Properties

Label 570.2.n.a.179.2
Level $570$
Weight $2$
Character 570.179
Analytic conductor $4.551$
Analytic rank $0$
Dimension $80$
CM no
Inner twists $8$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 570 = 2 \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 570.n (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.55147291521\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(40\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 179.2
Character \(\chi\) \(=\) 570.179
Dual form 570.2.n.a.449.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.866025 - 0.500000i) q^{2} +(-1.68343 + 0.407506i) q^{3} +(0.500000 + 0.866025i) q^{4} +(2.16632 + 0.554116i) q^{5} +(1.66165 + 0.488805i) q^{6} +1.83012i q^{7} -1.00000i q^{8} +(2.66788 - 1.37202i) q^{9} +O(q^{10})\) \(q+(-0.866025 - 0.500000i) q^{2} +(-1.68343 + 0.407506i) q^{3} +(0.500000 + 0.866025i) q^{4} +(2.16632 + 0.554116i) q^{5} +(1.66165 + 0.488805i) q^{6} +1.83012i q^{7} -1.00000i q^{8} +(2.66788 - 1.37202i) q^{9} +(-1.59903 - 1.56304i) q^{10} +0.0175522i q^{11} +(-1.19463 - 1.25414i) q^{12} +(1.18833 + 2.05825i) q^{13} +(0.915058 - 1.58493i) q^{14} +(-3.87266 - 0.0500261i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(0.822112 - 1.42394i) q^{17} +(-2.99646 - 0.145739i) q^{18} +(-4.33467 - 0.458984i) q^{19} +(0.603283 + 2.15315i) q^{20} +(-0.745783 - 3.08087i) q^{21} +(0.00877612 - 0.0152007i) q^{22} +(0.470036 + 0.814125i) q^{23} +(0.407506 + 1.68343i) q^{24} +(4.38591 + 2.40079i) q^{25} -2.37667i q^{26} +(-3.93208 + 3.39687i) q^{27} +(-1.58493 + 0.915058i) q^{28} +(-0.234207 - 0.405658i) q^{29} +(3.32881 + 1.97965i) q^{30} +6.34473i q^{31} +(0.866025 - 0.500000i) q^{32} +(-0.00715264 - 0.0295480i) q^{33} +(-1.42394 + 0.822112i) q^{34} +(-1.01410 + 3.96462i) q^{35} +(2.52214 + 1.62444i) q^{36} +3.63380 q^{37} +(3.52444 + 2.56482i) q^{38} +(-2.83923 - 2.98068i) q^{39} +(0.554116 - 2.16632i) q^{40} +(-3.33436 + 5.77528i) q^{41} +(-0.894570 + 3.04101i) q^{42} +(7.15578 + 4.13139i) q^{43} +(-0.0152007 + 0.00877612i) q^{44} +(6.53974 - 1.49392i) q^{45} -0.940071i q^{46} +(3.00121 + 5.19826i) q^{47} +(0.488805 - 1.66165i) q^{48} +3.65067 q^{49} +(-2.59792 - 4.27210i) q^{50} +(-0.803705 + 2.73212i) q^{51} +(-1.18833 + 2.05825i) q^{52} +(-6.48959 + 3.74677i) q^{53} +(5.10372 - 0.975733i) q^{54} +(-0.00972597 + 0.0380238i) q^{55} +1.83012 q^{56} +(7.48415 - 0.993734i) q^{57} +0.468414i q^{58} +(5.69687 - 9.86726i) q^{59} +(-1.89301 - 3.37884i) q^{60} +(4.23617 + 7.33727i) q^{61} +(3.17236 - 5.49469i) q^{62} +(2.51095 + 4.88253i) q^{63} -1.00000 q^{64} +(1.43380 + 5.11732i) q^{65} +(-0.00857962 + 0.0291656i) q^{66} +(2.42123 + 4.19369i) q^{67} +1.64422 q^{68} +(-1.12303 - 1.17898i) q^{69} +(2.86055 - 2.92642i) q^{70} +(-4.63854 + 8.03419i) q^{71} +(-1.37202 - 2.66788i) q^{72} +(3.78470 + 2.18510i) q^{73} +(-3.14696 - 1.81690i) q^{74} +(-8.36171 - 2.25427i) q^{75} +(-1.76984 - 3.98342i) q^{76} -0.0321226 q^{77} +(0.968506 + 4.00095i) q^{78} +(-6.49918 - 3.75230i) q^{79} +(-1.56304 + 1.59903i) q^{80} +(5.23515 - 7.32074i) q^{81} +(5.77528 - 3.33436i) q^{82} -11.9877 q^{83} +(2.29522 - 2.18630i) q^{84} +(2.56999 - 2.62917i) q^{85} +(-4.13139 - 7.15578i) q^{86} +(0.559579 + 0.587457i) q^{87} +0.0175522 q^{88} +(-0.189295 - 0.327868i) q^{89} +(-6.41054 - 1.97610i) q^{90} +(-3.76685 + 2.17479i) q^{91} +(-0.470036 + 0.814125i) q^{92} +(-2.58551 - 10.6809i) q^{93} -6.00243i q^{94} +(-9.13596 - 3.39621i) q^{95} +(-1.25414 + 1.19463i) q^{96} +(-1.26367 + 2.18875i) q^{97} +(-3.16158 - 1.82534i) q^{98} +(0.0240819 + 0.0468272i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80q + 40q^{4} + O(q^{10}) \) \( 80q + 40q^{4} + 30q^{15} - 40q^{16} + 8q^{19} + 8q^{25} - 4q^{30} + 48q^{39} + 12q^{45} - 128q^{49} - 36q^{54} + 12q^{55} + 30q^{60} - 24q^{61} - 80q^{64} + 4q^{66} + 36q^{70} + 16q^{76} + 24q^{79} + 32q^{81} - 8q^{85} - 54q^{90} + 24q^{91} - 60q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/570\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(211\) \(457\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 0.500000i −0.612372 0.353553i
\(3\) −1.68343 + 0.407506i −0.971929 + 0.235274i
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) 2.16632 + 0.554116i 0.968809 + 0.247808i
\(6\) 1.66165 + 0.488805i 0.678364 + 0.199554i
\(7\) 1.83012i 0.691719i 0.938286 + 0.345860i \(0.112413\pi\)
−0.938286 + 0.345860i \(0.887587\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 2.66788 1.37202i 0.889293 0.457339i
\(10\) −1.59903 1.56304i −0.505659 0.494277i
\(11\) 0.0175522i 0.00529220i 0.999996 + 0.00264610i \(0.000842280\pi\)
−0.999996 + 0.00264610i \(0.999158\pi\)
\(12\) −1.19463 1.25414i −0.344859 0.362039i
\(13\) 1.18833 + 2.05825i 0.329584 + 0.570857i 0.982429 0.186635i \(-0.0597580\pi\)
−0.652845 + 0.757492i \(0.726425\pi\)
\(14\) 0.915058 1.58493i 0.244560 0.423590i
\(15\) −3.87266 0.0500261i −0.999917 0.0129167i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 0.822112 1.42394i 0.199391 0.345356i −0.748940 0.662638i \(-0.769437\pi\)
0.948331 + 0.317282i \(0.102770\pi\)
\(18\) −2.99646 0.145739i −0.706272 0.0343510i
\(19\) −4.33467 0.458984i −0.994441 0.105298i
\(20\) 0.603283 + 2.15315i 0.134898 + 0.481459i
\(21\) −0.745783 3.08087i −0.162743 0.672302i
\(22\) 0.00877612 0.0152007i 0.00187107 0.00324080i
\(23\) 0.470036 + 0.814125i 0.0980092 + 0.169757i 0.910861 0.412714i \(-0.135419\pi\)
−0.812851 + 0.582471i \(0.802086\pi\)
\(24\) 0.407506 + 1.68343i 0.0831818 + 0.343629i
\(25\) 4.38591 + 2.40079i 0.877182 + 0.480157i
\(26\) 2.37667i 0.466103i
\(27\) −3.93208 + 3.39687i −0.756730 + 0.653728i
\(28\) −1.58493 + 0.915058i −0.299523 + 0.172930i
\(29\) −0.234207 0.405658i −0.0434911 0.0753288i 0.843460 0.537191i \(-0.180515\pi\)
−0.886952 + 0.461863i \(0.847181\pi\)
\(30\) 3.32881 + 1.97965i 0.607755 + 0.361434i
\(31\) 6.34473i 1.13955i 0.821802 + 0.569773i \(0.192969\pi\)
−0.821802 + 0.569773i \(0.807031\pi\)
\(32\) 0.866025 0.500000i 0.153093 0.0883883i
\(33\) −0.00715264 0.0295480i −0.00124511 0.00514364i
\(34\) −1.42394 + 0.822112i −0.244204 + 0.140991i
