Properties

Label 570.2.n.a.179.20
Level $570$
Weight $2$
Character 570.179
Analytic conductor $4.551$
Analytic rank $0$
Dimension $80$
CM no
Inner twists $8$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 570 = 2 \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 570.n (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.55147291521\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(40\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 179.20
Character \(\chi\) \(=\) 570.179
Dual form 570.2.n.a.449.20

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.866025 - 0.500000i) q^{2} +(1.73102 - 0.0596429i) q^{3} +(0.500000 + 0.866025i) q^{4} +(1.27642 - 1.83596i) q^{5} +(-1.52893 - 0.813860i) q^{6} +1.16784i q^{7} -1.00000i q^{8} +(2.99289 - 0.206487i) q^{9} +O(q^{10})\) \(q+(-0.866025 - 0.500000i) q^{2} +(1.73102 - 0.0596429i) q^{3} +(0.500000 + 0.866025i) q^{4} +(1.27642 - 1.83596i) q^{5} +(-1.52893 - 0.813860i) q^{6} +1.16784i q^{7} -1.00000i q^{8} +(2.99289 - 0.206487i) q^{9} +(-2.02339 + 0.951780i) q^{10} +4.44433i q^{11} +(0.917164 + 1.46929i) q^{12} +(2.92698 + 5.06967i) q^{13} +(0.583921 - 1.01138i) q^{14} +(2.10001 - 3.25422i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(3.62269 - 6.27468i) q^{17} +(-2.69516 - 1.31762i) q^{18} +(-3.38653 + 2.74435i) q^{19} +(2.22820 + 0.187431i) q^{20} +(0.0696535 + 2.02156i) q^{21} +(2.22217 - 3.84890i) q^{22} +(0.350216 + 0.606593i) q^{23} +(-0.0596429 - 1.73102i) q^{24} +(-1.74151 - 4.68691i) q^{25} -5.85395i q^{26} +(5.16844 - 0.535937i) q^{27} +(-1.01138 + 0.583921i) q^{28} +(-4.91327 - 8.51002i) q^{29} +(-3.44577 + 1.76823i) q^{30} +2.06503i q^{31} +(0.866025 - 0.500000i) q^{32} +(0.265073 + 7.69324i) q^{33} +(-6.27468 + 3.62269i) q^{34} +(2.14411 + 1.49066i) q^{35} +(1.67527 + 2.48867i) q^{36} +3.98069 q^{37} +(4.30499 - 0.683410i) q^{38} +(5.36904 + 8.60115i) q^{39} +(-1.83596 - 1.27642i) q^{40} +(-2.34614 + 4.06363i) q^{41} +(0.950460 - 1.78555i) q^{42} +(-7.23835 - 4.17906i) q^{43} +(-3.84890 + 2.22217i) q^{44} +(3.44107 - 5.75839i) q^{45} -0.700433i q^{46} +(-2.68664 - 4.65340i) q^{47} +(-0.813860 + 1.52893i) q^{48} +5.63614 q^{49} +(-0.835266 + 4.92974i) q^{50} +(5.89672 - 11.0777i) q^{51} +(-2.92698 + 5.06967i) q^{52} +(2.49446 - 1.44018i) q^{53} +(-4.74397 - 2.12008i) q^{54} +(8.15962 + 5.67283i) q^{55} +1.16784 q^{56} +(-5.69848 + 4.95251i) q^{57} +9.82653i q^{58} +(-4.78819 + 8.29339i) q^{59} +(3.86824 + 0.191551i) q^{60} +(-1.07927 - 1.86935i) q^{61} +(1.03252 - 1.78837i) q^{62} +(0.241144 + 3.49522i) q^{63} -1.00000 q^{64} +(13.0438 + 1.09721i) q^{65} +(3.61706 - 6.79508i) q^{66} +(-5.55503 - 9.62160i) q^{67} +7.24538 q^{68} +(0.642412 + 1.02914i) q^{69} +(-1.11153 - 2.36300i) q^{70} +(5.03898 - 8.72776i) q^{71} +(-0.206487 - 2.99289i) q^{72} +(-5.45777 - 3.15105i) q^{73} +(-3.44738 - 1.99035i) q^{74} +(-3.29413 - 8.00929i) q^{75} +(-4.06994 - 1.56065i) q^{76} -5.19028 q^{77} +(-0.349147 - 10.1333i) q^{78} +(3.45889 + 1.99699i) q^{79} +(0.951780 + 2.02339i) q^{80} +(8.91473 - 1.23598i) q^{81} +(4.06363 - 2.34614i) q^{82} -4.23804 q^{83} +(-1.71590 + 1.07110i) q^{84} +(-6.89601 - 14.6602i) q^{85} +(4.17906 + 7.23835i) q^{86} +(-9.01254 - 14.4380i) q^{87} +4.44433 q^{88} +(5.96947 + 10.3394i) q^{89} +(-5.85925 + 3.26637i) q^{90} +(-5.92058 + 3.41825i) q^{91} +(-0.350216 + 0.606593i) q^{92} +(0.123165 + 3.57462i) q^{93} +5.37328i q^{94} +(0.715885 + 9.72047i) q^{95} +(1.46929 - 0.917164i) q^{96} +(-1.40269 + 2.42953i) q^{97} +(-4.88104 - 2.81807i) q^{98} +(0.917695 + 13.3014i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80q + 40q^{4} + O(q^{10}) \) \( 80q + 40q^{4} + 30q^{15} - 40q^{16} + 8q^{19} + 8q^{25} - 4q^{30} + 48q^{39} + 12q^{45} - 128q^{49} - 36q^{54} + 12q^{55} + 30q^{60} - 24q^{61} - 80q^{64} + 4q^{66} + 36q^{70} + 16q^{76} + 24q^{79} + 32q^{81} - 8q^{85} - 54q^{90} + 24q^{91} - 60q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/570\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(211\) \(457\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 0.500000i −0.612372 0.353553i
\(3\) 1.73102 0.0596429i 0.999407 0.0344348i
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) 1.27642 1.83596i 0.570832 0.821067i
\(6\) −1.52893 0.813860i −0.624184 0.332257i
\(7\) 1.16784i 0.441403i 0.975341 + 0.220702i \(0.0708347\pi\)
−0.975341 + 0.220702i \(0.929165\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 2.99289 0.206487i 0.997628 0.0688288i
\(10\) −2.02339 + 0.951780i −0.639853 + 0.300979i
\(11\) 4.44433i 1.34002i 0.742354 + 0.670008i \(0.233709\pi\)
−0.742354 + 0.670008i \(0.766291\pi\)
\(12\) 0.917164 + 1.46929i 0.264762 + 0.424147i
\(13\) 2.92698 + 5.06967i 0.811797 + 1.40607i 0.911605 + 0.411067i \(0.134844\pi\)
−0.0998076 + 0.995007i \(0.531823\pi\)
\(14\) 0.583921 1.01138i 0.156060 0.270303i
\(15\) 2.10001 3.25422i 0.542220 0.840236i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 3.62269 6.27468i 0.878632 1.52183i 0.0257883 0.999667i \(-0.491790\pi\)
0.852843 0.522167i \(-0.174876\pi\)
\(18\) −2.69516 1.31762i −0.635255 0.310566i
\(19\) −3.38653 + 2.74435i −0.776923 + 0.629596i
\(20\) 2.22820 + 0.187431i 0.498240 + 0.0419108i
\(21\) 0.0696535 + 2.02156i 0.0151996 + 0.441141i
\(22\) 2.22217 3.84890i 0.473767 0.820589i
\(23\) 0.350216 + 0.606593i 0.0730252 + 0.126483i 0.900226 0.435423i \(-0.143401\pi\)
−0.827201 + 0.561907i \(0.810068\pi\)
\(24\) −0.0596429 1.73102i −0.0121746 0.353344i
\(25\) −1.74151 4.68691i −0.348302 0.937382i
\(26\) 5.85395i 1.14805i
\(27\) 5.16844 0.535937i 0.994667 0.103141i
\(28\) −1.01138 + 0.583921i −0.191133 + 0.110351i
\(29\) −4.91327 8.51002i −0.912370 1.58027i −0.810706 0.585453i \(-0.800917\pi\)
−0.101664 0.994819i \(-0.532417\pi\)
\(30\) −3.44577 + 1.76823i −0.629109 + 0.322834i
\(31\) 2.06503i 0.370891i 0.982655 + 0.185446i \(0.0593728\pi\)
−0.982655 + 0.185446i \(0.940627\pi\)
\(32\) 0.866025 0.500000i 0.153093 0.0883883i
\(33\) 0.265073 + 7.69324i 0.0461433 + 1.33922i
\(34\) −6.27468 + 3.62269i −1.07610 + 0.621286i
