# Properties

 Label 570.2.n.a.179.18 Level $570$ Weight $2$ Character 570.179 Analytic conductor $4.551$ Analytic rank $0$ Dimension $80$ CM no Inner twists $8$

# Learn more about

## Newspace parameters

 Level: $$N$$ $$=$$ $$570 = 2 \cdot 3 \cdot 5 \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 570.n (of order $$6$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$4.55147291521$$ Analytic rank: $$0$$ Dimension: $$80$$ Relative dimension: $$40$$ over $$\Q(\zeta_{6})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

## Embedding invariants

 Embedding label 179.18 Character $$\chi$$ $$=$$ 570.179 Dual form 570.2.n.a.449.18

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-0.866025 - 0.500000i) q^{2} +(1.67546 - 0.439145i) q^{3} +(0.500000 + 0.866025i) q^{4} +(1.95241 + 1.09000i) q^{5} +(-1.67056 - 0.457417i) q^{6} +4.60944i q^{7} -1.00000i q^{8} +(2.61430 - 1.47153i) q^{9} +O(q^{10})$$ $$q+(-0.866025 - 0.500000i) q^{2} +(1.67546 - 0.439145i) q^{3} +(0.500000 + 0.866025i) q^{4} +(1.95241 + 1.09000i) q^{5} +(-1.67056 - 0.457417i) q^{6} +4.60944i q^{7} -1.00000i q^{8} +(2.61430 - 1.47153i) q^{9} +(-1.14583 - 1.92017i) q^{10} -6.27586i q^{11} +(1.21804 + 1.23141i) q^{12} +(-1.27680 - 2.21149i) q^{13} +(2.30472 - 3.99190i) q^{14} +(3.74984 + 0.968866i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(-1.20522 + 2.08749i) q^{17} +(-2.99982 - 0.0327655i) q^{18} +(2.80775 + 3.33415i) q^{19} +(0.0322312 + 2.23584i) q^{20} +(2.02421 + 7.72292i) q^{21} +(-3.13793 + 5.43505i) q^{22} +(1.74466 + 3.02184i) q^{23} +(-0.439145 - 1.67546i) q^{24} +(2.62378 + 4.25626i) q^{25} +2.55360i q^{26} +(3.73393 - 3.61355i) q^{27} +(-3.99190 + 2.30472i) q^{28} +(0.557163 + 0.965035i) q^{29} +(-2.76302 - 2.71398i) q^{30} +4.37073i q^{31} +(0.866025 - 0.500000i) q^{32} +(-2.75601 - 10.5149i) q^{33} +(2.08749 - 1.20522i) q^{34} +(-5.02432 + 8.99951i) q^{35} +(2.58154 + 1.52829i) q^{36} +2.27739 q^{37} +(-0.764508 - 4.29133i) q^{38} +(-3.11039 - 3.14455i) q^{39} +(1.09000 - 1.95241i) q^{40} +(4.59916 - 7.96597i) q^{41} +(2.10844 - 7.70035i) q^{42} +(-5.05204 - 2.91679i) q^{43} +(5.43505 - 3.13793i) q^{44} +(6.70816 - 0.0234295i) q^{45} -3.48932i q^{46} +(-1.24051 - 2.14862i) q^{47} +(-0.457417 + 1.67056i) q^{48} -14.2470 q^{49} +(-0.144127 - 4.99792i) q^{50} +(-1.10257 + 4.02677i) q^{51} +(1.27680 - 2.21149i) q^{52} +(-0.0512773 + 0.0296049i) q^{53} +(-5.04046 + 1.26246i) q^{54} +(6.84072 - 12.2530i) q^{55} +4.60944 q^{56} +(6.16843 + 4.35321i) q^{57} -1.11433i q^{58} +(-4.22305 + 7.31454i) q^{59} +(1.03586 + 3.73189i) q^{60} +(-0.644175 - 1.11574i) q^{61} +(2.18537 - 3.78516i) q^{62} +(6.78296 + 12.0505i) q^{63} -1.00000 q^{64} +(-0.0823057 - 5.70944i) q^{65} +(-2.87069 + 10.4842i) q^{66} +(1.76268 + 3.05304i) q^{67} -2.41043 q^{68} +(4.25012 + 4.29680i) q^{69} +(8.85094 - 5.28164i) q^{70} +(1.26938 - 2.19862i) q^{71} +(-1.47153 - 2.61430i) q^{72} +(-10.9928 - 6.34671i) q^{73} +(-1.97227 - 1.13869i) q^{74} +(6.26514 + 5.97896i) q^{75} +(-1.48358 + 4.09866i) q^{76} +28.9282 q^{77} +(1.12140 + 4.27845i) q^{78} +(-8.43221 - 4.86834i) q^{79} +(-1.92017 + 1.14583i) q^{80} +(4.66917 - 7.69408i) q^{81} +(-7.96597 + 4.59916i) q^{82} -8.79050 q^{83} +(-5.67614 + 5.61448i) q^{84} +(-4.62845 + 2.76195i) q^{85} +(2.91679 + 5.05204i) q^{86} +(1.35729 + 1.37220i) q^{87} -6.27586 q^{88} +(-8.07900 - 13.9932i) q^{89} +(-5.82115 - 3.33379i) q^{90} +(10.1937 - 5.88535i) q^{91} +(-1.74466 + 3.02184i) q^{92} +(1.91938 + 7.32297i) q^{93} +2.48102i q^{94} +(1.84763 + 9.57007i) q^{95} +(1.23141 - 1.21804i) q^{96} +(3.17547 - 5.50008i) q^{97} +(12.3382 + 7.12349i) q^{98} +(-9.23514 - 16.4070i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$80q + 40q^{4} + O(q^{10})$$ $$80q + 40q^{4} + 30q^{15} - 40q^{16} + 8q^{19} + 8q^{25} - 4q^{30} + 48q^{39} + 12q^{45} - 128q^{49} - 36q^{54} + 12q^{55} + 30q^{60} - 24q^{61} - 80q^{64} + 4q^{66} + 36q^{70} + 16q^{76} + 24q^{79} + 32q^{81} - 8q^{85} - 54q^{90} + 24q^{91} - 60q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/570\mathbb{Z}\right)^\times$$.

 $$n$$ $$191$$ $$211$$ $$457$$ $$\chi(n)$$ $$-1$$ $$e\left(\frac{1}{6}\right)$$ $$-1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −0.866025 0.500000i −0.612372 0.353553i
$$3$$ 1.67546 0.439145i 0.967325 0.253540i
$$4$$ 0.500000 + 0.866025i 0.250000 + 0.433013i
$$5$$ 1.95241 + 1.09000i 0.873143 + 0.487465i
$$6$$ −1.67056 0.457417i −0.682003 0.186740i
$$7$$ 4.60944i 1.74221i 0.491100 + 0.871103i $$0.336595\pi$$
−0.491100 + 0.871103i $$0.663405\pi$$
$$8$$ 1.00000i 0.353553i
$$9$$ 2.61430 1.47153i 0.871435 0.490512i
$$10$$ −1.14583 1.92017i −0.362344 0.607213i
$$11$$ 6.27586i 1.89224i −0.323812 0.946121i $$-0.604965\pi$$
0.323812 0.946121i $$-0.395035\pi$$
$$12$$ 1.21804 + 1.23141i 0.351617 + 0.355479i
$$13$$ −1.27680 2.21149i −0.354121 0.613356i 0.632846 0.774278i $$-0.281887\pi$$
−0.986967 + 0.160922i $$0.948553\pi$$
$$14$$ 2.30472 3.99190i 0.615963 1.06688i
$$15$$ 3.74984 + 0.968866i 0.968204 + 0.250160i
$$16$$ −0.500000 + 0.866025i −0.125000 + 0.216506i
$$17$$ −1.20522 + 2.08749i −0.292308 + 0.506292i −0.974355 0.225016i $$-0.927756\pi$$
0.682047 + 0.731308i $$0.261090\pi$$
$$18$$ −2.99982 0.0327655i −0.707065 0.00772291i
$$19$$ 2.80775 + 3.33415i 0.644142 + 0.764906i
$$20$$ 0.0322312 + 2.23584i 0.00720712 + 0.499948i
$$21$$ 2.02421 + 7.72292i 0.441719 + 1.68528i
$$22$$ −3.13793 + 5.43505i −0.669009 + 1.15876i
$$23$$ 1.74466 + 3.02184i 0.363786 + 0.630097i 0.988581 0.150693i $$-0.0481505\pi$$
−0.624794 + 0.780789i $$0.714817\pi$$
$$24$$ −0.439145 1.67546i −0.0896400 0.342001i
$$25$$ 2.62378 + 4.25626i 0.524756 + 0.851253i
$$26$$ 2.55360i 0.500803i
$$27$$ 3.73393 3.61355i 0.718596 0.695428i
$$28$$ −3.99190 + 2.30472i −0.754397 + 0.435551i
$$29$$ 0.557163 + 0.965035i 0.103463 + 0.179203i 0.913109 0.407715i $$-0.133674\pi$$
−0.809646 + 0.586918i $$0.800341\pi$$
$$30$$ −2.76302 2.71398i −0.504457 0.495503i
$$31$$ 4.37073i 0.785007i 0.919751 + 0.392503i $$0.128391\pi$$
−0.919751 + 0.392503i $$0.871609\pi$$