\(35\) −1.01410 + 3.96462i −0.171414 + 0.670144i
\(36\) 2.52214 + 1.62444i 0.420357 + 0.270740i
\(37\) 3.63380 0.597393 0.298697 0.954348i \(-0.403448\pi\)
0.298697 + 0.954348i \(0.403448\pi\)
\(38\) 3.52444 + 2.56482i 0.571740 + 0.416070i
\(39\) −2.83923 2.98068i −0.454640 0.477290i
\(40\) 0.554116 2.16632i 0.0876134 0.342526i
\(41\) −3.33436 + 5.77528i −0.520740 + 0.901948i 0.478969 + 0.877832i \(0.341011\pi\)
−0.999709 + 0.0241163i \(0.992323\pi\)
\(42\) −0.894570 + 3.04101i −0.138035 + 0.469238i
\(43\) 7.15578 + 4.13139i 1.09125 + 0.630031i 0.933908 0.357513i \(-0.116375\pi\)
0.157338 + 0.987545i \(0.449709\pi\)
\(44\) −0.0152007 + 0.00877612i −0.00229159 + 0.00132305i
\(45\) 6.53974 1.49392i 0.974887 0.222700i
\(46\) 0.940071i 0.138606i
\(47\) 3.00121 + 5.19826i 0.437772 + 0.758244i 0.997517 0.0704212i \(-0.0224343\pi\)
−0.559745 + 0.828665i \(0.689101\pi\)
\(48\) 0.488805 1.66165i 0.0705529 0.239838i
\(49\) 3.65067 0.521525
\(50\) −2.59792 4.27210i −0.367401 0.604166i
\(51\) −0.803705 + 2.73212i −0.112541 + 0.382573i
\(52\) −1.18833 + 2.05825i −0.164792 + 0.285428i
\(53\) −6.48959 + 3.74677i −0.891414 + 0.514658i −0.874405 0.485197i \(-0.838748\pi\)
−0.0170090 + 0.999855i \(0.505414\pi\)
\(54\) 5.10372 0.975733i 0.694528 0.132780i
\(55\) −0.00972597 + 0.0380238i −0.00131145 + 0.00512713i
\(56\) 1.83012 0.244560
\(57\) 7.48415 0.993734i 0.991300 0.131623i
\(58\) 0.468414i 0.0615057i
\(59\) 5.69687 9.86726i 0.741669 1.28461i −0.210066 0.977687i \(-0.567368\pi\)
0.951735 0.306921i \(-0.0992988\pi\)
\(60\) −1.89301 3.37884i −0.244386 0.436206i
\(61\) 4.23617 + 7.33727i 0.542387 + 0.939441i 0.998766 + 0.0496560i \(0.0158125\pi\)
−0.456380 + 0.889785i \(0.650854\pi\)
\(62\) 3.17236 5.49469i 0.402890 0.697827i
\(63\) 2.51095 + 4.88253i 0.316350 + 0.615141i
\(64\) −1.00000 −0.125000
\(65\) 1.43380 + 5.11732i 0.177841 + 0.634725i
\(66\) −0.00857962 + 0.0291656i −0.00105608 + 0.00359004i
\(67\) 2.42123 + 4.19369i 0.295800 + 0.512341i 0.975171 0.221454i \(-0.0710804\pi\)
−0.679370 + 0.733796i \(0.737747\pi\)
\(68\) 1.64422 0.199391
\(69\) −1.12303 1.17898i −0.135197 0.141933i
\(70\) 2.86055 2.92642i 0.341901 0.349774i
\(71\) −4.63854 + 8.03419i −0.550494 + 0.953483i 0.447745 + 0.894161i \(0.352227\pi\)
−0.998239 + 0.0593220i \(0.981106\pi\)
\(72\) −1.37202 2.66788i −0.161694 0.314412i
\(73\) 3.78470 + 2.18510i 0.442966 + 0.255746i 0.704855 0.709352i \(-0.251012\pi\)
−0.261889 + 0.965098i \(0.584346\pi\)
\(74\) −3.14696 1.81690i −0.365827 0.211210i
\(75\) −8.36171 2.25427i −0.965527 0.260301i
\(76\) −1.76984 3.98342i −0.203015 0.456930i
\(77\) −0.0321226 −0.00366071
\(78\) 0.968506 + 4.00095i 0.109662 + 0.453019i
\(79\) −6.49918 3.75230i −0.731214 0.422167i 0.0876519 0.996151i \(-0.472064\pi\)
−0.818866 + 0.573984i \(0.805397\pi\)
\(80\) −1.56304 + 1.59903i −0.174753 + 0.178777i
\(81\) 5.23515 7.32074i 0.581683 0.813416i
\(82\) 5.77528 3.33436i 0.637773 0.368219i
\(83\) −11.9877 −1.31583 −0.657913 0.753094i \(-0.728560\pi\)
−0.657913 + 0.753094i \(0.728560\pi\)
\(84\) 2.29522 2.18630i 0.250429 0.238545i
\(85\) 2.56999 2.62917i 0.278754 0.285173i
\(86\) −4.13139 7.15578i −0.445499 0.771628i
\(87\) 0.559579 + 0.587457i 0.0599931 + 0.0629820i
\(88\) 0.0175522 0.00187107
\(89\) −0.189295 0.327868i −0.0200652 0.0347539i 0.855818 0.517276i \(-0.173054\pi\)
−0.875884 + 0.482522i \(0.839721\pi\)
\(90\) −6.41054 1.97610i −0.675730 0.208299i
\(91\) −3.76685 + 2.17479i −0.394873 + 0.227980i
\(92\) −0.470036 + 0.814125i −0.0490046 + 0.0848784i
\(93\) −2.58551 10.6809i −0.268105 1.10756i
\(94\) 6.00243i 0.619103i
\(95\) −9.13596 3.39621i −0.937330 0.348444i
\(96\) −1.25414 + 1.19463i −0.128000 + 0.121926i
\(97\) −1.26367 + 2.18875i −0.128307 + 0.222234i −0.923021 0.384750i \(-0.874287\pi\)
0.794714 + 0.606984i \(0.207621\pi\)
\(98\) −3.16158 1.82534i −0.319367 0.184387i
\(99\) 0.0240819 + 0.0468272i 0.00242033 + 0.00470631i
\(100\) 0.113813 + 4.99870i 0.0113813 + 0.499870i
\(101\) −4.40332 + 2.54226i −0.438147 + 0.252964i −0.702811 0.711376i \(-0.748072\pi\)
0.264664 + 0.964341i \(0.414739\pi\)
\(102\) 2.06209 1.96423i 0.204177 0.194488i
\(103\) 2.58734 0.254938 0.127469 0.991843i \(-0.459315\pi\)
0.127469 + 0.991843i \(0.459315\pi\)
\(104\) 2.05825 1.18833i 0.201828 0.116526i
\(105\) 0.0915536 7.08742i 0.00893472 0.691661i
\(106\) 7.49353 0.727836
\(107\) 14.2675i 1.37929i −0.724146 0.689646i \(-0.757766\pi\)
0.724146 0.689646i \(-0.242234\pi\)
\(108\) −4.90782 1.70685i −0.472255 0.164242i
\(109\) −14.7909 8.53953i −1.41671 0.817938i −0.420703 0.907199i \(-0.638216\pi\)
−0.996008 + 0.0892602i \(0.971550\pi\)
\(110\) 0.0274348 0.0280666i 0.00261581 0.00267605i
\(111\) −6.11725 + 1.48079i −0.580624 + 0.140551i
\(112\) −1.58493 0.915058i −0.149762 0.0864649i
\(113\) 13.8676i 1.30456i −0.757980 0.652278i \(-0.773813\pi\)
0.757980 0.652278i \(-0.226187\pi\)
\(114\) −6.97833 2.88148i −0.653581 0.269875i
\(115\) 0.567129 + 2.02411i 0.0528851 + 0.188749i
\(116\) 0.234207 0.405658i 0.0217456 0.0376644i
\(117\) 5.99429 + 3.86076i 0.554172 + 0.356927i
\(118\) −9.86726 + 5.69687i −0.908355 + 0.524439i
\(119\) 2.60598 + 1.50456i 0.238889 + 0.137923i
\(120\) −0.0500261 + 3.87266i −0.00456674 + 0.353524i
\(121\) 10.9997 0.999972
\(122\) 8.47235i 0.767050i
\(123\) 3.25971 11.0811i 0.293918 0.999146i
\(124\) −5.49469 + 3.17236i −0.493438 + 0.284887i
\(125\) 8.17099 + 7.63118i 0.730835 + 0.682554i
\(126\) 0.266719 5.48387i 0.0237612 0.488542i
\(127\) 8.97167 + 15.5394i 0.796107 + 1.37890i 0.922134 + 0.386872i \(0.126444\pi\)
−0.126026 + 0.992027i \(0.540222\pi\)
\(128\) 0.866025 + 0.500000i 0.0765466 + 0.0441942i
\(129\) −13.7298 4.03889i −1.20884 0.355604i
\(130\) 1.31695 5.14863i 0.115504 0.451565i
\(131\) 3.22196 + 1.86020i 0.281504 + 0.162526i 0.634104 0.773248i \(-0.281369\pi\)
−0.352600 + 0.935774i \(0.614702\pi\)
\(132\) 0.0220130 0.0209684i 0.00191598 0.00182506i
\(133\) 0.839994 7.93295i 0.0728367 0.687874i
\(134\) 4.84246i 0.418325i
\(135\) −10.4004 + 5.17989i −0.895126 + 0.445814i
\(136\) −1.42394 0.822112i −0.122102 0.0704955i
\(137\) 0.467172 + 0.809165i 0.0399132 + 0.0691316i 0.885292 0.465036i \(-0.153959\pi\)