\(35\) 2.14411 + 1.49066i 0.362421 + 0.251967i
\(36\) 1.67527 + 2.48867i 0.279211 + 0.414779i
\(37\) 3.98069 0.654422 0.327211 0.944951i \(-0.393891\pi\)
0.327211 + 0.944951i \(0.393891\pi\)
\(38\) 4.30499 0.683410i 0.698362 0.110864i
\(39\) 5.36904 + 8.60115i 0.859734 + 1.37729i
\(40\) −1.83596 1.27642i −0.290291 0.201820i
\(41\) −2.34614 + 4.06363i −0.366406 + 0.634633i −0.989001 0.147911i \(-0.952745\pi\)
0.622595 + 0.782544i \(0.286078\pi\)
\(42\) 0.950460 1.78555i 0.146659 0.275517i
\(43\) −7.23835 4.17906i −1.10384 0.637301i −0.166611 0.986023i \(-0.553282\pi\)
−0.937226 + 0.348722i \(0.886616\pi\)
\(44\) −3.84890 + 2.22217i −0.580244 + 0.335004i
\(45\) 3.44107 5.75839i 0.512965 0.858409i
\(46\) 0.700433i 0.103273i
\(47\) −2.68664 4.65340i −0.391887 0.678768i 0.600811 0.799391i \(-0.294844\pi\)
−0.992698 + 0.120622i \(0.961511\pi\)
\(48\) −0.813860 + 1.52893i −0.117471 + 0.220682i
\(49\) 5.63614 0.805163
\(50\) −0.835266 + 4.92974i −0.118124 + 0.697170i
\(51\) 5.89672 11.0777i 0.825706 1.55119i
\(52\) −2.92698 + 5.06967i −0.405899 + 0.703037i
\(53\) 2.49446 1.44018i 0.342640 0.197823i −0.318799 0.947822i \(-0.603279\pi\)
0.661439 + 0.749999i \(0.269946\pi\)
\(54\) −4.74397 2.12008i −0.645572 0.288507i
\(55\) 8.15962 + 5.67283i 1.10024 + 0.764924i
\(56\) 1.16784 0.156060
\(57\) −5.69848 + 4.95251i −0.754782 + 0.655976i
\(58\) 9.82653i 1.29029i
\(59\) −4.78819 + 8.29339i −0.623369 + 1.07971i 0.365484 + 0.930817i \(0.380903\pi\)
−0.988854 + 0.148890i \(0.952430\pi\)
\(60\) 3.86824 + 0.191551i 0.499388 + 0.0247291i
\(61\) −1.07927 1.86935i −0.138186 0.239345i 0.788624 0.614876i \(-0.210794\pi\)
−0.926810 + 0.375530i \(0.877461\pi\)
\(62\) 1.03252 1.78837i 0.131130 0.227123i
\(63\) 0.241144 + 3.49522i 0.0303813 + 0.440356i
\(64\) −1.00000 −0.125000
\(65\) 13.0438 + 1.09721i 1.61788 + 0.136092i
\(66\) 3.61706 6.79508i 0.445230 0.836417i
\(67\) −5.55503 9.62160i −0.678655 1.17547i −0.975386 0.220504i \(-0.929230\pi\)
0.296731 0.954961i \(-0.404104\pi\)
\(68\) 7.24538 0.878632
\(69\) 0.642412 + 1.02914i 0.0773373 + 0.123894i
\(70\) −1.11153 2.36300i −0.132853 0.282433i
\(71\) 5.03898 8.72776i 0.598016 1.03579i −0.395097 0.918639i \(-0.629289\pi\)
0.993114 0.117155i \(-0.0373776\pi\)
\(72\) −0.206487 2.99289i −0.0243347 0.352715i
\(73\) −5.45777 3.15105i −0.638784 0.368802i 0.145362 0.989379i \(-0.453565\pi\)
−0.784146 + 0.620576i \(0.786899\pi\)
\(74\) −3.44738 1.99035i −0.400750 0.231373i
\(75\) −3.29413 8.00929i −0.380374 0.924833i
\(76\) −4.06994 1.56065i −0.466854 0.179018i
\(77\) −5.19028 −0.591488
\(78\) −0.349147 10.1333i −0.0395331 1.14737i
\(79\) 3.45889 + 1.99699i 0.389155 + 0.224679i 0.681794 0.731544i \(-0.261200\pi\)
−0.292639 + 0.956223i \(0.594533\pi\)
\(80\) 0.951780 + 2.02339i 0.106412 + 0.226222i
\(81\) 8.91473 1.23598i 0.990525 0.137331i
\(82\) 4.06363 2.34614i 0.448753 0.259088i
\(83\) −4.23804 −0.465185 −0.232593 0.972574i \(-0.574721\pi\)
−0.232593 + 0.972574i \(0.574721\pi\)
\(84\) −1.71590 + 1.07110i −0.187220 + 0.116867i
\(85\) −6.89601 14.6602i −0.747977 1.59013i
\(86\) 4.17906 + 7.23835i 0.450640 + 0.780531i
\(87\) −9.01254 14.4380i −0.966246 1.54792i
\(88\) 4.44433 0.473767
\(89\) 5.96947 + 10.3394i 0.632762 + 1.09598i 0.986985 + 0.160815i \(0.0514124\pi\)
−0.354222 + 0.935161i \(0.615254\pi\)
\(90\) −5.85925 + 3.26637i −0.617619 + 0.344306i
\(91\) −5.92058 + 3.41825i −0.620646 + 0.358330i
\(92\) −0.350216 + 0.606593i −0.0365126 + 0.0632417i
\(93\) 0.123165 + 3.57462i 0.0127716 + 0.370671i
\(94\) 5.37328i 0.554212i
\(95\) 0.715885 + 9.72047i 0.0734482 + 0.997299i
\(96\) 1.46929 0.917164i 0.149959 0.0936077i
\(97\) −1.40269 + 2.42953i −0.142421 + 0.246681i −0.928408 0.371562i \(-0.878822\pi\)
0.785987 + 0.618244i \(0.212156\pi\)
\(98\) −4.88104 2.81807i −0.493060 0.284668i
\(99\) 0.917695 + 13.3014i 0.0922318 + 1.33684i
\(100\) 3.18823 3.85165i 0.318823 0.385165i
\(101\) −2.64803 + 1.52884i −0.263488 + 0.152125i −0.625925 0.779883i \(-0.715278\pi\)
0.362436 + 0.932008i \(0.381945\pi\)
\(102\) −10.6456 + 6.64520i −1.05407 + 0.657973i
\(103\) −1.52864 −0.150622 −0.0753108 0.997160i \(-0.523995\pi\)
−0.0753108 + 0.997160i \(0.523995\pi\)
\(104\) 5.06967 2.92698i 0.497122 0.287014i
\(105\) 3.80042 + 2.45248i 0.370883 + 0.239338i
\(106\) −2.88035 −0.279764
\(107\) 2.11659i 0.204619i 0.994753 + 0.102309i \(0.0326232\pi\)
−0.994753 + 0.102309i \(0.967377\pi\)
\(108\) 3.04836 + 4.20803i 0.293328 + 0.404918i
\(109\) −2.57164 1.48474i −0.246318 0.142212i 0.371759 0.928329i \(-0.378755\pi\)
−0.618077 + 0.786117i \(0.712088\pi\)
\(110\) −4.23003 8.99263i −0.403317 0.857413i
\(111\) 6.89068 0.237420i 0.654034 0.0225349i
\(112\) −1.01138 0.583921i −0.0955666 0.0551754i
\(113\) 18.6101i 1.75069i 0.483497 + 0.875346i \(0.339366\pi\)
−0.483497 + 0.875346i \(0.660634\pi\)
\(114\) 7.41128 1.43976i 0.694130 0.134846i
\(115\) 1.56070 + 0.131283i 0.145536 + 0.0122422i
\(116\) 4.91327 8.51002i 0.456185 0.790136i
\(117\) 9.80693 + 14.5686i 0.906651 + 1.34686i
\(118\) 8.29339 4.78819i 0.763468 0.440789i
\(119\) 7.32785 + 4.23073i 0.671742 + 0.387831i
\(120\) −3.25422 2.10001i −0.297068 0.191704i
\(121\) −8.75209 −0.795645
\(122\) 2.15854i 0.195425i
\(123\) −3.81886 + 7.17418i −0.344335 + 0.646874i
\(124\) −1.78837 + 1.03252i −0.160601 + 0.0927228i
\(125\) −10.8279 2.78512i −0.968475 0.249109i
\(126\) 1.53877 3.14752i 0.137085 0.280403i
\(127\) −2.52371 4.37120i −0.223943 0.387881i 0.732059 0.681242i \(-0.238560\pi\)
−0.956002 + 0.293360i \(0.905226\pi\)
\(128\) 0.866025 + 0.500000i 0.0765466 + 0.0441942i
\(129\) −12.7790 6.80234i −1.12513 0.598912i
\(130\) −10.7476 7.47210i −0.942630 0.655346i
\(131\) −16.9662 9.79541i −1.48234 0.855829i −0.482540 0.875874i \(-0.660286\pi\)
−0.999799 + 0.0200446i \(0.993619\pi\)
\(132\) −6.53001 + 4.07618i −0.568364 + 0.354786i
\(133\) −3.20496 3.95493i −0.277906 0.342936i
\(134\) 11.1101i 0.959763i
\(135\) 5.61314 10.1731i 0.483102 0.875564i
\(136\) −6.27468 3.62269i −0.538050 0.310643i
