# Properties

 Label 570.2.n.a.179.1 Level $570$ Weight $2$ Character 570.179 Analytic conductor $4.551$ Analytic rank $0$ Dimension $80$ CM no Inner twists $8$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$570 = 2 \cdot 3 \cdot 5 \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 570.n (of order $$6$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$4.55147291521$$ Analytic rank: $$0$$ Dimension: $$80$$ Relative dimension: $$40$$ over $$\Q(\zeta_{6})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

## Embedding invariants

 Embedding label 179.1 Character $$\chi$$ $$=$$ 570.179 Dual form 570.2.n.a.449.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-0.866025 - 0.500000i) q^{2} +(-1.69438 - 0.359253i) q^{3} +(0.500000 + 0.866025i) q^{4} +(-0.161263 - 2.23025i) q^{5} +(1.28775 + 1.15831i) q^{6} +1.18214i q^{7} -1.00000i q^{8} +(2.74187 + 1.21743i) q^{9} +O(q^{10})$$ $$q+(-0.866025 - 0.500000i) q^{2} +(-1.69438 - 0.359253i) q^{3} +(0.500000 + 0.866025i) q^{4} +(-0.161263 - 2.23025i) q^{5} +(1.28775 + 1.15831i) q^{6} +1.18214i q^{7} -1.00000i q^{8} +(2.74187 + 1.21743i) q^{9} +(-0.975465 + 2.01208i) q^{10} +4.89120i q^{11} +(-0.536070 - 1.64701i) q^{12} +(-0.622803 - 1.07873i) q^{13} +(0.591070 - 1.02376i) q^{14} +(-0.527981 + 3.83683i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(0.318854 - 0.552271i) q^{17} +(-1.76582 - 2.42526i) q^{18} +(4.35888 + 0.0120744i) q^{19} +(1.85082 - 1.25478i) q^{20} +(0.424687 - 2.00300i) q^{21} +(2.44560 - 4.23590i) q^{22} +(0.859976 + 1.48952i) q^{23} +(-0.359253 + 1.69438i) q^{24} +(-4.94799 + 0.719314i) q^{25} +1.24561i q^{26} +(-4.20842 - 3.04781i) q^{27} +(-1.02376 + 0.591070i) q^{28} +(1.94156 + 3.36289i) q^{29} +(2.37566 - 3.05880i) q^{30} -6.45549i q^{31} +(0.866025 - 0.500000i) q^{32} +(1.75718 - 8.28757i) q^{33} +(-0.552271 + 0.318854i) q^{34} +(2.63646 - 0.190636i) q^{35} +(0.316615 + 2.98325i) q^{36} +9.66844 q^{37} +(-3.76887 - 2.18990i) q^{38} +(0.667731 + 2.05152i) q^{39} +(-2.23025 + 0.161263i) q^{40} +(6.08673 - 10.5425i) q^{41} +(-1.36929 + 1.52230i) q^{42} +(9.32139 + 5.38171i) q^{43} +(-4.23590 + 2.44560i) q^{44} +(2.27299 - 6.31138i) q^{45} -1.71995i q^{46} +(0.0980180 + 0.169772i) q^{47} +(1.15831 - 1.28775i) q^{48} +5.60255 q^{49} +(4.64474 + 1.85105i) q^{50} +(-0.738666 + 0.821210i) q^{51} +(0.622803 - 1.07873i) q^{52} +(-1.57394 + 0.908716i) q^{53} +(2.12069 + 4.74370i) q^{54} +(10.9086 - 0.788771i) q^{55} +1.18214 q^{56} +(-7.38128 - 1.58640i) q^{57} -3.88313i q^{58} +(-1.25875 + 2.18022i) q^{59} +(-3.58678 + 1.46117i) q^{60} +(-5.71356 - 9.89618i) q^{61} +(-3.22774 + 5.59061i) q^{62} +(-1.43917 + 3.24128i) q^{63} -1.00000 q^{64} +(-2.30539 + 1.56296i) q^{65} +(-5.66554 + 6.29865i) q^{66} +(2.67262 + 4.62912i) q^{67} +0.637707 q^{68} +(-0.922014 - 2.83277i) q^{69} +(-2.37856 - 1.15313i) q^{70} +(2.99286 - 5.18379i) q^{71} +(1.21743 - 2.74187i) q^{72} +(-8.20341 - 4.73624i) q^{73} +(-8.37312 - 4.83422i) q^{74} +(8.64221 + 0.558787i) q^{75} +(2.16898 + 3.78094i) q^{76} -5.78208 q^{77} +(0.447488 - 2.11053i) q^{78} +(6.74355 + 3.89339i) q^{79} +(2.01208 + 0.975465i) q^{80} +(6.03575 + 6.67606i) q^{81} +(-10.5425 + 6.08673i) q^{82} +8.21126 q^{83} +(1.94699 - 0.633709i) q^{84} +(-1.28312 - 0.622061i) q^{85} +(-5.38171 - 9.32139i) q^{86} +(-2.08163 - 6.39553i) q^{87} +4.89120 q^{88} +(2.46445 + 4.26855i) q^{89} +(-5.12416 + 4.32932i) q^{90} +(1.27520 - 0.736240i) q^{91} +(-0.859976 + 1.48952i) q^{92} +(-2.31915 + 10.9381i) q^{93} -0.196036i q^{94} +(-0.675999 - 9.72332i) q^{95} +(-1.64701 + 0.536070i) q^{96} +(-0.141542 + 0.245159i) q^{97} +(-4.85195 - 2.80127i) q^{98} +(-5.95467 + 13.4110i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$80q + 40q^{4} + O(q^{10})$$ $$80q + 40q^{4} + 30q^{15} - 40q^{16} + 8q^{19} + 8q^{25} - 4q^{30} + 48q^{39} + 12q^{45} - 128q^{49} - 36q^{54} + 12q^{55} + 30q^{60} - 24q^{61} - 80q^{64} + 4q^{66} + 36q^{70} + 16q^{76} + 24q^{79} + 32q^{81} - 8q^{85} - 54q^{90} + 24q^{91} - 60q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/570\mathbb{Z}\right)^\times$$.