$$32$$ 0.866025 0.500000i 0.153093 0.0883883i
$$33$$ −2.75601 10.5149i −0.479760 1.83041i
$$34$$ 2.08749 1.20522i 0.358002 0.206693i
$$35$$ −5.02432 + 8.99951i −0.849264 + 1.52119i
$$36$$ 2.58154 + 1.52829i 0.430256 + 0.254714i
$$37$$ 2.27739 0.374400 0.187200 0.982322i $$-0.440059\pi$$
0.187200 + 0.982322i $$0.440059\pi$$
$$38$$ −0.764508 4.29133i −0.124020 0.696146i
$$39$$ −3.11039 3.14455i −0.498061 0.503530i
$$40$$ 1.09000 1.95241i 0.172345 0.308703i
$$41$$ 4.59916 7.96597i 0.718268 1.24408i −0.243418 0.969921i $$-0.578269\pi$$
0.961686 0.274154i $$-0.0883979\pi$$
$$42$$ 2.10844 7.70035i 0.325339 1.18819i
$$43$$ −5.05204 2.91679i −0.770428 0.444807i 0.0625990 0.998039i $$-0.480061\pi$$
−0.833027 + 0.553232i $$0.813394\pi$$
$$44$$ 5.43505 3.13793i 0.819365 0.473061i
$$45$$ 6.70816 0.0234295i 0.999994 0.00349267i
$$46$$ 3.48932i 0.514472i
$$47$$ −1.24051 2.14862i −0.180947 0.313409i 0.761256 0.648451i $$-0.224583\pi$$
−0.942203 + 0.335042i $$0.891250\pi$$
$$48$$ −0.457417 + 1.67056i −0.0660225 + 0.241125i
$$49$$ −14.2470 −2.03528
$$50$$ −0.144127 4.99792i −0.0203827 0.706813i
$$51$$ −1.10257 + 4.02677i −0.154391 + 0.563860i
$$52$$ 1.27680 2.21149i 0.177061 0.306678i
$$53$$ −0.0512773 + 0.0296049i −0.00704347 + 0.00406655i −0.503518 0.863985i $$-0.667961\pi$$
0.496474 + 0.868052i $$0.334628\pi$$
$$54$$ −5.04046 + 1.26246i −0.685919 + 0.171799i
$$55$$ 6.84072 12.2530i 0.922402 1.65220i
$$56$$ 4.60944 0.615963
$$57$$ 6.16843 + 4.35321i 0.817029 + 0.576597i
$$58$$ 1.11433i 0.146318i
$$59$$ −4.22305 + 7.31454i −0.549795 + 0.952272i 0.448494 + 0.893786i $$0.351961\pi$$
−0.998288 + 0.0584862i $$0.981373\pi$$
$$60$$ 1.03586 + 3.73189i 0.133729 + 0.481785i
$$61$$ −0.644175 1.11574i −0.0824781 0.142856i 0.821836 0.569725i $$-0.192950\pi$$
−0.904314 + 0.426868i $$0.859617\pi$$
$$62$$ 2.18537 3.78516i 0.277542 0.480716i
$$63$$ 6.78296 + 12.0505i 0.854572 + 1.51822i
$$64$$ −1.00000 −0.125000
$$65$$ −0.0823057 5.70944i −0.0102088 0.708169i
$$66$$ −2.87069 + 10.4842i −0.353357 + 1.29052i
$$67$$ 1.76268 + 3.05304i 0.215345 + 0.372989i 0.953379 0.301775i $$-0.0975790\pi$$
−0.738034 + 0.674763i $$0.764246\pi$$
$$68$$ −2.41043 −0.292308
$$69$$ 4.25012 + 4.29680i 0.511654 + 0.517274i
$$70$$ 8.85094 5.28164i 1.05789 0.631277i
$$71$$ 1.26938 2.19862i 0.150647 0.260929i −0.780818 0.624758i $$-0.785198\pi$$
0.931466 + 0.363829i $$0.118531\pi$$
$$72$$ −1.47153 2.61430i −0.173422 0.308099i
$$73$$ −10.9928 6.34671i −1.28661 0.742827i −0.308565 0.951203i $$-0.599849\pi$$
−0.978049 + 0.208376i $$0.933182\pi$$
$$74$$ −1.97227 1.13869i −0.229272 0.132370i
$$75$$ 6.26514 + 5.97896i 0.723436 + 0.690391i
$$76$$ −1.48358 + 4.09866i −0.170179 + 0.470148i
$$77$$ 28.9282 3.29668
$$78$$ 1.12140 + 4.27845i 0.126974 + 0.484439i
$$79$$ −8.43221 4.86834i −0.948698 0.547731i −0.0560215 0.998430i $$-0.517842\pi$$
−0.892676 + 0.450699i $$0.851175\pi$$
$$80$$ −1.92017 + 1.14583i −0.214682 + 0.128108i
$$81$$ 4.66917 7.69408i 0.518797 0.854898i
$$82$$ −7.96597 + 4.59916i −0.879695 + 0.507892i
$$83$$ −8.79050 −0.964883 −0.482442 0.875928i $$-0.660250\pi$$
−0.482442 + 0.875928i $$0.660250\pi$$
$$84$$ −5.67614 + 5.61448i −0.619317 + 0.612590i
$$85$$ −4.62845 + 2.76195i −0.502026 + 0.299575i
$$86$$ 2.91679 + 5.05204i 0.314526 + 0.544775i
$$87$$ 1.35729 + 1.37220i 0.145517 + 0.147115i
$$88$$ −6.27586 −0.669009
$$89$$ −8.07900 13.9932i −0.856372 1.48328i −0.875366 0.483460i $$-0.839380\pi$$
0.0189945 0.999820i $$-0.493954\pi$$
$$90$$ −5.82115 3.33379i −0.613604 0.351412i
$$91$$ 10.1937 5.88535i 1.06859 0.616952i
$$92$$ −1.74466 + 3.02184i −0.181893 + 0.315048i
$$93$$ 1.91938 + 7.32297i 0.199031 + 0.759356i
$$94$$ 2.48102i 0.255897i
$$95$$ 1.84763 + 9.57007i 0.189563 + 0.981869i
$$96$$ 1.23141 1.21804i 0.125681 0.124316i
$$97$$ 3.17547 5.50008i 0.322421 0.558449i −0.658566 0.752523i $$-0.728837\pi$$
0.980987 + 0.194074i $$0.0621701\pi$$
$$98$$ 12.3382 + 7.12349i 1.24635 + 0.719581i
$$99$$ −9.23514 16.4070i −0.928167 1.64897i
$$100$$ −2.37414 + 4.40039i −0.237414 + 0.440039i
$$101$$ −13.5746 + 7.83727i −1.35072 + 0.779838i −0.988350 0.152197i $$-0.951365\pi$$
−0.362369 + 0.932035i $$0.618032\pi$$
$$102$$ 2.96824 2.93600i 0.293900 0.290707i
$$103$$ 15.4529 1.52262 0.761311 0.648387i $$-0.224556\pi$$
0.761311 + 0.648387i $$0.224556\pi$$
$$104$$ −2.21149 + 1.27680i −0.216854 + 0.125201i
$$105$$ −4.46593 + 17.2847i −0.435831 + 1.68681i
$$106$$ 0.0592099 0.00575097
$$107$$ 4.71448i 0.455766i −0.973689 0.227883i $$-0.926820\pi$$
0.973689 0.227883i $$-0.0731804\pi$$
$$108$$ 4.99639 + 1.42691i 0.480778 + 0.137304i
$$109$$ 6.86919 + 3.96593i 0.657949 + 0.379867i 0.791495 0.611176i $$-0.209303\pi$$
−0.133546 + 0.991043i $$0.542636\pi$$
$$110$$ −12.0507 + 7.19107i −1.14899 + 0.685642i
$$111$$ 3.81566 1.00010i 0.362166 0.0949255i
$$112$$ −3.99190 2.30472i −0.377199 0.217776i
$$113$$ 14.0526i 1.32196i −0.750404 0.660979i $$-0.770141\pi$$
0.750404 0.660979i $$-0.229859\pi$$
$$114$$ −3.16541 6.85421i −0.296468 0.641955i
$$115$$ 0.112465 + 7.80154i 0.0104874 + 0.727497i
$$116$$ −0.557163 + 0.965035i −0.0517313 + 0.0896013i
$$117$$ −6.59223 3.90264i −0.609452 0.360799i
$$118$$ 7.31454 4.22305i 0.673358 0.388764i
$$119$$ −9.62219 5.55537i −0.882065 0.509260i
$$120$$ 0.968866 3.74984i 0.0884450 0.342312i
$$121$$ −28.3864 −2.58058
$$122$$ 1.28835i 0.116642i
$$123$$ 4.20747 15.3663i 0.379375 1.38554i
$$124$$ −3.78516 + 2.18537i −0.339918 + 0.196252i
$$125$$ 0.483334 + 11.1699i 0.0432307 + 0.999065i
$$126$$ 0.151031 13.8275i 0.0134549 1.23185i
$$127$$ −4.20396 7.28147i −0.373041 0.646126i 0.616991 0.786970i $$-0.288352\pi$$
−0.990032 + 0.140845i $$0.955018\pi$$
$$128$$ 0.866025 + 0.500000i 0.0765466 + 0.0441942i
$$129$$ −9.74536 2.66839i −0.858031 0.234938i
$$130$$ −2.78344 + 4.98567i −0.244124 + 0.437272i
$$131$$ 4.94573 + 2.85542i 0.432110 + 0.249479i 0.700245 0.713902i $$-0.253074\pi$$
−0.268135 + 0.963381i $$0.586407\pi$$
$$132$$ 7.72819 7.64424i 0.672652 0.665345i
$$133$$ −15.3686 + 12.9422i −1.33262 + 1.12223i
$$134$$ 3.52535i 0.304544i
$$135$$ 11.2289 2.98511i 0.966433 0.256917i