−0.845379 + 0.534167i \(0.820625\pi\)
\(138\) 0.383084 + 1.58254i 0.0326103 + 0.134715i
\(139\) −5.01682 8.68939i −0.425521 0.737024i 0.570948 0.820986i \(-0.306576\pi\)
−0.996469 + 0.0839623i \(0.973242\pi\)
\(140\) −3.94051 + 1.10408i −0.333034 + 0.0933117i
\(141\) −7.17066 7.52789i −0.603878 0.633963i
\(142\) 8.03419 4.63854i 0.674214 0.389258i
\(143\) −0.0361270 + 0.0208579i −0.00302109 + 0.00174423i
\(144\) −0.145739 + 2.99646i −0.0121449 + 0.249705i
\(145\) −0.282586 1.00856i −0.0234675 0.0837567i
\(146\) −2.18510 3.78470i −0.180840 0.313224i
\(147\) −6.14566 + 1.48767i −0.506885 + 0.122701i
\(148\) 1.81690 + 3.14696i 0.149348 + 0.258679i
\(149\) 2.25005 + 1.29906i 0.184331 + 0.106424i 0.589326 0.807895i \(-0.299393\pi\)
−0.404995 + 0.914319i \(0.632727\pi\)
\(150\) 6.11432 + 6.13312i 0.499232 + 0.500767i
\(151\) 15.5474i 1.26523i −0.774468 0.632613i \(-0.781982\pi\)
0.774468 0.632613i \(-0.218018\pi\)
\(152\) −0.458984 + 4.33467i −0.0372285 + 0.351588i
\(153\) 0.239627 4.92685i 0.0193727 0.398312i
\(154\) 0.0278190 + 0.0160613i 0.00224172 + 0.00129426i
\(155\) −3.51571 + 13.7447i −0.282389 + 1.10400i
\(156\) 1.16173 3.94918i 0.0930126 0.316188i
\(157\) −13.0792 7.55130i −1.04384 0.602659i −0.122919 0.992417i \(-0.539226\pi\)
−0.920918 + 0.389757i \(0.872559\pi\)
\(158\) 3.75230 + 6.49918i 0.298517 + 0.517047i
\(159\) 9.39794 8.95197i 0.745305 0.709937i
\(160\) 2.15315 0.603283i 0.170221 0.0476937i
\(161\) −1.48994 + 0.860220i −0.117424 + 0.0677948i
\(162\) −8.19414 + 3.72237i −0.643792 + 0.292457i
\(163\) 0.621054i 0.0486447i −0.999704 0.0243223i \(-0.992257\pi\)
0.999704 0.0243223i \(-0.00774280\pi\)
\(164\) −6.66872 −0.520740
\(165\) 0.000878070 0.0679738i 6.83577e−5 0.00529176i
\(166\) 10.3817 + 5.99387i 0.805775 + 0.465214i
\(167\) −14.3389 + 8.27857i −1.10958 + 0.640615i −0.938720 0.344681i \(-0.887987\pi\)
−0.170857 + 0.985296i \(0.554654\pi\)
\(168\) −3.08087 + 0.745783i −0.237695 + 0.0575384i
\(169\) 3.67573 6.36655i 0.282748 0.489734i
\(170\) −3.54026 + 0.991933i −0.271526 + 0.0760778i
\(171\) −12.1941 + 4.72272i −0.932506 + 0.361155i
\(172\) 8.26278i 0.630031i
\(173\) 14.7771 + 8.53156i 1.12348 + 0.648643i 0.942288 0.334805i \(-0.108670\pi\)
0.181194 + 0.983447i \(0.442004\pi\)
\(174\) −0.190881 0.788542i −0.0144707 0.0597792i
\(175\) −4.39372 + 8.02673i −0.332134 + 0.606764i
\(176\) −0.0152007 0.00877612i −0.00114579 0.000661525i
\(177\) −5.56931 + 18.9324i −0.418615 + 1.42304i
\(178\) 0.378589i 0.0283765i
\(179\) 21.4936 1.60651 0.803255 0.595636i \(-0.203100\pi\)
0.803255 + 0.595636i \(0.203100\pi\)
\(180\) 4.56364 + 4.91662i 0.340154 + 0.366464i
\(181\) 8.09138 4.67156i 0.601427 0.347234i −0.168176 0.985757i \(-0.553788\pi\)
0.769603 + 0.638523i \(0.220454\pi\)
\(182\) 4.34958 0.322412
\(183\) −10.1213 10.6255i −0.748187 0.785461i
\(184\) 0.814125 0.470036i 0.0600181 0.0346515i
\(185\) 7.87199 + 2.01355i 0.578760 + 0.148039i
\(186\) −3.10133 + 10.5427i −0.227401 + 0.773028i
\(187\) 0.0249933 + 0.0144299i 0.00182769 + 0.00105522i
\(188\) −3.00121 + 5.19826i −0.218886 + 0.379122i
\(189\) −6.21667 7.19617i −0.452196 0.523444i
\(190\) 6.21386 + 7.50919i 0.450801 + 0.544774i
\(191\) 13.3659i 0.967125i 0.875310 + 0.483562i \(0.160657\pi\)
−0.875310 + 0.483562i \(0.839343\pi\)
\(192\) 1.68343 0.407506i 0.121491 0.0294092i
\(193\) 6.79547 11.7701i 0.489149 0.847231i −0.510773 0.859716i \(-0.670641\pi\)
0.999922 + 0.0124848i \(0.00397414\pi\)
\(194\) 2.18875 1.26367i 0.157143 0.0907265i
\(195\) −4.49905 8.03037i −0.322183 0.575066i
\(196\) 1.82534 + 3.16158i 0.130381 + 0.225827i
\(197\) −3.55021 −0.252942 −0.126471 0.991970i \(-0.540365\pi\)
−0.126471 + 0.991970i \(0.540365\pi\)
\(198\) 0.00255804 0.0525945i 0.000181792 0.00373773i
\(199\) −2.21798 3.84166i −0.157229 0.272328i 0.776640 0.629945i \(-0.216923\pi\)
−0.933868 + 0.357617i \(0.883589\pi\)
\(200\) 2.40079 4.38591i 0.169761 0.310131i
\(201\) −5.78493 6.07313i −0.408037 0.428365i
\(202\) 5.08452 0.357746
\(203\) 0.742401 0.428626i 0.0521064 0.0300836i
\(204\) −2.76794 + 0.670031i −0.193794 + 0.0469115i
\(205\) −10.4235 + 10.6635i −0.728008 + 0.744772i
\(206\) −2.24070 1.29367i −0.156117 0.0901342i
\(207\) 2.37099 + 1.52709i 0.164795 + 0.106140i
\(208\) −2.37667 −0.164792
\(209\) 0.00805619 0.0760831i 0.000557258 0.00526278i
\(210\) −3.62300 + 6.09211i −0.250011 + 0.420395i
\(211\) 14.2113 + 8.20491i 0.978348 + 0.564849i 0.901771 0.432214i \(-0.142268\pi\)
0.0765769 + 0.997064i \(0.475601\pi\)
\(212\) −6.48959 3.74677i −0.445707 0.257329i
\(213\) 4.53469 15.4152i 0.310712 1.05623i
\(214\) −7.13376 + 12.3560i −0.487654 + 0.844641i
\(215\) 13.2125 + 12.9151i 0.901083 + 0.880800i
\(216\) 3.39687 + 3.93208i 0.231128 + 0.267544i
\(217\) −11.6116 −0.788246
\(218\) 8.53953 + 14.7909i 0.578370 + 1.00177i
\(219\) −7.26172 2.13617i −0.490701 0.144349i
\(220\) −0.0377926 + 0.0105890i −0.00254797 + 0.000713908i
\(221\) 3.90777 0.262865
\(222\) 6.03809 + 1.77622i 0.405250 + 0.119212i
\(223\) 12.0170 20.8140i 0.804718 1.39381i −0.111764 0.993735i \(-0.535650\pi\)
0.916482 0.400077i \(-0.131017\pi\)
\(224\) 0.915058 + 1.58493i 0.0611399 + 0.105897i
\(225\) 14.9950 + 0.387468i 0.999666 + 0.0258312i
\(226\) −6.93381 + 12.0097i −0.461230 + 0.798874i
\(227\) 29.1059i 1.93183i −0.258868 0.965913i \(-0.583349\pi\)
0.258868 0.965913i \(-0.416651\pi\)
\(228\) 4.60267 + 5.98460i 0.304820 + 0.396340i
\(229\) −10.8460 −0.716724 −0.358362 0.933583i \(-0.616665\pi\)
−0.358362 + 0.933583i \(0.616665\pi\)
\(230\) 0.520908 2.03650i 0.0343477 0.134283i
\(231\) 0.0540762 0.0130902i 0.00355796 0.000861269i
\(232\) −0.405658 + 0.234207i −0.0266328 + 0.0153764i
\(233\) 2.19705 3.80540i 0.143934 0.249300i −0.785041 0.619444i \(-0.787358\pi\)
0.928975 + 0.370144i \(0.120692\pi\)
\(234\) −3.26082 6.34066i −0.213167 0.414502i
\(235\) 3.62117 + 12.9241i 0.236219 + 0.843077i
\(236\) 11.3937 0.741669
\(237\) 12.4700 + 3.66829i 0.810013 + 0.238281i
\(238\) −1.50456 2.60598i −0.0975262 0.168920i
\(239\) 22.9719i 1.48593i −0.669332 0.742963i \(-0.733420\pi\)
0.669332 0.742963i \(-0.266580\pi\)