\(137\) −8.48983 14.7048i −0.725335 1.25632i −0.958836 0.283961i \(-0.908351\pi\)
0.233501 0.972357i \(-0.424982\pi\)
\(138\) −0.0417758 1.21247i −0.00355620 0.103212i
\(139\) 10.2527 + 17.7583i 0.869626 + 1.50624i 0.862380 + 0.506262i \(0.168973\pi\)
0.00724626 + 0.999974i \(0.497693\pi\)
\(140\) −0.218890 + 2.60219i −0.0184995 + 0.219925i
\(141\) −4.92818 7.89491i −0.415028 0.664871i
\(142\) −8.72776 + 5.03898i −0.732418 + 0.422861i
\(143\) −22.5313 + 13.0085i −1.88416 + 1.08782i
\(144\) −1.31762 + 2.69516i −0.109802 + 0.224597i
\(145\) −21.8955 1.84179i −1.81832 0.152953i
\(146\) 3.15105 + 5.45777i 0.260782 + 0.451688i
\(147\) 9.75630 0.336156i 0.804686 0.0277257i
\(148\) 1.99035 + 3.44738i 0.163606 + 0.283373i
\(149\) −10.2436 5.91412i −0.839185 0.484504i 0.0178019 0.999842i \(-0.494333\pi\)
−0.856987 + 0.515338i \(0.827667\pi\)
\(150\) −1.15184 + 8.58331i −0.0940474 + 0.700825i
\(151\) 9.18634i 0.747574i 0.927515 + 0.373787i \(0.121941\pi\)
−0.927515 + 0.373787i \(0.878059\pi\)
\(152\) 2.74435 + 3.38653i 0.222596 + 0.274684i
\(153\) 9.54666 19.5274i 0.771802 1.57870i
\(154\) 4.49492 + 2.59514i 0.362211 + 0.209122i
\(155\) 3.79132 + 2.63585i 0.304526 + 0.211717i
\(156\) −4.76430 + 8.95030i −0.381449 + 0.716597i
\(157\) 11.2667 + 6.50486i 0.899184 + 0.519144i 0.876935 0.480608i \(-0.159584\pi\)
0.0222487 + 0.999752i \(0.492917\pi\)
\(158\) −1.99699 3.45889i −0.158872 0.275174i
\(159\) 4.23207 2.64175i 0.335625 0.209505i
\(160\) 0.187431 2.22820i 0.0148177 0.176155i
\(161\) −0.708405 + 0.408998i −0.0558301 + 0.0322335i
\(162\) −8.33837 3.38697i −0.655124 0.266106i
\(163\) 2.00935i 0.157384i 0.996899 + 0.0786921i \(0.0250744\pi\)
−0.996899 + 0.0786921i \(0.974926\pi\)
\(164\) −4.69228 −0.366406
\(165\) 14.4628 + 9.33314i 1.12593 + 0.726584i
\(166\) 3.67025 + 2.11902i 0.284867 + 0.164468i
\(167\) 2.46529 1.42333i 0.190770 0.110141i −0.401573 0.915827i \(-0.631536\pi\)
0.592343 + 0.805686i \(0.298203\pi\)
\(168\) 2.02156 0.0696535i 0.155967 0.00537389i
\(169\) −10.6344 + 18.4193i −0.818030 + 1.41687i
\(170\) −1.35801 + 16.1441i −0.104154 + 1.23820i
\(171\) −9.56882 + 8.91278i −0.731746 + 0.681578i
\(172\) 8.35812i 0.637301i
\(173\) −18.5676 10.7200i −1.41167 0.815025i −0.416120 0.909310i \(-0.636610\pi\)
−0.995545 + 0.0942842i \(0.969944\pi\)
\(174\) 0.586083 + 17.0100i 0.0444308 + 1.28952i
\(175\) 5.47358 2.03381i 0.413764 0.153741i
\(176\) −3.84890 2.22217i −0.290122 0.167502i
\(177\) −7.79383 + 14.6416i −0.585820 + 1.10053i
\(178\) 11.9389i 0.894861i
\(179\) −9.88686 −0.738979 −0.369489 0.929235i \(-0.620467\pi\)
−0.369489 + 0.929235i \(0.620467\pi\)
\(180\) 6.70745 + 0.100866i 0.499943 + 0.00751808i
\(181\) −8.24904 + 4.76259i −0.613146 + 0.354000i −0.774196 0.632946i \(-0.781845\pi\)
0.161050 + 0.986946i \(0.448512\pi\)
\(182\) 6.83650 0.506755
\(183\) −1.97973 3.17151i −0.146346 0.234445i
\(184\) 0.606593 0.350216i 0.0447186 0.0258183i
\(185\) 5.08104 7.30840i 0.373565 0.537324i
\(186\) 1.68065 3.15730i 0.123231 0.231504i
\(187\) 27.8868 + 16.1004i 2.03928 + 1.17738i
\(188\) 2.68664 4.65340i 0.195944 0.339384i
\(189\) 0.625891 + 6.03593i 0.0455268 + 0.439049i
\(190\) 4.24026 8.77612i 0.307621 0.636686i
\(191\) 12.4576i 0.901402i 0.892675 + 0.450701i \(0.148826\pi\)
−0.892675 + 0.450701i \(0.851174\pi\)
\(192\) −1.73102 + 0.0596429i −0.124926 + 0.00430435i
\(193\) −2.92632 + 5.06853i −0.210641 + 0.364841i −0.951915 0.306361i \(-0.900888\pi\)
0.741274 + 0.671202i \(0.234222\pi\)
\(194\) 2.42953 1.40269i 0.174430 0.100707i
\(195\) 22.6445 + 1.12133i 1.62161 + 0.0803000i
\(196\) 2.81807 + 4.88104i 0.201291 + 0.348646i
\(197\) −5.44911 −0.388233 −0.194117 0.980978i \(-0.562184\pi\)
−0.194117 + 0.980978i \(0.562184\pi\)
\(198\) 5.85594 11.9782i 0.416164 0.851252i
\(199\) −10.6120 18.3805i −0.752266 1.30296i −0.946722 0.322051i \(-0.895628\pi\)
0.194456 0.980911i \(-0.437706\pi\)
\(200\) −4.68691 + 1.74151i −0.331415 + 0.123143i
\(201\) −10.1898 16.3239i −0.718730 1.15140i
\(202\) 3.05768 0.215137
\(203\) 9.93837 5.73792i 0.697537 0.402723i
\(204\) 12.5419 0.432135i 0.878110 0.0302555i
\(205\) 4.46602 + 9.49432i 0.311920 + 0.663112i
\(206\) 1.32384 + 0.764321i 0.0922366 + 0.0532528i
\(207\) 1.17341 + 1.74315i 0.0815577 + 0.121157i
\(208\) −5.85395 −0.405899
\(209\) −12.1968 15.0509i −0.843669 1.04109i
\(210\) −2.06502 4.02412i −0.142500 0.277691i
\(211\) 13.7491 + 7.93808i 0.946530 + 0.546480i 0.892001 0.452033i \(-0.149301\pi\)
0.0545290 + 0.998512i \(0.482634\pi\)
\(212\) 2.49446 + 1.44018i 0.171320 + 0.0989116i
\(213\) 8.20204 15.4085i 0.561994 1.05577i
\(214\) 1.05830 1.83302i 0.0723436 0.125303i
\(215\) −16.9118 + 7.95509i −1.15337 + 0.542533i
\(216\) −0.535937 5.16844i −0.0364659 0.351668i
\(217\) −2.41164 −0.163712
\(218\) 1.48474 + 2.57164i 0.100559 + 0.174173i
\(219\) −9.63547 5.12902i −0.651105 0.346587i
\(220\) −0.833004 + 9.90286i −0.0561611 + 0.667650i
\(221\) 42.4141 2.85308
\(222\) −6.08621 3.23973i −0.408480 0.217436i
\(223\) 7.81305 13.5326i 0.523200 0.906210i −0.476435 0.879210i \(-0.658071\pi\)
0.999635 0.0269999i \(-0.00859539\pi\)
\(224\) 0.583921 + 1.01138i 0.0390149 + 0.0675758i
\(225\) −6.17992 13.6678i −0.411995 0.911186i
\(226\) 9.30506 16.1168i 0.618963 1.07208i
\(227\) 5.38759i 0.357587i −0.983887 0.178793i \(-0.942781\pi\)
0.983887 0.178793i \(-0.0572193\pi\)
\(228\) −7.13824 2.45877i −0.472741 0.162836i
\(229\) 9.05245 0.598203 0.299101 0.954221i \(-0.403313\pi\)
0.299101 + 0.954221i \(0.403313\pi\)
\(230\) −1.28597 0.894046i −0.0847942 0.0589516i
\(231\) −8.98450 + 0.309563i −0.591137 + 0.0203678i
\(232\) −8.51002 + 4.91327i −0.558710 + 0.322572i
\(233\) −7.08799 + 12.2768i −0.464349 + 0.804277i −0.999172 0.0406877i \(-0.987045\pi\)
0.534823 + 0.844964i \(0.320378\pi\)
\(234\) −1.20876 17.5202i −0.0790193 1.14533i
\(235\) −11.9727 1.00712i −0.781016 0.0656972i
\(236\) −9.57638 −0.623369
\(237\) 6.10652 + 3.25054i 0.396661 + 0.211145i
\(238\) −4.23073 7.32785i −0.274238 0.474994i
\(239\) 11.0636i 0.715643i 0.933790 + 0.357822i \(0.116480\pi\)
−0.933790 + 0.357822i \(0.883520\pi\)