 $$n$$ $$191$$ $$211$$ $$457$$ $$\chi(n)$$ $$-1$$ $$e\left(\frac{1}{6}\right)$$ $$-1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −0.866025 0.500000i −0.612372 0.353553i
$$3$$ −1.69438 0.359253i −0.978253 0.207415i
$$4$$ 0.500000 + 0.866025i 0.250000 + 0.433013i
$$5$$ −0.161263 2.23025i −0.0721192 0.997396i
$$6$$ 1.28775 + 1.15831i 0.525723 + 0.472880i
$$7$$ 1.18214i 0.446807i 0.974726 + 0.223403i $$0.0717167\pi$$
−0.974726 + 0.223403i $$0.928283\pi$$
$$8$$ 1.00000i 0.353553i
$$9$$ 2.74187 + 1.21743i 0.913958 + 0.405809i
$$10$$ −0.975465 + 2.01208i −0.308469 + 0.636276i
$$11$$ 4.89120i 1.47475i 0.675483 + 0.737376i $$0.263935\pi$$
−0.675483 + 0.737376i $$0.736065\pi$$
$$12$$ −0.536070 1.64701i −0.154750 0.475450i
$$13$$ −0.622803 1.07873i −0.172734 0.299185i 0.766640 0.642077i $$-0.221927\pi$$
−0.939375 + 0.342892i $$0.888594\pi$$
$$14$$ 0.591070 1.02376i 0.157970 0.273612i
$$15$$ −0.527981 + 3.83683i −0.136324 + 0.990664i
$$16$$ −0.500000 + 0.866025i −0.125000 + 0.216506i
$$17$$ 0.318854 0.552271i 0.0773334 0.133945i −0.824765 0.565475i $$-0.808693\pi$$
0.902099 + 0.431530i $$0.142026\pi$$
$$18$$ −1.76582 2.42526i −0.416208 0.571639i
$$19$$ 4.35888 + 0.0120744i 0.999996 + 0.00277005i
$$20$$ 1.85082 1.25478i 0.413855 0.280578i
$$21$$ 0.424687 2.00300i 0.0926744 0.437090i
$$22$$ 2.44560 4.23590i 0.521403 0.903097i
$$23$$ 0.859976 + 1.48952i 0.179317 + 0.310587i 0.941647 0.336602i $$-0.109278\pi$$
−0.762329 + 0.647189i $$0.775944\pi$$
$$24$$ −0.359253 + 1.69438i −0.0733323 + 0.345865i
$$25$$ −4.94799 + 0.719314i −0.989598 + 0.143863i
$$26$$ 1.24561i 0.244283i
$$27$$ −4.20842 3.04781i −0.809912 0.586552i
$$28$$ −1.02376 + 0.591070i −0.193473 + 0.111702i
$$29$$ 1.94156 + 3.36289i 0.360539 + 0.624472i 0.988050 0.154136i $$-0.0492594\pi$$
−0.627511 + 0.778608i $$0.715926\pi$$
$$30$$ 2.37566 3.05880i 0.433734 0.558458i
$$31$$ 6.45549i 1.15944i −0.814816 0.579720i $$-0.803162\pi$$
0.814816 0.579720i $$-0.196838\pi$$
$$32$$ 0.866025 0.500000i 0.153093 0.0883883i
$$33$$ 1.75718 8.28757i 0.305886 1.44268i
$$34$$ −0.552271 + 0.318854i −0.0947137 + 0.0546830i
$$35$$ 2.63646 0.190636i 0.445643 0.0322233i
$$36$$ 0.316615 + 2.98325i 0.0527692 + 0.497208i
$$37$$ 9.66844 1.58948 0.794741 0.606949i $$-0.207607\pi$$
0.794741 + 0.606949i $$0.207607\pi$$
$$38$$ −3.76887 2.18990i −0.611391 0.355248i
$$39$$ 0.667731 + 2.05152i 0.106923 + 0.328506i
$$40$$ −2.23025 + 0.161263i −0.352633 + 0.0254980i
$$41$$ 6.08673 10.5425i 0.950588 1.64647i 0.206432 0.978461i $$-0.433815\pi$$
0.744156 0.668006i $$-0.232852\pi$$
$$42$$ −1.36929 + 1.52230i −0.211286 + 0.234896i
$$43$$ 9.32139 + 5.38171i 1.42150 + 0.820703i 0.996427 0.0844573i $$-0.0269157\pi$$
0.425071 + 0.905160i $$0.360249\pi$$
$$44$$ −4.23590 + 2.44560i −0.638586 + 0.368688i
$$45$$ 2.27299 6.31138i 0.338838 0.940845i
$$46$$ 1.71995i 0.253593i
$$47$$ 0.0980180 + 0.169772i 0.0142974 + 0.0247638i 0.873086 0.487567i $$-0.162116\pi$$
−0.858788 + 0.512331i $$0.828782\pi$$
$$48$$ 1.15831 1.28775i 0.167188 0.185871i
$$49$$ 5.60255 0.800364
$$50$$ 4.64474 + 1.85105i 0.656865 + 0.261778i
$$51$$ −0.738666 + 0.821210i −0.103434 + 0.114992i
$$52$$ 0.622803 1.07873i 0.0863672 0.149592i
$$53$$ −1.57394 + 0.908716i −0.216198 + 0.124822i −0.604188 0.796841i $$-0.706503\pi$$
0.387991 + 0.921663i $$0.373169\pi$$
$$54$$ 2.12069 + 4.74370i 0.288590 + 0.645535i
$$55$$ 10.9086 0.788771i 1.47091 0.106358i
$$56$$ 1.18214 0.157970
$$57$$ −7.38128 1.58640i −0.977675 0.210124i
$$58$$ 3.88313i 0.509879i
$$59$$ −1.25875 + 2.18022i −0.163876 + 0.283841i −0.936255 0.351320i $$-0.885733\pi$$
0.772380 + 0.635161i $$0.219066\pi$$