$$136$$ 2.08749 + 1.20522i 0.179001 + 0.103346i
$$137$$ 4.51364 + 7.81786i 0.385627 + 0.667925i 0.991856 0.127365i $$-0.0406520\pi$$
−0.606229 + 0.795290i $$0.707319\pi$$
$$138$$ −1.53231 5.84620i −0.130439 0.497661i
$$139$$ 7.12104 + 12.3340i 0.603999 + 1.04616i 0.992209 + 0.124586i $$0.0397603\pi$$
−0.388210 + 0.921571i $$0.626906\pi$$
$$140$$ −10.3060 + 0.148568i −0.871012 + 0.0125563i
$$141$$ −3.02197 3.05516i −0.254496 0.257291i
$$142$$ −2.19862 + 1.26938i −0.184504 + 0.106524i
$$143$$ −13.8790 + 8.01303i −1.16062 + 0.670083i
$$144$$ −0.0327655 + 2.99982i −0.00273046 + 0.249985i
$$145$$ 0.0359161 + 2.49145i 0.00298267 + 0.206904i
$$146$$ 6.34671 + 10.9928i 0.525258 + 0.909773i
$$147$$ −23.8702 + 6.25648i −1.96878 + 0.516026i
$$148$$ 1.13869 + 1.97227i 0.0936000 + 0.162120i
$$149$$ −9.49064 5.47943i −0.777504 0.448892i 0.0580411 0.998314i $$-0.481515\pi$$
−0.835545 + 0.549422i $$0.814848\pi$$
$$150$$ −2.43629 8.31050i −0.198922 0.678550i
$$151$$ 2.01053i 0.163615i −0.996648 0.0818073i $$-0.973931\pi$$
0.996648 0.0818073i $$-0.0260692\pi$$
$$152$$ 3.33415 2.80775i 0.270435 0.227739i
$$153$$ −0.0789790 + 7.23086i −0.00638508 + 0.584581i
$$154$$ −25.0526 14.4641i −2.01879 1.16555i
$$155$$ −4.76412 + 8.53344i −0.382663 + 0.685423i
$$156$$ 1.16806 4.26595i 0.0935199 0.341549i
$$157$$ −2.18249 1.26006i −0.174182 0.100564i 0.410374 0.911917i $$-0.365398\pi$$
−0.584556 + 0.811353i $$0.698731\pi$$
$$158$$ 4.86834 + 8.43221i 0.387304 + 0.670831i
$$159$$ −0.0729119 + 0.0721199i −0.00578229 + 0.00571948i
$$160$$ 2.23584 0.0322312i 0.176758 0.00254810i
$$161$$ −13.9290 + 8.04190i −1.09776 + 0.633791i
$$162$$ −7.89066 + 4.32868i −0.619949 + 0.340093i
$$163$$ 4.47356i 0.350396i 0.984533 + 0.175198i $$0.0560566\pi$$
−0.984533 + 0.175198i $$0.943943\pi$$
$$164$$ 9.19831 0.718268
$$165$$ 6.08047 23.5335i 0.473364 1.83208i
$$166$$ 7.61280 + 4.39525i 0.590868 + 0.341138i
$$167$$ −7.00410 + 4.04382i −0.541993 + 0.312920i −0.745886 0.666073i $$-0.767974\pi$$
0.203893 + 0.978993i $$0.434641\pi$$
$$168$$ 7.72292 2.02421i 0.595836 0.156171i
$$169$$ 3.23955 5.61107i 0.249196 0.431621i
$$170$$ 5.38933 0.0776911i 0.413343 0.00595863i
$$171$$ 12.2466 + 4.58478i 0.936523 + 0.350607i
$$172$$ 5.83359i 0.444807i
$$173$$ −9.62554 5.55731i −0.731816 0.422514i 0.0872698 0.996185i $$-0.472186\pi$$
−0.819086 + 0.573670i $$0.805519\pi$$
$$174$$ −0.489351 1.86700i −0.0370976 0.141537i
$$175$$ −19.6190 + 12.0942i −1.48306 + 0.914233i
$$176$$ 5.43505 + 3.13793i 0.409683 + 0.236530i
$$177$$ −3.86340 + 14.1097i −0.290391 + 1.06055i
$$178$$ 16.1580i 1.21109i
$$179$$ −4.26112 −0.318491 −0.159245 0.987239i $$-0.550906\pi$$
−0.159245 + 0.987239i $$0.550906\pi$$
$$180$$ 3.37437 + 5.79772i 0.251511 + 0.432137i
$$181$$ 16.7578 9.67510i 1.24559 0.719145i 0.275367 0.961339i $$-0.411201\pi$$
0.970228 + 0.242195i $$0.0778672\pi$$
$$182$$ −11.7707 −0.872502
$$183$$ −1.56926 1.58649i −0.116003 0.117277i
$$184$$ 3.02184 1.74466i 0.222773 0.128618i
$$185$$ 4.44638 + 2.48236i 0.326905 + 0.182507i
$$186$$ 1.99925 7.30157i 0.146592 0.535377i
$$187$$ 13.1008 + 7.56376i 0.958027 + 0.553117i
$$188$$ 1.24051 2.14862i 0.0904734 0.156704i
$$189$$ 16.6565 + 17.2114i 1.21158 + 1.25194i
$$190$$ 3.18494 9.21174i 0.231060 0.668290i
$$191$$ 3.83614i 0.277573i 0.990322 + 0.138786i $$0.0443202\pi$$
−0.990322 + 0.138786i $$0.955680\pi$$
$$192$$ −1.67546 + 0.439145i −0.120916 + 0.0316925i
$$193$$ 7.45236 12.9079i 0.536432 0.929128i −0.462660 0.886536i $$-0.653105\pi$$
0.999093 0.0425924i $$-0.0135617\pi$$
$$194$$ −5.50008 + 3.17547i −0.394883 + 0.227986i
$$195$$ −2.64517 9.52977i −0.189424 0.682441i
$$196$$ −7.12349 12.3382i −0.508820 0.881303i
$$197$$ −17.6150 −1.25502 −0.627508 0.778610i $$-0.715925\pi$$
−0.627508 + 0.778610i $$0.715925\pi$$
$$198$$ −0.205632 + 18.8265i −0.0146136 + 1.33794i
$$199$$ −2.41926 4.19028i −0.171497 0.297041i 0.767447 0.641113i $$-0.221527\pi$$
−0.938943 + 0.344072i $$0.888194\pi$$
$$200$$ 4.25626 2.62378i 0.300963 0.185529i
$$201$$ 4.29401 + 4.34117i 0.302876 + 0.306203i
$$202$$ 15.6745 1.10286
$$203$$ −4.44828 + 2.56821i −0.312208 + 0.180253i
$$204$$ −4.03857 + 1.05853i −0.282757 + 0.0741118i
$$205$$ 17.6624 10.5397i 1.23359 0.736125i
$$206$$ −13.3826 7.72646i −0.932412 0.538328i
$$207$$ 9.00780 + 5.33267i 0.626086 + 0.370647i
$$208$$ 2.55360 0.177061
$$209$$ 20.9246 17.6210i 1.44739 1.21887i
$$210$$ 12.5100 12.7360i 0.863269 0.878868i
$$211$$ −4.49219 2.59357i −0.309255 0.178548i 0.337338 0.941384i $$-0.390473\pi$$
−0.646593 + 0.762835i $$0.723807\pi$$
$$212$$ −0.0512773 0.0296049i −0.00352174 0.00203328i
$$213$$ 1.16127 4.24114i 0.0795689 0.290598i
$$214$$ −2.35724 + 4.08286i −0.161138 + 0.279099i
$$215$$ −6.68431 11.2015i −0.455866 0.763937i
$$216$$ −3.61355 3.73393i −0.245871 0.254062i
$$217$$ −20.1466 −1.36764
$$218$$ −3.96593 6.86919i −0.268607 0.465240i
$$219$$ −21.2051 5.80620i −1.43291 0.392346i
$$220$$ 14.0318 0.202278i 0.946023 0.0136376i
$$221$$ 6.15529 0.414049
$$222$$ −3.80451 1.04172i −0.255342 0.0699154i
$$223$$ −0.325555 + 0.563878i −0.0218008 + 0.0377601i −0.876720 0.481001i $$-0.840273\pi$$
0.854919 + 0.518761i $$0.173607\pi$$
$$224$$ 2.30472 + 3.99190i 0.153991 + 0.266720i
$$225$$ 13.1226 + 7.26619i 0.874840 + 0.484412i
$$226$$ −7.02630 + 12.1699i −0.467383 + 0.809531i
$$227$$ 8.15722i 0.541414i 0.962662 + 0.270707i $$0.0872575\pi$$
−0.962662 + 0.270707i $$0.912743\pi$$
$$228$$ −0.685774 + 7.51862i −0.0454165 + 0.497933i
$$229$$ 6.22202 0.411162 0.205581 0.978640i $$-0.434092\pi$$
0.205581 + 0.978640i $$0.434092\pi$$
$$230$$ 3.80337 6.81256i 0.250787 0.449207i
$$231$$ 48.4680 12.7037i 3.18896 0.835840i
$$232$$ 0.965035 0.557163i 0.0633577 0.0365796i
$$233$$ 13.8286 23.9519i 0.905942 1.56914i 0.0862948 0.996270i $$-0.472497\pi$$
0.819647 0.572868i $$-0.194169\pi$$
$$234$$ 3.75772 + 6.67590i 0.245650 + 0.436417i
$$235$$ −0.0799662 5.54715i −0.00521642 0.361856i
$$236$$ −8.44611 −0.549795
$$237$$ −16.2657 4.45373i −1.05657 0.289301i
$$238$$ 5.55537 + 9.62219i 0.360101 + 0.623714i