\(240\) 1.76823 + 3.44577i 0.114139 + 0.222424i
\(241\) 7.78601 4.49526i 0.501541 0.289565i −0.227809 0.973706i \(-0.573156\pi\)
0.729350 + 0.684141i \(0.239823\pi\)
\(242\) 7.57953 + 4.37605i 0.487231 + 0.281303i
\(243\) 15.3579 2.67121i 0.985209 0.171358i
\(244\) 1.07927 1.86935i 0.0690931 0.119673i
\(245\) 7.19408 10.3477i 0.459613 0.661093i
\(246\) 6.89432 4.30359i 0.439565 0.274387i
\(247\) −23.8252 9.13595i −1.51596 0.581306i
\(248\) 2.06503 0.131130
\(249\) −7.33615 + 0.252769i −0.464910 + 0.0160186i
\(250\) 7.98466 + 7.82593i 0.504994 + 0.494955i
\(251\) −2.64013 + 1.52428i −0.166643 + 0.0962116i −0.581002 0.813902i \(-0.697339\pi\)
0.414359 + 0.910114i \(0.364006\pi\)
\(252\) −2.90638 + 1.95645i −0.183085 + 0.123245i
\(253\) −2.69590 + 1.55648i −0.169490 + 0.0978549i
\(254\) 5.04743i 0.316704i
\(255\) −12.8115 24.9659i −0.802289 1.56343i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 12.1160 6.99520i 0.755778 0.436349i −0.0719998 0.997405i \(-0.522938\pi\)
0.827778 + 0.561056i \(0.189605\pi\)
\(258\) 7.66577 + 12.2805i 0.477250 + 0.764550i
\(259\) 4.64883i 0.288864i
\(260\) 5.57167 + 11.8448i 0.345541 + 0.734586i
\(261\) −16.4620 24.4550i −1.01897 1.51373i
\(262\) 9.79541 + 16.9662i 0.605163 + 1.04817i
\(263\) 9.62656 16.6737i 0.593599 1.02814i −0.400144 0.916452i \(-0.631040\pi\)
0.993743 0.111691i \(-0.0356268\pi\)
\(264\) 7.69324 0.265073i 0.473486 0.0163141i
\(265\) 0.539866 6.41799i 0.0331637 0.394254i
\(266\) 0.798115 + 5.02755i 0.0489356 + 0.308259i
\(267\) 10.9500 + 17.5417i 0.670127 + 1.07354i
\(268\) 5.55503 9.62160i 0.339328 0.587733i
\(269\) 5.82981 10.0975i 0.355450 0.615657i −0.631745 0.775176i \(-0.717661\pi\)
0.987195 + 0.159519i \(0.0509943\pi\)
\(270\) −9.94769 + 6.00363i −0.605397 + 0.365369i
\(271\) 3.57329 6.18912i 0.217062 0.375962i −0.736847 0.676060i \(-0.763686\pi\)
0.953908 + 0.300098i \(0.0970193\pi\)
\(272\) 3.62269 + 6.27468i 0.219658 + 0.380459i
\(273\) −10.0448 + 6.27019i −0.607938 + 0.379489i
\(274\) 16.9797i 1.02578i
\(275\) 20.8302 7.73984i 1.25611 0.466730i
\(276\) −0.570054 + 1.07091i −0.0343132 + 0.0644615i
\(277\) 27.5262i 1.65389i −0.562281 0.826946i \(-0.690076\pi\)
0.562281 0.826946i \(-0.309924\pi\)
\(278\) 20.5055i 1.22984i
\(279\) 0.426402 + 6.18041i 0.0255280 + 0.370012i
\(280\) 1.49066 2.14411i 0.0890838 0.128135i
\(281\) 1.52184 + 2.63591i 0.0907854 + 0.157245i 0.907842 0.419313i \(-0.137729\pi\)
−0.817056 + 0.576558i \(0.804396\pi\)
\(282\) 0.320478 + 9.30128i 0.0190842 + 0.553883i
\(283\) 11.2881 + 6.51719i 0.671008 + 0.387407i 0.796459 0.604693i \(-0.206704\pi\)
−0.125450 + 0.992100i \(0.540038\pi\)
\(284\) 10.0780 0.598016
\(285\) 1.81897 + 16.7837i 0.107747 + 0.994178i
\(286\) 26.0169 1.53841
\(287\) −4.74569 2.73992i −0.280129 0.161733i
\(288\) 2.48867 1.67527i 0.146646 0.0987160i
\(289\) −17.7478 30.7400i −1.04399 1.80824i
\(290\) 18.0411 + 12.5428i 1.05941 + 0.736537i
\(291\) −2.28318 + 4.28923i −0.133843 + 0.251439i
\(292\) 6.30209i 0.368802i
\(293\) 13.0414i 0.761889i 0.924598 + 0.380944i \(0.124401\pi\)
−0.924598 + 0.380944i \(0.875599\pi\)
\(294\) −8.61728 4.58703i −0.502570 0.267521i
\(295\) 9.11461 + 19.3768i 0.530673 + 1.12816i
\(296\) 3.98069i 0.231373i
\(297\) 2.38188 + 22.9703i 0.138211 + 1.33287i
\(298\) 5.91412 + 10.2436i 0.342596 + 0.593394i
\(299\) −2.05015 + 3.55097i −0.118563 + 0.205358i
\(300\) 5.28918 6.85745i 0.305371 0.395915i
\(301\) 4.88049 8.45325i 0.281307 0.487237i
\(302\) 4.59317 7.95561i 0.264307 0.457794i
\(303\) −4.49261 + 2.80439i −0.258094 + 0.161108i
\(304\) −0.683410 4.30499i −0.0391962 0.246908i
\(305\) −4.80965 0.404576i −0.275400 0.0231659i
\(306\) −18.0314 + 12.1379i −1.03079 + 0.693880i
\(307\) −13.3093 + 23.0524i −0.759602 + 1.31567i 0.183452 + 0.983029i \(0.441273\pi\)
−0.943054 + 0.332640i \(0.892061\pi\)
\(308\) −2.59514 4.49492i −0.147872 0.256122i
\(309\) −2.64612 + 0.0911727i −0.150532 + 0.00518663i
\(310\) −1.96546 4.17837i −0.111630 0.237316i
\(311\) 25.1173i 1.42427i −0.702043 0.712135i \(-0.747728\pi\)
0.702043 0.712135i \(-0.252272\pi\)
\(312\) 8.60115 5.36904i 0.486944 0.303962i
\(313\) 16.3680 9.45006i 0.925174 0.534149i 0.0398916 0.999204i \(-0.487299\pi\)
0.885282 + 0.465055i \(0.153965\pi\)
\(314\) −6.50486 11.2667i −0.367090 0.635819i
\(315\) 6.72489 + 4.01863i 0.378905 + 0.226424i
\(316\) 3.99398i 0.224679i
\(317\) 22.5012 12.9910i 1.26379 0.729650i 0.289985 0.957031i \(-0.406350\pi\)
0.973806 + 0.227381i \(0.0730164\pi\)
\(318\) −4.98595 + 0.171792i −0.279598 + 0.00963364i
\(319\) 37.8214 21.8362i 2.11759 1.22259i
\(320\) −1.27642 + 1.83596i −0.0713540 + 0.102633i
\(321\) 0.126240 + 3.66387i 0.00704601 + 0.204497i
\(322\) 0.817995 0.0455851
\(323\) 4.95156 + 31.1913i 0.275512 + 1.73553i
\(324\) 5.52775 + 7.10239i 0.307097 + 0.394577i
\(325\) 18.6638 22.5474i 1.03528 1.25070i
\(326\) 1.00467 1.74015i 0.0556437 0.0963777i
\(327\) −4.54012 2.41673i −0.251069 0.133646i
\(328\) 4.06363 + 2.34614i 0.224377 + 0.129544i
\(329\) 5.43444 3.13758i 0.299610 0.172980i
\(330\) −7.85862 15.3142i −0.432603 0.843017i
\(331\) 23.2109i 1.27578i 0.770126 + 0.637892i \(0.220193\pi\)
−0.770126 + 0.637892i \(0.779807\pi\)
\(332\) −2.11902 3.67025i −0.116296 0.201431i
\(333\) 11.9138 0.821960i 0.652870 0.0450431i
\(334\) −2.84667 −0.155763
\(335\) −24.7554 2.08237i −1.35253 0.113772i
\(336\) −1.78555 0.950460i −0.0974099 0.0518518i
\(337\) −13.2328 + 22.9200i −0.720839 + 1.24853i 0.239825 + 0.970816i \(0.422910\pi\)
−0.960664 + 0.277713i \(0.910423\pi\)
\(338\) 18.4193 10.6344i 1.00188 0.578434i
\(339\) 1.10996 + 32.2145i 0.0602848 + 1.74965i
\(340\) 9.24814 13.3022i 0.501551 0.721415i
\(341\) −9.17770 −0.497000
\(342\) 12.7432 2.93429i 0.689075 0.158668i
\(343\) 14.7570i 0.796805i
\(344\) −4.17906 + 7.23835i −0.225320 + 0.390265i
\(345\) 2.70944 + 0.134168i 0.145872 + 0.00722338i
\(346\) 10.7200 + 18.5676i 0.576310 + 0.998198i
\(347\) −0.643502 + 1.11458i −0.0345450 + 0.0598337i −0.882781 0.469785i \(-0.844332\pi\)
0.848236 + 0.529618i \(0.177665\pi\)
