Properties

Label 570.2.n.a.179.11
Level $570$
Weight $2$
Character 570.179
Analytic conductor $4.551$
Analytic rank $0$
Dimension $80$
CM no
Inner twists $8$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 570 = 2 \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 570.n (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.55147291521\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(40\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 179.11
Character \(\chi\) \(=\) 570.179
Dual form 570.2.n.a.449.11

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.866025 - 0.500000i) q^{2} +(-0.0777329 - 1.73031i) q^{3} +(0.500000 + 0.866025i) q^{4} +(0.917815 + 2.03902i) q^{5} +(-0.797834 + 1.53736i) q^{6} +0.0202833i q^{7} -1.00000i q^{8} +(-2.98792 + 0.269003i) q^{9} +O(q^{10})\) \(q+(-0.866025 - 0.500000i) q^{2} +(-0.0777329 - 1.73031i) q^{3} +(0.500000 + 0.866025i) q^{4} +(0.917815 + 2.03902i) q^{5} +(-0.797834 + 1.53736i) q^{6} +0.0202833i q^{7} -1.00000i q^{8} +(-2.98792 + 0.269003i) q^{9} +(0.224660 - 2.22475i) q^{10} +3.99162i q^{11} +(1.45962 - 0.932471i) q^{12} +(0.686480 + 1.18902i) q^{13} +(0.0101416 - 0.0175658i) q^{14} +(3.45679 - 1.74660i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(-1.52225 + 2.63661i) q^{17} +(2.72211 + 1.26099i) q^{18} +(2.10968 + 3.81435i) q^{19} +(-1.30694 + 1.81436i) q^{20} +(0.0350963 - 0.00157668i) q^{21} +(1.99581 - 3.45685i) q^{22} +(0.607462 + 1.05215i) q^{23} +(-1.73031 + 0.0777329i) q^{24} +(-3.31523 + 3.74289i) q^{25} -1.37296i q^{26} +(0.697717 + 5.14910i) q^{27} +(-0.0175658 + 0.0101416i) q^{28} +(-3.04800 - 5.27930i) q^{29} +(-3.86697 - 0.215794i) q^{30} +4.41969i q^{31} +(0.866025 - 0.500000i) q^{32} +(6.90673 - 0.310280i) q^{33} +(2.63661 - 1.52225i) q^{34} +(-0.0413581 + 0.0186163i) q^{35} +(-1.72692 - 2.45311i) q^{36} -2.82556 q^{37} +(0.0801327 - 4.35816i) q^{38} +(2.00400 - 1.28025i) q^{39} +(2.03902 - 0.917815i) q^{40} +(0.581569 - 1.00731i) q^{41} +(-0.0311826 - 0.0161827i) q^{42} +(3.23394 + 1.86712i) q^{43} +(-3.45685 + 1.99581i) q^{44} +(-3.29086 - 5.84553i) q^{45} -1.21492i q^{46} +(3.51393 + 6.08631i) q^{47} +(1.53736 + 0.797834i) q^{48} +6.99959 q^{49} +(4.74252 - 1.58383i) q^{50} +(4.68048 + 2.42901i) q^{51} +(-0.686480 + 1.18902i) q^{52} +(10.6188 - 6.13079i) q^{53} +(1.97031 - 4.80811i) q^{54} +(-8.13901 + 3.66357i) q^{55} +0.0202833 q^{56} +(6.43599 - 3.94690i) q^{57} +6.09601i q^{58} +(5.07177 - 8.78455i) q^{59} +(3.24099 + 2.12037i) q^{60} +(-1.34395 - 2.32779i) q^{61} +(2.20984 - 3.82756i) q^{62} +(-0.00545627 - 0.0606047i) q^{63} -1.00000 q^{64} +(-1.79437 + 2.49105i) q^{65} +(-6.13654 - 3.18465i) q^{66} +(1.47926 + 2.56216i) q^{67} -3.04450 q^{68} +(1.77333 - 1.13288i) q^{69} +(0.0451253 + 0.00455684i) q^{70} +(0.990840 - 1.71618i) q^{71} +(0.269003 + 2.98792i) q^{72} +(-6.30417 - 3.63971i) q^{73} +(2.44701 + 1.41278i) q^{74} +(6.73405 + 5.44542i) q^{75} +(-2.24848 + 3.73421i) q^{76} -0.0809632 q^{77} +(-2.37564 + 0.106724i) q^{78} +(8.41583 + 4.85888i) q^{79} +(-2.22475 - 0.224660i) q^{80} +(8.85527 - 1.60752i) q^{81} +(-1.00731 + 0.581569i) q^{82} -7.08504 q^{83} +(0.0189136 + 0.0296059i) q^{84} +(-6.77326 - 0.683977i) q^{85} +(-1.86712 - 3.23394i) q^{86} +(-8.89787 + 5.68435i) q^{87} +3.99162 q^{88} +(-6.40211 - 11.0888i) q^{89} +(-0.0727995 + 6.70781i) q^{90} +(-0.0241172 + 0.0139241i) q^{91} +(-0.607462 + 1.05215i) q^{92} +(7.64741 - 0.343555i) q^{93} -7.02786i q^{94} +(-5.84124 + 7.80256i) q^{95} +(-0.932471 - 1.45962i) q^{96} +(-5.81546 + 10.0727i) q^{97} +(-6.06182 - 3.49979i) q^{98} +(-1.07376 - 11.9266i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80q + 40q^{4} + O(q^{10}) \) \( 80q + 40q^{4} + 30q^{15} - 40q^{16} + 8q^{19} + 8q^{25} - 4q^{30} + 48q^{39} + 12q^{45} - 128q^{49} - 36q^{54} + 12q^{55} + 30q^{60} - 24q^{61} - 80q^{64} + 4q^{66} + 36q^{70} + 16q^{76} + 24q^{79} + 32q^{81} - 8q^{85} - 54q^{90} + 24q^{91} - 60q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/570\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(211\) \(457\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 0.500000i −0.612372 0.353553i
\(3\) −0.0777329 1.73031i −0.0448791 0.998992i
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) 0.917815 + 2.03902i 0.410460 + 0.911879i
\(6\) −0.797834 + 1.53736i −0.325714 + 0.627623i
\(7\) 0.0202833i 0.00766636i 0.999993 + 0.00383318i \(0.00122014\pi\)
−0.999993 + 0.00383318i \(0.998780\pi\)
\(8\) 1.00000i 0.353553i
\(9\) −2.98792 + 0.269003i −0.995972 + 0.0896677i
\(10\) 0.224660 2.22475i 0.0710438 0.703529i
\(11\) 3.99162i 1.20352i 0.798677 + 0.601760i \(0.205534\pi\)
−0.798677 + 0.601760i \(0.794466\pi\)
\(12\) 1.45962 0.932471i 0.421357 0.269181i
\(13\) 0.686480 + 1.18902i 0.190395 + 0.329774i 0.945381 0.325967i \(-0.105690\pi\)
−0.754986 + 0.655741i \(0.772356\pi\)
\(14\) 0.0101416 0.0175658i 0.00271047 0.00469467i
\(15\) 3.45679 1.74660i 0.892539 0.450970i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −1.52225 + 2.63661i −0.369200 + 0.639473i −0.989441 0.144939i \(-0.953702\pi\)
0.620241 + 0.784411i \(0.287035\pi\)
\(18\) 2.72211 + 1.26099i 0.641608 + 0.297219i
\(19\) 2.10968 + 3.81435i 0.483995 + 0.875071i
\(20\) −1.30694 + 1.81436i −0.292240 + 0.405704i
\(21\) 0.0350963 0.00157668i 0.00765863 0.000344059i
\(22\) 1.99581 3.45685i 0.425509 0.737003i
\(23\) 0.607462 + 1.05215i 0.126665 + 0.219389i 0.922382 0.386278i \(-0.126239\pi\)
−0.795718 + 0.605668i \(0.792906\pi\)
\(24\) −1.73031 + 0.0777329i −0.353197 + 0.0158672i
\(25\) −3.31523 + 3.74289i −0.663046 + 0.748579i
\(26\) 1.37296i 0.269260i
\(27\) 0.697717 + 5.14910i 0.134276 + 0.990944i
\(28\) −0.0175658 + 0.0101416i −0.00331963 + 0.00191659i
\(29\) −3.04800 5.27930i −0.566000 0.980341i −0.996956 0.0779679i \(-0.975157\pi\)
0.430956 0.902373i \(-0.358177\pi\)
\(30\) −3.86697 0.215794i −0.706008 0.0393984i
\(31\) 4.41969i 0.793799i 0.917862 + 0.396900i \(0.129914\pi\)
−0.917862 + 0.396900i \(0.870086\pi\)
\(32\) 0.866025 0.500000i 0.153093 0.0883883i
\(33\) 6.90673 0.310280i 1.20231 0.0540129i
\(34\) 2.63661 1.52225i 0.452176 0.261064i