$$239$$ 14.0092i 0.906177i 0.891465 + 0.453089i $$0.149678\pi$$
−0.891465 + 0.453089i $$0.850322\pi$$
$$240$$ −2.71398 + 2.76302i −0.175187 + 0.178352i
$$241$$ −9.49382 + 5.48126i −0.611551 + 0.353079i −0.773572 0.633708i $$-0.781532\pi$$
0.162021 + 0.986787i $$0.448199\pi$$
$$242$$ 24.5834 + 14.1932i 1.58028 + 0.912374i
$$243$$ 4.44418 14.9415i 0.285094 0.958500i
$$244$$ 0.644175 1.11574i 0.0412391 0.0714281i
$$245$$ −27.8159 15.5293i −1.77709 0.992128i
$$246$$ −11.3269 + 11.2039i −0.722179 + 0.714334i
$$247$$ 3.78848 10.4663i 0.241055 0.665958i
$$248$$ 4.37073 0.277542
$$249$$ −14.7281 + 3.86030i −0.933355 + 0.244637i
$$250$$ 5.16636 9.91507i 0.326750 0.627084i
$$251$$ −12.7805 + 7.37881i −0.806697 + 0.465747i −0.845807 0.533488i $$-0.820881\pi$$
0.0391106 + 0.999235i $$0.487548\pi$$
$$252$$ −7.04455 + 11.8995i −0.443765 + 0.749595i
$$253$$ 18.9646 10.9492i 1.19230 0.688372i
$$254$$ 8.40792i 0.527560i
$$255$$ −6.54187 + 6.66008i −0.409668 + 0.417070i
$$256$$ −0.500000 0.866025i −0.0312500 0.0541266i
$$257$$ −2.44940 + 1.41416i −0.152789 + 0.0882129i −0.574445 0.818543i $$-0.694782\pi$$
0.421656 + 0.906756i $$0.361449\pi$$
$$258$$ 7.10554 + 7.18357i 0.442371 + 0.447230i
$$259$$ 10.4975i 0.652282i
$$260$$ 4.90337 2.92600i 0.304094 0.181463i
$$261$$ 2.87668 + 1.70301i 0.178062 + 0.105414i
$$262$$ −2.85542 4.94573i −0.176408 0.305548i
$$263$$ 4.38223 7.59024i 0.270220 0.468034i −0.698698 0.715417i $$-0.746237\pi$$
0.968918 + 0.247382i $$0.0795703\pi$$
$$264$$ −10.5149 + 2.75601i −0.647149 + 0.169621i
$$265$$ −0.132384 + 0.00190841i −0.00813226 + 0.000117232i
$$266$$ 19.7807 3.52396i 1.21283 0.216068i
$$267$$ −19.6811 19.8972i −1.20446 1.21769i
$$268$$ −1.76268 + 3.05304i −0.107673 + 0.186494i
$$269$$ 4.18520 7.24897i 0.255176 0.441978i −0.709767 0.704436i $$-0.751200\pi$$
0.964943 + 0.262458i $$0.0845333\pi$$
$$270$$ −11.2171 3.02929i −0.682651 0.184357i
$$271$$ −12.8353 + 22.2314i −0.779690 + 1.35046i 0.152430 + 0.988314i $$0.451290\pi$$
−0.932120 + 0.362149i $$0.882043\pi$$
$$272$$ −1.20522 2.08749i −0.0730769 0.126573i
$$273$$ 14.4946 14.3372i 0.877254 0.867724i
$$274$$ 9.02729i 0.545358i
$$275$$ 26.7117 16.4665i 1.61078 0.992965i
$$276$$ −1.59607 + 5.82911i −0.0960724 + 0.350871i
$$277$$ 14.7374i 0.885482i −0.896650 0.442741i $$-0.854006\pi$$
0.896650 0.442741i $$-0.145994\pi$$
$$278$$ 14.2421i 0.854184i
$$279$$ 6.43168 + 11.4264i 0.385055 + 0.684082i
$$280$$ 8.99951 + 5.02432i 0.537823 + 0.300260i
$$281$$ −2.75553 4.77271i −0.164381 0.284716i 0.772054 0.635557i $$-0.219229\pi$$
−0.936435 + 0.350840i $$0.885896\pi$$
$$282$$ 1.08953 + 4.15683i 0.0648803 + 0.247536i
$$283$$ 26.7533 + 15.4460i 1.59032 + 0.918172i 0.993251 + 0.115983i $$0.0370019\pi$$
0.597070 + 0.802189i $$0.296331\pi$$
$$284$$ 2.53875 0.150647
$$285$$ 7.29827 + 15.2229i 0.432312 + 0.901724i
$$286$$ 16.0261 0.947641
$$287$$ 36.7187 + 21.1996i 2.16744 + 1.25137i
$$288$$ 1.52829 2.58154i 0.0900551 0.152119i
$$289$$ 5.59491 + 9.69067i 0.329112 + 0.570039i
$$290$$ 1.21462 2.17562i 0.0713250 0.127757i
$$291$$ 2.90504 10.6096i 0.170296 0.621948i
$$292$$ 12.6934i 0.742827i
$$293$$ 26.7703i 1.56394i 0.623318 + 0.781968i $$0.285784\pi$$
−0.623318 + 0.781968i $$0.714216\pi$$
$$294$$ 23.8004 + 6.51681i 1.38807 + 0.380068i
$$295$$ −16.2180 + 9.67781i −0.944248 + 0.563464i
$$296$$ 2.27739i 0.132370i
$$297$$ −22.6781 23.4336i −1.31592 1.35976i
$$298$$ 5.47943 + 9.49064i 0.317415 + 0.549778i
$$299$$ 4.45517 7.71657i 0.257649 0.446261i
$$300$$ −2.04536 + 8.41525i −0.118089 + 0.485855i
$$301$$ 13.4448 23.2871i 0.774945 1.34224i
$$302$$ −1.00527 + 1.74117i −0.0578465 + 0.100193i
$$303$$ −19.3019 + 19.0922i −1.10886 + 1.09682i
$$304$$ −4.29133 + 0.764508i −0.246125 + 0.0438475i
$$305$$ −0.0415250 2.88054i −0.00237772 0.164939i
$$306$$ 3.68383 6.22262i 0.210590 0.355724i
$$307$$ −14.0443 + 24.3254i −0.801548 + 1.38832i 0.117048 + 0.993126i $$0.462657\pi$$
−0.918597 + 0.395196i $$0.870677\pi$$
$$308$$ 14.4641 + 25.0526i 0.824169 + 1.42750i
$$309$$ 25.8907 6.78607i 1.47287 0.386046i
$$310$$ 8.39257 5.00812i 0.476666 0.284442i
$$311$$ 19.3800i 1.09894i 0.835513 + 0.549470i $$0.185170\pi$$
−0.835513 + 0.549470i $$0.814830\pi$$
$$312$$ −3.14455 + 3.11039i −0.178025 + 0.176091i
$$313$$ −21.0959 + 12.1797i −1.19241 + 0.688439i −0.958853 0.283904i $$-0.908370\pi$$
−0.233558 + 0.972343i $$0.575037\pi$$
$$314$$ 1.26006 + 2.18249i 0.0711094 + 0.123165i
$$315$$ 0.107997 + 30.9209i 0.00608494 + 1.74220i
$$316$$ 9.73668i 0.547731i
$$317$$ 22.7893 13.1574i 1.27997 0.738992i 0.303129 0.952949i $$-0.401969\pi$$
0.976843 + 0.213957i $$0.0686352\pi$$
$$318$$ 0.0992035 0.0260017i 0.00556306 0.00145810i
$$319$$ 6.05642 3.49668i 0.339095 0.195776i
$$320$$ −1.95241 1.09000i −0.109143 0.0609331i
$$321$$ −2.07034 7.89890i −0.115555 0.440874i
$$322$$ 16.0838 0.896316
$$323$$ −10.3440 + 1.84279i −0.575553 + 0.102536i
$$324$$ 8.99785 + 0.196581i 0.499881 + 0.0109212i
$$325$$ 6.06262 11.2369i 0.336294 0.623309i
$$326$$ 2.23678 3.87421i 0.123884 0.214573i
$$327$$ 13.2506 + 3.62817i 0.732762 + 0.200638i
$$328$$ −7.96597 4.59916i −0.439847 0.253946i
$$329$$ 9.90396 5.71805i 0.546023 0.315247i
$$330$$ −17.0326 + 17.3403i −0.937612 + 0.954555i
$$331$$ 23.9173i 1.31461i 0.753624 + 0.657306i $$0.228304\pi$$
−0.753624 + 0.657306i $$0.771696\pi$$
$$332$$ −4.39525 7.61280i −0.241221 0.417807i
$$333$$ 5.95378 3.35125i 0.326265 0.183648i
$$334$$ 8.08764 0.442536
$$335$$ 0.113626 + 7.88211i 0.00620807 + 0.430646i
$$336$$ −7.70035 2.10844i −0.420089 0.115025i
$$337$$ −7.94689 + 13.7644i −0.432895 + 0.749796i −0.997121 0.0758243i $$-0.975841\pi$$
0.564226 + 0.825620i $$0.309175\pi$$
$$338$$ −5.61107 + 3.23955i −0.305202 + 0.176208i
$$339$$ −6.17113 23.5445i −0.335170 1.27876i
$$340$$ −4.70614 2.62738i −0.255226 0.142490i
$$341$$ 27.4301 1.48542
$$342$$ −8.31350 10.0938i −0.449543 0.545813i
$$343$$ 33.4045i 1.80367i
$$344$$ −2.91679 + 5.05204i −0.157263 + 0.272388i
$$345$$ 3.61443 + 13.0217i 0.194595 + 0.701067i
$$346$$ 5.55731 + 9.62554i 0.298763 + 0.517472i