$$60$$ −3.58678 + 1.46117i −0.463051 + 0.188636i
$$61$$ −5.71356 9.89618i −0.731547 1.26708i −0.956222 0.292642i $$-0.905466\pi$$
0.224675 0.974434i $$-0.427868\pi$$
$$62$$ −3.22774 + 5.59061i −0.409924 + 0.710009i
$$63$$ −1.43917 + 3.24128i −0.181318 + 0.408363i
$$64$$ −1.00000 −0.125000
$$65$$ −2.30539 + 1.56296i −0.285948 + 0.193862i
$$66$$ −5.66554 + 6.29865i −0.697380 + 0.775311i
$$67$$ 2.67262 + 4.62912i 0.326513 + 0.565537i 0.981817 0.189828i $$-0.0607931\pi$$
−0.655305 + 0.755365i $$0.727460\pi$$
$$68$$ 0.637707 0.0773334
$$69$$ −0.922014 2.83277i −0.110997 0.341026i
$$70$$ −2.37856 1.15313i −0.284292 0.137826i
$$71$$ 2.99286 5.18379i 0.355188 0.615203i −0.631962 0.774999i $$-0.717750\pi$$
0.987150 + 0.159796i $$0.0510837\pi$$
$$72$$ 1.21743 2.74187i 0.143475 0.323133i
$$73$$ −8.20341 4.73624i −0.960136 0.554335i −0.0639213 0.997955i $$-0.520361\pi$$
−0.896215 + 0.443620i $$0.853694\pi$$
$$74$$ −8.37312 4.83422i −0.973355 0.561967i
$$75$$ 8.64221 + 0.558787i 0.997916 + 0.0645232i
$$76$$ 2.16898 + 3.78094i 0.248800 + 0.433704i
$$77$$ −5.78208 −0.658929
$$78$$ 0.447488 2.11053i 0.0506680 0.238971i
$$79$$ 6.74355 + 3.89339i 0.758708 + 0.438040i 0.828832 0.559498i $$-0.189006\pi$$
−0.0701234 + 0.997538i $$0.522339\pi$$
$$80$$ 2.01208 + 0.975465i 0.224957 + 0.109060i
$$81$$ 6.03575 + 6.67606i 0.670639 + 0.741784i
$$82$$ −10.5425 + 6.08673i −1.16423 + 0.672167i
$$83$$ 8.21126 0.901303 0.450652 0.892700i $$-0.351192\pi$$
0.450652 + 0.892700i $$0.351192\pi$$
$$84$$ 1.94699 0.633709i 0.212434 0.0691433i
$$85$$ −1.28312 0.622061i −0.139174 0.0674720i
$$86$$ −5.38171 9.32139i −0.580324 1.00515i
$$87$$ −2.08163 6.39553i −0.223174 0.685673i
$$88$$ 4.89120 0.521403
$$89$$ 2.46445 + 4.26855i 0.261231 + 0.452465i 0.966569 0.256406i $$-0.0825383\pi$$
−0.705338 + 0.708871i $$0.749205\pi$$
$$90$$ −5.12416 + 4.32932i −0.540134 + 0.456350i
$$91$$ 1.27520 0.736240i 0.133678 0.0771789i
$$92$$ −0.859976 + 1.48952i −0.0896587 + 0.155294i
$$93$$ −2.31915 + 10.9381i −0.240485 + 1.13423i
$$94$$ 0.196036i 0.0202196i
$$95$$ −0.675999 9.72332i −0.0693560 0.997592i
$$96$$ −1.64701 + 0.536070i −0.168097 + 0.0547124i
$$97$$ −0.141542 + 0.245159i −0.0143715 + 0.0248921i −0.873122 0.487502i $$-0.837908\pi$$
0.858750 + 0.512394i $$0.171241\pi$$
$$98$$ −4.85195 2.80127i −0.490121 0.282971i
$$99$$ −5.95467 + 13.4110i −0.598467 + 1.34786i
$$100$$ −3.09694 3.92543i −0.309694 0.392543i
$$101$$ −14.0883 + 8.13386i −1.40183 + 0.809349i −0.994581 0.103966i $$-0.966847\pi$$
−0.407254 + 0.913315i $$0.633513\pi$$
$$102$$ 1.05031 0.341856i 0.103996 0.0338487i
$$103$$ −4.88946 −0.481772 −0.240886 0.970553i $$-0.577438\pi$$
−0.240886 + 0.970553i $$0.577438\pi$$
$$104$$ −1.07873 + 0.622803i −0.105778 + 0.0610708i
$$105$$ −4.53566 0.624147i −0.442635 0.0609105i
$$106$$ 1.81743 0.176525
$$107$$ 4.22366i 0.408317i 0.978938 + 0.204158i $$0.0654458\pi$$
−0.978938 + 0.204158i $$0.934554\pi$$
$$108$$ 0.535272 5.16851i 0.0515066 0.497340i
$$109$$ 6.04292 + 3.48888i 0.578807 + 0.334174i 0.760659 0.649151i $$-0.224876\pi$$
−0.181852 + 0.983326i $$0.558209\pi$$
$$110$$ −9.84148 4.77119i −0.938349 0.454915i
$$111$$ −16.3821 3.47342i −1.55492 0.329682i
$$112$$ −1.02376 0.591070i −0.0967365 0.0558508i
$$113$$ 2.46652i 0.232031i 0.993247 + 0.116016i $$0.0370122\pi$$
−0.993247 + 0.116016i $$0.962988\pi$$
$$114$$ 5.59918 + 5.06450i 0.524411 + 0.474334i
$$115$$ 3.18332 2.15816i 0.296846 0.201250i
$$116$$ −1.94156 + 3.36289i −0.180270 + 0.312236i
$$117$$ −0.394378 3.71595i −0.0364603 0.343540i
$$118$$ 2.18022 1.25875i 0.200706 0.115878i
$$119$$ 0.652861 + 0.376930i 0.0598477 + 0.0345531i
