8142 + 22.3007i −0.986345 + 0.964143i
$$536$$ −4.19369 + 2.42123i −0.181140 + 0.104581i
$$537$$ 10.5062 + 35.7148i 0.453376 + 1.54121i
$$538$$ −10.6109 + 6.12619i −0.457467 + 0.264119i
$$539$$ 0.0640775i 0.00276001i
$$540$$ 9.68612 6.41709i 0.416824 0.276147i
$$541$$ −19.4840 33.7472i −0.837682 1.45091i −0.891828 0.452374i $$-0.850577\pi$$
0.0541465 0.998533i $$-0.482756\pi$$
$$542$$ 7.78495 4.49464i 0.334392 0.193061i
$$543$$ −11.7176 11.1615i −0.502850 0.478987i
$$544$$ 1.64422i 0.0704955i
$$545$$ 9.46377 + 36.9988i 0.405383 + 1.58485i
$$546$$ −2.12610 7.22746i −0.0909885 0.309307i
$$547$$ 0.0296601 + 0.0513728i 0.00126817 + 0.00219654i 0.866659 0.498901i $$-0.166263\pi$$
−0.865391 + 0.501098i $$0.832930\pi$$
$$548$$ −0.467172 + 0.809165i −0.0199566 + 0.0345658i
$$549$$ −22.6032 11.6242i −0.964681 0.496109i
$$550$$ −0.0749849 0.0455993i −0.00319737 0.00194436i
$$551$$ −0.829018 1.86589i −0.0353173 0.0794896i
$$552$$ −1.17898 1.12303i −0.0501808 0.0477995i
$$553$$ −6.86715 + 11.8942i −0.292021 + 0.505795i
$$554$$ 15.2503 26.4143i 0.647923 1.12224i
$$555$$ 6.87881 12.2780i 0.291989 0.521173i
$$556$$ 5.01682 8.68939i 0.212761 0.368512i
$$557$$ −16.1900 28.0419i −0.685993 1.18818i −0.973124 0.230284i $$-0.926035\pi$$
0.287130 0.957892i $$-0.407299\pi$$
$$558$$ 0.924672 + 19.0117i 0.0391445 + 0.804830i
$$559$$ 19.6379i 0.830594i
$$560$$ −1.01410 3.96462i −0.0428534 0.167536i
$$561$$ −0.0117605 + 0.0485835i −0.000496530 + 0.00205120i
$$562$$ 29.1412i 1.22925i
$$563$$ 7.57742i 0.319350i −0.987170 0.159675i $$-0.948955\pi$$
0.987170 0.159675i $$-0.0510446\pi$$
$$564$$ 10.1047 + 2.44602i 0.425484 + 0.102996i
$$565$$ −22.1748 + 21.6756i −0.932900 + 0.911901i
$$566$$ −13.0848 22.6635i −0.549993 0.952616i
$$567$$ −14.9962 6.81238i −0.629783 0.286093i
$$568$$ −8.03419 4.63854i −0.337107 0.194629i
$$569$$ 45.8204 1.92089 0.960446 0.278468i $$-0.0898266\pi$$
0.960446 + 0.278468i $$0.0898266\pi$$
$$570$$ −15.3379 + 7.05327i −0.642434 + 0.295429i
$$571$$ −19.8944 −0.832554 −0.416277 0.909238i $$-0.636665\pi$$
−0.416277 + 0.909238i $$0.636665\pi$$
$$572$$ −0.0361270 0.0208579i −0.00151054 0.000872113i
$$573$$ −22.2095 + 6.53333i −0.927813 + 0.272934i
$$574$$ 6.10227 + 10.5694i 0.254704 + 0.441160i
$$575$$ −4.12307 + 2.25691i −0.171944 + 0.0941197i
$$576$$ 2.52214 1.62444i 0.105089 0.0676851i
$$577$$ 45.0449i 1.87524i −0.347656 0.937622i $$-0.613022\pi$$
0.347656 0.937622i $$-0.386978\pi$$
$$578$$ 14.2965i 0.594657i
$$579$$ 22.8794 + 5.53839i 0.950836 + 0.230168i
$$580$$ 1.01474 0.259555i 0.0421346 0.0107774i
$$581$$ 21.9390i 0.910181i
$$582$$ 3.16965 + 3.01923i 0.131386 + 0.125151i
$$583$$ 0.0657641 + 0.113907i 0.00272367 + 0.00471754i
$$584$$ −2.18510 + 3.78470i −0.0904200 + 0.156612i