\(35\) −0.0413581 + 0.0186163i −0.00699079 + 0.00314673i
\(36\) −1.72692 2.45311i −0.287820 0.408851i
\(37\) −2.82556 −0.464519 −0.232260 0.972654i \(-0.574612\pi\)
−0.232260 + 0.972654i \(0.574612\pi\)
\(38\) 0.0801327 4.35816i 0.0129992 0.706987i
\(39\) 2.00400 1.28025i 0.320897 0.205004i
\(40\) 2.03902 0.917815i 0.322398 0.145119i
\(41\) 0.581569 1.00731i 0.0908258 0.157315i −0.817033 0.576591i \(-0.804383\pi\)
0.907859 + 0.419276i \(0.137716\pi\)
\(42\) −0.0311826 0.0161827i −0.00481158 0.00249704i
\(43\) 3.23394 + 1.86712i 0.493172 + 0.284733i 0.725889 0.687812i \(-0.241428\pi\)
−0.232718 + 0.972544i \(0.574762\pi\)
\(44\) −3.45685 + 1.99581i −0.521140 + 0.300880i
\(45\) −3.29086 5.84553i −0.490572 0.871401i
\(46\) 1.21492i 0.179131i
\(47\) 3.51393 + 6.08631i 0.512560 + 0.887779i 0.999894 + 0.0145639i \(0.00463601\pi\)
−0.487334 + 0.873216i \(0.662031\pi\)
\(48\) 1.53736 + 0.797834i 0.221898 + 0.115157i
\(49\) 6.99959 0.999941
\(50\) 4.74252 1.58383i 0.670694 0.223987i
\(51\) 4.68048 + 2.42901i 0.655398 + 0.340129i
\(52\) −0.686480 + 1.18902i −0.0951977 + 0.164887i
\(53\) 10.6188 6.13079i 1.45861 0.842129i 0.459667 0.888091i \(-0.347969\pi\)
0.998943 + 0.0459626i \(0.0146355\pi\)
\(54\) 1.97031 4.80811i 0.268125 0.654300i
\(55\) −8.13901 + 3.66357i −1.09746 + 0.493996i
\(56\) 0.0202833 0.00271047
\(57\) 6.43599 3.94690i 0.852468 0.522779i
\(58\) 6.09601i 0.800445i
\(59\) 5.07177 8.78455i 0.660288 1.14365i −0.320252 0.947332i \(-0.603768\pi\)
0.980540 0.196319i \(-0.0628989\pi\)
\(60\) 3.24099 + 2.12037i 0.418411 + 0.273738i
\(61\) −1.34395 2.32779i −0.172075 0.298043i 0.767070 0.641563i \(-0.221714\pi\)
−0.939145 + 0.343521i \(0.888380\pi\)
\(62\) 2.20984 3.82756i 0.280650 0.486101i
\(63\) −0.00545627 0.0606047i −0.000687425 0.00763548i
\(64\) −1.00000 −0.125000
\(65\) −1.79437 + 2.49105i −0.222565 + 0.308977i
\(66\) −6.13654 3.18465i −0.755356 0.392004i
\(67\) 1.47926 + 2.56216i 0.180721 + 0.313017i 0.942126 0.335259i \(-0.108824\pi\)
−0.761406 + 0.648276i \(0.775490\pi\)
\(68\) −3.04450 −0.369200
\(69\) 1.77333 1.13288i 0.213484 0.136383i
\(70\) 0.0451253 + 0.00455684i 0.00539350 + 0.000544647i
\(71\) 0.990840 1.71618i 0.117591 0.203674i −0.801221 0.598368i \(-0.795816\pi\)
0.918813 + 0.394694i \(0.129149\pi\)
\(72\) 0.269003 + 2.98792i 0.0317023 + 0.352129i
\(73\) −6.30417 3.63971i −0.737847 0.425996i 0.0834387 0.996513i \(-0.473410\pi\)
−0.821286 + 0.570517i \(0.806743\pi\)
\(74\) 2.44701 + 1.41278i 0.284459 + 0.164232i
\(75\) 6.73405 + 5.44542i 0.777581 + 0.628782i
\(76\) −2.24848 + 3.73421i −0.257918 + 0.428344i
\(77\) −0.0809632 −0.00922662
\(78\) −2.37564 + 0.106724i −0.268988 + 0.0120841i
\(79\) 8.41583 + 4.85888i 0.946855 + 0.546667i 0.892102 0.451833i \(-0.149230\pi\)
0.0547523 + 0.998500i \(0.482563\pi\)
\(80\) −2.22475 0.224660i −0.248735 0.0251178i
\(81\) 8.85527 1.60752i 0.983919 0.178613i
\(82\) −1.00731 + 0.581569i −0.111238 + 0.0642236i
\(83\) −7.08504 −0.777684 −0.388842 0.921304i \(-0.627125\pi\)
−0.388842 + 0.921304i \(0.627125\pi\)
\(84\) 0.0189136 + 0.0296059i 0.00206364 + 0.00323027i
\(85\) −6.77326 0.683977i −0.734663 0.0741878i
\(86\) −1.86712 3.23394i −0.201336 0.348725i
\(87\) −8.89787 + 5.68435i −0.953952 + 0.609427i
\(88\) 3.99162 0.425509
\(89\) −6.40211 11.0888i −0.678623 1.17541i −0.975396 0.220461i \(-0.929244\pi\)
0.296773 0.954948i \(-0.404090\pi\)
\(90\) −0.0727995 + 6.70781i −0.00767374 + 0.707065i
\(91\) −0.0241172 + 0.0139241i −0.00252817 + 0.00145964i
\(92\) −0.607462 + 1.05215i −0.0633323 + 0.109695i
\(93\) 7.64741 0.343555i 0.793000 0.0356250i
\(94\) 7.02786i 0.724869i
\(95\) −5.84124 + 7.80256i −0.599298 + 0.800526i
\(96\) −0.932471 1.45962i −0.0951700 0.148972i
\(97\) −5.81546 + 10.0727i −0.590471 + 1.02273i 0.403698 + 0.914892i \(0.367725\pi\)
−0.994169 + 0.107833i \(0.965609\pi\)
\(98\) −6.06182 3.49979i −0.612336 0.353533i
\(99\) −1.07376 11.9266i −0.107917 1.19867i
\(100\) −4.89906 0.999626i −0.489906 0.0999626i
\(101\) −7.98637 + 4.61093i −0.794674 + 0.458805i −0.841605 0.540093i \(-0.818389\pi\)
0.0469317 + 0.998898i \(0.485056\pi\)
\(102\) −2.83891 4.44382i −0.281094 0.440004i
\(103\) −11.1254 −1.09621 −0.548107 0.836408i \(-0.684651\pi\)
−0.548107 + 0.836408i \(0.684651\pi\)
\(104\) 1.18902 0.686480i 0.116593 0.0673149i
\(105\) 0.0354268 + 0.0701150i 0.00345730 + 0.00684252i
\(106\) −12.2616 −1.19095
\(107\) 10.6451i 1.02910i 0.857461 + 0.514548i \(0.172040\pi\)
−0.857461 + 0.514548i \(0.827960\pi\)
\(108\) −4.11039 + 3.17879i −0.395522 + 0.305879i
\(109\) −1.79769 1.03789i −0.172187 0.0994123i 0.411430 0.911442i \(-0.365030\pi\)
−0.583617 + 0.812029i \(0.698363\pi\)
\(110\) 8.88038 + 0.896759i 0.846711 + 0.0855026i
\(111\) 0.219639 + 4.88908i 0.0208472 + 0.464051i
\(112\) −0.0175658 0.0101416i −0.00165982 0.000958295i
\(113\) 6.98424i 0.657022i 0.944500 + 0.328511i \(0.106547\pi\)
−0.944500 + 0.328511i \(0.893453\pi\)
\(114\) −7.54718 + 0.200118i −0.706858 + 0.0187428i
\(115\) −1.58783 + 2.20431i −0.148066 + 0.205553i
\(116\) 3.04800 5.27930i 0.283000 0.490171i
\(117\) −2.37099 3.36802i −0.219199 0.311374i
\(118\) −8.78455 + 5.07177i −0.808684 + 0.466894i
\(119\) −0.0534792 0.0308762i −0.00490243 0.00283042i
\(120\) −1.74660 3.45679i −0.159442 0.315560i
\(121\) −4.93307 −0.448461
\(122\) 2.68790i 0.243351i
\(123\) −1.78816 0.927992i −0.161233 0.0836742i
\(124\) −3.82756 + 2.20984i −0.343725 + 0.198450i
\(125\) −10.6746 3.32454i −0.954767 0.297356i
\(126\) −0.0255771 + 0.0552134i −0.00227859 + 0.00491880i
\(127\) 0.312266 + 0.540860i 0.0277091 + 0.0479936i 0.879547 0.475811i \(-0.157845\pi\)
−0.851838 + 0.523805i \(0.824512\pi\)
\(128\) 0.866025 + 0.500000i 0.0765466 + 0.0441942i
\(129\) 2.97930 5.74085i 0.262313 0.505453i
\(130\) 2.79950 1.26012i 0.245532 0.110520i
\(131\) 15.9145 + 9.18823i 1.39046 + 0.802780i 0.993365 0.115000i \(-0.0366868\pi\)
0.397090 + 0.917780i \(0.370020\pi\)
\(132\) 3.72208 + 5.82626i 0.323965 + 0.507111i
\(133\) −0.0773674 + 0.0427913i −0.00670861 + 0.00371048i
\(134\) 2.95852i 0.255578i
\(135\) −9.85875 + 6.14858i −0.848506 + 0.529186i
\(136\) 2.63661 + 1.52225i 0.226088 + 0.130532i