$$120$$ 3.83683 + 0.527981i 0.350253 + 0.0481978i
$$121$$ −12.9238 −1.17489
$$122$$ 11.4271i 1.03456i
$$123$$ −14.1007 + 15.6764i −1.27142 + 1.41349i
$$124$$ 5.59061 3.22774i 0.502052 0.289860i
$$125$$ 2.40217 + 10.9192i 0.214857 + 0.976646i
$$126$$ 2.86699 2.08744i 0.255412 0.185964i
$$127$$ −3.48711 6.03986i −0.309431 0.535951i 0.668807 0.743436i $$-0.266805\pi$$
−0.978238 + 0.207485i $$0.933472\pi$$
$$128$$ 0.866025 + 0.500000i 0.0765466 + 0.0441942i
$$129$$ −13.8606 12.4674i −1.22036 1.09769i
$$130$$ 2.77801 0.200871i 0.243647 0.0176175i
$$131$$ 12.2589 + 7.07770i 1.07107 + 0.618382i 0.928473 0.371399i $$-0.121122\pi$$
0.142596 + 0.989781i $$0.454455\pi$$
$$132$$ 8.05583 2.62202i 0.701170 0.228218i
$$133$$ −0.0142736 + 5.15281i −0.00123768 + 0.446805i
$$134$$ 5.34524i 0.461759i
$$135$$ −6.11871 + 9.87732i −0.526615 + 0.850104i
$$136$$ −0.552271 0.318854i −0.0473568 0.0273415i
$$137$$ 6.51986 + 11.2927i 0.557029 + 0.964803i 0.997743 + 0.0671547i $$0.0213921\pi$$
−0.440714 + 0.897648i $$0.645275\pi$$
$$138$$ −0.617899 + 2.91426i −0.0525990 + 0.248078i
$$139$$ 11.0177 + 19.0832i 0.934507 + 1.61861i 0.775511 + 0.631334i $$0.217492\pi$$
0.158995 + 0.987279i $$0.449175\pi$$
$$140$$ 1.48333 + 2.18792i 0.125364 + 0.184913i
$$141$$ −0.105089 0.322872i −0.00885008 0.0271908i
$$142$$ −5.18379 + 2.99286i −0.435014 + 0.251156i
$$143$$ 5.27626 3.04625i 0.441223 0.254740i
$$144$$ −2.42526 + 1.76582i −0.202105 + 0.147152i
$$145$$ 7.18696 4.87247i 0.596844 0.404637i
$$146$$ 4.73624 + 8.20341i 0.391974 + 0.678919i
$$147$$ −9.49287 2.01273i −0.782958 0.166007i
$$148$$ 4.83422 + 8.37312i 0.397371 + 0.688266i
$$149$$ −4.59319 2.65188i −0.376289 0.217251i 0.299913 0.953966i $$-0.403042\pi$$
−0.676203 + 0.736716i $$0.736376\pi$$
$$150$$ −7.20498 4.80503i −0.588284 0.392329i
$$151$$ 19.6711i 1.60081i −0.599460 0.800405i $$-0.704618\pi$$
0.599460 0.800405i $$-0.295382\pi$$
$$152$$ 0.0120744 4.35888i 0.000979359 0.353552i
$$153$$ 1.54661 1.12608i 0.125036 0.0910379i
$$154$$ 5.00743 + 2.89104i 0.403510 + 0.232966i
$$155$$ −14.3973 + 1.04103i −1.15642 + 0.0836178i
$$156$$ −1.44280 + 1.60403i −0.115517 + 0.128425i
$$157$$ −12.6818 7.32182i −1.01211 0.584345i −0.100304 0.994957i $$-0.531982\pi$$
−0.911810 + 0.410612i $$0.865315\pi$$
$$158$$ −3.89339 6.74355i −0.309741 0.536488i
$$159$$ 2.99332 0.974270i 0.237386 0.0772647i
$$160$$ −1.25478 1.85082i −0.0991991 0.146320i
$$161$$ −1.76082 + 1.01661i −0.138772 + 0.0801202i
$$162$$ −1.88908 8.79951i −0.148420 0.691355i
$$163$$ 10.9889i 0.860718i 0.902658 + 0.430359i $$0.141613\pi$$
−0.902658 + 0.430359i $$0.858387\pi$$
$$164$$ 12.1735 0.950588
$$165$$ −18.7667 2.58246i −1.46098 0.201044i
$$166$$ −7.11116 4.10563i −0.551933 0.318659i
$$167$$ −13.1964 + 7.61896i −1.02117 + 0.589573i −0.914443 0.404715i $$-0.867371\pi$$
−0.106728 + 0.994288i $$0.534037\pi$$
$$168$$ −2.00300 0.424687i −0.154535 0.0327653i
$$169$$ 5.72423 9.91466i 0.440326 0.762666i
$$170$$ 0.800183 + 1.18028i 0.0613712 + 0.0905234i
$$171$$ 11.9368 + 5.33972i 0.912830 + 0.408339i
$$172$$ 10.7634i 0.820703i
$$173$$ 20.3554 + 11.7522i 1.54759 + 0.893501i 0.998325 + 0.0578530i $$0.0184255\pi$$
0.549265 + 0.835648i $$0.314908\pi$$
$$174$$ −1.39503 + 6.57951i −0.105757 + 0.498791i
$$175$$ −0.850329 5.84921i −0.0642788 0.442159i
$$176$$ −4.23590 2.44560i −0.319293 0.184344i
$$177$$ 2.91606 3.24193i 0.219185 0.243678i
$$178$$ 4.92889i 0.369436i
$$179$$ −7.26697 −0.543159 −0.271579 0.962416i $$-0.587546\pi$$
−0.271579 + 0.962416i $$0.587546\pi$$
$$180$$ 6.60231 1.18722i 0.492107 0.0884900i