$$585$$ −4.69654 15.2357i −0.194178 0.629919i
$$586$$ −12.5184 + 21.6825i −0.517130 + 0.895696i
$$587$$ 11.5995 20.0908i 0.478761 0.829238i −0.520943 0.853592i $$-0.674419\pi$$
0.999703 + 0.0243538i $$0.00775282\pi$$
$$588$$ 4.36119 4.57846i 0.179852 0.188812i
$$589$$ 2.91213 27.5023i 0.119992 1.13321i
$$590$$ −24.5324 6.87365i −1.00998 0.282984i
$$591$$ 1.73536 + 5.89919i 0.0713831 + 0.242660i
$$592$$ 1.81690 3.14696i 0.0746742 0.129339i
$$593$$ 18.4951 + 32.0344i 0.759501 + 1.31549i 0.943105 + 0.332494i $$0.107890\pi$$
−0.183604 + 0.983000i $$0.558776\pi$$
$$594$$ −0.0861431 + 0.0299590i −0.00353450 + 0.00122923i
$$595$$ 1.66740 + 6.51873i 0.0683568 + 0.267242i
$$596$$ 2.59813i 0.106424i
$$597$$ −5.29932 + 5.56333i −0.216887 + 0.227692i
$$598$$ −1.93491 + 1.11712i −0.0791241 + 0.0456823i
$$599$$ −0.199563 0.345652i −0.00815390 0.0141230i 0.861920 0.507045i $$-0.169262\pi$$
−0.870074 + 0.492922i $$0.835929\pi$$
$$600$$ −2.25427 8.36171i −0.0920304 0.341366i
$$601$$ 11.9930i 0.489204i −0.969624 0.244602i $$-0.921343\pi$$
0.969624 0.244602i $$-0.0786573\pi$$
$$602$$ 13.0959 7.56093i 0.533750 0.308160i
$$603$$ 12.9191 + 6.64393i 0.526106 + 0.270562i
$$604$$ 13.4644 7.77368i 0.547859 0.316307i
$$605$$ −17.1930 17.5889i −0.698993 0.715089i
$$606$$ 2.48534 + 8.44868i 0.100960 + 0.343204i
$$607$$ −33.2087 −1.34790 −0.673950 0.738777i $$-0.735404\pi$$
−0.673950 + 0.738777i $$0.735404\pi$$
$$608$$ −3.98342 + 1.76984i −0.161549 + 0.0717766i
$$609$$ −1.07511 1.02409i −0.0435658 0.0414984i
$$610$$ −13.5476 + 13.2426i −0.548525 + 0.536178i
$$611$$ 7.13289 12.3545i 0.288566 0.499811i
$$612$$ −4.14696 + 2.67095i −0.167631 + 0.107967i
$$613$$ −25.8070 14.8997i −1.04233 0.601792i −0.121841 0.992550i $$-0.538880\pi$$
−0.920494 + 0.390758i $$0.872213\pi$$
$$614$$ −19.7934 + 11.4277i −0.798795 + 0.461184i
$$615$$ 13.2018 + 22.1989i 0.532347 + 0.895146i
$$616$$ 0.0321226i 0.00129426i
$$617$$ −4.77232 8.26590i −0.192126 0.332773i 0.753828 0.657071i $$-0.228205\pi$$
−0.945955 + 0.324299i $$0.894872\pi$$
$$618$$ 1.05436 4.35560i 0.0424124 0.175208i
$$619$$ 12.2127 0.490869 0.245434 0.969413i $$-0.421069\pi$$
0.245434 + 0.969413i $$0.421069\pi$$
$$620$$ 13.6611 + 3.82767i 0.548644 + 0.153723i
$$621$$ −0.917258 + 4.79786i −0.0368083 + 0.192531i
$$622$$ 14.1223 24.4605i 0.566252 0.980778i
$$623$$ 0.600037 0.346431i 0.0240400 0.0138795i
$$624$$ −1.16173 3.94918i −0.0465063 0.158094i
$$625$$ −24.9741 1.13784i −0.998964 0.0455135i
$$626$$ −7.83066 −0.312976
$$627$$ 0.130361 0.0238032i 0.00520612 0.000950610i
$$628$$ 15.1026i 0.602659i
$$629$$ −2.98739 + 5.17431i −0.119115 + 0.206313i
$$630$$ −8.35199 + 8.99800i −0.332751 + 0.358489i
$$631$$ −7.29547 12.6361i −0.290428 0.503036i 0.683483 0.729967i $$-0.260464\pi$$