$$347$$ 6.74308 11.6794i 0.361988 0.626981i −0.626300 0.779582i $$-0.715432\pi$$
0.988288 + 0.152601i $$0.0487649\pi$$
$$348$$ −0.509712 + 1.86155i −0.0273235 + 0.0997895i
$$349$$ −8.34194 −0.446534 −0.223267 0.974757i $$-0.571672\pi$$
−0.223267 + 0.974757i $$0.571672\pi$$
$$350$$ 23.0376 0.664347i 1.23141 0.0355108i
$$351$$ −12.7588 3.64376i −0.681015 0.194489i
$$352$$ −3.13793 5.43505i −0.167252 0.289689i
$$353$$ 8.00477 0.426051 0.213025 0.977047i $$-0.431668\pi$$
0.213025 + 0.977047i $$0.431668\pi$$
$$354$$ 10.4007 10.2877i 0.552789 0.546784i
$$355$$ 4.87485 2.90898i 0.258730 0.154393i
$$356$$ 8.07900 13.9932i 0.428186 0.741640i
$$357$$ −18.5612 5.08225i −0.982361 0.268981i
$$358$$ 3.69023 + 2.13056i 0.195035 + 0.112603i
$$359$$ −7.33647 4.23571i −0.387204 0.223552i 0.293744 0.955884i $$-0.405099\pi$$
−0.680948 + 0.732332i $$0.738432\pi$$
$$360$$ −0.0234295 6.70816i −0.00123484 0.353551i
$$361$$ −3.23309 + 18.7229i −0.170163 + 0.985416i
$$362$$ −19.3502 −1.01702
$$363$$ −47.5602 + 12.4657i −2.49626 + 0.654282i
$$364$$ 10.1937 + 5.88535i 0.534296 + 0.308476i
$$365$$ −14.5445 24.3736i −0.761295 1.27577i
$$366$$ 0.565772 + 2.15857i 0.0295734 + 0.112830i
$$367$$ 21.8594 12.6205i 1.14105 0.658787i 0.194362 0.980930i $$-0.437736\pi$$
0.946691 + 0.322143i $$0.104403\pi$$
$$368$$ −3.48932 −0.181893
$$369$$ 0.301388 27.5933i 0.0156896 1.43645i
$$370$$ −2.60950 4.37298i −0.135661 0.227340i
$$371$$ −0.136462 0.236360i −0.00708477 0.0122712i
$$372$$ −5.38218 + 5.32372i −0.279053 + 0.276022i
$$373$$ 27.8240 1.44067 0.720337 0.693624i $$-0.243987\pi$$
0.720337 + 0.693624i $$0.243987\pi$$
$$374$$ −7.56376 13.1008i −0.391113 0.677427i
$$375$$ 5.71500 + 18.5024i 0.295121 + 0.955460i
$$376$$ −2.14862 + 1.24051i −0.110807 + 0.0639743i
$$377$$ 1.42277 2.46432i 0.0732766 0.126919i
$$378$$ −5.81923 23.2337i −0.299309 1.19501i
$$379$$ 17.6962i 0.908995i 0.890748 + 0.454497i $$0.150181\pi$$
−0.890748 + 0.454497i $$0.849819\pi$$
$$380$$ −7.36411 + 6.38513i −0.377771 + 0.327550i
$$381$$ −10.2412 10.3536i −0.524671 0.530433i
$$382$$ 1.91807 3.32219i 0.0981369 0.169978i
$$383$$ −19.2767 11.1294i −0.984991 0.568685i −0.0812179 0.996696i $$-0.525881\pi$$
−0.903773 + 0.428011i $$0.859214\pi$$
$$384$$ 1.67056 + 0.457417i 0.0852504 + 0.0233425i
$$385$$ 56.4796 + 31.5319i 2.87847 + 1.60701i
$$386$$ −12.9079 + 7.45236i −0.656993 + 0.379315i
$$387$$ −17.4997 0.191141i −0.889561 0.00971622i
$$388$$ 6.35095 0.322421
$$389$$ 8.70929 5.02831i 0.441579 0.254946i −0.262688 0.964881i $$-0.584609\pi$$
0.704267 + 0.709935i $$0.251276\pi$$
$$390$$ −2.47410 + 9.57561i −0.125281 + 0.484880i
$$391$$ −8.41076 −0.425350
$$392$$ 14.2470i 0.719581i
$$393$$ 9.54029 + 2.61223i 0.481244 + 0.131770i
$$394$$ 15.2550 + 8.80750i 0.768538 + 0.443715i
$$395$$ −11.1566 18.6961i −0.561349 0.940704i
$$396$$ 9.59131 16.2014i 0.481981 0.814150i
$$397$$ −18.5066 10.6848i −0.928819 0.536254i −0.0423812 0.999102i $$-0.513494\pi$$
−0.886438 + 0.462848i $$0.846828\pi$$
$$398$$ 4.83852i 0.242533i
$$399$$ −20.0659 + 28.4330i −1.00455 + 1.42343i
$$400$$ −4.99792 + 0.144127i −0.249896 + 0.00720637i
$$401$$ −7.33894 + 12.7114i −0.366489 + 0.634778i −0.989014 0.147822i $$-0.952774\pi$$
0.622525 + 0.782600i $$0.286107\pi$$
$$402$$ −1.54814 5.90657i −0.0772142 0.294593i
$$403$$ 9.66581 5.58056i 0.481488 0.277987i
$$404$$ −13.5746 7.83727i −0.675359 0.389919i
$$405$$ 17.5027 9.93255i 0.869716 0.493552i
$$406$$ 5.13643 0.254917
$$407$$ 14.2926i 0.708456i
$$408$$ 4.02677 + 1.10257i 0.199355 + 0.0545855i
$$409$$ 26.1399 15.0919i 1.29254 0.746246i 0.313432 0.949611i $$-0.398521\pi$$
0.979103 + 0.203365i $$0.0651878\pi$$
$$410$$ −20.5659 + 0.296473i −1.01568 + 0.0146417i
$$411$$ 10.9956 + 11.1163i 0.542372 + 0.548328i
$$412$$ 7.72646 + 13.3826i 0.380655 + 0.659315i
$$413$$ −33.7160 19.4659i −1.65905 0.957856i
$$414$$ −5.13465 9.12213i −0.252354 0.448328i
$$415$$ −17.1626 9.58169i −0.842481 0.470347i
$$416$$ −2.21149 1.27680i −0.108427 0.0626004i
$$417$$ 17.3474 + 17.5379i 0.849506 + 0.858836i
$$418$$ −26.9318 + 4.79794i −1.31728 + 0.234675i
$$419$$ 8.90336i 0.434958i 0.976065 + 0.217479i $$0.0697833\pi$$
−0.976065 + 0.217479i $$0.930217\pi$$
$$420$$ −17.2019 + 4.77473i −0.839368 + 0.232983i
$$421$$ 14.3115 + 8.26272i 0.697498 + 0.402701i 0.806415 0.591350i $$-0.201405\pi$$
−0.108917 + 0.994051i $$0.534738\pi$$
$$422$$ 2.59357 + 4.49219i 0.126253 + 0.218676i
$$423$$ −6.40484 3.79170i −0.311414 0.184359i
$$424$$ 0.0296049 + 0.0512773i 0.00143774 + 0.00249024i
$$425$$ −12.0471 + 0.347409i −0.584373 + 0.0168518i
$$426$$ −3.12626 + 3.09230i −0.151468 + 0.149822i
$$427$$ 5.14296 2.96929i 0.248885 0.143694i
$$428$$ 4.08286 2.35724i 0.197352 0.113942i
$$429$$ −19.7347 + 19.5204i −0.952802 + 0.942451i
$$430$$ 0.188024 + 13.0429i 0.00906730 + 0.628987i
$$431$$ −8.40089 14.5508i −0.404657 0.700886i 0.589625 0.807677i $$-0.299276\pi$$
−0.994281 + 0.106791i $$0.965942\pi$$
$$432$$ 1.26246 + 5.04046i 0.0607400 + 0.242509i
$$433$$ −18.6240 32.2577i −0.895013 1.55021i −0.833789 0.552084i $$-0.813833\pi$$
−0.0612243 0.998124i $$-0.519501\pi$$
$$434$$ 17.4475 + 10.0733i 0.837507 + 0.483535i
$$435$$ 1.15428 + 4.15854i 0.0553436 + 0.199387i
$$436$$ 7.93186i 0.379867i
$$437$$ −5.17669 + 14.3015i −0.247635 + 0.684134i
$$438$$ 15.4611 + 15.6309i 0.738759 + 0.746872i
$$439$$ −3.23579 1.86818i −0.154436 0.0891635i 0.420791 0.907158i $$-0.361753\pi$$
−0.575226 + 0.817994i $$0.695086\pi$$
$$440$$ −12.2530 6.84072i −0.584140 0.326118i
$$441$$ −37.2459 + 20.9649i −1.77361 + 0.998329i
$$442$$ −5.33063 3.07764i −0.253552 0.146389i
$$443$$ −4.87764 8.44831i −0.231744 0.401392i 0.726578 0.687084i $$-0.241110\pi$$
−0.958321 + 0.285693i $$0.907776\pi$$
$$444$$ 2.77394 + 2.80441i 0.131646 + 0.133091i
$$445$$ −0.520792 36.1266i −0.0246879 1.71257i
$$446$$ 0.563878 0.325555i 0.0267004 0.0154155i
$$447$$ −18.3074 5.01277i −0.865911 0.237096i
$$448$$ 4.60944i 0.217776i
$$449$$ −20.1146 −0.949265 −0.474633 0.880184i $$-0.657419\pi$$
−0.474633 + 0.880184i $$0.657419\pi$$
$$450$$ −7.73141 12.8540i −0.364462 0.605943i