\(240\) 1.97965 3.32881i 0.127786 0.214874i
\(241\) −1.60542 + 0.926892i −0.103414 + 0.0597064i −0.550815 0.834627i \(-0.685683\pi\)
0.447401 + 0.894334i \(0.352350\pi\)
\(242\) −9.52601 5.49985i −0.612355 0.353543i
\(243\) −5.82976 + 14.4573i −0.373979 + 0.927437i
\(244\) −4.23617 + 7.33727i −0.271193 + 0.469721i
\(245\) 7.90854 + 2.02289i 0.505258 + 0.129238i
\(246\) −8.36352 + 7.96663i −0.533239 + 0.507934i
\(247\) −4.20632 9.46727i −0.267642 0.602388i
\(248\) 6.34473 0.402890
\(249\) 20.1805 4.88507i 1.27889 0.309579i
\(250\) −3.26069 10.6943i −0.206224 0.676366i
\(251\) 22.8209 13.1757i 1.44044 0.831641i 0.442565 0.896737i \(-0.354069\pi\)
0.997879 + 0.0650960i \(0.0207354\pi\)
\(252\) −2.97292 + 4.61581i −0.187276 + 0.290769i
\(253\) −0.0142897 + 0.00825017i −0.000898387 + 0.000518684i
\(254\) 17.9433i 1.12587i
\(255\) −3.25500 + 5.47331i −0.203836 + 0.342752i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 2.74183 1.58300i 0.171031 0.0987446i −0.412041 0.911165i \(-0.635184\pi\)
0.583072 + 0.812421i \(0.301851\pi\)
\(258\) 9.87093 + 10.3627i 0.614538 + 0.645153i
\(259\) 6.65028i 0.413228i
\(260\) −3.71483 + 3.80037i −0.230384 + 0.235689i
\(261\) −1.18140 0.760911i −0.0731271 0.0470992i
\(262\) −1.86020 3.22196i −0.114924 0.199053i
\(263\) −5.05171 + 8.74981i −0.311502 + 0.539537i −0.978688 0.205355i \(-0.934165\pi\)
0.667186 + 0.744891i \(0.267499\pi\)
\(264\) −0.0295480 + 0.00715264i −0.00181855 + 0.000440214i
\(265\) −16.1347 + 4.52072i −0.991146 + 0.277706i
\(266\) −4.69393 + 6.45014i −0.287803 + 0.395483i
\(267\) 0.452273 + 0.474805i 0.0276786 + 0.0290576i
\(268\) −2.42123 + 4.19369i −0.147900 + 0.256171i
\(269\) −6.12619 + 10.6109i −0.373520 + 0.646956i −0.990104 0.140333i \(-0.955183\pi\)
0.616584 + 0.787289i \(0.288516\pi\)
\(270\) 11.5970 + 0.714298i 0.705769 + 0.0434708i
\(271\) −4.49464 + 7.78495i −0.273030 + 0.472902i −0.969636 0.244552i \(-0.921359\pi\)
0.696606 + 0.717454i \(0.254693\pi\)
\(272\) 0.822112 + 1.42394i 0.0498479 + 0.0863390i
\(273\) 5.45498 5.19612i 0.330151 0.314483i
\(274\) 0.934343i 0.0564458i
\(275\) −0.0421392 + 0.0769826i −0.00254109 + 0.00464222i
\(276\) 0.459511 1.56207i 0.0276593 0.0940253i
\(277\) 30.5006i 1.83260i −0.400489 0.916302i \(-0.631160\pi\)
0.400489 0.916302i \(-0.368840\pi\)
\(278\) 10.0336i 0.601778i
\(279\) 8.70506 + 16.9270i 0.521158 + 1.01339i
\(280\) 3.96462 + 1.01410i 0.236932 + 0.0606038i
\(281\) 14.5706 + 25.2370i 0.869209 + 1.50551i 0.862806 + 0.505535i \(0.168705\pi\)
0.00640302 + 0.999980i \(0.497962\pi\)
\(282\) 2.44602 + 10.1047i 0.145659 + 0.601725i
\(283\) −22.6635 13.0848i −1.34720 0.777808i −0.359350 0.933203i \(-0.617002\pi\)
−0.987852 + 0.155395i \(0.950335\pi\)
\(284\) −9.27709 −0.550494
\(285\) 16.7637 + 1.99433i 0.992998 + 0.118134i
\(286\) 0.0417158 0.00246671
\(287\) −10.5694 6.10227i −0.623895 0.360206i
\(288\) 1.62444 2.52214i 0.0957212 0.148618i
\(289\) 7.14826 + 12.3812i 0.420486 + 0.728303i
\(290\) −0.259555 + 1.01474i −0.0152416 + 0.0595873i
\(291\) 1.23538 4.19956i 0.0724193 0.246182i
\(292\) 4.37019i 0.255746i
\(293\) 25.0368i 1.46266i −0.682021 0.731332i \(-0.738899\pi\)
0.682021 0.731332i \(-0.261101\pi\)
\(294\) 6.06613 + 1.78447i 0.353784 + 0.104072i
\(295\) 17.8089 18.2190i 1.03687 1.06075i
\(296\) 3.63380i 0.211210i
\(297\) −0.0596226 0.0690169i −0.00345966 0.00400476i
\(298\) −1.29906 2.25005i −0.0752528 0.130342i
\(299\) −1.11712 + 1.93491i −0.0646046 + 0.111898i
\(300\) −2.22860 8.36859i −0.128668 0.483161i
\(301\) −7.56093 + 13.0959i −0.435805 + 0.754836i
\(302\) −7.77368 + 13.4644i −0.447325 + 0.774790i
\(303\) 6.37671 6.07410i 0.366332 0.348948i
\(304\) 2.56482 3.52444i 0.147103 0.202140i
\(305\) 5.11123 + 18.2422i 0.292668 + 1.04455i
\(306\) −2.67095 + 4.14696i −0.152688 + 0.237066i
\(307\) −11.4277 + 19.7934i −0.652213 + 1.12967i 0.330371 + 0.943851i \(0.392826\pi\)
−0.982585 + 0.185816i \(0.940507\pi\)
\(308\) −0.0160613 0.0278190i −0.000915179 0.00158514i
\(309\) −4.35560 + 1.05436i −0.247782 + 0.0599802i
\(310\) 9.91706 10.1454i 0.563251 0.576221i
\(311\) 28.2446i 1.60160i −0.598930 0.800802i \(-0.704407\pi\)
0.598930 0.800802i \(-0.295593\pi\)
\(312\) −2.98068 + 2.83923i −0.168748 + 0.160740i
\(313\) −6.78155 + 3.91533i −0.383316 + 0.221308i −0.679260 0.733898i \(-0.737699\pi\)
0.295944 + 0.955205i \(0.404366\pi\)
\(314\) 7.55130 + 13.0792i 0.426145 + 0.738104i
\(315\) 2.73404 + 11.9685i 0.154046 + 0.674348i
\(316\) 7.50460i 0.422167i
\(317\) −15.3593 + 8.86769i −0.862663 + 0.498059i −0.864903 0.501939i \(-0.832620\pi\)
0.00223995 + 0.999997i \(0.499287\pi\)
\(318\) −12.6148 + 3.05366i −0.707405 + 0.171241i
\(319\) 0.00712020 0.00411085i 0.000398655 0.000230164i
\(320\) −2.16632 0.554116i −0.121101 0.0309760i
\(321\) 5.81410 + 24.0184i 0.324511 + 1.34058i
\(322\) 1.72044 0.0958764
\(323\) −4.21715 + 5.79497i −0.234648 + 0.322441i
\(324\) 8.95752 + 0.873400i 0.497640 + 0.0485222i
\(325\) 0.270496 + 11.8803i 0.0150044 + 0.658998i
\(326\) −0.310527 + 0.537848i −0.0171985 + 0.0297887i
\(327\) 28.3794 + 8.34833i 1.56938 + 0.461664i
\(328\) 5.77528 + 3.33436i 0.318887 + 0.184109i
\(329\) −9.51342 + 5.49257i −0.524492 + 0.302815i
\(330\) −0.0347474 + 0.0584280i −0.00191278 + 0.00321636i
\(331\) 11.1421i 0.612427i 0.951963 + 0.306213i \(0.0990621\pi\)
−0.951963 + 0.306213i \(0.900938\pi\)
\(332\) −5.99387 10.3817i −0.328956 0.569769i
\(333\) 9.69454 4.98563i 0.531257 0.273211i
\(334\) 16.5571 0.905966
\(335\) 2.92138 + 10.4265i 0.159612 + 0.569663i
\(336\) 3.04101 + 0.894570i 0.165901 + 0.0488028i
\(337\) 3.30626 5.72662i 0.180104 0.311949i −0.761812 0.647798i \(-0.775690\pi\)
0.941916 + 0.335849i \(0.109023\pi\)
\(338\) −6.36655 + 3.67573i −0.346294 + 0.199933i
\(339\) 5.65114 + 23.3452i 0.306928 + 1.26794i
\(340\) 3.56192 + 0.911090i 0.193172 + 0.0494108i
\(341\) −0.111364 −0.00603070
\(342\) 12.9218 + 2.00705i 0.698728 + 0.108529i
\(343\) 19.4920i 1.05247i
\(344\) 4.13139 7.15578i 0.222750 0.385814i
\(345\) −1.77956 3.17635i −0.0958083 0.171009i
\(346\) −8.53156 14.7771i −0.458660 0.794422i
\(347\) 4.05301 7.02002i 0.217577 0.376855i −0.736490 0.676449i \(-0.763518\pi\)