$$181$$ −6.11788 + 3.53216i −0.454738 + 0.262543i −0.709829 0.704374i $$-0.751228\pi$$
0.255091 + 0.966917i $$0.417895\pi$$
$$182$$ −1.47248 −0.109147
$$183$$ 6.12573 + 18.8205i 0.452827 + 1.39125i
$$184$$ 1.48952 0.859976i 0.109809 0.0633983i
$$185$$ −1.55917 21.5630i −0.114632 1.58534i
$$186$$ 7.47748 8.31307i 0.548276 0.609544i
$$187$$ 2.70127 + 1.55958i 0.197536 + 0.114048i
$$188$$ −0.0980180 + 0.169772i −0.00714870 + 0.0123819i
$$189$$ 3.60294 4.97494i 0.262075 0.361874i
$$190$$ −4.27623 + 8.75864i −0.310230 + 0.635419i
$$191$$ 7.51033i 0.543429i −0.962378 0.271714i $$-0.912409\pi$$
0.962378 0.271714i $$-0.0875906\pi$$
$$192$$ 1.69438 + 0.359253i 0.122282 + 0.0259269i
$$193$$ 5.20366 9.01300i 0.374568 0.648770i −0.615695 0.787985i $$-0.711125\pi$$
0.990262 + 0.139215i $$0.0444579\pi$$
$$194$$ 0.245159 0.141542i 0.0176014 0.0101622i
$$195$$ 4.46771 1.82004i 0.319940 0.130336i
$$196$$ 2.80127 + 4.85195i 0.200091 + 0.346568i
$$197$$ 20.8294 1.48403 0.742017 0.670381i $$-0.233869\pi$$
0.742017 + 0.670381i $$0.233869\pi$$
$$198$$ 11.8624 8.63697i 0.843026 0.613803i
$$199$$ 5.37464 + 9.30915i 0.380998 + 0.659908i 0.991205 0.132334i $$-0.0422470\pi$$
−0.610207 + 0.792242i $$0.708914\pi$$
$$200$$ 0.719314 + 4.94799i 0.0508632 + 0.349876i
$$201$$ −2.86542 8.80365i −0.202111 0.620962i
$$202$$ 16.2677 1.14459
$$203$$ −3.97540 + 2.29520i −0.279018 + 0.161091i
$$204$$ −1.08052 0.229098i −0.0756516 0.0160401i
$$205$$ −24.4940 11.8748i −1.71073 0.829371i
$$206$$ 4.23439 + 2.44473i 0.295024 + 0.170332i
$$207$$ 0.544564 + 5.13104i 0.0378498 + 0.356632i
$$208$$ 1.24561 0.0863672
$$209$$ −0.0590580 + 21.3202i −0.00408513 + 1.47475i
$$210$$ 3.61593 + 2.80836i 0.249523 + 0.193795i
$$211$$ −3.29761 1.90388i −0.227017 0.131068i 0.382178 0.924089i $$-0.375174\pi$$
−0.609195 + 0.793020i $$0.708507\pi$$
$$212$$ −1.57394 0.908716i −0.108099 0.0624109i
$$213$$ −6.93335 + 7.70814i −0.475066 + 0.528153i
$$214$$ 2.11183 3.65780i 0.144362 0.250042i
$$215$$ 10.4993 21.6569i 0.716048 1.47699i
$$216$$ −3.04781 + 4.20842i −0.207377 + 0.286347i
$$217$$ 7.63128 0.518045
$$218$$ −3.48888 6.04292i −0.236297 0.409278i
$$219$$ 12.1982 + 10.9721i 0.824279 + 0.741426i
$$220$$ 6.13738 + 9.05271i 0.413782 + 0.610334i
$$221$$ −0.794332 −0.0534326
$$222$$ 12.4506 + 11.1991i 0.835627 + 0.751634i
$$223$$ −1.73860 + 3.01134i −0.116425 + 0.201654i −0.918349 0.395773i $$-0.870477\pi$$
0.801923 + 0.597427i $$0.203810\pi$$
$$224$$ 0.591070 + 1.02376i 0.0394925 + 0.0684030i
$$225$$ −14.4425 4.05154i −0.962832 0.270103i
$$226$$ 1.23326 2.13607i 0.0820354 0.142089i
$$227$$ 19.6305i 1.30292i −0.758682 0.651461i $$-0.774156\pi$$
0.758682 0.651461i $$-0.225844\pi$$
$$228$$ −2.31678 7.18558i −0.153432 0.475877i
$$229$$ −10.1213 −0.668834 −0.334417 0.942425i $$-0.608539\pi$$
−0.334417 + 0.942425i $$0.608539\pi$$
$$230$$ −3.83592 + 0.277365i −0.252933 + 0.0182889i
$$231$$ 9.79706 + 2.07723i 0.644599 + 0.136672i
$$232$$ 3.36289 1.94156i 0.220784 0.127470i
$$233$$ 6.21846 10.7707i 0.407385 0.705611i −0.587211 0.809434i $$-0.699774\pi$$
0.994596 + 0.103823i $$0.0331075\pi$$
$$234$$ −1.51643 + 3.41529i −0.0991323 + 0.223265i
$$235$$ 0.362827 0.245982i 0.0236682 0.0160461i
$$236$$ −2.51751 −0.163876
$$237$$ −10.0274 9.01954i −0.651353 0.585882i
$$238$$ −0.376930 0.652861i −0.0244327 0.0423187i
$$239$$ 2.35924i 0.152607i 0.997085 + 0.0763033i $$0.0243117\pi$$
−0.997085 + 0.0763033i $$0.975688\pi$$
$$240$$ −3.05880 2.37566i −0.197445 0.153348i
$$241$$ −21.7637 + 12.5653i −1.40193 + 0.809402i −0.994590 0.103877i $$-0.966875\pi$$
−0.407335 + 0.913279i $$0.633542\pi$$
$$242$$ 11.1924 + 6.46191i 0.719472 + 0.415387i