$$451$$ −49.9933 28.8637i −2.35409 1.35914i
$$452$$ 12.1699 7.02630i 0.572425 0.330490i
$$453$$ −0.882913 3.36855i −0.0414829 0.158268i
$$454$$ 4.07861 7.06436i 0.191419 0.331547i
$$455$$ 26.3173 0.379384i 1.23378 0.0177858i
$$456$$ 4.35321 6.16843i 0.203858 0.288863i
$$457$$ 10.7902i 0.504746i 0.967630 + 0.252373i $$0.0812110\pi$$
−0.967630 + 0.252373i $$0.918789\pi$$
$$458$$ −5.38842 3.11101i −0.251784 0.145368i
$$459$$ 3.04307 + 12.1497i 0.142038 + 0.567098i
$$460$$ −6.70010 + 3.99817i −0.312394 + 0.186415i
$$461$$ 3.84009 + 2.21708i 0.178851 + 0.103260i 0.586753 0.809766i $$-0.300406\pi$$
−0.407902 + 0.913026i $$0.633739\pi$$
$$462$$ −48.3263 13.2323i −2.24834 0.615621i
$$463$$ 33.5954i 1.56131i 0.624962 + 0.780655i $$0.285114\pi$$
−0.624962 + 0.780655i $$0.714886\pi$$
$$464$$ −1.11433 −0.0517313
$$465$$ −4.23465 + 16.3895i −0.196377 + 0.760047i
$$466$$ −23.9519 + 13.8286i −1.10955 + 0.640598i
$$467$$ 18.3974 0.851330 0.425665 0.904881i $$-0.360040\pi$$
0.425665 + 0.904881i $$0.360040\pi$$
$$468$$ 0.0836702 7.66035i 0.00386765 0.354100i
$$469$$ −14.0728 + 8.12496i −0.649823 + 0.375176i
$$470$$ −2.70432 + 4.84395i −0.124741 + 0.223435i
$$471$$ −4.21002 1.15275i −0.193987 0.0531159i
$$472$$ 7.31454 + 4.22305i 0.336679 + 0.194382i
$$473$$ −18.3054 + 31.7059i −0.841683 + 1.45784i
$$474$$ 11.8596 + 11.9899i 0.544732 + 0.550714i
$$475$$ −6.82410 + 20.6986i −0.313111 + 0.949716i
$$476$$ 11.1107i 0.509260i
$$477$$ −0.0904896 + 0.152853i −0.00414324 + 0.00699864i
$$478$$ 7.00458 12.1323i 0.320382 0.554918i
$$479$$ 14.0729 8.12501i 0.643008 0.371241i −0.142764 0.989757i $$-0.545599\pi$$
0.785772 + 0.618516i $$0.212266\pi$$
$$480$$ 3.73189 1.03586i 0.170337 0.0472802i
$$481$$ −2.90777 5.03641i −0.132583 0.229640i
$$482$$ 10.9625 0.499329
$$483$$ −19.8058 + 19.5907i −0.901197 + 0.891407i
$$484$$ −14.1932 24.5834i −0.645146 1.11743i
$$485$$ 12.1949 7.27711i 0.553743 0.330437i
$$486$$ −11.3195 + 10.7177i −0.513464 + 0.486163i
$$487$$ 15.7997 0.715951 0.357975 0.933731i $$-0.383467\pi$$
0.357975 + 0.933731i $$0.383467\pi$$
$$488$$ −1.11574 + 0.644175i −0.0505073 + 0.0291604i
$$489$$ 1.96454 + 7.49525i 0.0888395 + 0.338947i
$$490$$ 16.3246 + 27.3567i 0.737471 + 1.23585i
$$491$$ −3.85305 2.22456i −0.173886 0.100393i 0.410531 0.911847i $$-0.365343\pi$$
−0.584417 + 0.811454i $$0.698677\pi$$
$$492$$ 15.4114 4.03939i 0.694798 0.182110i
$$493$$ −2.68601 −0.120972
$$494$$ −8.51409 + 7.16988i −0.383067 + 0.322588i
$$495$$ −0.147040 42.0995i −0.00660897 1.89223i
$$496$$ −3.78516 2.18537i −0.169959 0.0981258i
$$497$$ 10.1344 + 5.85112i 0.454591 + 0.262458i
$$498$$ 14.6851 + 4.02093i 0.658053 + 0.180182i
$$499$$ 16.6367 28.8156i 0.744762 1.28997i −0.205544 0.978648i $$-0.565896\pi$$
0.950306 0.311317i $$-0.100770\pi$$
$$500$$ −9.43174 + 6.00352i −0.421800 + 0.268486i
$$501$$ −9.95924 + 9.85105i −0.444946 + 0.440112i
$$502$$ 14.7576 0.658665
$$503$$ 6.97093 + 12.0740i 0.310818 + 0.538353i 0.978540 0.206058i $$-0.0660636\pi$$
−0.667721 + 0.744411i $$0.732730\pi$$
$$504$$ 12.0505 6.78296i 0.536771 0.302137i
$$505$$ −35.0457 + 0.505210i −1.55951 + 0.0224815i
$$506$$ −21.8985 −0.973505
$$507$$ 2.96366 10.8237i 0.131621 0.480699i
$$508$$ 4.20396 7.28147i 0.186520 0.323063i
$$509$$ 0.321137 + 0.556225i 0.0142341 + 0.0246542i 0.873055 0.487622i $$-0.162136\pi$$
−0.858821 + 0.512276i $$0.828802\pi$$
$$510$$ 8.99546 2.49686i 0.398326 0.110563i
$$511$$ 29.2548 50.6708i 1.29416 2.24155i
$$512$$ 1.00000i 0.0441942i
$$513$$ 22.5321 + 2.30355i 0.994815 + 0.101704i
$$514$$ 2.82832 0.124752
$$515$$ 30.1704 + 16.8438i 1.32947 + 0.742225i
$$516$$ −2.56179 9.77392i −0.112776 0.430273i
$$517$$ −13.4845 + 7.78526i −0.593046 + 0.342395i
$$518$$ 5.24874 9.09109i 0.230617 0.399440i
$$519$$ −18.5676 5.08402i −0.815029 0.223164i
$$520$$ −5.70944 + 0.0823057i −0.250375 + 0.00360934i
$$521$$ 15.7298 0.689135 0.344568 0.938761i $$-0.388026\pi$$
0.344568 + 0.938761i $$0.388026\pi$$
$$522$$ −1.63977 2.91319i −0.0717708 0.127507i
$$523$$ −2.02261 3.50326i −0.0884425 0.153187i 0.818410 0.574634i $$-0.194856\pi$$
−0.906853 + 0.421447i $$0.861522\pi$$
$$524$$ 5.71083i 0.249479i
$$525$$ −27.5597 + 28.8788i −1.20280 + 1.26037i
$$526$$ −7.59024 + 4.38223i −0.330950 + 0.191074i
$$527$$ −9.12388 5.26767i −0.397442 0.229464i
$$528$$ 10.4842 + 2.87069i 0.456266 + 0.124931i
$$529$$ 5.41234 9.37444i 0.235319 0.407584i
$$530$$ 0.115602 + 0.0645391i 0.00502142 + 0.00280340i
$$531$$ −0.276741 + 25.3368i −0.0120095 + 1.09952i
$$532$$ −18.8925 6.83849i −0.819095 0.296486i
$$533$$ −23.4888 −1.01741
$$534$$ 7.09570 + 27.0720i 0.307061 + 1.17152i
$$535$$ 5.13881 9.20458i 0.222170 0.397949i
$$536$$ 3.05304 1.76268i 0.131871 0.0761360i
$$537$$ −7.13931 + 1.87125i −0.308084 + 0.0807502i
$$538$$ −7.24897 + 4.18520i −0.312525 + 0.180437i
$$539$$ 89.4120i 3.85125i
$$540$$ 8.19965 + 8.23199i 0.352857 + 0.354249i
$$541$$ 3.58134 + 6.20307i 0.153974 + 0.266691i 0.932685 0.360692i $$-0.117459\pi$$
−0.778711 + 0.627383i $$0.784126\pi$$
$$542$$ 22.2314 12.8353i 0.954922 0.551324i
$$543$$ 23.8281 23.5693i 1.02256 1.01145i
$$544$$ 2.41043i 0.103346i
$$545$$ 9.08857 + 15.2306i 0.389311 + 0.652405i
$$546$$ −19.7213 + 5.16904i −0.843993 + 0.221214i
$$547$$ 12.4830 + 21.6212i 0.533736 + 0.924457i 0.999223 + 0.0394030i $$0.0125456\pi$$
−0.465488 + 0.885054i $$0.654121\pi$$
$$548$$ −4.51364 + 7.81786i −0.192813 + 0.333962i
$$549$$ −3.32592 1.96897i −0.141947 0.0840334i
$$550$$ −31.3663 + 0.904523i −1.33746 + 0.0385690i
$$551$$ −1.65320 + 4.56724i −0.0704285 + 0.194571i
$$552$$ 4.29680 4.25012i 0.182884 0.180897i
$$553$$ 22.4403 38.8678i 0.954260 1.65283i
$$554$$ −7.36868 + 12.7629i −0.313065 + 0.542245i
$$555$$ 8.53984 + 2.20648i 0.362496 + 0.0936600i
$$556$$ −7.12104 + 12.3340i −0.302000 + 0.523079i
$$557$$ 11.8399 + 20.5073i 0.501673 + 0.868924i 0.999998 + 0.00193347i $$0.000615443\pi$$
−0.498325 + 0.866991i $$0.666051\pi$$
$$558$$ 0.143209 13.1114i 0.00606253 0.555050i
$$559$$ 14.8967i 0.630062i
$$560$$ −5.28164 8.85094i −0.223190 0.374020i
$$561$$ 25.2714 + 6.91960i 1.06696 + 0.292146i