0.954067 + 0.299594i \(0.0968513\pi\)
\(348\) −0.228963 + 0.778338i −0.0122737 + 0.0417233i
\(349\) −4.32430 −0.231474 −0.115737 0.993280i \(-0.536923\pi\)
−0.115737 + 0.993280i \(0.536923\pi\)
\(350\) 7.81844 4.75449i 0.417913 0.254138i
\(351\) −11.6642 4.05661i −0.622591 0.216526i
\(352\) 0.00877612 + 0.0152007i 0.000467769 + 0.000810199i
\(353\) −3.82099 −0.203371 −0.101685 0.994817i \(-0.532424\pi\)
−0.101685 + 0.994817i \(0.532424\pi\)
\(354\) 14.2893 13.6112i 0.759470 0.723430i
\(355\) −14.5005 + 14.8344i −0.769604 + 0.787326i
\(356\) 0.189295 0.327868i 0.0100326 0.0173770i
\(357\) −5.00010 1.47087i −0.264633 0.0778469i
\(358\) −18.6140 10.7468i −0.983782 0.567987i
\(359\) 15.9731 + 9.22208i 0.843029 + 0.486723i 0.858293 0.513161i \(-0.171525\pi\)
−0.0152639 + 0.999884i \(0.504859\pi\)
\(360\) −1.49392 6.53974i −0.0787363 0.344675i
\(361\) 18.5787 + 3.97908i 0.977825 + 0.209425i
\(362\) −9.34312 −0.491063
\(363\) −18.5172 + 4.48244i −0.971902 + 0.235267i
\(364\) −3.76685 2.17479i −0.197436 0.113990i
\(365\) 6.98808 + 6.83079i 0.365773 + 0.357540i
\(366\) 3.45253 + 14.2626i 0.180467 + 0.745519i
\(367\) −1.09348 + 0.631323i −0.0570794 + 0.0329548i −0.528268 0.849078i \(-0.677158\pi\)
0.471189 + 0.882032i \(0.343825\pi\)
\(368\) −0.940071 −0.0490046
\(369\) −0.971892 + 19.9826i −0.0505947 + 1.04025i
\(370\) −5.81057 5.67978i −0.302077 0.295277i
\(371\) −6.85702 11.8767i −0.355999 0.616608i
\(372\) 7.95718 7.57957i 0.412561 0.392983i
\(373\) 1.22155 0.0632497 0.0316248 0.999500i \(-0.489932\pi\)
0.0316248 + 0.999500i \(0.489932\pi\)
\(374\) −0.0144299 0.0249933i −0.000746153 0.00129237i
\(375\) −16.8650 9.51684i −0.870907 0.491448i
\(376\) 5.19826 3.00121i 0.268080 0.154776i
\(377\) 0.556631 0.964114i 0.0286680 0.0496544i
\(378\) 1.78570 + 9.34040i 0.0918468 + 0.480418i
\(379\) 36.6243i 1.88126i −0.339428 0.940632i \(-0.610233\pi\)
0.339428 0.940632i \(-0.389767\pi\)
\(380\) −1.62677 9.61008i −0.0834516 0.492987i
\(381\) −21.4356 22.5035i −1.09818 1.15289i
\(382\) 6.68296 11.5752i 0.341930 0.592240i
\(383\) 16.6952 + 9.63898i 0.853085 + 0.492529i 0.861691 0.507434i \(-0.169406\pi\)
−0.00860539 + 0.999963i \(0.502739\pi\)
\(384\) −1.66165 0.488805i −0.0847956 0.0249442i
\(385\) −0.0695880 0.0177997i −0.00354653 0.000907154i
\(386\) −11.7701 + 6.79547i −0.599083 + 0.345880i
\(387\) 24.7591 + 1.20421i 1.25857 + 0.0612133i
\(388\) −2.52735 −0.128307
\(389\) −20.0424 + 11.5715i −1.01619 + 0.586697i −0.912998 0.407964i \(-0.866239\pi\)
−0.103192 + 0.994661i \(0.532905\pi\)
\(390\) −0.118895 + 9.20402i −0.00602050 + 0.466064i
\(391\) 1.54569 0.0781688
\(392\) 3.65067i 0.184387i
\(393\) −6.18199 1.81855i −0.311840 0.0917337i
\(394\) 3.07457 + 1.77510i 0.154895 + 0.0894284i
\(395\) −12.0001 11.7300i −0.603791 0.590200i
\(396\) −0.0285126 + 0.0442692i −0.00143281 + 0.00222461i
\(397\) −23.9763 13.8427i −1.20334 0.694746i −0.242040 0.970266i \(-0.577816\pi\)
−0.961295 + 0.275520i \(0.911150\pi\)
\(398\) 4.43597i 0.222355i
\(399\) 1.81865 + 13.6969i 0.0910464 + 0.685701i
\(400\) −4.27210 + 2.59792i −0.213605 + 0.129896i
\(401\) 7.69191 13.3228i 0.384115 0.665307i −0.607531 0.794296i \(-0.707840\pi\)
0.991646 + 0.128989i \(0.0411731\pi\)
\(402\) 1.97333 + 8.15195i 0.0984208 + 0.406582i
\(403\) −13.0591 + 7.53965i −0.650518 + 0.375577i
\(404\) −4.40332 2.54226i −0.219074 0.126482i
\(405\) 15.3976 12.9582i 0.765111 0.643899i
\(406\) −0.857251 −0.0425447
\(407\) 0.0637813i 0.00316152i
\(408\) 2.73212 + 0.803705i 0.135260 + 0.0397893i
\(409\) 18.9652 10.9496i 0.937770 0.541422i 0.0485092 0.998823i \(-0.484553\pi\)
0.889260 + 0.457401i \(0.151220\pi\)
\(410\) 14.3588 4.02313i 0.709128 0.198688i
\(411\) −1.11619 1.17180i −0.0550576 0.0578005i
\(412\) 1.29367 + 2.24070i 0.0637345 + 0.110391i
\(413\) 18.0582 + 10.4259i 0.888588 + 0.513027i
\(414\) −1.28979 2.50799i −0.0633898 0.123261i
\(415\) −25.9693 6.64259i −1.27478 0.326072i
\(416\) 2.05825 + 1.18833i 0.100914 + 0.0582628i
\(417\) 11.9864 + 12.5836i 0.586979 + 0.616221i
\(418\) −0.0450184 + 0.0618618i −0.00220192 + 0.00302576i
\(419\) 13.0710i 0.638559i 0.947661 + 0.319279i \(0.103441\pi\)
−0.947661 + 0.319279i \(0.896559\pi\)
\(420\) 6.18366 3.46442i 0.301732 0.169046i
\(421\) −16.8330 9.71851i −0.820388 0.473651i 0.0301623 0.999545i \(-0.490398\pi\)
−0.850550 + 0.525894i \(0.823731\pi\)
\(422\) −8.20491 14.2113i −0.399409 0.691796i
\(423\) 15.1390 + 9.75060i 0.736082 + 0.474090i
\(424\) 3.74677 + 6.48959i 0.181959 + 0.315162i
\(425\) 7.02429 4.27156i 0.340728 0.207201i
\(426\) −11.6348 + 11.0826i −0.563707 + 0.536956i
\(427\) −13.4281 + 7.75269i −0.649829 + 0.375179i
\(428\) 12.3560 7.13376i 0.597251 0.344823i
\(429\) 0.0523175 0.0498348i 0.00252591 0.00240605i
\(430\) −4.98480 17.7910i −0.240388 0.857958i
\(431\) −7.00669 12.1359i −0.337500 0.584567i 0.646462 0.762946i \(-0.276248\pi\)
−0.983962 + 0.178379i \(0.942915\pi\)
\(432\) −0.975733 5.10372i −0.0469450 0.245553i
\(433\) 10.0290 + 17.3707i 0.481962 + 0.834783i 0.999786 0.0207044i \(-0.00659087\pi\)
−0.517823 + 0.855488i \(0.673258\pi\)
\(434\) 10.0559 + 5.80579i 0.482700 + 0.278687i
\(435\) 0.886710 + 1.58269i 0.0425145 + 0.0758843i
\(436\) 17.0791i 0.817938i
\(437\) −1.66378 3.74470i −0.0795892 0.179133i
\(438\) 5.22075 + 5.48084i 0.249457 + 0.261885i
\(439\) 25.6443 + 14.8057i 1.22394 + 0.706640i 0.965755 0.259457i \(-0.0835435\pi\)
0.258181 + 0.966097i \(0.416877\pi\)
\(440\) 0.0380238 + 0.00972597i 0.00181271 + 0.000463667i
\(441\) 9.73955 5.00878i 0.463788 0.238513i
\(442\) −3.38423 1.95389i −0.160971 0.0929369i
\(443\) −17.1231 29.6581i −0.813542 1.40910i −0.910370 0.413796i \(-0.864203\pi\)
0.0968274 0.995301i \(-0.469131\pi\)
\(444\) −4.34103 4.55730i −0.206016 0.216280i
\(445\) −0.228397 0.815159i −0.0108270 0.0386423i
\(446\) −20.8140 + 12.0170i −0.985574 + 0.569021i
\(447\) −4.31717 1.26998i −0.204195 0.0600679i
\(448\) 1.83012i 0.0864649i
\(449\) −24.2472 −1.14430 −0.572148 0.820150i \(-0.693890\pi\)
−0.572148 + 0.820150i \(0.693890\pi\)
\(450\) −12.7923 7.83305i −0.603035 0.369254i
\(451\) −0.101369 0.0585255i −0.00477329 0.00275586i