\(137\) −7.10557 12.3072i −0.607070 1.05148i −0.991721 0.128414i \(-0.959011\pi\)
0.384651 0.923062i \(-0.374322\pi\)
\(138\) −2.10219 + 0.0944395i −0.178950 + 0.00803922i
\(139\) −7.37218 12.7690i −0.625300 1.08305i −0.988483 0.151334i \(-0.951643\pi\)
0.363183 0.931718i \(-0.381690\pi\)
\(140\) −0.0368012 0.0265090i −0.00311027 0.00224042i
\(141\) 10.2580 6.55328i 0.863882 0.551886i
\(142\) −1.71618 + 0.990840i −0.144019 + 0.0831494i
\(143\) −4.74612 + 2.74017i −0.396890 + 0.229145i
\(144\) 1.26099 2.72211i 0.105083 0.226843i
\(145\) 7.96710 11.0604i 0.661632 0.918514i
\(146\) 3.63971 + 6.30417i 0.301225 + 0.521737i
\(147\) −0.544098 12.1114i −0.0448764 0.998934i
\(148\) −1.41278 2.44701i −0.116130 0.201143i
\(149\) −10.2737 5.93151i −0.841652 0.485928i 0.0161736 0.999869i \(-0.494852\pi\)
−0.857825 + 0.513941i \(0.828185\pi\)
\(150\) −3.10915 8.08289i −0.253861 0.659966i
\(151\) 16.2219i 1.32012i 0.751212 + 0.660062i \(0.229470\pi\)
−0.751212 + 0.660062i \(0.770530\pi\)
\(152\) 3.81435 2.10968i 0.309384 0.171118i
\(153\) 3.83910 8.28747i 0.310372 0.670002i
\(154\) 0.0701162 + 0.0404816i 0.00565013 + 0.00326210i
\(155\) −9.01185 + 4.05646i −0.723849 + 0.325823i
\(156\) 2.11073 + 1.09539i 0.168993 + 0.0877018i
\(157\) 11.2338 + 6.48585i 0.896557 + 0.517627i 0.876081 0.482163i \(-0.160149\pi\)
0.0204752 + 0.999790i \(0.493482\pi\)
\(158\) −4.85888 8.41583i −0.386552 0.669527i
\(159\) −11.4336 17.8973i −0.906741 1.41935i
\(160\) 1.81436 + 1.30694i 0.143438 + 0.103323i
\(161\) −0.0213411 + 0.0123213i −0.00168192 + 0.000971056i
\(162\) −8.47265 3.03549i −0.665674 0.238490i
\(163\) 16.7682i 1.31338i −0.754159 0.656692i \(-0.771955\pi\)
0.754159 0.656692i \(-0.228045\pi\)
\(164\) 1.16314 0.0908258
\(165\) 6.97177 + 13.7982i 0.542752 + 1.07419i
\(166\) 6.13583 + 3.54252i 0.476232 + 0.274953i
\(167\) 19.7487 11.4019i 1.52820 0.882305i 0.528759 0.848772i \(-0.322658\pi\)
0.999438 0.0335328i \(-0.0106758\pi\)
\(168\) −0.00157668 0.0350963i −0.000121643 0.00270774i
\(169\) 5.55749 9.62585i 0.427499 0.740450i
\(170\) 5.52383 + 3.97897i 0.423658 + 0.305173i
\(171\) −7.32963 10.8294i −0.560511 0.828147i
\(172\) 3.73424i 0.284733i
\(173\) 7.23298 + 4.17596i 0.549913 + 0.317493i 0.749087 0.662472i \(-0.230492\pi\)
−0.199174 + 0.979964i \(0.563826\pi\)
\(174\) 10.5480 0.473860i 0.799639 0.0359232i
\(175\) −0.0759182 0.0672437i −0.00573887 0.00508315i
\(176\) −3.45685 1.99581i −0.260570 0.150440i
\(177\) −15.5942 8.09286i −1.17213 0.608296i
\(178\) 12.8042i 0.959718i
\(179\) −4.36389 −0.326173 −0.163086 0.986612i \(-0.552145\pi\)
−0.163086 + 0.986612i \(0.552145\pi\)
\(180\) 3.41695 5.77273i 0.254684 0.430274i
\(181\) −21.4785 + 12.4006i −1.59649 + 0.921732i −0.604329 + 0.796735i \(0.706559\pi\)
−0.992157 + 0.124996i \(0.960108\pi\)
\(182\) 0.0278481 0.00206424
\(183\) −3.92331 + 2.50639i −0.290020 + 0.185277i
\(184\) 1.05215 0.607462i 0.0775659 0.0447827i
\(185\) −2.59334 5.76138i −0.190666 0.423585i
\(186\) −6.79463 3.52618i −0.498206 0.258552i
\(187\) −10.5244 6.07625i −0.769618 0.444339i
\(188\) −3.51393 + 6.08631i −0.256280 + 0.443890i
\(189\) −0.104441 + 0.0141520i −0.00759693 + 0.00102941i
\(190\) 8.95994 3.83660i 0.650022 0.278336i
\(191\) 10.0034i 0.723819i 0.932213 + 0.361909i \(0.117875\pi\)
−0.932213 + 0.361909i \(0.882125\pi\)
\(192\) 0.0777329 + 1.73031i 0.00560989 + 0.124874i
\(193\) 0.319263 0.552980i 0.0229811 0.0398044i −0.854306 0.519770i \(-0.826018\pi\)
0.877287 + 0.479966i \(0.159351\pi\)
\(194\) 10.0727 5.81546i 0.723176 0.417526i
\(195\) 4.44976 + 2.91118i 0.318654 + 0.208474i
\(196\) 3.49979 + 6.06182i 0.249985 + 0.432987i
\(197\) 10.1393 0.722398 0.361199 0.932489i \(-0.382367\pi\)
0.361199 + 0.932489i \(0.382367\pi\)
\(198\) −5.03341 + 10.8657i −0.357709 + 0.772188i
\(199\) 4.66809 + 8.08537i 0.330912 + 0.573157i 0.982691 0.185252i \(-0.0593102\pi\)
−0.651779 + 0.758409i \(0.725977\pi\)
\(200\) 3.74289 + 3.31523i 0.264663 + 0.234422i
\(201\) 4.31833 2.75874i 0.304591 0.194586i
\(202\) 9.22187 0.648848
\(203\) 0.107081 0.0618235i 0.00751565 0.00433916i
\(204\) 0.236658 + 5.26791i 0.0165693 + 0.368828i
\(205\) 2.58770 + 0.261311i 0.180733 + 0.0182507i
\(206\) 9.63485 + 5.56268i 0.671292 + 0.387570i
\(207\) −2.09808 2.98034i −0.145826 0.207148i
\(208\) −1.37296 −0.0951977
\(209\) −15.2254 + 8.42107i −1.05317 + 0.582497i
\(210\) 0.00437701 0.0784348i 0.000302043 0.00541251i
\(211\) −22.4081 12.9373i −1.54264 0.890641i −0.998671 0.0515325i \(-0.983589\pi\)
−0.543964 0.839108i \(-0.683077\pi\)
\(212\) 10.6188 + 6.13079i 0.729305 + 0.421064i
\(213\) −3.04654 1.58105i −0.208746 0.108332i
\(214\) 5.32253 9.21889i 0.363840 0.630190i
\(215\) −0.838934 + 8.30775i −0.0572148 + 0.566584i
\(216\) 5.14910 0.697717i 0.350352 0.0474736i
\(217\) −0.0896458 −0.00608555
\(218\) 1.03789 + 1.79769i 0.0702951 + 0.121755i
\(219\) −5.80778 + 11.1911i −0.392453 + 0.756222i
\(220\) −7.24226 5.21681i −0.488273 0.351717i
\(221\) −4.17998 −0.281176
\(222\) 2.25433 4.34389i 0.151301 0.291543i
\(223\) 10.0501 17.4073i 0.673005 1.16568i −0.304042 0.952658i \(-0.598336\pi\)
0.977048 0.213021i \(-0.0683302\pi\)
\(224\) 0.0101416 + 0.0175658i 0.000677617 + 0.00117367i
\(225\) 8.89878 12.0753i 0.593252 0.805017i
\(226\) 3.49212 6.04853i 0.232292 0.402342i
\(227\) 25.1897i 1.67190i 0.548804 + 0.835951i \(0.315083\pi\)
−0.548804 + 0.835951i \(0.684917\pi\)
\(228\) 6.63611 + 3.60028i 0.439487 + 0.238435i
\(229\) 27.5462 1.82030 0.910152 0.414273i \(-0.135964\pi\)
0.910152 + 0.414273i \(0.135964\pi\)
\(230\) 2.47726 1.11508i 0.163345 0.0735259i
\(231\) 0.00629350 + 0.140091i 0.000414082 + 0.00921732i
\(232\) −5.27930 + 3.04800i −0.346603 + 0.200111i
\(233\) −0.739496 + 1.28084i −0.0484460 + 0.0839109i −0.889232 0.457457i \(-0.848760\pi\)
0.840786 + 0.541368i \(0.182094\pi\)
\(234\) 0.369331 + 4.10229i 0.0241439 + 0.268175i
\(235\) −9.18498 + 12.7511i −0.599162 + 0.831790i
\(236\) 10.1435 0.660288
\(237\) 7.75316 14.9397i 0.503622 0.970435i
\(238\) 0.0308762 + 0.0534792i 0.00200141 + 0.00346654i
\(239\) 9.00066i 0.582204i −0.956692 0.291102i \(-0.905978\pi\)