$$562$$ 5.51105i 0.232470i
$$563$$ 22.2752i 0.938786i 0.882989 + 0.469393i $$0.155527\pi$$
−0.882989 + 0.469393i $$0.844473\pi$$
$$564$$ 1.13486 4.14469i 0.0477863 0.174523i
$$565$$ 15.3174 27.4364i 0.644408 1.15426i
$$566$$ −15.4460 26.7533i −0.649246 1.12453i
$$567$$ 35.4654 + 21.5223i 1.48941 + 0.903851i
$$568$$ −2.19862 1.26938i −0.0922522 0.0532618i
$$569$$ −1.70293 −0.0713903 −0.0356952 0.999363i $$-0.511365\pi$$
−0.0356952 + 0.999363i $$0.511365\pi$$
$$570$$ 1.29094 16.8325i 0.0540717 0.705036i
$$571$$ 32.4721 1.35891 0.679457 0.733715i $$-0.262215\pi$$
0.679457 + 0.733715i $$0.262215\pi$$
$$572$$ −13.8790 8.01303i −0.580309 0.335042i
$$573$$ 1.68462 + 6.42727i 0.0703759 + 0.268503i
$$574$$ −21.1996 36.7187i −0.884852 1.53261i
$$575$$ −8.28414 + 15.3544i −0.345472 + 0.640321i
$$576$$ −2.61430 + 1.47153i −0.108929 + 0.0613139i
$$577$$ 10.4917i 0.436775i 0.975862 + 0.218388i $$0.0700797\pi$$
−0.975862 + 0.218388i $$0.929920\pi$$
$$578$$ 11.1898i 0.465435i
$$579$$ 6.81768 24.8992i 0.283333 1.03478i
$$580$$ −2.13970 + 1.27683i −0.0888463 + 0.0530175i
$$581$$ 40.5193i 1.68103i
$$582$$ −7.82065 + 7.73570i −0.324177 + 0.320655i
$$583$$ 0.185796 + 0.321809i 0.00769490 + 0.0133280i
$$584$$ −6.34671 + 10.9928i −0.262629 + 0.454887i
$$585$$ −8.61681 14.8051i −0.356261 0.612115i
$$586$$ 13.3851 23.1837i 0.552935 0.957712i
$$587$$ −5.55634 + 9.62387i −0.229335 + 0.397220i −0.957611 0.288064i $$-0.906988\pi$$
0.728276 + 0.685284i $$0.240322\pi$$
$$588$$ −17.3534 17.5439i −0.715640 0.723500i
$$589$$ −14.5727 + 12.2719i −0.600456 + 0.505656i
$$590$$ 18.8841 0.272228i 0.777446 0.0112075i
$$591$$ −29.5132 + 7.73553i −1.21401 + 0.318197i
$$592$$ −1.13869 + 1.97227i −0.0468000 + 0.0810600i
$$593$$ −6.57108 11.3814i −0.269842 0.467380i 0.698979 0.715142i $$-0.253638\pi$$
−0.968821 + 0.247762i $$0.920305\pi$$
$$594$$ 7.92301 + 31.6332i 0.325085 + 1.29793i
$$595$$ −12.7310 21.3346i −0.521922 0.874632i
$$596$$ 10.9589i 0.448892i
$$597$$ −5.89351 5.95823i −0.241205 0.243854i
$$598$$ −7.71657 + 4.45517i −0.315554 + 0.182185i
$$599$$ 15.2831 + 26.4710i 0.624449 + 1.08158i 0.988647 + 0.150256i $$0.0480098\pi$$
−0.364198 + 0.931322i $$0.618657\pi$$
$$600$$ 5.97896 6.26514i 0.244090 0.255773i
$$601$$ 9.49333i 0.387241i 0.981076 + 0.193621i $$0.0620231\pi$$
−0.981076 + 0.193621i $$0.937977\pi$$
$$602$$ −23.2871 + 13.4448i −0.949111 + 0.547969i
$$603$$ 9.10083 + 5.38775i 0.370615 + 0.219406i
$$604$$ 1.74117 1.00527i 0.0708472 0.0409037i
$$605$$ −55.4218 30.9413i −2.25322 1.25794i
$$606$$ 26.2620 6.88339i 1.06682 0.279619i
$$607$$ 35.1509 1.42673 0.713365 0.700793i $$-0.247170\pi$$
0.713365 + 0.700793i $$0.247170\pi$$
$$608$$ 4.09866 + 1.48358i 0.166222 + 0.0601672i
$$609$$ −6.32507 + 6.25636i −0.256305 + 0.253521i
$$610$$ −1.40431 + 2.51538i −0.0568587 + 0.101845i
$$611$$ −3.16777 + 5.48673i −0.128154 + 0.221969i
$$612$$ −6.30160 + 3.54703i −0.254727 + 0.143380i
$$613$$ −36.2692 20.9400i −1.46490 0.845760i −0.465668 0.884959i $$-0.654186\pi$$
−0.999231 + 0.0391990i $$0.987519\pi$$
$$614$$ 24.3254 14.0443i 0.981692 0.566780i
$$615$$ 24.9641 25.4152i 1.00665 1.02484i
$$616$$ 28.9282i 1.16555i
$$617$$ 16.1662 + 28.0007i 0.650826 + 1.12726i 0.982923 + 0.184018i $$0.0589106\pi$$
−0.332097 + 0.943245i $$0.607756\pi$$
$$618$$ −25.8150 7.06844i −1.03843 0.284334i
$$619$$ 11.1834 0.449497 0.224748 0.974417i $$-0.427844\pi$$
0.224748 + 0.974417i $$0.427844\pi$$
$$620$$ −9.77224 + 0.140874i −0.392463 + 0.00565763i
$$621$$ 17.4340 + 4.97893i 0.699602 + 0.199798i
$$622$$ 9.69002 16.7836i 0.388534 0.672961i
$$623$$ 64.5010 37.2397i 2.58418 1.49198i
$$624$$ 4.27845 1.12140i 0.171275 0.0448920i
$$625$$ −11.2316 + 22.3350i −0.449263 + 0.893400i
$$626$$ 24.3594 0.973599
$$627$$ 27.3201 38.7122i 1.09106 1.54602i
$$628$$ 2.52012i 0.100564i
$$629$$ −2.74474 + 4.75403i −0.109440 + 0.189556i
$$630$$ 15.3669 26.8323i 0.612233 1.06902i
$$631$$ −16.0088 27.7280i −0.637299 1.10383i −0.986023 0.166609i $$-0.946718\pi$$
0.348724 0.937225i $$-0.386615\pi$$
$$632$$ −4.86834 + 8.43221i −0.193652 + 0.335415i
$$633$$ −8.66541 2.37268i −0.344419 0.0943057i
$$634$$ −26.3148 −1.04509
$$635$$ −0.270997 18.7987i −0.0107542 0.746004i
$$636$$ −0.0989136 0.0270836i −0.00392218 0.00107394i
$$637$$ 18.1906 + 31.5070i 0.720736 + 1.24835i
$$638$$ −6.99336 −0.276870
$$639$$ 0.0831835 7.61580i 0.00329069 0.301276i
$$640$$ 1.14583 + 1.92017i 0.0452929 + 0.0759016i
$$641$$ 21.2450 36.7975i 0.839128 1.45341i −0.0514971 0.998673i $$-0.516399\pi$$
0.890625 0.454739i $$-0.150267\pi$$
$$642$$ −2.15649 + 7.87582i −0.0851097 + 0.310834i
$$643$$ −29.2752 16.9020i −1.15450 0.666552i −0.204521 0.978862i $$-0.565564\pi$$
−0.949980 + 0.312310i $$0.898897\pi$$
$$644$$ −13.9290 8.04190i −0.548879 0.316895i
$$645$$ −16.1183 15.8323i −0.634659 0.623395i
$$646$$ 9.87953 + 3.57607i 0.388705 + 0.140699i
$$647$$ 0.964578 0.0379215 0.0189607 0.999820i $$-0.493964\pi$$
0.0189607 + 0.999820i $$0.493964\pi$$
$$648$$ −7.69408 4.66917i −0.302252 0.183422i
$$649$$ 45.9050 + 26.5033i 1.80193 + 1.04034i
$$650$$ −10.8688 + 6.70009i −0.426310 + 0.262799i
$$651$$ −33.7548 + 8.84729i −1.32296 + 0.346753i
$$652$$ −3.87421 + 2.23678i −0.151726 + 0.0875990i
$$653$$ 44.6585 1.74762 0.873812 0.486264i $$-0.161641\pi$$
0.873812 + 0.486264i $$0.161641\pi$$
$$654$$ −9.66130 9.76741i −0.377787 0.381936i
$$655$$ 6.54365 + 10.9658i 0.255682 + 0.428469i
$$656$$ 4.59916 + 7.96597i 0.179567 + 0.311019i
$$657$$ −38.0780 0.415907i −1.48556 0.0162261i
$$658$$ −11.4361 −0.445826
$$659$$ 7.39035 + 12.8005i 0.287887 + 0.498635i 0.973305 0.229514i $$-0.0737138\pi$$
−0.685418 + 0.728150i $$0.740381\pi$$
$$660$$ 23.4208 6.50089i 0.911654 0.253047i
$$661$$ −38.0675 + 21.9783i −1.48065 + 0.854856i −0.999760 0.0219216i $$-0.993022\pi$$
−0.480895 + 0.876778i $$0.659688\pi$$
$$662$$ 11.9586 20.7130i 0.464786 0.805032i
$$663$$ 10.3129 2.70306i 0.400520 0.104978i
$$664$$ 8.79050i 0.341138i
$$665$$ −44.1127 + 8.51654i −1.71062 + 0.330257i
$$666$$ −6.83175 0.0746198i −0.264725 0.00289146i
$$667$$ −1.94412 + 3.36731i −0.0752766 + 0.130383i