\(348\) 7.99742 15.0241i 0.428706 0.805376i
\(349\) 2.67401 0.143137 0.0715684 0.997436i \(-0.477200\pi\)
0.0715684 + 0.997436i \(0.477200\pi\)
\(350\) −5.75716 0.975459i −0.307733 0.0521405i
\(351\) 17.8449 + 24.6336i 0.952492 + 1.31485i
\(352\) 2.22217 + 3.84890i 0.118442 + 0.205147i
\(353\) −9.81096 −0.522185 −0.261092 0.965314i \(-0.584083\pi\)
−0.261092 + 0.965314i \(0.584083\pi\)
\(354\) 14.0705 8.78311i 0.747837 0.466817i
\(355\) −9.59199 20.3916i −0.509090 1.08228i
\(356\) −5.96947 + 10.3394i −0.316381 + 0.547988i
\(357\) 12.9370 + 6.88645i 0.684699 + 0.364469i
\(358\) 8.56227 + 4.94343i 0.452530 + 0.261268i
\(359\) 16.4257 + 9.48337i 0.866914 + 0.500513i 0.866321 0.499487i \(-0.166478\pi\)
0.000592303 1.00000i \(0.499811\pi\)
\(360\) −5.75839 3.44107i −0.303494 0.181361i
\(361\) 3.93713 18.5876i 0.207218 0.978295i
\(362\) 9.52517 0.500632
\(363\) −15.1501 + 0.522000i −0.795173 + 0.0273979i
\(364\) −5.92058 3.41825i −0.310323 0.179165i
\(365\) −12.7516 + 5.99820i −0.667450 + 0.313960i
\(366\) 0.128741 + 3.73648i 0.00672942 + 0.195309i
\(367\) −6.43921 + 3.71768i −0.336124 + 0.194061i −0.658557 0.752531i \(-0.728833\pi\)
0.322433 + 0.946592i \(0.395499\pi\)
\(368\) −0.700433 −0.0365126
\(369\) −6.18264 + 12.6464i −0.321856 + 0.658347i
\(370\) −8.05451 + 3.78874i −0.418734 + 0.196967i
\(371\) 1.68190 + 2.91313i 0.0873198 + 0.151242i
\(372\) −3.03413 + 1.89398i −0.157312 + 0.0981980i
\(373\) −5.91104 −0.306062 −0.153031 0.988221i \(-0.548903\pi\)
−0.153031 + 0.988221i \(0.548903\pi\)
\(374\) −16.1004 27.8868i −0.832534 1.44199i
\(375\) −18.9094 4.17531i −0.976479 0.215612i
\(376\) −4.65340 + 2.68664i −0.239981 + 0.138553i
\(377\) 28.7620 49.8173i 1.48132 2.56572i
\(378\) 2.47593 5.54021i 0.127348 0.284958i
\(379\) 11.1241i 0.571404i 0.958318 + 0.285702i \(0.0922268\pi\)
−0.958318 + 0.285702i \(0.907773\pi\)
\(380\) −8.06023 + 5.48021i −0.413481 + 0.281129i
\(381\) −4.62932 7.41613i −0.237167 0.379940i
\(382\) 6.22882 10.7886i 0.318694 0.551994i
\(383\) 22.9997 + 13.2789i 1.17523 + 0.678520i 0.954906 0.296907i \(-0.0959552\pi\)
0.220324 + 0.975427i \(0.429288\pi\)
\(384\) 1.52893 + 0.813860i 0.0780230 + 0.0415321i
\(385\) −6.62498 + 9.52916i −0.337640 + 0.485651i
\(386\) 5.06853 2.92632i 0.257981 0.148946i
\(387\) −22.5265 11.0128i −1.14508 0.559814i
\(388\) −2.80538 −0.142421
\(389\) −2.65222 + 1.53126i −0.134473 + 0.0776379i −0.565727 0.824592i \(-0.691404\pi\)
0.431254 + 0.902230i \(0.358071\pi\)
\(390\) −19.0501 12.2934i −0.964637 0.622498i
\(391\) 5.07490 0.256649
\(392\) 5.63614i 0.284668i
\(393\) −29.9530 15.9442i −1.51093 0.804277i
\(394\) 4.71907 + 2.72456i 0.237743 + 0.137261i
\(395\) 8.08139 3.80139i 0.406619 0.191269i
\(396\) −11.0605 + 7.44544i −0.555810 + 0.374147i
\(397\) 1.26227 + 0.728773i 0.0633516 + 0.0365761i 0.531341 0.847158i \(-0.321688\pi\)
−0.467990 + 0.883734i \(0.655022\pi\)
\(398\) 21.2240i 1.06386i
\(399\) −5.78375 6.65493i −0.289550 0.333163i
\(400\) 4.92974 + 0.835266i 0.246487 + 0.0417633i
\(401\) −12.6383 + 21.8901i −0.631125 + 1.09314i 0.356197 + 0.934411i \(0.384073\pi\)
−0.987322 + 0.158729i \(0.949260\pi\)
\(402\) 0.662636 + 19.2318i 0.0330493 + 0.959194i
\(403\) −10.4690 + 6.04431i −0.521500 + 0.301088i
\(404\) −2.64803 1.52884i −0.131744 0.0760625i
\(405\) 9.10971 17.9447i 0.452665 0.891680i
\(406\) −11.4758 −0.569537
\(407\) 17.6915i 0.876937i
\(408\) −11.0777 5.89672i −0.548428 0.291931i
\(409\) −0.696408 + 0.402071i −0.0344352 + 0.0198811i −0.517119 0.855914i \(-0.672995\pi\)
0.482684 + 0.875795i \(0.339662\pi\)
\(410\) 0.879477 10.4553i 0.0434343 0.516352i
\(411\) −15.5731 24.9480i −0.768166 1.23060i
\(412\) −0.764321 1.32384i −0.0376554 0.0652211i
\(413\) −9.68538 5.59185i −0.476586 0.275157i
\(414\) −0.144630 2.09632i −0.00710817 0.103028i
\(415\) −5.40952 + 7.78088i −0.265543 + 0.381948i
\(416\) 5.06967 + 2.92698i 0.248561 + 0.143507i
\(417\) 18.8069 + 30.1285i 0.920977 + 1.47540i
\(418\) 3.03730 + 19.1328i 0.148559 + 0.935816i
\(419\) 13.4979i 0.659417i −0.944083 0.329708i \(-0.893050\pi\)
0.944083 0.329708i \(-0.106950\pi\)
\(420\) −0.223701 + 4.51750i −0.0109155 + 0.220431i
\(421\) −0.789120 0.455599i −0.0384594 0.0222045i 0.480647 0.876914i \(-0.340402\pi\)
−0.519106 + 0.854710i \(0.673735\pi\)
\(422\) −7.93808 13.7491i −0.386419 0.669298i
\(423\) −9.00168 13.3723i −0.437677 0.650185i
\(424\) −1.44018 2.49446i −0.0699411 0.121142i
\(425\) −35.7178 6.05182i −1.73257 0.293556i
\(426\) −14.8074 + 9.24314i −0.717422 + 0.447831i
\(427\) 2.18310 1.26042i 0.105648 0.0609958i
\(428\) −1.83302 + 1.05830i −0.0886025 + 0.0511547i
\(429\) −38.2264 + 23.8618i −1.84559 + 1.15206i
\(430\) 18.6236 + 1.56657i 0.898108 + 0.0755466i
\(431\) 0.0264515 + 0.0458154i 0.00127412 + 0.00220685i 0.866662 0.498896i \(-0.166261\pi\)
−0.865388 + 0.501103i \(0.832928\pi\)
\(432\) −2.12008 + 4.74397i −0.102003 + 0.228244i
\(433\) 3.97113 + 6.87819i 0.190840 + 0.330545i 0.945529 0.325538i \(-0.105545\pi\)
−0.754689 + 0.656083i \(0.772212\pi\)
\(434\) 2.08854 + 1.20582i 0.100253 + 0.0578811i
\(435\) −38.0114 1.88228i −1.82251 0.0902484i
\(436\) 2.96947i 0.142212i
\(437\) −2.85072 1.09313i −0.136368 0.0522914i
\(438\) 5.78005 + 9.25960i 0.276182 + 0.442441i
\(439\) 14.1823 + 8.18815i 0.676884 + 0.390799i 0.798680 0.601756i \(-0.205532\pi\)
−0.121796 + 0.992555i \(0.538865\pi\)
\(440\) 5.67283 8.15962i 0.270442 0.388995i
\(441\) 16.8683 1.16379i 0.803254 0.0554185i
\(442\) −36.7317 21.2071i −1.74715 1.00872i
\(443\) 6.91816 + 11.9826i 0.328692 + 0.569311i 0.982253 0.187563i \(-0.0600590\pi\)
−0.653561 + 0.756874i \(0.726726\pi\)
\(444\) 3.65095 + 5.84879i 0.173266 + 0.277571i
\(445\) 26.6023 + 2.23772i 1.26107 + 0.106078i
\(446\) −13.5326 + 7.81305i −0.640787 + 0.369959i
\(447\) −18.0846 9.62653i −0.855371 0.455319i
\(448\) 1.16784i 0.0551754i
\(449\) −23.5183 −1.10990 −0.554950 0.831884i \(-0.687262\pi\)
−0.554950 + 0.831884i \(0.687262\pi\)
\(450\) −1.48193 + 14.9266i −0.0698588 + 0.703647i
\(451\) −18.0601 10.4270i −0.850419 0.490989i