0.956692 0.291102i \(-0.0940219\pi\)
\(240\) −0.215794 + 3.86697i −0.0139295 + 0.249612i
\(241\) 18.8017 10.8552i 1.21113 0.699244i 0.248121 0.968729i \(-0.420187\pi\)
0.963004 + 0.269486i \(0.0868536\pi\)
\(242\) 4.27216 + 2.46653i 0.274625 + 0.158555i
\(243\) −3.46984 15.1974i −0.222590 0.974912i
\(244\) 1.34395 2.32779i 0.0860375 0.149021i
\(245\) 6.42433 + 14.2723i 0.410435 + 0.911825i
\(246\) 1.08459 + 1.69774i 0.0691511 + 0.108244i
\(247\) −3.08707 + 5.12693i −0.196426 + 0.326219i
\(248\) 4.41969 0.280650
\(249\) 0.550740 + 12.2593i 0.0349018 + 0.776901i
\(250\) 7.58222 + 8.21645i 0.479541 + 0.519654i
\(251\) −8.96668 + 5.17692i −0.565972 + 0.326764i −0.755539 0.655104i \(-0.772625\pi\)
0.189567 + 0.981868i \(0.439292\pi\)
\(252\) 0.0497571 0.0350276i 0.00313440 0.00220653i
\(253\) −4.19981 + 2.42476i −0.264040 + 0.152443i
\(254\) 0.624532i 0.0391866i
\(255\) −0.656985 + 11.7730i −0.0411420 + 0.737252i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 12.6197 7.28601i 0.787198 0.454489i −0.0517771 0.998659i \(-0.516489\pi\)
0.838975 + 0.544170i \(0.183155\pi\)
\(258\) −5.45057 + 3.48207i −0.339338 + 0.216784i
\(259\) 0.0573116i 0.00356117i
\(260\) −3.05450 0.308449i −0.189432 0.0191292i
\(261\) 10.5273 + 14.9542i 0.651625 + 0.925640i
\(262\) −9.18823 15.9145i −0.567651 0.983200i
\(263\) 0.693382 1.20097i 0.0427557 0.0740551i −0.843856 0.536570i \(-0.819720\pi\)
0.886611 + 0.462515i \(0.153053\pi\)
\(264\) −0.310280 6.90673i −0.0190964 0.425080i
\(265\) 22.2470 + 16.0251i 1.36662 + 0.984416i
\(266\) 0.0883978 + 0.00162535i 0.00542002 + 9.96569e-5i
\(267\) −18.6893 + 11.9396i −1.14377 + 0.730690i
\(268\) −1.47926 + 2.56216i −0.0903603 + 0.156509i
\(269\) −10.6586 + 18.4612i −0.649866 + 1.12560i 0.333288 + 0.942825i \(0.391842\pi\)
−0.983155 + 0.182776i \(0.941492\pi\)
\(270\) 11.6122 0.395452i 0.706697 0.0240664i
\(271\) 3.47859 6.02509i 0.211309 0.365998i −0.740815 0.671709i \(-0.765561\pi\)
0.952124 + 0.305711i \(0.0988940\pi\)
\(272\) −1.52225 2.63661i −0.0922999 0.159868i
\(273\) 0.0259676 + 0.0406478i 0.00157163 + 0.00246011i
\(274\) 14.2111i 0.858527i
\(275\) −14.9402 13.2332i −0.900930 0.797989i
\(276\) 1.86777 + 0.969307i 0.112426 + 0.0583455i
\(277\) 18.8422i 1.13212i 0.824364 + 0.566060i \(0.191533\pi\)
−0.824364 + 0.566060i \(0.808467\pi\)
\(278\) 14.7444i 0.884308i
\(279\) −1.18891 13.2057i −0.0711782 0.790602i
\(280\) 0.0186163 + 0.0413581i 0.00111254 + 0.00247162i
\(281\) −13.6863 23.7053i −0.816454 1.41414i −0.908279 0.418365i \(-0.862603\pi\)
0.0918244 0.995775i \(-0.470730\pi\)
\(282\) −12.1604 + 0.546296i −0.724139 + 0.0325315i
\(283\) −10.7276 6.19357i −0.637689 0.368170i 0.146035 0.989279i \(-0.453349\pi\)
−0.783724 + 0.621110i \(0.786682\pi\)
\(284\) 1.98168 0.117591
\(285\) 13.9549 + 9.50061i 0.826615 + 0.562768i
\(286\) 5.48034 0.324060
\(287\) 0.0204315 + 0.0117961i 0.00120603 + 0.000696303i
\(288\) −2.45311 + 1.72692i −0.144551 + 0.101760i
\(289\) 3.86551 + 6.69526i 0.227383 + 0.393839i
\(290\) −12.4299 + 5.59501i −0.729909 + 0.328550i
\(291\) 17.8809 + 9.27955i 1.04819 + 0.543977i
\(292\) 7.27943i 0.425996i
\(293\) 14.4593i 0.844722i −0.906428 0.422361i \(-0.861201\pi\)
0.906428 0.422361i \(-0.138799\pi\)
\(294\) −5.58451 + 10.7609i −0.325695 + 0.627586i
\(295\) 22.5669 + 2.27885i 1.31389 + 0.132680i
\(296\) 2.82556i 0.164232i
\(297\) −20.5533 + 2.78502i −1.19262 + 0.161603i
\(298\) 5.93151 + 10.2737i 0.343603 + 0.595138i
\(299\) −0.834021 + 1.44457i −0.0482327 + 0.0835415i
\(300\) −1.34884 + 8.55457i −0.0778754 + 0.493898i
\(301\) −0.0378713 + 0.0655950i −0.00218286 + 0.00378083i
\(302\) 8.11097 14.0486i 0.466734 0.808407i
\(303\) 8.59913 + 13.4604i 0.494007 + 0.773282i
\(304\) −4.35816 0.0801327i −0.249958 0.00459593i
\(305\) 3.51291 4.87682i 0.201149 0.279246i
\(306\) −7.46849 + 5.25761i −0.426945 + 0.300558i
\(307\) 14.2128 24.6172i 0.811165 1.40498i −0.100884 0.994898i \(-0.532167\pi\)
0.912049 0.410081i \(-0.134500\pi\)
\(308\) −0.0404816 0.0701162i −0.00230665 0.00399524i
\(309\) 0.864806 + 19.2503i 0.0491971 + 1.09511i
\(310\) 9.83272 + 0.992927i 0.558461 + 0.0563945i
\(311\) 7.97931i 0.452465i 0.974073 + 0.226233i \(0.0726409\pi\)
−0.974073 + 0.226233i \(0.927359\pi\)
\(312\) −1.28025 2.00400i −0.0724797 0.113454i
\(313\) 29.0368 16.7644i 1.64126 0.947579i 0.660867 0.750503i \(-0.270189\pi\)
0.980388 0.197076i \(-0.0631447\pi\)
\(314\) −6.48585 11.2338i −0.366018 0.633961i
\(315\) 0.118567 0.0667494i 0.00668047 0.00376090i
\(316\) 9.71776i 0.546667i
\(317\) 7.43608 4.29323i 0.417652 0.241132i −0.276420 0.961037i \(-0.589148\pi\)
0.694072 + 0.719905i \(0.255815\pi\)
\(318\) 0.953128 + 21.2163i 0.0534487 + 1.18975i
\(319\) 21.0730 12.1665i 1.17986 0.681193i
\(320\) −0.917815 2.03902i −0.0513074 0.113985i
\(321\) 18.4192 0.827470i 1.02806 0.0461849i
\(322\) 0.0246426 0.00137328
\(323\) −13.2684 0.243964i −0.738275 0.0135745i
\(324\) 5.81979 + 6.86513i 0.323322 + 0.381396i
\(325\) −6.72621 1.37245i −0.373103 0.0761297i
\(326\) −8.38408 + 14.5216i −0.464351 + 0.804280i
\(327\) −1.65614 + 3.19123i −0.0915845 + 0.176475i
\(328\) −1.00731 0.581569i −0.0556192 0.0321118i
\(329\) −0.123450 + 0.0712741i −0.00680604 + 0.00392947i
\(330\) 0.861369 15.4355i 0.0474168 0.849695i
\(331\) 19.6633i 1.08080i −0.841410 0.540398i \(-0.818274\pi\)
0.841410 0.540398i \(-0.181726\pi\)
\(332\) −3.54252 6.13583i −0.194421 0.336747i
\(333\) 8.44253 0.760085i 0.462648 0.0416524i
\(334\) −22.8038 −1.24777
\(335\) −3.86661 + 5.36784i −0.211255 + 0.293276i
\(336\) −0.0161827 + 0.0311826i −0.000882838 + 0.00170115i
\(337\) 6.02018 10.4273i 0.327940 0.568009i −0.654163 0.756354i \(-0.726979\pi\)
0.982103 + 0.188345i \(0.0603123\pi\)
\(338\) −9.62585 + 5.55749i −0.523577 + 0.302288i
\(339\) 12.0849 0.542905i 0.656360 0.0294866i
\(340\) −2.79429 6.20780i −0.151542 0.336665i
\(341\) −17.6417 −0.955354
\(342\) 0.932930 + 13.0434i 0.0504471 + 0.705305i
\(343\) 0.283958i 0.0153323i
\(344\) 1.86712 3.23394i 0.100668 0.174363i
\(345\) 3.93756 + 2.57608i 0.211991 + 0.138692i
\(346\) −4.17596 7.23298i −0.224501 0.388847i