$$668$$ −7.00410 4.04382i −0.270997 0.156460i
$$669$$ −0.297829 + 1.08772i −0.0115147 + 0.0420536i
$$670$$ 3.84265 6.88292i 0.148455 0.265910i
$$671$$ −7.00225 + 4.04275i −0.270319 + 0.156069i
$$672$$ 5.61448 + 5.67614i 0.216583 + 0.218962i
$$673$$ 14.4471 0.556893 0.278447 0.960452i $$-0.410180\pi$$
0.278447 + 0.960452i $$0.410180\pi$$
$$674$$ 13.7644 7.94689i 0.530186 0.306103i
$$675$$ 25.1772 + 6.41146i 0.969072 + 0.246777i
$$676$$ 6.47911 0.249196
$$677$$ 38.1292i 1.46542i 0.680539 + 0.732712i $$0.261746\pi$$
−0.680539 + 0.732712i $$0.738254\pi$$
$$678$$ −6.42791 + 23.4757i −0.246862 + 0.901579i
$$679$$ 25.3523 + 14.6372i 0.972933 + 0.561723i
$$680$$ 2.76195 + 4.62845i 0.105916 + 0.177493i
$$681$$ 3.58220 + 13.6671i 0.137270 + 0.523723i
$$682$$ −23.7552 13.7150i −0.909632 0.525176i
$$683$$ 33.2936i 1.27394i 0.770887 + 0.636972i $$0.219813\pi$$
−0.770887 + 0.636972i $$0.780187\pi$$
$$684$$ 2.15278 + 12.8983i 0.0823136 + 0.493178i
$$685$$ 0.290960 + 20.1835i 0.0111170 + 0.771173i
$$686$$ −16.7023 + 28.9292i −0.637695 + 1.10452i
$$687$$ 10.4247 2.73236i 0.397728 0.104246i
$$688$$ 5.05204 2.91679i 0.192607 0.111202i
$$689$$ 0.130942 + 0.0755993i 0.00498849 + 0.00288010i
$$690$$ 3.38068 13.0844i 0.128700 0.498114i
$$691$$ 7.32876 0.278799 0.139400 0.990236i $$-0.455483\pi$$
0.139400 + 0.990236i $$0.455483\pi$$
$$692$$ 11.1146i 0.422514i
$$693$$ 75.6272 42.5689i 2.87284 1.61706i
$$694$$ −11.6794 + 6.74308i −0.443342 + 0.255964i
$$695$$ 0.459040 + 31.8430i 0.0174124 + 1.20787i
$$696$$ 1.37220 1.35729i 0.0520130 0.0514480i
$$697$$ 11.0860 + 19.2014i 0.419910 + 0.727306i
$$698$$ 7.22433 + 4.17097i 0.273445 + 0.157874i
$$699$$ 12.6509 46.2030i 0.478501 1.74756i
$$700$$ −20.2834 10.9435i −0.766639 0.413625i
$$701$$ −13.7046 7.91236i −0.517616 0.298846i 0.218343 0.975872i $$-0.429935\pi$$
−0.735959 + 0.677026i $$0.763268\pi$$
$$702$$ 9.22757 + 9.53499i 0.348272 + 0.359875i
$$703$$ 6.39433 + 7.59314i 0.241167 + 0.286381i
$$704$$ 6.27586i 0.236530i
$$705$$ −2.56998 9.25888i −0.0967910 0.348710i
$$706$$ −6.93233 4.00239i −0.260902 0.150632i
$$707$$ −36.1255 62.5712i −1.35864 2.35323i
$$708$$ −14.1511 + 3.70906i −0.531830 + 0.139395i
$$709$$ 1.42321 + 2.46507i 0.0534498 + 0.0925778i 0.891512 0.452996i $$-0.149645\pi$$
−0.838063 + 0.545574i $$0.816312\pi$$
$$710$$ −5.67623 + 0.0818270i −0.213025 + 0.00307091i
$$711$$ −29.2083 0.319027i −1.09540 0.0119645i
$$712$$ −13.9932 + 8.07900i −0.524419 + 0.302773i
$$713$$ −13.2076 + 7.62543i −0.494630 + 0.285575i
$$714$$ 13.5333 + 13.6819i 0.506472 + 0.512034i
$$715$$ −35.8316 + 0.516539i −1.34003 + 0.0193175i
$$716$$ −2.13056 3.69023i −0.0796227 0.137911i
$$717$$ 6.15205 + 23.4717i 0.229752 + 0.876568i
$$718$$ 4.23571 + 7.33647i 0.158075 + 0.273794i
$$719$$ −22.6148 13.0567i −0.843389 0.486931i 0.0150255 0.999887i $$-0.495217\pi$$
−0.858415 + 0.512956i $$0.828550\pi$$
$$720$$ −3.33379 + 5.82115i −0.124243 + 0.216942i
$$721$$ 71.2294i 2.65272i
$$722$$ 12.1614 14.5980i 0.452600 0.543280i
$$723$$ −13.4994 + 13.3528i −0.502048 + 0.496595i
$$724$$ 16.7578 + 9.67510i 0.622797 + 0.359572i
$$725$$ −2.64557 + 4.90347i −0.0982540 + 0.182110i
$$726$$ 47.4212 + 12.9844i 1.75997 + 0.481898i
$$727$$ −23.4044 13.5125i −0.868022 0.501152i −0.00133130 0.999999i $$-0.500424\pi$$
−0.866690 + 0.498847i $$0.833757\pi$$
$$728$$ −5.88535 10.1937i −0.218125 0.377804i
$$729$$ 0.884528 26.9855i 0.0327603 0.999463i
$$730$$ 0.409124 + 28.3804i 0.0151424 + 1.05041i
$$731$$ 12.1776 7.03073i 0.450404 0.260041i
$$732$$ 0.589314 2.15226i 0.0217817 0.0795500i
$$733$$ 30.6170i 1.13087i 0.824794 + 0.565433i $$0.191291\pi$$
−0.824794 + 0.565433i $$0.808709\pi$$
$$734$$ −25.2411 −0.931666
$$735$$ −53.4239 13.8034i −1.97057 0.509146i
$$736$$ 3.02184 + 1.74466i 0.111386 + 0.0643090i
$$737$$ 19.1605 11.0623i 0.705785 0.407485i
$$738$$ −14.0577 + 23.7458i −0.517469 + 0.874095i
$$739$$ 10.0943 17.4838i 0.371324 0.643152i −0.618446 0.785827i $$-0.712237\pi$$
0.989769 + 0.142676i $$0.0455707\pi$$
$$740$$ 0.0734029 + 5.09186i 0.00269834 + 0.187181i
$$741$$ 1.75120 19.1996i 0.0643318 0.705314i
$$742$$ 0.272925i 0.0100194i
$$743$$ −15.4773 8.93584i −0.567808 0.327824i 0.188465 0.982080i $$-0.439649\pi$$
−0.756273 + 0.654256i $$0.772982\pi$$
$$744$$ 7.32297 1.91938i 0.268473 0.0703680i
$$745$$ −12.5570 21.0429i −0.460053 0.770953i
$$746$$ −24.0963 13.9120i −0.882229 0.509355i
$$747$$ −22.9811 + 12.9355i −0.840833 + 0.473286i
$$748$$ 15.1275i 0.553117i
$$749$$ 21.7311 0.794038
$$750$$ 4.30186 18.8810i 0.157082 0.689438i
$$751$$ 5.47575 3.16143i 0.199813 0.115362i −0.396755 0.917924i $$-0.629864\pi$$
0.596568 + 0.802562i $$0.296530\pi$$
$$752$$ 2.48102 0.0904734
$$753$$ −18.1728 + 17.9754i −0.662252 + 0.655058i
$$754$$ −2.46432 + 1.42277i −0.0897451 + 0.0518144i
$$755$$ 2.19149 3.92537i 0.0797564 0.142859i
$$756$$ −6.57725 + 23.0306i −0.239212 + 0.837614i
$$757$$ −10.8515 6.26511i −0.394404 0.227709i 0.289662 0.957129i $$-0.406457\pi$$
−0.684067 + 0.729419i $$0.739790\pi$$
$$758$$ 8.84812 15.3254i 0.321378 0.556643i
$$759$$ 26.9661 26.6732i 0.978807 0.968174i
$$760$$ 9.57007 1.84763i 0.347143 0.0670205i
$$761$$ 24.3793i 0.883747i 0.897077 + 0.441874i $$0.145686\pi$$
−0.897077 + 0.441874i $$0.854314\pi$$
$$762$$ 3.69229 + 14.0871i 0.133758 + 0.510321i
$$763$$ −18.2807 + 31.6631i −0.661807 + 1.14628i
$$764$$ −3.32219 + 1.91807i −0.120193 + 0.0693932i
$$765$$ −8.03587 + 14.0315i −0.290538 + 0.507310i
$$766$$ 11.1294 + 19.2767i 0.402121 + 0.696494i
$$767$$ 21.5680 0.778776
$$768$$ −1.21804 1.23141i −0.0439522 0.0444349i
$$769$$ 18.4689 + 31.9891i 0.666006 + 1.15356i 0.979011 + 0.203805i $$0.0653309\pi$$
−0.313005 + 0.949751i $$0.601336\pi$$
$$770$$ −33.1468 55.5472i −1.19453 2.00178i
$$771$$ −3.48284 + 3.44500i −0.125431 + 0.124069i
$$772$$ 14.9047 0.536432
$$773$$ −14.1058 + 8.14398i −0.507350 + 0.292919i −0.731744 0.681580i $$-0.761293\pi$$
0.224394 + 0.974499i $$0.427960\pi$$
$$774$$ 15.0596 + 8.91540i 0.541307 + 0.320457i
$$775$$ −18.6030 + 11.4678i −0.668239 + 0.411937i
$$776$$ −5.50008 3.17547i