−0.973911 + 0.226930i $$0.927131\pi$$
$$632$$ −3.75230 + 6.49918i −0.149259 + 0.258523i
$$633$$ 6.68710 27.6248i 0.265788 1.09799i
$$634$$ 17.7354 0.704362
$$635$$ −10.8249 + 38.6347i −0.429574 + 1.53317i
$$636$$ −3.05366 + 12.6148i −0.121085 + 0.500211i
$$637$$ −4.33822 7.51401i −0.171886 0.297716i
$$638$$ −0.00822170 −0.000325500
$$639$$ 1.35203 + 27.7984i 0.0534855 + 1.09969i
$$640$$ −0.554116 2.16632i −0.0219033 0.0856314i
$$641$$ 12.3068 21.3160i 0.486089 0.841931i −0.513783 0.857920i $$-0.671756\pi$$
0.999872 + 0.0159890i $$0.00508968\pi$$
$$642$$ 24.0184 + 5.81410i 0.947930 + 0.229464i
$$643$$ 31.4932 + 18.1826i 1.24197 + 0.717053i 0.969495 0.245109i $$-0.0788238\pi$$
0.272477 + 0.962162i $$0.412157\pi$$
$$644$$ 1.48994 + 0.860220i 0.0587120 + 0.0338974i
$$645$$ 27.5052 16.3575i 1.08302 0.644074i
$$646$$ 6.54964 2.91002i 0.257692 0.114493i
$$647$$ 1.51184 0.0594364 0.0297182 0.999558i $$-0.490539\pi$$
0.0297182 + 0.999558i $$0.490539\pi$$
$$648$$ −8.19414 3.72237i −0.321896 0.146229i
$$649$$ 0.173193 + 0.0999927i 0.00679840 + 0.00392506i
$$650$$ −11.8803 0.270496i −0.465982 0.0106097i
$$651$$ −5.67580 19.2944i −0.222452 0.756205i
$$652$$ −0.537848 + 0.310527i −0.0210638 + 0.0121612i
$$653$$ 11.7507 0.459839 0.229919 0.973210i $$-0.426154\pi$$
0.229919 + 0.973210i $$0.426154\pi$$
$$654$$ 20.4031 21.4195i 0.797824 0.837570i
$$655$$ 2.06153 + 8.05959i 0.0805507 + 0.314914i
$$656$$ 3.33436 + 5.77528i 0.130185 + 0.225487i
$$657$$ 13.0951 0.636907i 0.510889 0.0248481i
$$658$$ −10.9851 −0.428246
$$659$$ 7.25991 + 12.5745i 0.282806 + 0.489834i 0.972075 0.234672i $$-0.0754015\pi$$
−0.689269 + 0.724506i $$0.742068\pi$$
$$660$$ 0.000878070 0.0679738i 3.41788e−5 0.00264588i
$$661$$ −0.0542368 + 0.0313136i −0.00210957 + 0.00121796i −0.501054 0.865416i $$-0.667054\pi$$
0.498945 + 0.866634i $$0.333721\pi$$
$$662$$ 5.57107 9.64937i 0.216526 0.375033i
$$663$$ 1.91014 + 6.49334i 0.0741837 + 0.252180i
$$664$$ 11.9877i 0.465214i
$$665$$ 13.9980 11.0563i 0.542819 0.428746i
$$666$$ −10.8885 + 0.529586i −0.421922 + 0.0205210i
$$667$$ −0.220171 + 0.381347i −0.00852505 + 0.0147658i
$$668$$ −14.3389 8.27857i −0.554789 0.320307i
$$669$$ 40.4596 + 9.79399i 1.56426 + 0.378658i
$$670$$ 7.74325 7.56896i 0.299148 0.292414i
$$671$$ 0.128785 0.0743543i 0.00497171 0.00287042i
$$672$$ −2.18630 + 2.29522i −0.0843385 + 0.0885402i
$$673$$ −22.6019 −0.871239 −0.435619 0.900131i $$-0.643471\pi$$
−0.435619 + 0.900131i $$0.643471\pi$$
$$674$$ 5.72662 3.30626i 0.220581 0.127353i
$$675$$ −17.4275 + 19.2687i −0.670784 + 0.741653i
$$676$$ 7.35145 0.282748
$$677$$ 47.0000i 1.80636i 0.429266 + 0.903178i $$0.358772\pi$$
−0.429266 + 0.903178i $$0.641228\pi$$
$$678$$ 23.3452 + 5.65114i 0.896566 + 0.217031i