\(452\) 12.0097 6.93381i 0.564889 0.326139i
\(453\) 6.33564 + 26.1729i 0.297674 + 1.22971i
\(454\) −14.5529 + 25.2064i −0.683004 + 1.18300i
\(455\) −9.36529 + 2.62403i −0.439051 + 0.123016i
\(456\) −0.993734 7.48415i −0.0465359 0.350477i
\(457\) 26.4451i 1.23705i −0.785765 0.618525i \(-0.787731\pi\)
0.785765 0.618525i \(-0.212269\pi\)
\(458\) 9.39292 + 5.42300i 0.438902 + 0.253400i
\(459\) 1.60432 + 8.39166i 0.0748834 + 0.391689i
\(460\) −1.46937 + 1.50320i −0.0685097 + 0.0700873i
\(461\) −0.564904 0.326148i −0.0263102 0.0151902i 0.486787 0.873521i \(-0.338169\pi\)
−0.513097 + 0.858330i \(0.671502\pi\)
\(462\) −0.0533765 0.0157017i −0.00248330 0.000730509i
\(463\) 6.47173i 0.300767i −0.988628 0.150383i \(-0.951949\pi\)
0.988628 0.150383i \(-0.0480508\pi\)
\(464\) 0.468414 0.0217456
\(465\) 0.317402 24.5710i 0.0147192 1.13945i
\(466\) −3.80540 + 2.19705i −0.176282 + 0.101776i
\(467\) −6.40986 −0.296613 −0.148307 0.988941i \(-0.547382\pi\)
−0.148307 + 0.988941i \(0.547382\pi\)
\(468\) −0.346372 + 7.12158i −0.0160111 + 0.329195i
\(469\) −7.67495 + 4.43113i −0.354396 + 0.204611i
\(470\) 3.32604 13.0032i 0.153419 0.599793i
\(471\) 25.0952 + 7.38223i 1.15633 + 0.340155i
\(472\) −9.86726 5.69687i −0.454178 0.262220i
\(473\) −0.0725152 + 0.125600i −0.00333425 + 0.00577509i
\(474\) −8.96519 9.41183i −0.411785 0.432300i
\(475\) −17.9095 12.4197i −0.821746 0.569854i
\(476\) 3.00912i 0.137923i
\(477\) −12.1728 + 18.8997i −0.557355 + 0.865359i
\(478\) −11.4859 + 19.8942i −0.525354 + 0.909941i
\(479\) −6.63996 + 3.83358i −0.303388 + 0.175161i −0.643964 0.765056i \(-0.722711\pi\)
0.340576 + 0.940217i \(0.389378\pi\)
\(480\) −3.37884 + 1.89301i −0.154222 + 0.0864035i
\(481\) 4.31817 + 7.47929i 0.196891 + 0.341026i
\(482\) 1.85378 0.0844376
\(483\) 2.15767 2.05528i 0.0981776 0.0935185i
\(484\) 5.49985 + 9.52601i 0.249993 + 0.433001i
\(485\) −3.95034 + 4.04131i −0.179376 + 0.183507i
\(486\) 12.2774 9.60552i 0.556913 0.435715i
\(487\) 38.4027 1.74019 0.870095 0.492884i \(-0.164057\pi\)
0.870095 + 0.492884i \(0.164057\pi\)
\(488\) 7.33727 4.23617i 0.332143 0.191763i
\(489\) 0.253083 + 1.04550i 0.0114448 + 0.0472792i
\(490\) −5.83755 5.70615i −0.263713 0.257777i
\(491\) −24.2445 13.9976i −1.09414 0.631701i −0.159463 0.987204i \(-0.550976\pi\)
−0.934675 + 0.355503i \(0.884310\pi\)
\(492\) 11.2263 2.71754i 0.506122 0.122516i
\(493\) −0.770177 −0.0346870
\(494\) −1.09085 + 10.3021i −0.0490797 + 0.463512i
\(495\) 0.0262216 + 0.114787i 0.00117857 + 0.00515930i
\(496\) −5.49469 3.17236i −0.246719 0.142443i
\(497\) −14.7035 8.48908i −0.659543 0.380787i
\(498\) −19.9194 5.85967i −0.892609 0.262578i
\(499\) 7.50172 12.9934i 0.335823 0.581662i −0.647820 0.761794i \(-0.724319\pi\)
0.983643 + 0.180131i \(0.0576523\pi\)
\(500\) −2.52330 + 10.8919i −0.112846 + 0.487099i
\(501\) 20.7650 19.7796i 0.927711 0.883686i
\(502\) −26.3513 −1.17612
\(503\) 6.09363 + 10.5545i 0.271701 + 0.470601i 0.969298 0.245890i \(-0.0790803\pi\)
−0.697596 + 0.716491i \(0.745747\pi\)
\(504\) 4.88253 2.51095i 0.217485 0.111847i
\(505\) −10.9477 + 3.06741i −0.487168 + 0.136498i
\(506\) 0.0165003 0.000733530
\(507\) −3.59343 + 12.2155i −0.159590 + 0.542510i
\(508\) −8.97167 + 15.5394i −0.398054 + 0.689449i
\(509\) 10.5618 + 18.2935i 0.468142 + 0.810846i 0.999337 0.0364036i \(-0.0115902\pi\)
−0.531195 + 0.847250i \(0.678257\pi\)
\(510\) 5.55556 3.11253i 0.246004 0.137825i
\(511\) −3.99898 + 6.92644i −0.176905 + 0.306408i
\(512\) 1.00000i 0.0441942i
\(513\) 18.6034 12.9195i 0.821359 0.570411i
\(514\) −3.16599 −0.139646
\(515\) 5.60501 + 1.43368i 0.246986 + 0.0631757i
\(516\) −3.36713 13.9098i −0.148230 0.612346i
\(517\) −0.0912410 + 0.0526780i −0.00401278 + 0.00231678i
\(518\) 3.32514 5.75931i 0.146098 0.253050i
\(519\) −28.3529 8.34054i −1.24455 0.366109i
\(520\) 5.11732 1.43380i 0.224409 0.0628764i
\(521\) −13.3244 −0.583755 −0.291877 0.956456i \(-0.594280\pi\)
−0.291877 + 0.956456i \(0.594280\pi\)
\(522\) 0.642671 + 1.24967i 0.0281289 + 0.0546966i
\(523\) 8.64305 + 14.9702i 0.377934 + 0.654601i 0.990762 0.135616i \(-0.0433013\pi\)
−0.612827 + 0.790217i \(0.709968\pi\)
\(524\) 3.72040i 0.162526i
\(525\) 4.12559 15.3029i 0.180055 0.667874i
\(526\) 8.74981 5.05171i 0.381510 0.220265i
\(527\) 9.03451 + 5.21608i 0.393549 + 0.227216i
\(528\) 0.0291656 + 0.00857962i 0.00126927 + 0.000373380i
\(529\) 11.0581 19.1532i 0.480788 0.832750i
\(530\) 16.2334 + 4.15228i 0.705134 + 0.180364i
\(531\) 1.66051 34.1408i 0.0720599 1.48159i
\(532\) 7.29013 3.23902i 0.316067 0.140429i
\(533\) −15.8493 −0.686511
\(534\) −0.154277 0.637329i −0.00667624 0.0275799i
\(535\) 7.90585 30.9081i 0.341800 1.33627i
\(536\) 4.19369 2.42123i 0.181140 0.104581i
\(537\) −36.1830 + 8.75878i −1.56141 + 0.377969i
\(538\) 10.6109 6.12619i 0.457467 0.264119i
\(539\) 0.0640775i 0.00276001i
\(540\) −9.68612 6.41709i −0.416824 0.276147i
\(541\) −19.4840 33.7472i −0.837682 1.45091i −0.891828 0.452374i \(-0.850577\pi\)
0.0541465 0.998533i \(-0.482756\pi\)
\(542\) 7.78495 4.49464i 0.334392 0.193061i
\(543\) −11.7176 + 11.1615i −0.502850 + 0.478987i
\(544\) 1.64422i 0.0704955i
\(545\) −27.3100 26.6952i −1.16983 1.14350i
\(546\) −7.32221 + 1.77248i −0.313362 + 0.0758551i
\(547\) −0.0296601 0.0513728i −0.00126817 0.00219654i 0.865391 0.501098i \(-0.167070\pi\)
−0.866659 + 0.498901i \(0.833737\pi\)
\(548\) −0.467172 + 0.809165i −0.0199566 + 0.0345658i
\(549\) 21.3684 + 13.7628i 0.911983 + 0.587384i
\(550\) 0.0749849 0.0455993i 0.00319737 0.00194436i
\(551\) 0.829018 + 1.86589i 0.0353173 + 0.0794896i
\(552\) −1.17898 + 1.12303i −0.0501808 + 0.0477995i
\(553\) 6.86715 11.8942i 0.292021 0.505795i
\(554\) −15.2503 + 26.4143i −0.647923 + 1.12224i
\(555\) −14.0725 0.181785i −0.597343 0.00771634i
\(556\) 5.01682 8.68939i 0.212761 0.368512i
\(557\) −16.1900 28.0419i −0.685993 1.18818i −0.973124 0.230284i \(-0.926035\pi\)
0.287130 0.957892i \(-0.407299\pi\)
\(558\) 0.924672 19.0117i 0.0391445 0.804830i
\(559\) 19.6379i 0.830594i
\(560\) −2.92642 2.86055i −0.123664 0.120880i
\(561\) −0.0479548 0.0141068i −0.00202465 0.000595590i
\(562\) 29.1412i 1.22925i