\(452\) −16.1168 + 9.30506i −0.758072 + 0.437673i
\(453\) 0.547900 + 15.9018i 0.0257426 + 0.747131i
\(454\) −2.69379 + 4.66579i −0.126426 + 0.218976i
\(455\) −1.28137 + 15.2331i −0.0600715 + 0.714138i
\(456\) 4.95251 + 5.69848i 0.231923 + 0.266856i
\(457\) 6.96100i 0.325622i −0.986657 0.162811i \(-0.947944\pi\)
0.986657 0.162811i \(-0.0520561\pi\)
\(458\) −7.83965 4.52623i −0.366323 0.211497i
\(459\) 15.3608 34.3719i 0.716982 1.60434i
\(460\) 0.666658 + 1.41725i 0.0310831 + 0.0660796i
\(461\) −20.7009 11.9517i −0.964137 0.556645i −0.0666933 0.997774i \(-0.521245\pi\)
−0.897444 + 0.441129i \(0.854578\pi\)
\(462\) 7.93559 + 4.22416i 0.369197 + 0.196526i
\(463\) 17.7608i 0.825417i −0.910863 0.412708i \(-0.864583\pi\)
0.910863 0.412708i \(-0.135417\pi\)
\(464\) 9.82653 0.456185
\(465\) 6.72008 + 4.33659i 0.311636 + 0.201105i
\(466\) 12.2768 7.08799i 0.568710 0.328345i
\(467\) −32.6995 −1.51315 −0.756575 0.653907i \(-0.773129\pi\)
−0.756575 + 0.653907i \(0.773129\pi\)
\(468\) −7.71329 + 15.7773i −0.356547 + 0.729307i
\(469\) 11.2365 6.48741i 0.518854 0.299561i
\(470\) 9.86514 + 6.85856i 0.455045 + 0.316362i
\(471\) 19.8910 + 10.5881i 0.916528 + 0.487873i
\(472\) 8.29339 + 4.78819i 0.381734 + 0.220394i
\(473\) 18.5731 32.1696i 0.853994 1.47916i
\(474\) −3.66313 5.86831i −0.168253 0.269540i
\(475\) 18.7602 + 11.0931i 0.860776 + 0.508984i
\(476\) 8.46147i 0.387831i
\(477\) 7.16825 4.82535i 0.328211 0.220938i
\(478\) 5.53179 9.58134i 0.253018 0.438240i
\(479\) 25.0356 14.4543i 1.14391 0.660434i 0.196511 0.980502i \(-0.437039\pi\)
0.947395 + 0.320067i \(0.103705\pi\)
\(480\) 0.191551 3.86824i 0.00874305 0.176560i
\(481\) 11.6514 + 20.1808i 0.531258 + 0.920166i
\(482\) −8.99051 −0.409507
\(483\) −1.20187 + 0.750236i −0.0546871 + 0.0341369i
\(484\) −4.37605 7.57953i −0.198911 0.344524i
\(485\) 2.67010 + 5.67638i 0.121243 + 0.257751i
\(486\) −14.6359 5.36560i −0.663899 0.243389i
\(487\) 20.0400 0.908099 0.454050 0.890976i \(-0.349979\pi\)
0.454050 + 0.890976i \(0.349979\pi\)
\(488\) −1.86935 + 1.07927i −0.0846214 + 0.0488562i
\(489\) 0.119843 + 3.47823i 0.00541950 + 0.157291i
\(490\) −11.4041 + 5.36437i −0.515186 + 0.242337i
\(491\) 0.200638 + 0.115838i 0.00905466 + 0.00522771i 0.504520 0.863400i \(-0.331669\pi\)
−0.495466 + 0.868627i \(0.665003\pi\)
\(492\) −8.12245 + 0.279861i −0.366188 + 0.0126171i
\(493\) −71.1970 −3.20655
\(494\) 16.0653 + 19.8246i 0.722811 + 0.891950i
\(495\) 25.5922 + 15.2933i 1.15028 + 0.687382i
\(496\) −1.78837 1.03252i −0.0803003 0.0463614i
\(497\) 10.1927 + 5.88473i 0.457203 + 0.263966i
\(498\) 6.47968 + 3.44917i 0.290361 + 0.154561i
\(499\) 8.99484 15.5795i 0.402664 0.697435i −0.591382 0.806392i \(-0.701417\pi\)
0.994047 + 0.108956i \(0.0347508\pi\)
\(500\) −3.00196 10.7698i −0.134252 0.481639i
\(501\) 4.18258 2.61086i 0.186864 0.116645i
\(502\) 3.04856 0.136064
\(503\) 1.90273 + 3.29562i 0.0848385 + 0.146945i 0.905322 0.424725i \(-0.139629\pi\)
−0.820484 + 0.571670i \(0.806296\pi\)
\(504\) 3.49522 0.241144i 0.155689 0.0107414i
\(505\) −0.573102 + 6.81311i −0.0255027 + 0.303179i
\(506\) 3.11296 0.138388
\(507\) −17.3098 + 32.5185i −0.768755 + 1.44420i
\(508\) 2.52371 4.37120i 0.111972 0.193941i
\(509\) 13.8210 + 23.9387i 0.612605 + 1.06106i 0.990800 + 0.135337i \(0.0432117\pi\)
−0.378195 + 0.925726i \(0.623455\pi\)
\(510\) −1.38786 + 28.0269i −0.0614554 + 1.24105i
\(511\) 3.67993 6.37382i 0.162790 0.281961i
\(512\) 1.00000i 0.0441942i
\(513\) −16.0323 + 15.9990i −0.707842 + 0.706371i
\(514\) −13.9904 −0.617090
\(515\) −1.95119 + 2.80653i −0.0859797 + 0.123670i
\(516\) −0.498503 14.4681i −0.0219453 0.636923i
\(517\) 20.6813 11.9403i 0.909561 0.525135i
\(518\) 2.32441 4.02600i 0.102129 0.176892i
\(519\) −32.7803 17.4491i −1.43889 0.765932i
\(520\) 1.09721 13.0438i 0.0481159 0.572007i
\(521\) −3.45376 −0.151312 −0.0756560 0.997134i \(-0.524105\pi\)
−0.0756560 + 0.997134i \(0.524105\pi\)
\(522\) 2.02905 + 29.4097i 0.0888089 + 1.28723i
\(523\) −4.35089 7.53596i −0.190251 0.329524i 0.755082 0.655630i \(-0.227597\pi\)
−0.945333 + 0.326106i \(0.894264\pi\)
\(524\) 19.5908i 0.855829i
\(525\) 9.35359 3.84703i 0.408224 0.167898i
\(526\) −16.6737 + 9.62656i −0.727007 + 0.419738i
\(527\) 12.9574 + 7.48098i 0.564435 + 0.325877i
\(528\) −6.79508 3.61706i −0.295718 0.157412i
\(529\) 11.2547 19.4937i 0.489335 0.847552i
\(530\) −3.67653 + 5.28821i −0.159698 + 0.229705i
\(531\) −12.6180 + 25.8099i −0.547576 + 1.12005i
\(532\) 1.82259 4.75305i 0.0790193 0.206071i
\(533\) −27.4684 −1.18979
\(534\) −0.712073 20.6666i −0.0308144 0.894331i
\(535\) 3.88598 + 2.70166i 0.168006 + 0.116803i
\(536\) −9.62160 + 5.55503i −0.415590 + 0.239941i
\(537\) −17.1144 + 0.589681i −0.738541 + 0.0254466i
\(538\) −10.0975 + 5.82981i −0.435336 + 0.251341i
\(539\) 25.0489i 1.07893i
\(540\) 11.6168 0.225451i 0.499906 0.00970185i
\(541\) 10.0573 + 17.4197i 0.432397 + 0.748933i 0.997079 0.0763753i \(-0.0243347\pi\)
−0.564683 + 0.825308i \(0.691001\pi\)
\(542\) −6.18912 + 3.57329i −0.265845 + 0.153486i
\(543\) −13.9952 + 8.73614i −0.600593 + 0.374904i
\(544\) 7.24538i 0.310643i
\(545\) −6.00841 + 2.82628i −0.257372 + 0.121065i
\(546\) 11.8341 0.407749i 0.506454 0.0174500i
\(547\) −18.3336 31.7548i −0.783889 1.35774i −0.929661 0.368417i \(-0.879900\pi\)
0.145772 0.989318i \(-0.453433\pi\)
\(548\) 8.48983 14.7048i 0.362668 0.628159i
\(549\) −3.61612 5.37189i −0.154332 0.229267i
\(550\) −21.9094 3.71220i −0.934220 0.158289i
\(551\) 39.9934 + 15.3357i 1.70377 + 0.653324i
\(552\) 1.02914 0.642412i 0.0438030 0.0273429i
\(553\) −2.33217 + 4.03944i −0.0991740 + 0.171774i
\(554\) −13.7631 + 23.8384i −0.584739 + 1.01280i
\(555\) 8.35950 12.9541i 0.354841 0.549869i
\(556\) −10.2527 + 17.7583i −0.434813 + 0.753118i
\(557\) −9.07905 15.7254i −0.384692 0.666306i 0.607034 0.794675i \(-0.292359\pi\)
−0.991726 + 0.128370i \(0.959026\pi\)
\(558\) 2.72093 5.56559i 0.115186 0.235610i
\(559\) 48.9281i 2.06944i
\(560\) −2.36300 + 1.11153i −0.0998551 + 0.0469707i
\(561\) 49.2330 + 26.2070i 2.07862 + 1.10646i
\(562\) 3.04368i 0.128390i