$$679$$ −4.00566 2.31267i −0.153723 0.0887521i
$$680$$ 0.911090 + 3.56192i 0.0349387 + 0.136593i
$$681$$ −48.3637 + 14.2271i −1.85330 + 0.545184i
$$682$$ −0.0964442 0.0556821i −0.00369304 0.00213218i
$$683$$ 7.59129i 0.290472i 0.989397 + 0.145236i $$0.0463942\pi$$
−0.989397 + 0.145236i $$0.953606\pi$$
$$684$$ 10.9346 + 7.17174i 0.418096 + 0.274218i
$$685$$ 0.563674 2.01178i 0.0215369 0.0768662i
$$686$$ −9.74599 + 16.8805i −0.372104 + 0.644502i
$$687$$ 5.30158 + 18.0222i 0.202268 + 0.687591i
$$688$$ 7.15578 4.13139i 0.272812 0.157508i
$$689$$ 15.4236 + 8.90482i 0.587592 + 0.339246i
$$690$$ 3.17635 + 1.77956i 0.120921 + 0.0677467i
$$691$$ 31.3634 1.19312 0.596560 0.802569i $$-0.296534\pi$$
0.596560 + 0.802569i $$0.296534\pi$$
$$692$$ 17.0631i 0.648643i
$$693$$ 0.0810178 0.0521814i 0.00307761 0.00198221i
$$694$$ −7.02002 + 4.05301i −0.266476 + 0.153850i
$$695$$ −6.05313 + 21.6039i −0.229608 + 0.819483i
$$696$$ −0.587457 0.559579i −0.0222675 0.0212108i
$$697$$ −5.48244 9.49586i −0.207662 0.359681i
$$698$$ 3.74495 + 2.16215i 0.141748 + 0.0818385i
$$699$$ −7.39716 1.79062i −0.279786 0.0677275i
$$700$$ 4.39372 + 8.02673i 0.166067 + 0.303382i
$$701$$ 0.0562324 + 0.0324658i 0.00212387 + 0.00122622i 0.501062 0.865412i $$-0.332943\pi$$
−0.498938 + 0.866638i $$0.666276\pi$$
$$702$$ −8.07323 + 9.34525i −0.304704 + 0.352714i
$$703$$ 15.7513 + 1.66786i 0.594072 + 0.0629044i
$$704$$ 0.0175522i 0.000661525i
$$705$$ −23.2454 + 0.300278i −0.875471 + 0.0113091i
$$706$$ 3.30907 + 1.91049i 0.124539 + 0.0719024i
$$707$$ −4.65263 8.05860i −0.174980 0.303075i
$$708$$ 5.56931 + 18.9324i 0.209308 + 0.711522i
$$709$$ 20.6987 + 35.8512i 0.777356 + 1.34642i 0.933461 + 0.358680i $$0.116773\pi$$
−0.156104 + 0.987741i $$0.549894\pi$$
$$710$$ 19.9749 + 5.59671i 0.749646 + 0.210041i
$$711$$ 22.4872 1.09371i 0.843337 0.0410174i
$$712$$ 0.327868 0.189295i 0.0122874 0.00709412i
$$713$$ −5.16540 + 2.98225i −0.193446 + 0.111686i
$$714$$ 3.59477 3.77386i 0.134531 0.141233i
$$715$$ 0.0898204 + 0.0251665i 0.00335909 + 0.000941172i
$$716$$ −10.7468 18.6140i −0.401627 0.695639i
$$717$$ 38.1711 11.2288i 1.42553 0.419346i
$$718$$ 9.22208 + 15.9731i 0.344165 + 0.596111i
$$719$$ −15.9183 9.19043i −0.593652 0.342745i 0.172888 0.984941i $$-0.444690\pi$$
−0.766540 + 0.642196i $$0.778023\pi$$
$$720$$ −4.56364 + 4.91662i −0.170077 + 0.183232i
$$721$$ 4.73513i 0.176345i
$$722$$ −14.1001 12.7353i −0.524750 0.473960i
$$723$$ 2.32491 + 2.21458i 0.0864642 + 0.0823611i
$$724$$ 8.09138 + 4.67156i 0.300714 + 0.173617i
$$725$$ −2.05442 + 1.12456i −0.0762993 + 0.0417652i
$$726$$ −4.48244 + 18.5172i −0.166359 + 0.687238i
$$727$$ 0.399410 + 0.230599i 0.0148133 + 0.00855245i 0.507388 0.861718i $$-0.330611\pi$$
−0.492575 + 0.870270i $$0.663944\pi$$