\(347\) 1.45338 2.51733i 0.0780216 0.135137i −0.824375 0.566044i \(-0.808473\pi\)
0.902396 + 0.430907i \(0.141806\pi\)
\(348\) −9.37173 4.86360i −0.502377 0.260717i
\(349\) −21.2903 −1.13965 −0.569823 0.821767i \(-0.692988\pi\)
−0.569823 + 0.821767i \(0.692988\pi\)
\(350\) 0.0321252 + 0.0961939i 0.00171716 + 0.00514178i
\(351\) −5.64340 + 4.36435i −0.301223 + 0.232952i
\(352\) 1.99581 + 3.45685i 0.106377 + 0.184251i
\(353\) −22.5734 −1.20146 −0.600730 0.799452i \(-0.705123\pi\)
−0.600730 + 0.799452i \(0.705123\pi\)
\(354\) 9.45855 + 14.8057i 0.502716 + 0.786915i
\(355\) 4.40875 + 0.445204i 0.233992 + 0.0236290i
\(356\) 6.40211 11.0888i 0.339311 0.587705i
\(357\) −0.0492682 + 0.0949354i −0.00260755 + 0.00502451i
\(358\) 3.77924 + 2.18195i 0.199739 + 0.115319i
\(359\) 7.32484 + 4.22900i 0.386590 + 0.223198i 0.680682 0.732579i \(-0.261684\pi\)
−0.294091 + 0.955777i \(0.595017\pi\)
\(360\) −5.84553 + 3.29086i −0.308087 + 0.173443i
\(361\) −10.0985 + 16.0941i −0.531498 + 0.847059i
\(362\) 24.8013 1.30353
\(363\) 0.383461 + 8.53572i 0.0201265 + 0.448009i
\(364\) −0.0241172 0.0139241i −0.00126408 0.000729820i
\(365\) 1.63540 16.1949i 0.0856006 0.847682i
\(366\) 4.65088 0.208938i 0.243106 0.0109214i
\(367\) 29.4740 17.0168i 1.53853 0.888272i 0.539606 0.841917i \(-0.318573\pi\)
0.998925 0.0463542i \(-0.0147603\pi\)
\(368\) −1.21492 −0.0633323
\(369\) −1.46671 + 3.16619i −0.0763539 + 0.164825i
\(370\) −0.634790 + 6.28617i −0.0330012 + 0.326803i
\(371\) 0.124353 + 0.215385i 0.00645606 + 0.0111822i
\(372\) 4.12123 + 6.45108i 0.213676 + 0.334473i
\(373\) 24.4276 1.26481 0.632407 0.774636i \(-0.282067\pi\)
0.632407 + 0.774636i \(0.282067\pi\)
\(374\) 6.07625 + 10.5244i 0.314195 + 0.544202i
\(375\) −4.92271 + 18.7288i −0.254208 + 0.967150i
\(376\) 6.08631 3.51393i 0.313877 0.181217i
\(377\) 4.18479 7.24827i 0.215528 0.373305i
\(378\) 0.0975242 + 0.0399643i 0.00501610 + 0.00205554i
\(379\) 20.7105i 1.06383i 0.846799 + 0.531913i \(0.178527\pi\)
−0.846799 + 0.531913i \(0.821473\pi\)
\(380\) −9.67783 1.15738i −0.496462 0.0593724i
\(381\) 0.911580 0.582358i 0.0467017 0.0298351i
\(382\) 5.00169 8.66318i 0.255909 0.443247i
\(383\) 25.8063 + 14.8993i 1.31864 + 0.761317i 0.983510 0.180855i \(-0.0578864\pi\)
0.335130 + 0.942172i \(0.391220\pi\)
\(384\) 0.797834 1.53736i 0.0407143 0.0784528i
\(385\) −0.0743093 0.165086i −0.00378715 0.00841356i
\(386\) −0.552980 + 0.319263i −0.0281459 + 0.0162501i
\(387\) −10.1650 4.70885i −0.516716 0.239364i
\(388\) −11.6309 −0.590471
\(389\) 17.9377 10.3563i 0.909479 0.525088i 0.0292152 0.999573i \(-0.490699\pi\)
0.880263 + 0.474485i \(0.157366\pi\)
\(390\) −2.39801 4.74603i −0.121428 0.240325i
\(391\) −3.69883 −0.187058
\(392\) 6.99959i 0.353533i
\(393\) 14.6614 28.2512i 0.739568 1.42508i
\(394\) −8.78093 5.06967i −0.442377 0.255406i
\(395\) −2.18319 + 21.6196i −0.109848 + 1.08780i
\(396\) 9.79189 6.89322i 0.492061 0.346397i
\(397\) −23.8116 13.7476i −1.19507 0.689974i −0.235618 0.971846i \(-0.575712\pi\)
−0.959452 + 0.281871i \(0.909045\pi\)
\(398\) 9.33619i 0.467981i
\(399\) 0.0800560 + 0.130543i 0.00400781 + 0.00653533i
\(400\) −1.58383 4.74252i −0.0791913 0.237126i
\(401\) 15.0652 26.0937i 0.752322 1.30306i −0.194373 0.980928i \(-0.562267\pi\)
0.946695 0.322132i \(-0.104399\pi\)
\(402\) −5.11915 + 0.229974i −0.255320 + 0.0114701i
\(403\) −5.25509 + 3.03403i −0.261775 + 0.151136i
\(404\) −7.98637 4.61093i −0.397337 0.229403i
\(405\) 11.4053 + 16.5807i 0.566733 + 0.823902i
\(406\) −0.123647 −0.00613650
\(407\) 11.2786i 0.559058i
\(408\) 2.42901 4.68048i 0.120254 0.231718i
\(409\) −13.8808 + 8.01408i −0.686361 + 0.396271i −0.802247 0.596992i \(-0.796362\pi\)
0.115886 + 0.993262i \(0.463029\pi\)
\(410\) −2.11036 1.52015i −0.104223 0.0750748i
\(411\) −20.7429 + 13.2515i −1.02317 + 0.653648i
\(412\) −5.56268 9.63485i −0.274054 0.474675i
\(413\) 0.178180 + 0.102872i 0.00876764 + 0.00506200i
\(414\) 0.326818 + 3.63009i 0.0160622 + 0.178409i
\(415\) −6.50276 14.4466i −0.319208 0.709154i
\(416\) 1.18902 + 0.686480i 0.0582964 + 0.0336575i
\(417\) −21.5212 + 13.7487i −1.05390 + 0.673277i
\(418\) 17.3961 + 0.319860i 0.850873 + 0.0156449i
\(419\) 20.4668i 0.999870i 0.866063 + 0.499935i \(0.166643\pi\)
−0.866063 + 0.499935i \(0.833357\pi\)
\(420\) −0.0430080 + 0.0657380i −0.00209857 + 0.00320769i
\(421\) −3.75989 2.17078i −0.183246 0.105797i 0.405571 0.914064i \(-0.367073\pi\)
−0.588817 + 0.808266i \(0.700406\pi\)
\(422\) 12.9373 + 22.4081i 0.629778 + 1.09081i
\(423\) −12.1366 17.2401i −0.590100 0.838243i
\(424\) −6.13079 10.6188i −0.297738 0.515697i
\(425\) −4.82196 14.4386i −0.233899 0.700375i
\(426\) 1.84786 + 2.89250i 0.0895291 + 0.140142i
\(427\) 0.0472152 0.0272597i 0.00228490 0.00131919i
\(428\) −9.21889 + 5.32253i −0.445612 + 0.257274i
\(429\) 5.11026 + 7.99923i 0.246726 + 0.386207i
\(430\) 4.88041 6.77526i 0.235354 0.326732i
\(431\) −7.60406 13.1706i −0.366275 0.634407i 0.622705 0.782457i \(-0.286034\pi\)
−0.988980 + 0.148050i \(0.952700\pi\)
\(432\) −4.80811 1.97031i −0.231330 0.0947965i
\(433\) 0.703299 + 1.21815i 0.0337984 + 0.0585405i 0.882430 0.470444i \(-0.155906\pi\)
−0.848631 + 0.528985i \(0.822573\pi\)
\(434\) 0.0776355 + 0.0448229i 0.00372662 + 0.00215157i
\(435\) −19.7571 12.9258i −0.947282 0.619743i
\(436\) 2.07579i 0.0994123i
\(437\) −2.73173 + 4.53678i −0.130676 + 0.217024i
\(438\) 10.6252 6.78786i 0.507693 0.324337i
\(439\) −17.5197 10.1150i −0.836171 0.482763i 0.0197901 0.999804i \(-0.493700\pi\)
−0.855961 + 0.517041i \(0.827034\pi\)
\(440\) 3.66357 + 8.13901i 0.174654 + 0.388012i
\(441\) −20.9142 + 1.88291i −0.995913 + 0.0896625i
\(442\) 3.61997 + 2.08999i 0.172184 + 0.0994106i
\(443\) 0.106768 + 0.184928i 0.00507271 + 0.00878619i 0.868551 0.495600i \(-0.165052\pi\)
−0.863478 + 0.504387i \(0.831719\pi\)
\(444\) −4.12425 + 2.63475i −0.195728 + 0.125040i
\(445\) 16.7343 23.2315i 0.793283 1.10128i
\(446\) −17.4073 + 10.0501i −0.824260 + 0.475887i
\(447\) −9.46472 + 18.2377i −0.447666 + 0.862612i
\(448\) 0.0202833i 0.000958295i
\(449\) 15.8165 0.746426 0.373213 0.927746i \(-0.378256\pi\)
0.373213 + 0.927746i \(0.378256\pi\)
\(450\) −13.7442 + 6.00809i −0.647907 + 0.283224i