\(563\) 20.4523i 0.861960i 0.902362 + 0.430980i \(0.141832\pi\)
−0.902362 + 0.430980i \(0.858168\pi\)
\(564\) 4.37310 8.21539i 0.184141 0.345930i
\(565\) 34.1674 + 23.7543i 1.43744 + 0.999351i
\(566\) −6.51719 11.2881i −0.273938 0.474475i
\(567\) 1.44343 + 10.4110i 0.0606184 + 0.437221i
\(568\) −8.72776 5.03898i −0.366209 0.211431i
\(569\) 12.5851 0.527594 0.263797 0.964578i \(-0.415025\pi\)
0.263797 + 0.964578i \(0.415025\pi\)
\(570\) 6.81656 15.4446i 0.285514 0.646902i
\(571\) −10.0594 −0.420971 −0.210486 0.977597i \(-0.567505\pi\)
−0.210486 + 0.977597i \(0.567505\pi\)
\(572\) −22.5313 13.0085i −0.942081 0.543911i
\(573\) 0.743009 + 21.5645i 0.0310396 + 0.900868i
\(574\) 2.73992 + 4.74569i 0.114362 + 0.198081i
\(575\) 2.23314 2.69782i 0.0931284 0.112507i
\(576\) −2.99289 + 0.206487i −0.124704 + 0.00860360i
\(577\) 16.7709i 0.698180i −0.937089 0.349090i \(-0.886491\pi\)
0.937089 0.349090i \(-0.113509\pi\)
\(578\) 35.4956i 1.47642i
\(579\) −4.76322 + 8.94828i −0.197953 + 0.371878i
\(580\) −9.35269 19.8829i −0.388349 0.825593i
\(581\) 4.94937i 0.205334i
\(582\) 4.12191 2.57299i 0.170859 0.106654i
\(583\) 6.40062 + 11.0862i 0.265086 + 0.459143i
\(584\) −3.15105 + 5.45777i −0.130391 + 0.225844i
\(585\) 39.2651 + 0.590462i 1.62341 + 0.0244126i
\(586\) 6.52072 11.2942i 0.269368 0.466560i
\(587\) 9.71946 16.8346i 0.401165 0.694838i −0.592702 0.805422i \(-0.701939\pi\)
0.993867 + 0.110584i \(0.0352721\pi\)
\(588\) 5.16927 + 8.28112i 0.213177 + 0.341508i
\(589\) −5.66717 6.99329i −0.233512 0.288154i
\(590\) 1.79491 21.3381i 0.0738952 0.878475i
\(591\) −9.43254 + 0.325001i −0.388003 + 0.0133687i
\(592\) −1.99035 + 3.44738i −0.0818028 + 0.141687i
\(593\) 14.1854 + 24.5698i 0.582525 + 1.00896i 0.995179 + 0.0980747i \(0.0312684\pi\)
−0.412654 + 0.910888i \(0.635398\pi\)
\(594\) 9.42236 21.0838i 0.386604 0.865078i
\(595\) 17.1209 8.05345i 0.701887 0.330159i
\(596\) 11.8282i 0.484504i
\(597\) −19.4659 31.1842i −0.796687 1.27629i
\(598\) 3.55097 2.05015i 0.145210 0.0838369i
\(599\) 6.47950 + 11.2228i 0.264745 + 0.458552i 0.967497 0.252883i \(-0.0813789\pi\)
−0.702752 + 0.711435i \(0.748046\pi\)
\(600\) −8.00929 + 3.29413i −0.326978 + 0.134482i
\(601\) 10.2334i 0.417429i 0.977977 + 0.208714i \(0.0669279\pi\)
−0.977977 + 0.208714i \(0.933072\pi\)
\(602\) −8.45325 + 4.88049i −0.344529 + 0.198914i
\(603\) −18.6123 27.6493i −0.757952 1.12597i
\(604\) −7.95561 + 4.59317i −0.323709 + 0.186894i
\(605\) −11.1713 + 16.0685i −0.454179 + 0.653277i
\(606\) 5.29291 0.182369i 0.215010 0.00740822i
\(607\) 15.9889 0.648971 0.324485 0.945891i \(-0.394809\pi\)
0.324485 + 0.945891i \(0.394809\pi\)
\(608\) −1.56065 + 4.06994i −0.0632925 + 0.165058i
\(609\) 16.8613 10.5252i 0.683256 0.426504i
\(610\) 3.96299 + 2.75520i 0.160457 + 0.111555i
\(611\) 15.7275 27.2408i 0.636266 1.10204i
\(612\) 21.6846 1.49607i 0.876548 0.0604752i
\(613\) 20.1412 + 11.6285i 0.813494 + 0.469671i 0.848168 0.529727i \(-0.177706\pi\)
−0.0346735 + 0.999399i \(0.511039\pi\)
\(614\) 23.0524 13.3093i 0.930318 0.537119i
\(615\) 8.29705 + 16.1685i 0.334569 + 0.651978i
\(616\) 5.19028i 0.209122i
\(617\) 3.37556 + 5.84665i 0.135895 + 0.235377i 0.925939 0.377673i \(-0.123276\pi\)
−0.790044 + 0.613050i \(0.789942\pi\)
\(618\) 2.33719 + 1.24410i 0.0940156 + 0.0500451i
\(619\) 29.1916 1.17331 0.586655 0.809837i \(-0.300445\pi\)
0.586655 + 0.809837i \(0.300445\pi\)
\(620\) −0.387051 + 4.60131i −0.0155443 + 0.184793i
\(621\) 2.13517 + 2.94744i 0.0856813 + 0.118277i
\(622\) −12.5586 + 21.7522i −0.503555 + 0.872184i
\(623\) −12.0748 + 6.97140i −0.483768 + 0.279303i
\(624\) −10.1333 + 0.349147i −0.405658 + 0.0139771i
\(625\) −18.9343 + 16.3246i −0.757372 + 0.652984i
\(626\) −18.9001 −0.755401
\(627\) −22.0106 25.3259i −0.879019 1.01142i
\(628\) 13.0097i 0.519144i
\(629\) 14.4208 24.9776i 0.574996 0.995922i
\(630\) −3.81461 6.84268i −0.151978 0.272619i
\(631\) −11.0202 19.0875i −0.438705 0.759860i 0.558884 0.829246i \(-0.311230\pi\)
−0.997590 + 0.0693854i \(0.977896\pi\)
\(632\) 1.99699 3.45889i 0.0794360 0.137587i
\(633\) 24.2736 + 12.9210i 0.964787 + 0.513562i
\(634\) −25.9821 −1.03188
\(635\) −11.2467 0.946043i −0.446310 0.0375426i
\(636\) 4.40386 + 2.34420i 0.174624 + 0.0929536i
\(637\) 16.4969 + 28.5734i 0.653629 + 1.13212i
\(638\) −43.6724 −1.72901
\(639\) 13.2789 27.1617i 0.525306 1.07450i
\(640\) 2.02339 0.951780i 0.0799816 0.0376224i
\(641\) 0.843012 1.46014i 0.0332970 0.0576720i −0.848897 0.528559i \(-0.822733\pi\)
0.882194 + 0.470887i \(0.156066\pi\)
\(642\) 1.72261 3.23612i 0.0679859 0.127720i
\(643\) −11.9840 6.91896i −0.472603 0.272857i 0.244726 0.969592i \(-0.421302\pi\)
−0.717329 + 0.696735i \(0.754635\pi\)
\(644\) −0.708405 0.408998i −0.0279151 0.0161168i
\(645\) −28.8002 + 14.7791i −1.13401 + 0.581927i
\(646\) 11.3075 29.4882i 0.444887 1.16020i
\(647\) 12.2600 0.481992 0.240996 0.970526i \(-0.422526\pi\)
0.240996 + 0.970526i \(0.422526\pi\)
\(648\) −1.23598 8.91473i −0.0485539 0.350204i
\(649\) −36.8586 21.2803i −1.44683 0.835325i
\(650\) −27.4370 + 10.1947i −1.07617 + 0.399869i
\(651\) −4.17460 + 0.143837i −0.163615 + 0.00563741i
\(652\) −1.74015 + 1.00467i −0.0681493 + 0.0393460i
\(653\) 23.1604 0.906335 0.453168 0.891425i \(-0.350294\pi\)
0.453168 + 0.891425i \(0.350294\pi\)
\(654\) 2.72349 + 4.36302i 0.106497 + 0.170607i
\(655\) −39.6399 + 18.6461i −1.54886 + 0.728565i
\(656\) −2.34614 4.06363i −0.0916014 0.158658i
\(657\) −16.9851 8.30376i −0.662653 0.323961i
\(658\) −6.27515 −0.244631
\(659\) 2.10800 + 3.65117i 0.0821162 + 0.142229i 0.904159 0.427197i \(-0.140499\pi\)
−0.822043 + 0.569426i \(0.807165\pi\)
\(660\) −0.851315 + 17.1918i −0.0331374 + 0.669188i
\(661\) 8.98322 5.18646i 0.349407 0.201730i −0.315017 0.949086i \(-0.602010\pi\)
0.664424 + 0.747356i \(0.268677\pi\)
\(662\) 11.6054 20.1012i 0.451058 0.781255i
\(663\) 73.4199 2.52970i 2.85139 0.0982455i
\(664\) 4.23804i 0.164468i
\(665\) −11.3520 + 0.836041i −0.440211 + 0.0324203i
\(666\) −10.7286 5.24504i −0.415725 0.203241i
\(667\) 3.44141 5.96070i 0.133252 0.230799i