$$728$$ 2.17479 + 3.76685i 0.0806030 + 0.139609i
$$729$$ 3.92256 + 26.7135i 0.145280 + 0.989391i
$$730$$ 2.63647 9.40968i 0.0975800 0.348268i
$$731$$ −11.7657 + 6.79293i −0.435170 + 0.251246i
$$732$$ 14.2626 + 3.45253i 0.527161 + 0.127609i
$$733$$ 14.7386i 0.544381i −0.962243 0.272191i $$-0.912252\pi$$
0.962243 0.272191i $$-0.0877481\pi$$
$$734$$ −1.26265 −0.0466051
$$735$$ −6.91075 + 12.3350i −0.254907 + 0.454984i
$$736$$ 0.814125 + 0.470036i 0.0300091 + 0.0173257i
$$737$$ −0.0736087 + 0.0424980i −0.00271141 + 0.00156543i
$$738$$ 9.14959 17.7913i 0.336801 0.654908i
$$739$$ −5.96842 + 10.3376i −0.219552 + 0.380275i −0.954671 0.297663i $$-0.903793\pi$$
0.735119 + 0.677938i $$0.237126\pi$$
$$740$$ −2.19221 + 7.82411i −0.0805873 + 0.287620i
$$741$$ 13.6752 11.6171i 0.502371 0.426764i
$$742$$ 13.7140i 0.503458i
$$743$$ 26.5550 + 15.3315i 0.974207 + 0.562459i 0.900516 0.434823i $$-0.143189\pi$$
0.0736906 + 0.997281i $$0.476522\pi$$
$$744$$ −3.10133 10.5427i −0.113700 0.386514i
$$745$$ 1.43966 + 5.62839i 0.0527452 + 0.206208i
$$746$$ 1.05790 + 0.610777i 0.0387323 + 0.0223621i
$$747$$ 30.2347 19.4734i 1.10623 0.712494i
$$748$$ 0.0288598i 0.00105522i
$$749$$ −26.1112 −0.954083
$$750$$ 9.51684 + 16.8650i 0.347506 + 0.615824i
$$751$$ −45.2652 + 26.1338i −1.65175 + 0.953638i −0.675396 + 0.737455i $$0.736027\pi$$
−0.976353 + 0.216182i $$0.930639\pi$$
$$752$$ −6.00243 −0.218886
$$753$$ 33.0483 + 31.4800i 1.20435 + 1.14719i
$$754$$ −0.964114 + 0.556631i −0.0351110 + 0.0202713i
$$755$$ −24.8607 + 24.3011i −0.904775 + 0.884409i
$$756$$ 9.34040 + 1.78570i 0.339707 + 0.0649455i
$$757$$ −37.1689 21.4595i −1.35093 0.779957i −0.362546 0.931966i $$-0.618093\pi$$
−0.988379 + 0.152009i $$0.951426\pi$$
$$758$$ −18.3122 + 31.7176i −0.665127 + 1.15203i
$$759$$ −0.0206938 0.0197117i −0.000751136 0.000715491i
$$760$$ 7.64868 6.04133i 0.277447 0.219142i
$$761$$ 15.0920i 0.547084i −0.961860 0.273542i $$-0.911805\pi$$
0.961860 0.273542i $$-0.0881953\pi$$
$$762$$ 29.8155 8.77080i 1.08010 0.317733i
$$763$$ −15.6283 + 27.0691i −0.565784 + 0.979966i
$$764$$ 11.5752 6.68296i 0.418777 0.241781i
$$765$$ 7.50365 8.08403i 0.271295 0.292279i
$$766$$ −9.63898 16.6952i −0.348271 0.603222i
$$767$$ 27.0791 0.977770
$$768$$ −1.19463 + 1.25414i −0.0431073 + 0.0452549i
$$769$$ 5.77407 + 10.0010i 0.208218 + 0.360644i 0.951153 0.308719i $$-0.0999003\pi$$
−0.742935 + 0.669363i $$0.766567\pi$$
$$770$$ −0.0177997 0.0695880i −0.000641455 0.00250778i
$$771$$ −3.97060 3.78218i −0.142998 0.136212i
$$772$$ −13.5909 −0.489149
$$773$$ −23.3720 + 13.4938i −0.840632 + 0.485339i −0.857479 0.514519i $$-0.827971\pi$$
0.0168468 + 0.999858i $$0.494637\pi$$
$$774$$ −22.0441 11.3367i −0.792359 0.407488i
$$775$$ −31.7154 0.722114i −1.13925