\(563\) 7.57742i 0.319350i −0.987170 0.159675i \(-0.948955\pi\)
0.987170 0.159675i \(-0.0510446\pi\)
\(564\) 2.93402 9.97392i 0.123544 0.419978i
\(565\) 7.68427 30.0418i 0.323280 1.26387i
\(566\) 13.0848 + 22.6635i 0.549993 + 0.952616i
\(567\) 13.3978 + 9.58093i 0.562655 + 0.402361i
\(568\) 8.03419 + 4.63854i 0.337107 + 0.194629i
\(569\) −45.8204 −1.92089 −0.960446 0.278468i \(-0.910173\pi\)
−0.960446 + 0.278468i \(0.910173\pi\)
\(570\) −13.5206 10.1090i −0.566318 0.423420i
\(571\) −19.8944 −0.832554 −0.416277 0.909238i \(-0.636665\pi\)
−0.416277 + 0.909238i \(0.636665\pi\)
\(572\) −0.0361270 0.0208579i −0.00151054 0.000872113i
\(573\) −5.44669 22.5006i −0.227539 0.939977i
\(574\) 6.10227 + 10.5694i 0.254704 + 0.441160i
\(575\) 0.106993 + 4.69914i 0.00446190 + 0.195968i
\(576\) −2.66788 + 1.37202i −0.111162 + 0.0571673i
\(577\) 45.0449i 1.87524i 0.347656 + 0.937622i \(0.386978\pi\)
−0.347656 + 0.937622i \(0.613022\pi\)
\(578\) 14.2965i 0.594657i
\(579\) −6.64332 + 22.5834i −0.276087 + 0.938532i
\(580\) 0.732149 0.749009i 0.0304008 0.0311009i
\(581\) 21.9390i 0.910181i
\(582\) −3.16965 + 3.01923i −0.131386 + 0.125151i
\(583\) −0.0657641 0.113907i −0.00272367 0.00471754i
\(584\) 2.18510 3.78470i 0.0904200 0.156612i
\(585\) 10.8463 + 11.6852i 0.448437 + 0.483123i
\(586\) −12.5184 + 21.6825i −0.517130 + 0.895696i
\(587\) 11.5995 20.0908i 0.478761 0.829238i −0.520943 0.853592i \(-0.674419\pi\)
0.999703 + 0.0243538i \(0.00775282\pi\)
\(588\) −4.36119 4.57846i −0.179852 0.188812i
\(589\) 2.91213 27.5023i 0.119992 1.13321i
\(590\) −24.5324 + 6.87365i −1.00998 + 0.282984i
\(591\) 5.97653 1.44673i 0.245842 0.0595105i
\(592\) −1.81690 + 3.14696i −0.0746742 + 0.129339i
\(593\) 18.4951 + 32.0344i 0.759501 + 1.31549i 0.943105 + 0.332494i \(0.107890\pi\)
−0.183604 + 0.983000i \(0.558776\pi\)
\(594\) 0.0171263 + 0.0895817i 0.000702700 + 0.00367558i
\(595\) 4.81169 + 4.70338i 0.197260 + 0.192820i
\(596\) 2.59813i 0.106424i
\(597\) 5.29932 + 5.56333i 0.216887 + 0.227692i
\(598\) 1.93491 1.11712i 0.0791241 0.0456823i
\(599\) 0.199563 + 0.345652i 0.00815390 + 0.0141230i 0.870074 0.492922i \(-0.164071\pi\)
−0.861920 + 0.507045i \(0.830738\pi\)
\(600\) −2.25427 + 8.36171i −0.0920304 + 0.341366i
\(601\) 11.9930i 0.489204i −0.969624 0.244602i \(-0.921343\pi\)
0.969624 0.244602i \(-0.0786573\pi\)
\(602\) 13.0959 7.56093i 0.533750 0.308160i
\(603\) 12.2134 + 7.86630i 0.497366 + 0.320340i
\(604\) 13.4644 7.77368i 0.547859 0.316307i
\(605\) 23.8289 + 6.09510i 0.968782 + 0.247801i
\(606\) −8.55944 + 2.07197i −0.347703 + 0.0841681i
\(607\) 33.2087 1.34790 0.673950 0.738777i \(-0.264596\pi\)
0.673950 + 0.738777i \(0.264596\pi\)
\(608\) −3.98342 + 1.76984i −0.161549 + 0.0717766i
\(609\) −1.07511 + 1.02409i −0.0435658 + 0.0414984i
\(610\) 4.69466 18.3538i 0.190081 0.743125i
\(611\) −7.13289 + 12.3545i −0.288566 + 0.499811i
\(612\) 4.38659 2.25590i 0.177317 0.0911894i
\(613\) 25.8070 + 14.8997i 1.04233 + 0.601792i 0.920494 0.390758i \(-0.127787\pi\)
0.121841 + 0.992550i \(0.461120\pi\)
\(614\) 19.7934 11.4277i 0.798795 0.461184i
\(615\) 13.2018 22.1989i 0.532347 0.895146i
\(616\) 0.0321226i 0.00129426i
\(617\) −4.77232 8.26590i −0.192126 0.332773i 0.753828 0.657071i \(-0.228205\pi\)
−0.945955 + 0.324299i \(0.894872\pi\)
\(618\) 4.29924 + 1.26470i 0.172941 + 0.0508738i
\(619\) 12.2127 0.490869 0.245434 0.969413i \(-0.421069\pi\)
0.245434 + 0.969413i \(0.421069\pi\)
\(620\) −13.6611 + 3.82767i −0.548644 + 0.153723i
\(621\) −4.61370 1.60456i −0.185141 0.0643888i
\(622\) −14.1223 + 24.4605i −0.566252 + 0.980778i
\(623\) 0.600037 0.346431i 0.0240400 0.0138795i
\(624\) 4.00095 0.968506i 0.160166 0.0387713i
\(625\) 13.4724 + 21.0593i 0.538898 + 0.842371i
\(626\) 7.83066 0.312976
\(627\) 0.0174423 + 0.131364i 0.000696577 + 0.00524615i
\(628\) 15.1026i 0.602659i
\(629\) 2.98739 5.17431i 0.119115 0.206313i
\(630\) 3.61650 11.7320i 0.144085 0.467416i
\(631\) −7.29547 12.6361i −0.290428 0.503036i 0.683483 0.729967i \(-0.260464\pi\)
−0.973911 + 0.226930i \(0.927131\pi\)
\(632\) −3.75230 + 6.49918i −0.149259 + 0.258523i
\(633\) −27.2673 8.02120i −1.08378 0.318814i
\(634\) 17.7354 0.704362
\(635\) 10.8249 + 38.6347i 0.429574 + 1.53317i
\(636\) 12.4516 + 3.66288i 0.493738 + 0.145242i
\(637\) 4.33822 + 7.51401i 0.171886 + 0.297716i
\(638\) −0.00822170 −0.000325500
\(639\) −1.35203 + 27.7984i −0.0534855 + 1.09969i
\(640\) 1.59903 + 1.56304i 0.0632073 + 0.0617846i
\(641\) −12.3068 + 21.3160i −0.486089 + 0.841931i −0.999872 0.0159890i \(-0.994910\pi\)
0.513783 + 0.857920i \(0.328244\pi\)
\(642\) 6.97403 23.7076i 0.275243 0.935663i
\(643\) −31.4932 18.1826i −1.24197 0.717053i −0.272477 0.962162i \(-0.587843\pi\)
−0.969495 + 0.245109i \(0.921176\pi\)
\(644\) −1.48994 0.860220i −0.0587120 0.0338974i
\(645\) −27.5052 16.3575i −1.08302 0.644074i
\(646\) 6.54964 2.91002i 0.257692 0.114493i
\(647\) 1.51184 0.0594364 0.0297182 0.999558i \(-0.490539\pi\)
0.0297182 + 0.999558i \(0.490539\pi\)
\(648\) −7.32074 5.23515i −0.287586 0.205656i
\(649\) 0.173193 + 0.0999927i 0.00679840 + 0.00392506i
\(650\) 5.70587 10.4239i 0.223803 0.408857i
\(651\) 19.5473 4.73179i 0.766119 0.185453i
\(652\) 0.537848 0.310527i 0.0210638 0.0121612i
\(653\) 11.7507 0.459839 0.229919 0.973210i \(-0.426154\pi\)
0.229919 + 0.973210i \(0.426154\pi\)
\(654\) −20.4031 21.4195i −0.797824 0.837570i
\(655\) 5.94904 + 5.81513i 0.232448 + 0.227216i
\(656\) −3.33436 5.77528i −0.130185 0.225487i
\(657\) 13.0951 + 0.636907i 0.510889 + 0.0248481i
\(658\) 10.9851 0.428246
\(659\) −7.25991 12.5745i −0.282806 0.489834i 0.689269 0.724506i \(-0.257932\pi\)
−0.972075 + 0.234672i \(0.924599\pi\)
\(660\) 0.0593061 0.0332265i 0.00230849 0.00129334i
\(661\) −0.0542368 + 0.0313136i −0.00210957 + 0.00121796i −0.501054 0.865416i \(-0.667054\pi\)
0.498945 + 0.866634i \(0.333721\pi\)
\(662\) 5.57107 9.64937i 0.216526 0.375033i
\(663\) −6.57847 + 1.59244i −0.255486 + 0.0618453i
\(664\) 11.9877i 0.465214i
\(665\) 6.21547 16.7199i 0.241025 0.648369i
\(666\) −10.8885 0.529586i −0.421922 0.0205210i
\(667\) 0.220171 0.381347i 0.00852505 0.0147658i