$$243$$ −7.82848 13.4802i −0.502197 0.864753i
$$244$$ 5.71356 9.89618i 0.365773 0.633538i
$$245$$ −0.903485 12.4951i −0.0577216 0.798280i
$$246$$ 20.0498 6.52583i 1.27833 0.416071i
$$247$$ −2.70170 4.70956i −0.171905 0.299662i
$$248$$ −6.45549 −0.409924
$$249$$ −13.9130 2.94992i −0.881703 0.186944i
$$250$$ 3.37927 10.6574i 0.213724 0.674034i
$$251$$ −0.386534 + 0.223165i −0.0243978 + 0.0140861i −0.512149 0.858896i $$-0.671151\pi$$
0.487752 + 0.872983i $$0.337817\pi$$
$$252$$ −3.52661 + 0.374284i −0.222156 + 0.0235776i
$$253$$ −7.28555 + 4.20632i −0.458039 + 0.264449i
$$254$$ 6.97423i 0.437602i
$$255$$ 1.95062 + 1.51497i 0.122152 + 0.0948714i
$$256$$ −0.500000 0.866025i −0.0312500 0.0541266i
$$257$$ 15.2017 8.77669i 0.948254 0.547475i 0.0557162 0.998447i $$-0.482256\pi$$
0.892538 + 0.450972i $$0.148922\pi$$
$$258$$ 5.76994 + 17.7274i 0.359221 + 1.10366i
$$259$$ 11.4294i 0.710191i
$$260$$ −2.50626 1.21504i −0.155432 0.0753538i
$$261$$ 1.22946 + 11.5843i 0.0761015 + 0.717051i
$$262$$ −7.07770 12.2589i −0.437262 0.757360i
$$263$$ −3.13559 + 5.43101i −0.193349 + 0.334890i −0.946358 0.323120i $$-0.895268\pi$$
0.753009 + 0.658010i $$0.228602\pi$$
$$264$$ −8.28757 1.75718i −0.510065 0.108147i
$$265$$ 2.28048 + 3.36374i 0.140089 + 0.206633i
$$266$$ 2.58876 4.45532i 0.158727 0.273173i
$$267$$ −2.64223 8.11792i −0.161702 0.496809i
$$268$$ −2.67262 + 4.62912i −0.163256 + 0.282768i
$$269$$ 5.87519 10.1761i 0.358217 0.620450i −0.629446 0.777044i $$-0.716718\pi$$
0.987663 + 0.156594i $$0.0500515\pi$$
$$270$$ 10.2376 5.49465i 0.623041 0.334394i
$$271$$ 4.03454 6.98803i 0.245081 0.424493i −0.717073 0.696998i $$-0.754519\pi$$
0.962154 + 0.272505i $$0.0878521\pi$$
$$272$$ 0.318854 + 0.552271i 0.0193333 + 0.0334863i
$$273$$ −2.42518 + 0.789351i −0.146779 + 0.0477737i
$$274$$ 13.0397i 0.787758i
$$275$$ −3.51830 24.2016i −0.212162 1.45941i
$$276$$ 1.99225 2.21487i 0.119919 0.133320i
$$277$$ 6.18038i 0.371343i −0.982612 0.185671i $$-0.940554\pi$$
0.982612 0.185671i $$-0.0594460\pi$$
$$278$$ 22.0353i 1.32159i
$$279$$ 7.85907 17.7001i 0.470510 1.05968i
$$280$$ −0.190636 2.63646i −0.0113927 0.157559i
$$281$$ −10.3319 17.8954i −0.616352 1.06755i −0.990146 0.140041i $$-0.955277\pi$$
0.373794 0.927512i $$-0.378057\pi$$
$$282$$ −0.0704266 + 0.332160i −0.00419384 + 0.0197799i
$$283$$ −14.3170 8.26590i −0.851055 0.491357i 0.00995159 0.999950i $$-0.496832\pi$$
−0.861007 + 0.508594i $$0.830166\pi$$
$$284$$ 5.98573 0.355188
$$285$$ −2.34773 + 16.7179i −0.139068 + 0.990283i
$$286$$ −6.09250 −0.360257
$$287$$ 12.4627 + 7.19537i 0.735652 + 0.424729i
$$288$$ 2.98325 0.316615i 0.175789 0.0186567i
$$289$$ 8.29666 + 14.3702i 0.488039 + 0.845309i
$$290$$ −8.66032 + 0.626206i −0.508552 + 0.0367721i
$$291$$ 0.327901 0.364543i 0.0192219 0.0213699i
$$292$$ 9.47248i 0.554335i
$$293$$ 0.128937i 0.00753260i 0.999993 + 0.00376630i $$0.00119885\pi$$
−0.999993 + 0.00376630i $$0.998801\pi$$
$$294$$ 7.21470 + 6.48951i 0.420770 + 0.378476i
$$295$$ 5.06543 + 2.45574i 0.294920 + 0.142979i
$$296$$ 9.66844i 0.561967i
$$297$$ 14.9075 20.5842i 0.865019 1.19442i
$$298$$ 2.65188 + 4.59319i 0.153619 + 0.266077i
$$299$$ 1.07119 1.85536i 0.0619486 0.107298i
$$300$$ 3.83718 + 7.76377i 0.221540 + 0.448241i
$$301$$ −6.36193 + 11.0192i −0.366695 + 0.635135i
$$302$$ −9.83554 + 17.0356i −0.565971 + 0.980291i
$$303$$ 26.7930 8.72063i 1.53922 0.500987i
$$304$$ −2.18990 + 3.76887i −0.125599 + 0.216159i
$$305$$ −21.1495 + 14.3385i −1.21102 + 0.821022i
$$306$$ −1.90244 + 0.201908i −0.108755 + 0.0115423i
$$307$$ −10.9073 + 18.8920i −0.622514 + 1.07823i 0.366502 + 0.930417i $$0.380555\pi$$