\(451\) 4.02079 + 2.32141i 0.189332 + 0.109311i
\(452\) −6.04853 + 3.49212i −0.284499 + 0.164256i
\(453\) 28.0689 1.26098i 1.31879 0.0592459i
\(454\) 12.5949 21.8150i 0.591106 1.02383i
\(455\) −0.0505266 0.0363958i −0.00236873 0.00170626i
\(456\) −3.94690 6.43599i −0.184830 0.301393i
\(457\) 15.6759i 0.733287i −0.930362 0.366643i \(-0.880507\pi\)
0.930362 0.366643i \(-0.119493\pi\)
\(458\) −23.8557 13.7731i −1.11470 0.643575i
\(459\) −14.6383 5.99860i −0.683256 0.279991i
\(460\) −2.70291 0.272945i −0.126024 0.0127261i
\(461\) −20.1979 11.6613i −0.940710 0.543119i −0.0505272 0.998723i \(-0.516090\pi\)
−0.890183 + 0.455604i \(0.849423\pi\)
\(462\) 0.0645952 0.124469i 0.00300524 0.00579083i
\(463\) 39.2341i 1.82336i 0.410899 + 0.911681i \(0.365215\pi\)
−0.410899 + 0.911681i \(0.634785\pi\)
\(464\) 6.09601 0.283000
\(465\) 7.71943 + 15.2779i 0.357980 + 0.708497i
\(466\) 1.28084 0.739496i 0.0593340 0.0342565i
\(467\) 24.4549 1.13164 0.565819 0.824530i \(-0.308560\pi\)
0.565819 + 0.824530i \(0.308560\pi\)
\(468\) 1.73130 3.73735i 0.0800291 0.172759i
\(469\) −0.0519689 + 0.0300043i −0.00239970 + 0.00138547i
\(470\) 14.3300 6.45028i 0.660993 0.297529i
\(471\) 10.3493 19.9421i 0.476869 0.918884i
\(472\) −8.78455 5.07177i −0.404342 0.233447i
\(473\) −7.45283 + 12.9087i −0.342682 + 0.593542i
\(474\) −14.1843 + 9.06154i −0.651505 + 0.416210i
\(475\) −21.2708 4.74911i −0.975970 0.217904i
\(476\) 0.0617524i 0.00283042i
\(477\) −30.0790 + 21.1748i −1.37722 + 0.969527i
\(478\) −4.50033 + 7.79480i −0.205840 + 0.356526i
\(479\) 27.8923 16.1036i 1.27443 0.735794i 0.298614 0.954374i \(-0.403476\pi\)
0.975819 + 0.218580i \(0.0701424\pi\)
\(480\) 2.12037 3.24099i 0.0967811 0.147930i
\(481\) −1.93969 3.35964i −0.0884423 0.153187i
\(482\) −21.7104 −0.988880
\(483\) 0.0229785 + 0.0359689i 0.00104556 + 0.00163664i
\(484\) −2.46653 4.27216i −0.112115 0.194189i
\(485\) −25.8759 2.61300i −1.17497 0.118650i
\(486\) −4.59372 + 14.8962i −0.208375 + 0.675707i
\(487\) −22.5359 −1.02120 −0.510599 0.859819i \(-0.670576\pi\)
−0.510599 + 0.859819i \(0.670576\pi\)
\(488\) −2.32779 + 1.34395i −0.105374 + 0.0608377i
\(489\) −29.0140 + 1.30344i −1.31206 + 0.0589434i
\(490\) 1.57253 15.5724i 0.0710396 0.703487i
\(491\) 25.9068 + 14.9573i 1.16916 + 0.675013i 0.953481 0.301452i \(-0.0974714\pi\)
0.215675 + 0.976465i \(0.430805\pi\)
\(492\) −0.0904141 2.01258i −0.00407618 0.0907343i
\(493\) 18.5593 0.835869
\(494\) 5.23695 2.89651i 0.235621 0.130320i
\(495\) 23.3332 13.1359i 1.04875 0.590414i
\(496\) −3.82756 2.20984i −0.171863 0.0992249i
\(497\) 0.0348098 + 0.0200975i 0.00156144 + 0.000901495i
\(498\) 5.65269 10.8922i 0.253303 0.488092i
\(499\) −5.42341 + 9.39363i −0.242785 + 0.420516i −0.961507 0.274782i \(-0.911394\pi\)
0.718721 + 0.695298i \(0.244728\pi\)
\(500\) −2.45817 10.9068i −0.109933 0.487765i
\(501\) −21.2639 33.2849i −0.950000 1.48706i
\(502\) 10.3538 0.462114
\(503\) 1.20059 + 2.07949i 0.0535318 + 0.0927199i 0.891550 0.452923i \(-0.149619\pi\)
−0.838018 + 0.545643i \(0.816285\pi\)
\(504\) −0.0606047 + 0.00545627i −0.00269955 + 0.000243041i
\(505\) −16.7318 12.0524i −0.744556 0.536325i
\(506\) 4.84952 0.215587
\(507\) −17.0877 8.86791i −0.758890 0.393838i
\(508\) −0.312266 + 0.540860i −0.0138546 + 0.0239968i
\(509\) 17.6336 + 30.5422i 0.781594 + 1.35376i 0.931013 + 0.364987i \(0.118927\pi\)
−0.149418 + 0.988774i \(0.547740\pi\)
\(510\) 6.45545 9.86721i 0.285852 0.436927i
\(511\) 0.0738254 0.127869i 0.00326584 0.00565660i
\(512\) 1.00000i 0.0441942i
\(513\) −18.1685 + 13.5243i −0.802158 + 0.597112i
\(514\) −14.5720 −0.642745
\(515\) −10.2110 22.6849i −0.449952 0.999615i
\(516\) 6.46137 0.290273i 0.284446 0.0127785i
\(517\) −24.2943 + 14.0263i −1.06846 + 0.616876i
\(518\) −0.0286558 + 0.0496333i −0.00125906 + 0.00218076i
\(519\) 6.66345 12.8399i 0.292493 0.563608i
\(520\) 2.49105 + 1.79437i 0.109240 + 0.0786885i
\(521\) 21.0405 0.921799 0.460900 0.887452i \(-0.347527\pi\)
0.460900 + 0.887452i \(0.347527\pi\)
\(522\) −1.63985 18.2144i −0.0717741 0.797221i
\(523\) −12.7922 22.1567i −0.559362 0.968844i −0.997550 0.0699605i \(-0.977713\pi\)
0.438187 0.898884i \(-0.355621\pi\)
\(524\) 18.3765i 0.802780i
\(525\) −0.110451 + 0.136589i −0.00482047 + 0.00596122i
\(526\) −1.20097 + 0.693382i −0.0523649 + 0.0302329i
\(527\) −11.6530 6.72787i −0.507613 0.293071i
\(528\) −3.18465 + 6.13654i −0.138594 + 0.267059i
\(529\) 10.7620 18.6403i 0.467912 0.810448i
\(530\) −11.2539 25.0016i −0.488837 1.08600i
\(531\) −12.7909 + 27.6118i −0.555079 + 1.19825i
\(532\) −0.0757421 0.0456065i −0.00328384 0.00197729i
\(533\) 1.59694 0.0691713
\(534\) 22.1552 0.995309i 0.958751 0.0430712i
\(535\) −21.7055 + 9.77020i −0.938411 + 0.422402i
\(536\) 2.56216 1.47926i 0.110668 0.0638944i
\(537\) 0.339218 + 7.55087i 0.0146383 + 0.325844i
\(538\) 18.4612 10.6586i 0.795920 0.459525i
\(539\) 27.9397i 1.20345i
\(540\) −10.2542 5.46364i −0.441271 0.235118i
\(541\) 4.03165 + 6.98303i 0.173334 + 0.300224i 0.939584 0.342320i \(-0.111213\pi\)
−0.766249 + 0.642543i \(0.777879\pi\)
\(542\) −6.02509 + 3.47859i −0.258800 + 0.149418i
\(543\) 23.1265 + 36.2005i 0.992452 + 1.55351i
\(544\) 3.04450i 0.130532i
\(545\) 0.466347 4.61812i 0.0199761 0.197819i
\(546\) −0.00216472 0.0481858i −9.26413e−5 0.00206216i
\(547\) 18.8081 + 32.5766i 0.804176 + 1.39287i 0.916846 + 0.399241i \(0.130726\pi\)
−0.112670 + 0.993633i \(0.535940\pi\)
\(548\) 7.10557 12.3072i 0.303535 0.525738i
\(549\) 4.64179 + 6.59370i 0.198107 + 0.281412i
\(550\) 6.32204 + 18.9304i 0.269573 + 0.807193i
\(551\) 13.7067 22.7638i 0.583927 0.969770i
\(552\) −1.13288 1.77333i −0.0482186 0.0754779i
\(553\) −0.0985540 + 0.170701i −0.00419094 + 0.00725893i
\(554\) 9.42111 16.3178i 0.400265 0.693279i
\(555\) −9.76736 + 4.93512i −0.414601 + 0.209484i
\(556\) 7.37218 12.7690i 0.312650 0.541526i
\(557\) 3.23898 + 5.61008i 0.137240 + 0.237707i 0.926451 0.376415i \(-0.122843\pi\)
−0.789211 + 0.614122i \(0.789510\pi\)
\(558\) −5.57320 + 12.0309i −0.235932 + 0.509308i
\(559\) 5.12696i 0.216847i
\(560\) 0.00455684 0.0451253i 0.000192562 0.00190689i
\(561\) −9.69568 + 18.6827i −0.409352 + 0.788784i