\(668\) −14.3389 8.27857i −0.554789 0.320307i
\(669\) −11.7479 + 39.9360i −0.454201 + 1.54402i
\(670\) 2.68328 10.4903i 0.103664 0.405277i
\(671\) −0.128785 + 0.0743543i −0.00497171 + 0.00287042i
\(672\) −2.18630 2.29522i −0.0843385 0.0885402i
\(673\) 22.6019 0.871239 0.435619 0.900131i \(-0.356529\pi\)
0.435619 + 0.900131i \(0.356529\pi\)
\(674\) −5.72662 + 3.30626i −0.220581 + 0.127353i
\(675\) −25.4009 + 5.45827i −0.977682 + 0.210089i
\(676\) 7.35145 0.282748
\(677\) 47.0000i 1.80636i 0.429266 + 0.903178i \(0.358772\pi\)
−0.429266 + 0.903178i \(0.641228\pi\)
\(678\) 6.77856 23.0431i 0.260329 0.884964i
\(679\) −4.00566 2.31267i −0.153723 0.0887521i
\(680\) −2.62917 2.56999i −0.100824 0.0985545i
\(681\) 11.8608 + 48.9977i 0.454508 + 1.87760i
\(682\) 0.0964442 + 0.0556821i 0.00369304 + 0.00213218i
\(683\) 7.59129i 0.290472i 0.989397 + 0.145236i \(0.0463942\pi\)
−0.989397 + 0.145236i \(0.953606\pi\)
\(684\) −10.1870 8.19904i −0.389511 0.313498i
\(685\) 0.563674 + 2.01178i 0.0215369 + 0.0768662i
\(686\) 9.74599 16.8805i 0.372104 0.644502i
\(687\) 18.2585 4.41981i 0.696605 0.168626i
\(688\) −7.15578 + 4.13139i −0.272812 + 0.157508i
\(689\) −15.4236 8.90482i −0.587592 0.339246i
\(690\) −0.0470281 + 3.64058i −0.00179033 + 0.138594i
\(691\) 31.3634 1.19312 0.596560 0.802569i \(-0.296534\pi\)
0.596560 + 0.802569i \(0.296534\pi\)
\(692\) 17.0631i 0.648643i
\(693\) −0.0856993 + 0.0440728i −0.00325545 + 0.00167419i
\(694\) −7.02002 + 4.05301i −0.266476 + 0.153850i
\(695\) −6.05313 21.6039i −0.229608 0.819483i
\(696\) 0.587457 0.559579i 0.0222675 0.0212108i
\(697\) 5.48244 + 9.49586i 0.207662 + 0.359681i
\(698\) 3.74495 + 2.16215i 0.141748 + 0.0818385i
\(699\) −2.14786 + 7.30144i −0.0812394 + 0.276166i
\(700\) −9.14821 + 0.208292i −0.345770 + 0.00787268i
\(701\) −0.0562324 0.0324658i −0.00212387 0.00122622i 0.498938 0.866638i \(-0.333724\pi\)
−0.501062 + 0.865412i \(0.667057\pi\)
\(702\) 8.07323 + 9.34525i 0.304704 + 0.352714i
\(703\) −15.7513 1.66786i −0.594072 0.0629044i
\(704\) 0.0175522i 0.000661525i
\(705\) −11.3626 20.2812i −0.427942 0.763835i
\(706\) 3.30907 + 1.91049i 0.124539 + 0.0719024i
\(707\) −4.65263 8.05860i −0.174980 0.303075i
\(708\) −19.1806 + 4.64301i −0.720850 + 0.174495i
\(709\) 20.6987 + 35.8512i 0.777356 + 1.34642i 0.933461 + 0.358680i \(0.116773\pi\)
−0.156104 + 0.987741i \(0.549894\pi\)
\(710\) 19.9749 5.59671i 0.749646 0.210041i
\(711\) −22.4872 1.09371i −0.843337 0.0410174i
\(712\) −0.327868 + 0.189295i −0.0122874 + 0.00709412i
\(713\) −5.16540 + 2.98225i −0.193446 + 0.111686i
\(714\) 3.59477 + 3.77386i 0.134531 + 0.141233i
\(715\) −0.0898204 + 0.0251665i −0.00335909 + 0.000941172i
\(716\) 10.7468 + 18.6140i 0.401627 + 0.695639i
\(717\) 9.36117 + 38.6716i 0.349599 + 1.44422i
\(718\) −9.22208 15.9731i −0.344165 0.596111i
\(719\) 15.9183 + 9.19043i 0.593652 + 0.342745i 0.766540 0.642196i \(-0.221977\pi\)
−0.172888 + 0.984941i \(0.555310\pi\)
\(720\) −1.97610 + 6.41054i −0.0736450 + 0.238907i
\(721\) 4.73513i 0.176345i
\(722\) −14.1001 12.7353i −0.524750 0.473960i
\(723\) 2.32491 2.21458i 0.0864642 0.0823611i
\(724\) 8.09138 + 4.67156i 0.300714 + 0.173617i
\(725\) −0.0533117 2.34146i −0.00197995 0.0869597i
\(726\) 18.2776 + 5.37670i 0.678345 + 0.199548i
\(727\) −0.399410 0.230599i −0.0148133 0.00855245i 0.492575 0.870270i \(-0.336056\pi\)
−0.507388 + 0.861718i \(0.669389\pi\)
\(728\) 2.17479 + 3.76685i 0.0806030 + 0.139609i
\(729\) 3.92256 26.7135i 0.145280 0.989391i
\(730\) −2.63647 9.40968i −0.0975800 0.348268i
\(731\) 11.7657 6.79293i 0.435170 0.251246i
\(732\) 4.14133 14.0780i 0.153068 0.520340i
\(733\) 14.7386i 0.544381i 0.962243 + 0.272191i \(0.0877481\pi\)
−0.962243 + 0.272191i \(0.912252\pi\)
\(734\) 1.26265 0.0466051
\(735\) −14.1378 0.182629i −0.521481 0.00673637i
\(736\) 0.814125 + 0.470036i 0.0300091 + 0.0173257i
\(737\) −0.0736087 + 0.0424980i −0.00271141 + 0.00156543i
\(738\) 10.8330 16.8195i 0.398767 0.619133i
\(739\) −5.96842 + 10.3376i −0.219552 + 0.380275i −0.954671 0.297663i \(-0.903793\pi\)
0.735119 + 0.677938i \(0.237126\pi\)
\(740\) 2.19221 + 7.82411i 0.0805873 + 0.287620i
\(741\) 10.9390 + 14.2234i 0.401855 + 0.522509i
\(742\) 13.7140i 0.503458i
\(743\) 26.5550 + 15.3315i 0.974207 + 0.562459i 0.900516 0.434823i \(-0.143189\pi\)
0.0736906 + 0.997281i \(0.476522\pi\)
\(744\) −10.6809 + 2.58551i −0.391581 + 0.0947895i
\(745\) 4.15449 + 4.06098i 0.152209 + 0.148783i
\(746\) −1.05790 0.610777i −0.0387323 0.0223621i
\(747\) −31.9818 + 16.4474i −1.17015 + 0.601778i
\(748\) 0.0288598i 0.00105522i
\(749\) 26.1112 0.954083
\(750\) 9.84714 + 16.6743i 0.359567 + 0.608861i
\(751\) −45.2652 + 26.1338i −1.65175 + 0.953638i −0.675396 + 0.737455i \(0.736027\pi\)
−0.976353 + 0.216182i \(0.930639\pi\)
\(752\) −6.00243 −0.218886
\(753\) −33.0483 + 31.4800i −1.20435 + 1.14719i
\(754\) −0.964114 + 0.556631i −0.0351110 + 0.0202713i
\(755\) 8.61504 33.6806i 0.313533 1.22576i
\(756\) 3.12373 8.98188i 0.113609 0.326668i
\(757\) 37.1689 + 21.4595i 1.35093 + 0.779957i 0.988379 0.152009i \(-0.0485741\pi\)
0.362546 + 0.931966i \(0.381907\pi\)
\(758\) −18.3122 + 31.7176i −0.665127 + 1.15203i
\(759\) 0.0206938 0.0197117i 0.000751136 0.000715491i
\(760\) −3.39621 + 9.13596i −0.123194 + 0.331396i
\(761\) 15.0920i 0.547084i 0.961860 + 0.273542i \(0.0881953\pi\)
−0.961860 + 0.273542i \(0.911805\pi\)
\(762\) 7.31202 + 30.2064i 0.264886 + 1.09426i
\(763\) 15.6283 27.0691i 0.565784 0.979966i
\(764\) −11.5752 + 6.68296i −0.418777 + 0.241781i
\(765\) 3.24915 10.5404i 0.117473 0.381088i
\(766\) −9.63898 16.6952i −0.348271 0.603222i
\(767\) 27.0791 0.977770
\(768\) 1.19463 + 1.25414i 0.0431073 + 0.0452549i
\(769\) 5.77407 + 10.0010i 0.208218 + 0.360644i 0.951153 0.308719i \(-0.0999003\pi\)
−0.742935 + 0.669363i \(0.766567\pi\)
\(770\) 0.0513652 + 0.0502090i 0.00185107 + 0.00180941i
\(771\) −3.97060 + 3.78218i −0.142998 + 0.136212i
\(772\) 13.5909 0.489149
\(773\) −23.3720 + 13.4938i −0.840632 + 0.485339i −0.857479 0.514519i \(-0.827971\pi\)
0.0168468 + 0.999858i \(0.494637\pi\)
\(774\) −20.8399 13.4224i −0.749074 0.482459i
\(775\) −15.2323 + 27.8274i −0.547162 + 0.999590i