−0.989016 + 0.147808i $$0.952778\pi$$
$$308$$ −2.89104 5.00743i −0.164732 0.285325i
$$309$$ 8.28462 + 1.75655i 0.471295 + 0.0999268i
$$310$$ 12.9890 + 6.29710i 0.737723 + 0.357651i
$$311$$ 26.0604i 1.47775i 0.673844 + 0.738874i $$0.264642\pi$$
−0.673844 + 0.738874i $$0.735358\pi$$
$$312$$ 2.05152 0.667731i 0.116144 0.0378028i
$$313$$ 29.2035 16.8606i 1.65068 0.953019i 0.673884 0.738837i $$-0.264625\pi$$
0.976794 0.214182i $$-0.0687086\pi$$
$$314$$ 7.32182 + 12.6818i 0.413194 + 0.715673i
$$315$$ 7.46093 + 2.68700i 0.420376 + 0.151395i
$$316$$ 7.78678i 0.438040i
$$317$$ 17.9461 10.3612i 1.00795 0.581941i 0.0973601 0.995249i $$-0.468960\pi$$
0.910591 + 0.413308i $$0.135627\pi$$
$$318$$ −3.07943 0.652918i −0.172686 0.0366138i
$$319$$ −16.4485 + 9.49657i −0.920941 + 0.531706i
$$320$$ 0.161263 + 2.23025i 0.00901489 + 0.124675i
$$321$$ 1.51736 7.15651i 0.0846910 0.399437i
$$322$$ 2.03322 0.113307
$$323$$ 1.39651 2.40343i 0.0777041 0.133731i
$$324$$ −2.76376 + 8.56514i −0.153542 + 0.475841i
$$325$$ 3.85756 + 4.88953i 0.213979 + 0.271223i
$$326$$ 5.49446 9.51668i 0.304310 0.527080i
$$327$$ −8.98564 8.08245i −0.496907 0.446960i
$$328$$ −10.5425 6.08673i −0.582114 0.336084i
$$329$$ −0.200694 + 0.115871i −0.0110646 + 0.00638817i
$$330$$ 14.9612 + 11.6198i 0.823586 + 0.639650i
$$331$$ 13.3818i 0.735532i 0.929918 + 0.367766i $$0.119877\pi$$
−0.929918 + 0.367766i $$0.880123\pi$$
$$332$$ 4.10563 + 7.11116i 0.225326 + 0.390276i
$$333$$ 26.5097 + 11.7706i 1.45272 + 0.645026i
$$334$$ 15.2379 0.833782
$$335$$ 9.89307 6.70711i 0.540516 0.366449i
$$336$$ 1.52230 + 1.36929i 0.0830485 + 0.0747008i
$$337$$ −9.45399 + 16.3748i −0.514992 + 0.891992i 0.484857 + 0.874593i $$0.338872\pi$$
−0.999849 + 0.0173983i $$0.994462\pi$$
$$338$$ −9.91466 + 5.72423i −0.539287 + 0.311357i
$$339$$ 0.886107 4.17924i 0.0481267 0.226985i
$$340$$ −0.102839 1.42224i −0.00557722 0.0771320i
$$341$$ 31.5751 1.70989
$$342$$ −7.66772 10.5927i −0.414623 0.572790i
$$343$$ 14.8980i 0.804414i
$$344$$ 5.38171 9.32139i 0.290162 0.502576i
$$345$$ −6.16909 + 2.51314i −0.332133 + 0.135303i
$$346$$ −11.7522 20.3554i −0.631801 1.09431i
$$347$$ −10.2528 + 17.7584i −0.550401 + 0.953323i 0.447844 + 0.894112i $$0.352192\pi$$
−0.998245 + 0.0592114i $$0.981141\pi$$
$$348$$ 4.49788 5.00051i 0.241112 0.268055i
$$349$$ −18.3965 −0.984740 −0.492370 0.870386i $$-0.663869\pi$$
−0.492370 + 0.870386i $$0.663869\pi$$
$$350$$ −2.18820 + 5.49073i −0.116964 + 0.293492i
$$351$$ −0.666738 + 6.43792i −0.0355879 + 0.343631i
$$352$$ 2.44560 + 4.23590i 0.130351 + 0.225774i
$$353$$ 6.64568 0.353714 0.176857 0.984237i $$-0.443407\pi$$
0.176857 + 0.984237i $$0.443407\pi$$
$$354$$ −4.14635 + 1.34956i −0.220376 + 0.0717282i
$$355$$ −12.0438 5.83886i −0.639217 0.309895i
$$356$$ −2.46445 + 4.26855i −0.130615 + 0.226233i
$$357$$ −0.970784 0.873206i −0.0513793 0.0462149i
$$358$$ 6.29338 + 3.63348i 0.332615 + 0.192036i
$$359$$ −5.49798 3.17426i −0.290172 0.167531i 0.347847 0.937551i $$-0.386913\pi$$
−0.638020 + 0.770020i $$0.720246\pi$$
$$360$$ −6.31138 2.27299i −0.332639 0.119797i
$$361$$ 18.9997 + 0.105261i 0.999985 + 0.00554007i
$$362$$ 7.06431 0.371292
$$363$$ 21.8979 + 4.64292i 1.14934 + 0.243690i
$$364$$ 1.27520 + 0.736240i 0.0668389 + 0.0385894i
$$365$$ −9.24007 + 19.0594i −0.483647 + 0.997614i
$$366$$ 4.10523 19.3619i 0.214584 1.01206i
$$367$$ 7.41907 4.28340i 0.387272 0.223592i −0.293705 0.955896i $$-0.594888\pi$$
0.680978 + 0.732304i $$0.261555\pi$$
$$368$$ −1.71995 −0.0896587
$$369$$ 29.5238 21.4961i 1.53695 1.11904i
$$370$$ −9.43122 + 19.4537i −0.490306 + 1.01135i
$$371$$ −1.07423 1.86062i −0.0557712 0.0965985i