\(562\) 27.3725i 1.15464i
\(563\) 23.6169i 0.995332i −0.867369 0.497666i \(-0.834191\pi\)
0.867369 0.497666i \(-0.165809\pi\)
\(564\) 10.8043 + 5.60707i 0.454944 + 0.236100i
\(565\) −14.2410 + 6.41025i −0.599125 + 0.269681i
\(566\) 6.19357 + 10.7276i 0.260335 + 0.450914i
\(567\) 0.0326057 + 0.179614i 0.00136931 + 0.00754308i
\(568\) −1.71618 0.990840i −0.0720095 0.0415747i
\(569\) −16.2844 −0.682676 −0.341338 0.939941i \(-0.610880\pi\)
−0.341338 + 0.939941i \(0.610880\pi\)
\(570\) −7.33497 15.2052i −0.307228 0.636876i
\(571\) −4.10720 −0.171881 −0.0859405 0.996300i \(-0.527389\pi\)
−0.0859405 + 0.996300i \(0.527389\pi\)
\(572\) −4.74612 2.74017i −0.198445 0.114572i
\(573\) 17.3089 0.777591i 0.723089 0.0324843i
\(574\) −0.0117961 0.0204315i −0.000492361 0.000852794i
\(575\) −5.95198 1.21447i −0.248215 0.0506469i
\(576\) 2.98792 0.269003i 0.124496 0.0112085i
\(577\) 25.1996i 1.04907i 0.851388 + 0.524537i \(0.175761\pi\)
−0.851388 + 0.524537i \(0.824239\pi\)
\(578\) 7.73102i 0.321568i
\(579\) −0.981642 0.509438i −0.0407956 0.0211715i
\(580\) 13.5621 + 1.36953i 0.563136 + 0.0568666i
\(581\) 0.143708i 0.00596201i
\(582\) −10.8455 16.9768i −0.449561 0.703709i
\(583\) 24.4718 + 42.3864i 1.01352 + 1.75547i
\(584\) −3.63971 + 6.30417i −0.150612 + 0.260868i
\(585\) 4.69134 7.92574i 0.193963 0.327689i
\(586\) −7.22966 + 12.5221i −0.298654 + 0.517285i
\(587\) 0.0827925 0.143401i 0.00341721 0.00591879i −0.864312 0.502956i \(-0.832246\pi\)
0.867729 + 0.497038i \(0.165579\pi\)
\(588\) 10.2168 6.52692i 0.421332 0.269165i
\(589\) −16.8582 + 9.32415i −0.694631 + 0.384195i
\(590\) −18.4040 13.2570i −0.757683 0.545781i
\(591\) −0.788160 17.5442i −0.0324206 0.721671i
\(592\) 1.41278 2.44701i 0.0580649 0.100571i
\(593\) 0.789202 + 1.36694i 0.0324086 + 0.0561334i 0.881775 0.471671i \(-0.156349\pi\)
−0.849366 + 0.527804i \(0.823016\pi\)
\(594\) 19.1922 + 7.86473i 0.787464 + 0.322694i
\(595\) 0.0138733 0.137384i 0.000568750 0.00563219i
\(596\) 11.8630i 0.485928i
\(597\) 13.6273 8.70573i 0.557728 0.356302i
\(598\) 1.44457 0.834021i 0.0590727 0.0341057i
\(599\) 9.04236 + 15.6618i 0.369461 + 0.639925i 0.989481 0.144661i \(-0.0462091\pi\)
−0.620021 + 0.784586i \(0.712876\pi\)
\(600\) 5.44542 6.73405i 0.222308 0.274917i
\(601\) 11.8894i 0.484978i −0.970154 0.242489i \(-0.922036\pi\)
0.970154 0.242489i \(-0.0779638\pi\)
\(602\) 0.0655950 0.0378713i 0.00267345 0.00154352i
\(603\) −5.10914 7.25758i −0.208060 0.295552i
\(604\) −14.0486 + 8.11097i −0.571630 + 0.330031i
\(605\) −4.52765 10.0586i −0.184075 0.408942i
\(606\) −0.716842 15.9566i −0.0291197 0.648195i
\(607\) −6.39493 −0.259562 −0.129781 0.991543i \(-0.541427\pi\)
−0.129781 + 0.991543i \(0.541427\pi\)
\(608\) 3.73421 + 2.24848i 0.151442 + 0.0911878i
\(609\) −0.115297 0.180478i −0.00467208 0.00731334i
\(610\) −5.48068 + 2.46699i −0.221906 + 0.0998856i
\(611\) −4.82449 + 8.35626i −0.195178 + 0.338058i
\(612\) 9.09671 0.818980i 0.367713 0.0331053i
\(613\) −27.7348 16.0127i −1.12020 0.646746i −0.178745 0.983895i \(-0.557204\pi\)
−0.941451 + 0.337150i \(0.890537\pi\)
\(614\) −24.6172 + 14.2128i −0.993470 + 0.573580i
\(615\) 0.250998 4.49782i 0.0101212 0.181369i
\(616\) 0.0809632i 0.00326210i
\(617\) −1.31439 2.27659i −0.0529153 0.0916520i 0.838354 0.545126i \(-0.183518\pi\)
−0.891270 + 0.453473i \(0.850185\pi\)
\(618\) 8.87619 17.1036i 0.357053 0.688009i
\(619\) −19.3010 −0.775773 −0.387886 0.921707i \(-0.626795\pi\)
−0.387886 + 0.921707i \(0.626795\pi\)
\(620\) −8.01892 5.77626i −0.322048 0.231980i
\(621\) −4.99381 + 3.86198i −0.200395 + 0.154976i
\(622\) 3.98966 6.91029i 0.159971 0.277077i
\(623\) 0.224917 0.129856i 0.00901111 0.00520257i
\(624\) 0.106724 + 2.37564i 0.00427238 + 0.0951018i
\(625\) −3.01850 24.8171i −0.120740 0.992684i
\(626\) −33.5288 −1.34008
\(627\) 15.7545 + 25.6901i 0.629176 + 1.02596i
\(628\) 12.9717i 0.517627i
\(629\) 4.30121 7.44991i 0.171500 0.297047i
\(630\) −0.136056 0.00147661i −0.00542061 5.88296e-5i
\(631\) −11.7467 20.3459i −0.467629 0.809956i 0.531687 0.846941i \(-0.321558\pi\)
−0.999316 + 0.0369844i \(0.988225\pi\)
\(632\) 4.85888 8.41583i 0.193276 0.334764i
\(633\) −20.6437 + 39.7785i −0.820512 + 1.58105i
\(634\) −8.58645 −0.341012
\(635\) −0.816224 + 1.13313i −0.0323909 + 0.0449668i
\(636\) 9.78271 18.8504i 0.387910 0.747467i
\(637\) 4.80508 + 8.32264i 0.190384 + 0.329755i
\(638\) −24.3330 −0.963352
\(639\) −2.49889 + 5.39435i −0.0988544 + 0.213397i
\(640\) −0.224660 + 2.22475i −0.00888047 + 0.0879411i
\(641\) 15.9663 27.6545i 0.630633 1.09229i −0.356790 0.934185i \(-0.616129\pi\)
0.987423 0.158103i \(-0.0505379\pi\)
\(642\) −16.3652 8.49299i −0.645884 0.335192i
\(643\) −9.38848 5.42044i −0.370246 0.213761i 0.303320 0.952889i \(-0.401905\pi\)
−0.673566 + 0.739127i \(0.735238\pi\)
\(644\) −0.0213411 0.0123213i −0.000840959 0.000485528i
\(645\) 14.4402 + 0.805826i 0.568581 + 0.0317294i
\(646\) 11.3688 + 6.84549i 0.447300 + 0.269332i
\(647\) 49.7921 1.95753 0.978765 0.204987i \(-0.0657153\pi\)
0.978765 + 0.204987i \(0.0657153\pi\)
\(648\) −1.60752 8.85527i −0.0631492 0.347868i
\(649\) 35.0646 + 20.2446i 1.37641 + 0.794669i
\(650\) 5.13885 + 4.55168i 0.201562 + 0.178532i
\(651\) 0.00696842 + 0.155115i 0.000273114 + 0.00607942i
\(652\) 14.5216 8.38408i 0.568712 0.328346i
\(653\) −18.9775 −0.742648 −0.371324 0.928503i \(-0.621096\pi\)
−0.371324 + 0.928503i \(0.621096\pi\)
\(654\) 3.02987 1.93561i 0.118477 0.0756885i
\(655\) −4.12846 + 40.8831i −0.161312 + 1.59744i
\(656\) 0.581569 + 1.00731i 0.0227065 + 0.0393287i
\(657\) 19.8154 + 9.17932i 0.773073 + 0.358119i
\(658\) 0.142548 0.00555710
\(659\) −9.69407 16.7906i −0.377627 0.654070i 0.613089 0.790014i \(-0.289927\pi\)
−0.990717 + 0.135944i \(0.956593\pi\)
\(660\) −8.46371 + 12.9368i −0.329449 + 0.503566i
\(661\) 14.0634 8.11950i 0.547002 0.315812i −0.200910 0.979610i \(-0.564390\pi\)
0.747912 + 0.663798i \(0.231056\pi\)
\(662\) −9.83167 + 17.0290i −0.382119 + 0.661849i
\(663\) 0.324922 + 7.23264i 0.0126189 + 0.280892i
\(664\) 7.08504i 0.274953i
\(665\) −0.158261 0.118479i −0.00613712 0.00459444i
\(666\) −7.69149 3.56301i −0.298039 0.138064i