\(668\) 2.46529 + 1.42333i 0.0953848 + 0.0550705i
\(669\) 12.7174 23.8912i 0.491685 0.923688i
\(670\) 20.3977 + 14.1811i 0.788030 + 0.547864i
\(671\) 8.30800 4.79663i 0.320727 0.185172i
\(672\) 1.07110 + 1.71590i 0.0413187 + 0.0661922i
\(673\) 17.6713 0.681179 0.340590 0.940212i \(-0.389373\pi\)
0.340590 + 0.940212i \(0.389373\pi\)
\(674\) 22.9200 13.2328i 0.882844 0.509710i
\(675\) −11.5128 23.2907i −0.443127 0.896459i
\(676\) −21.2688 −0.818030
\(677\) 8.87958i 0.341270i −0.985334 0.170635i \(-0.945418\pi\)
0.985334 0.170635i \(-0.0545819\pi\)
\(678\) 15.1460 28.4536i 0.581679 1.09275i
\(679\) −2.83731 1.63812i −0.108886 0.0628653i
\(680\) −14.6602 + 6.89601i −0.562195 + 0.264450i
\(681\) −0.321331 9.32604i −0.0123134 0.357375i
\(682\) 7.94812 + 4.58885i 0.304349 + 0.175716i
\(683\) 23.8171i 0.911337i 0.890149 + 0.455669i \(0.150600\pi\)
−0.890149 + 0.455669i \(0.849400\pi\)
\(684\) −12.5031 3.83045i −0.478068 0.146461i
\(685\) −37.8341 3.18251i −1.44557 0.121597i
\(686\) 7.37851 12.7800i 0.281713 0.487941i
\(687\) 15.6700 0.539914i 0.597848 0.0205990i
\(688\) 7.23835 4.17906i 0.275959 0.159325i
\(689\) 14.6024 + 8.43072i 0.556308 + 0.321185i
\(690\) −2.27936 1.47092i −0.0867739 0.0559968i
\(691\) −30.5050 −1.16046 −0.580232 0.814451i \(-0.697038\pi\)
−0.580232 + 0.814451i \(0.697038\pi\)
\(692\) 21.4400i 0.815025i
\(693\) −15.5339 + 1.07172i −0.590085 + 0.0407114i
\(694\) 1.11458 0.643502i 0.0423088 0.0244270i
\(695\) 45.6903 + 3.84335i 1.73313 + 0.145787i
\(696\) −14.4380 + 9.01254i −0.547271 + 0.341619i
\(697\) 16.9987 + 29.4426i 0.643871 + 1.11522i
\(698\) −2.31576 1.33701i −0.0876530 0.0506065i
\(699\) −11.5372 + 21.6741i −0.436379 + 0.819790i
\(700\) 4.49812 + 3.72335i 0.170013 + 0.140730i
\(701\) −5.48678 3.16779i −0.207233 0.119646i 0.392792 0.919627i \(-0.371509\pi\)
−0.600025 + 0.799981i \(0.704843\pi\)
\(702\) −3.13735 30.2558i −0.118412 1.14193i
\(703\) −13.4807 + 10.9244i −0.508435 + 0.412022i
\(704\) 4.44433i 0.167502i
\(705\) −20.7852 1.02926i −0.782815 0.0387640i
\(706\) 8.49654 + 4.90548i 0.319772 + 0.184620i
\(707\) −1.78544 3.09248i −0.0671485 0.116305i
\(708\) −16.5769 + 0.571163i −0.623000 + 0.0214656i
\(709\) 22.3283 + 38.6737i 0.838557 + 1.45242i 0.891101 + 0.453805i \(0.149934\pi\)
−0.0525444 + 0.998619i \(0.516733\pi\)
\(710\) −1.88892 + 22.4557i −0.0708898 + 0.842747i
\(711\) 10.7644 + 5.26255i 0.403697 + 0.197361i
\(712\) 10.3394 5.96947i 0.387486 0.223715i
\(713\) −1.25263 + 0.723209i −0.0469115 + 0.0270844i
\(714\) −7.76055 12.4323i −0.290431 0.465269i
\(715\) −4.87637 + 57.9709i −0.182366 + 2.16799i
\(716\) −4.94343 8.56227i −0.184745 0.319987i
\(717\) 0.659864 + 19.1513i 0.0246431 + 0.715219i
\(718\) −9.48337 16.4257i −0.353916 0.613001i
\(719\) −6.46441 3.73223i −0.241082 0.139189i 0.374592 0.927190i \(-0.377783\pi\)
−0.615674 + 0.788001i \(0.711116\pi\)
\(720\) 3.26637 + 5.85925i 0.121730 + 0.218361i
\(721\) 1.78521i 0.0664849i
\(722\) −12.7035 + 14.1288i −0.472774 + 0.525818i
\(723\) 13.2097 8.24578i 0.491273 0.306664i
\(724\) −8.24904 4.76259i −0.306573 0.177000i
\(725\) −31.3292 + 37.8483i −1.16354 + 1.40565i
\(726\) 13.3814 + 7.12297i 0.496628 + 0.264358i
\(727\) −11.8608 6.84785i −0.439894 0.253973i 0.263659 0.964616i \(-0.415071\pi\)
−0.703553 + 0.710643i \(0.748404\pi\)
\(728\) 3.41825 + 5.92058i 0.126689 + 0.219431i
\(729\) 26.4255 5.53992i 0.978724 0.205182i
\(730\) 14.0423 + 1.18121i 0.519729 + 0.0437184i
\(731\) −52.4446 + 30.2789i −1.93973 + 1.11991i
\(732\) 1.75675 3.30025i 0.0649312 0.121981i
\(733\) 34.5888i 1.27757i −0.769387 0.638783i \(-0.779438\pi\)
0.769387 0.638783i \(-0.220562\pi\)
\(734\) 7.43536 0.274444
\(735\) 11.8360 18.3413i 0.436576 0.676528i
\(736\) 0.606593 + 0.350216i 0.0223593 + 0.0129091i
\(737\) 42.7616 24.6884i 1.57514 0.909409i
\(738\) 11.6775 7.86081i 0.429856 0.289361i
\(739\) 8.73486 15.1292i 0.321317 0.556537i −0.659443 0.751754i \(-0.729208\pi\)
0.980760 + 0.195217i \(0.0625412\pi\)
\(740\) 8.86978 + 0.746104i 0.326060 + 0.0274273i
\(741\) −41.7869 14.3935i −1.53508 0.528760i
\(742\) 3.36380i 0.123489i
\(743\) −1.29522 0.747797i −0.0475171 0.0274340i 0.476053 0.879416i \(-0.342067\pi\)
−0.523570 + 0.851982i \(0.675400\pi\)
\(744\) 3.57462 0.123165i 0.131052 0.00451543i
\(745\) −23.9332 + 11.2579i −0.876844 + 0.412457i
\(746\) 5.11911 + 2.95552i 0.187424 + 0.108209i
\(747\) −12.6840 + 0.875098i −0.464082 + 0.0320182i
\(748\) 32.2009i 1.17738i
\(749\) −2.47185 −0.0903193
\(750\) 14.2884 + 13.0706i 0.521739 + 0.477272i
\(751\) 7.14076 4.12272i 0.260570 0.150440i −0.364024 0.931389i \(-0.618598\pi\)
0.624595 + 0.780949i \(0.285264\pi\)
\(752\) 5.37328 0.195944
\(753\) −4.47921 + 2.79603i −0.163231 + 0.101893i
\(754\) −49.8173 + 28.7620i −1.81424 + 1.04745i
\(755\) 16.8658 + 11.7256i 0.613808 + 0.426739i
\(756\) −4.91432 + 3.56000i −0.178732 + 0.129476i
\(757\) 3.75263 + 2.16658i 0.136392 + 0.0787457i 0.566643 0.823963i \(-0.308242\pi\)
−0.430252 + 0.902709i \(0.641575\pi\)
\(758\) 5.56203 9.63371i 0.202022 0.349912i
\(759\) −4.57383 + 2.85509i −0.166020 + 0.103633i
\(760\) 9.72047 0.715885i 0.352598 0.0259679i
\(761\) 2.78949i 0.101119i −0.998721 0.0505594i \(-0.983900\pi\)
0.998721 0.0505594i \(-0.0161004\pi\)
\(762\) 0.301043 + 8.73721i 0.0109056 + 0.316516i
\(763\) 1.73394 3.00327i 0.0627728 0.108726i
\(764\) −10.7886 + 6.22882i −0.390319 + 0.225351i
\(765\) −23.6661 42.4525i −0.855650 1.53487i
\(766\) −13.2789 22.9997i −0.479786 0.831013i
\(767\) −56.0597 −2.02420
\(768\) −0.917164 1.46929i −0.0330953 0.0530184i
\(769\) −1.79716 3.11277i −0.0648072 0.112249i 0.831801 0.555074i \(-0.187310\pi\)
−0.896608 + 0.442824i \(0.853977\pi\)
\(770\) 10.5020 4.94000i 0.378465 0.178025i
\(771\) 20.5559 12.8315i 0.740304 0.462115i
\(772\) −5.85264 −0.210641
\(773\) −10.0993 + 5.83081i −0.363245 + 0.209720i −0.670503 0.741906i \(-0.733922\pi\)
0.307258 + 0.951626i \(0.400589\pi\)
\(774\) 14.0021 + 20.8006i 0.503294 + 0.747663i
\(775\) 9.67864 3.59627i 0.347667 0.129182i
\(776\) 2.42953 +