\(667\) 3.70309 6.41394i 0.143384 0.248349i
\(668\) 19.7487 + 11.4019i 0.764098 + 0.441152i
\(669\) −30.9012 16.0366i −1.19471 0.620012i
\(670\) 6.03250 2.71538i 0.233056 0.104904i
\(671\) 9.29165 5.36454i 0.358700 0.207096i
\(672\) 0.0296059 0.0189136i 0.00114207 0.000729607i
\(673\) −23.2726 −0.897093 −0.448546 0.893759i \(-0.648058\pi\)
−0.448546 + 0.893759i \(0.648058\pi\)
\(674\) −10.4273 + 6.02018i −0.401643 + 0.231889i
\(675\) −21.5856 14.4590i −0.830831 0.556526i
\(676\) 11.1150 0.427499
\(677\) 29.3269i 1.12712i 0.826074 + 0.563561i \(0.190569\pi\)
−0.826074 + 0.563561i \(0.809431\pi\)
\(678\) −10.7373 5.57227i −0.412362 0.214002i
\(679\) −0.204307 0.117957i −0.00784058 0.00452676i
\(680\) −0.683977 + 6.77326i −0.0262293 + 0.259743i
\(681\) 43.5859 1.95807i 1.67022 0.0750334i
\(682\) 15.2782 + 8.82087i 0.585032 + 0.337769i
\(683\) 12.1600i 0.465290i −0.972562 0.232645i \(-0.925262\pi\)
0.972562 0.232645i \(-0.0747380\pi\)
\(684\) 5.71375 11.7624i 0.218471 0.449745i
\(685\) 18.5731 25.7842i 0.709641 0.985163i
\(686\) 0.141979 0.245914i 0.00542077 0.00938906i
\(687\) −2.14125 47.6634i −0.0816936 1.81847i
\(688\) −3.23394 + 1.86712i −0.123293 + 0.0711832i
\(689\) 14.5793 + 8.41733i 0.555425 + 0.320675i
\(690\) −2.12199 4.19973i −0.0807826 0.159881i
\(691\) 29.3470 1.11641 0.558206 0.829702i \(-0.311490\pi\)
0.558206 + 0.829702i \(0.311490\pi\)
\(692\) 8.35192i 0.317493i
\(693\) 0.241911 0.0217794i 0.00918945 0.000827330i
\(694\) −2.51733 + 1.45338i −0.0955565 + 0.0551696i
\(695\) 19.2700 26.7516i 0.730951 1.01475i
\(696\) 5.68435 + 8.89787i 0.215465 + 0.337273i
\(697\) 1.77059 + 3.06675i 0.0670658 + 0.116161i
\(698\) 18.4380 + 10.6452i 0.697888 + 0.402926i
\(699\) 2.27374 + 1.17999i 0.0860006 + 0.0446313i
\(700\) 0.0202757 0.0993689i 0.000766350 0.00375579i
\(701\) 5.24529 + 3.02837i 0.198112 + 0.114380i 0.595774 0.803152i \(-0.296845\pi\)
−0.397663 + 0.917532i \(0.630179\pi\)
\(702\) 7.06951 0.957938i 0.266821 0.0361550i
\(703\) −5.96104 10.7777i −0.224825 0.406487i
\(704\) 3.99162i 0.150440i
\(705\) 22.7773 + 14.9016i 0.857842 + 0.561229i
\(706\) 19.5491 + 11.2867i 0.735741 + 0.424780i
\(707\) −0.0935248 0.161990i −0.00351736 0.00609225i
\(708\) −0.788486 17.5514i −0.0296331 0.659622i
\(709\) 8.50340 + 14.7283i 0.319352 + 0.553134i 0.980353 0.197251i \(-0.0632014\pi\)
−0.661001 + 0.750385i \(0.729868\pi\)
\(710\) −3.59549 2.58993i −0.134936 0.0971984i
\(711\) −26.4528 12.2540i −0.992059 0.459562i
\(712\) −11.0888 + 6.40211i −0.415570 + 0.239929i
\(713\) −4.65020 + 2.68479i −0.174151 + 0.100546i
\(714\) 0.0901352 0.0575824i 0.00337323 0.00215497i
\(715\) −9.94333 7.16247i −0.371860 0.267861i
\(716\) −2.18195 3.77924i −0.0815432 0.141237i
\(717\) −15.5739 + 0.699647i −0.581618 + 0.0261288i
\(718\) −4.22900 7.32484i −0.157825 0.273361i
\(719\) 7.31586 + 4.22381i 0.272835 + 0.157522i 0.630176 0.776453i \(-0.282983\pi\)
−0.357340 + 0.933974i \(0.616316\pi\)
\(720\) 6.70781 + 0.0727995i 0.249985 + 0.00271308i
\(721\) 0.225659i 0.00840397i
\(722\) 16.7926 8.88869i 0.624956 0.330803i
\(723\) −20.2443 31.6889i −0.752893 1.17852i
\(724\) −21.4785 12.4006i −0.798243 0.460866i
\(725\) 29.8647 + 6.09373i 1.10915 + 0.226315i
\(726\) 3.93577 7.58388i 0.146070 0.281464i
\(727\) 34.9928 + 20.2031i 1.29781 + 0.749291i 0.980025 0.198872i \(-0.0637279\pi\)
0.317784 + 0.948163i \(0.397061\pi\)
\(728\) 0.0139241 + 0.0241172i 0.000516060 + 0.000893843i
\(729\) −26.0264 + 7.18522i −0.963940 + 0.266119i
\(730\) −9.51376 + 13.2075i −0.352120 + 0.488833i
\(731\) −9.84574 + 5.68444i −0.364158 + 0.210247i
\(732\) −4.13225 2.14450i −0.152732 0.0792629i
\(733\) 11.3658i 0.419804i −0.977722 0.209902i \(-0.932686\pi\)
0.977722 0.209902i \(-0.0673145\pi\)
\(734\) −34.0337 −1.25621
\(735\) 24.1961 12.2255i 0.892487 0.450944i
\(736\) 1.05215 + 0.607462i 0.0387829 + 0.0223913i
\(737\) −10.2272 + 5.90466i −0.376723 + 0.217501i
\(738\) 2.85330 2.00865i 0.105032 0.0739394i
\(739\) −12.1985 + 21.1285i −0.448731 + 0.777225i −0.998304 0.0582212i \(-0.981457\pi\)
0.549573 + 0.835446i \(0.314790\pi\)
\(740\) 3.69283 5.12659i 0.135751 0.188457i
\(741\) 9.11112 + 4.94305i 0.334705 + 0.181587i
\(742\) 0.248705i 0.00913025i
\(743\) 31.2915 + 18.0662i 1.14797 + 0.662783i 0.948393 0.317098i \(-0.102709\pi\)
0.199581 + 0.979881i \(0.436042\pi\)
\(744\) −0.343555 7.64741i −0.0125953 0.280368i
\(745\) 2.66514 26.3923i 0.0976433 0.966938i
\(746\) −21.1550 12.2138i −0.774538 0.447180i
\(747\) 21.1695 1.90590i 0.774552 0.0697332i
\(748\) 12.1525i 0.444339i
\(749\) −0.215917 −0.00788942
\(750\) 13.6276 13.7582i 0.497609 0.502380i
\(751\) 23.3795 13.4981i 0.853129 0.492554i −0.00857626 0.999963i \(-0.502730\pi\)
0.861705 + 0.507409i \(0.169397\pi\)
\(752\) −7.02786 −0.256280
\(753\) 9.65466 + 15.1127i 0.351835 + 0.550737i
\(754\) −7.24827 + 4.18479i −0.263966 + 0.152401i
\(755\) −33.0769 + 14.8887i −1.20379 + 0.541857i
\(756\) −0.0644763 0.0833722i −0.00234498 0.00303222i
\(757\) −43.6440 25.1979i −1.58627 0.915833i −0.993914 0.110155i \(-0.964865\pi\)
−0.592355 0.805677i \(-0.701802\pi\)
\(758\) 10.3552 17.9358i 0.376119 0.651457i
\(759\) 4.52204 + 7.07847i 0.164140 + 0.256932i
\(760\) 7.80256 + 5.84124i 0.283029 + 0.211884i
\(761\) 31.6203i 1.14623i 0.819474 + 0.573117i \(0.194266\pi\)
−0.819474 + 0.573117i \(0.805734\pi\)
\(762\) −1.08063 + 0.0485466i −0.0391471 + 0.00175866i
\(763\) 0.0210519 0.0364630i 0.000762130 0.00132005i
\(764\) −8.66318 + 5.00169i −0.313423 + 0.180955i
\(765\) 20.4219 + 0.221638i 0.738356 + 0.00801334i
\(766\) −14.8993 25.8063i −0.538333 0.932419i
\(767\) 13.9267 0.502863
\(768\) −1.45962 + 0.932471i −0.0526696 + 0.0336477i
\(769\) 24.8986 + 43.1256i 0.897866 + 1.55515i 0.830217 + 0.557440i \(0.188216\pi\)
0.0676486 + 0.997709i \(0.478450\pi\)
\(770\) −0.0181892 + 0.180123i −0.000655493 + 0.00649119i
\(771\) −13.5880 21.2697i −0.489360 0.766008i
\(772\) 0.638526 0.0229811
\(773\) −13.3636 + 7.71548i −0.480656 + 0.277507i −0.720690 0.693258i \(-0.756175\pi\)
0.240034 + 0.970764i \(0.422841\pi\)
\(774\) 6.44873 + 9.16049i 0.231795 + 0.329267i
\(775\) −16.5424