$$372$$ −10.6322 + 3.46059i −0.551255 + 0.179423i
$$373$$ −33.4428 −1.73160 −0.865800 0.500390i $$-0.833190\pi$$
−0.865800 + 0.500390i $$0.833190\pi$$
$$374$$ −1.55958 2.70127i −0.0806438 0.139679i
$$375$$ −0.147439 19.3644i −0.00761370 0.999971i
$$376$$ 0.169772 0.0980180i 0.00875533 0.00505489i
$$377$$ 2.41842 4.18883i 0.124555 0.215736i
$$378$$ −5.60771 + 2.50696i −0.288429 + 0.128944i
$$379$$ 6.73402i 0.345903i 0.984930 + 0.172952i $$0.0553305\pi$$
−0.984930 + 0.172952i $$0.944670\pi$$
$$380$$ 8.08265 5.44709i 0.414631 0.279430i
$$381$$ 3.73867 + 11.4866i 0.191538 + 0.588476i
$$382$$ −3.75517 + 6.50414i −0.192131 + 0.332781i
$$383$$ −31.1110 17.9619i −1.58970 0.917811i −0.993356 0.115079i $$-0.963288\pi$$
−0.596339 0.802733i $$-0.703379\pi$$
$$384$$ −1.28775 1.15831i −0.0657154 0.0591100i
$$385$$ 0.932437 + 12.8954i 0.0475214 + 0.657213i
$$386$$ −9.01300 + 5.20366i −0.458750 + 0.264859i
$$387$$ 19.0062 + 26.1041i 0.966142 + 1.32694i
$$388$$ −0.283085 −0.0143715
$$389$$ 13.1534 7.59410i 0.666903 0.385036i −0.127999 0.991774i $$-0.540856\pi$$
0.794902 + 0.606738i $$0.207522\pi$$
$$390$$ −4.77917 0.657656i −0.242003 0.0333017i
$$391$$ 1.09683 0.0554689
$$392$$ 5.60255i 0.282971i
$$393$$ −18.2287 16.3964i −0.919515 0.827090i
$$394$$ −18.0388 10.4147i −0.908781 0.524685i
$$395$$ 7.59573 15.6676i 0.382182 0.788324i
$$396$$ −14.5916 + 1.54863i −0.733258 + 0.0778215i
$$397$$ 10.6507 + 6.14920i 0.534545 + 0.308620i 0.742865 0.669441i $$-0.233466\pi$$
−0.208320 + 0.978061i $$0.566800\pi$$
$$398$$ 10.7493i 0.538813i
$$399$$ 1.87535 8.72570i 0.0938848 0.436832i
$$400$$ 1.85105 4.64474i 0.0925525 0.232237i
$$401$$ −11.5605 + 20.0234i −0.577304 + 0.999920i 0.418483 + 0.908225i $$0.362562\pi$$
−0.995787 + 0.0916957i $$0.970771\pi$$
$$402$$ −1.92030 + 9.05690i −0.0957757 + 0.451717i
$$403$$ −6.96370 + 4.02050i −0.346887 + 0.200275i
$$404$$ −14.0883 8.13386i −0.700917 0.404675i
$$405$$ 13.9159 14.5378i 0.691487 0.722389i
$$406$$ 4.59039 0.227817
$$407$$ 47.2903i 2.34409i
$$408$$ 0.821210 + 0.738666i 0.0406559 + 0.0365694i
$$409$$ −11.6788 + 6.74274i −0.577478 + 0.333407i −0.760130 0.649770i $$-0.774865\pi$$
0.182653 + 0.983178i $$0.441532\pi$$
$$410$$ 15.2750 + 22.5309i 0.754380 + 1.11272i
$$411$$ −6.99019 21.4765i −0.344801 1.05936i
$$412$$ −2.44473 4.23439i −0.120443 0.208614i
$$413$$ −2.57733 1.48802i −0.126822 0.0732207i
$$414$$ 2.09392 4.71589i 0.102910 0.231774i
$$415$$ −1.32418 18.3131i −0.0650012 0.898956i
$$416$$ −1.07873 0.622803i −0.0528889 0.0305354i
$$417$$ −11.8125 36.2923i −0.578459 1.77724i
$$418$$ 10.7112 18.4343i 0.523903 0.901649i
$$419$$ 38.3735i 1.87467i −0.348433 0.937334i $$-0.613286\pi$$
0.348433 0.937334i $$-0.386714\pi$$
$$420$$ −1.72730 4.24007i −0.0842838 0.206894i
$$421$$ 1.13642 + 0.656111i 0.0553856 + 0.0319769i 0.527437 0.849594i $$-0.323153\pi$$
−0.472052 + 0.881571i $$0.656486\pi$$
$$422$$ 1.90388 + 3.29761i 0.0926793 + 0.160525i
$$423$$ 0.0620680 + 0.584824i 0.00301785 + 0.0284351i
$$424$$ 0.908716 + 1.57394i 0.0441312 + 0.0764374i
$$425$$ −1.18043 + 2.96199i −0.0572592 + 0.143677i
$$426$$ 9.85853 3.20877i 0.477647 0.155465i
$$427$$ 11.6987 6.75422i 0.566138 0.326860i
$$428$$ −3.65780 + 2.11183i −0.176806 + 0.102079i
$$429$$ −10.0344 + 3.26601i −0.484465 + 0.157684i
$$430$$ −19.9211 + 13.5057i −0.960681 + 0.651304i
$$431$$ −2.29056 3.96737i −0.110333 0.191102i 0.805572 0.592498i $$-0.201858\pi$$
−0.915904 + 0.401397i $$0.868525\pi$$
$$432$$ 4.74370 2.12069i 0.228231 0.102032i
$$433$$ −2.72960 4.72781i −0.131176 0.227204i 0.792954 0.609282i $$-0.208542\pi$$
−0.924130 + 0.382077i $$0.875209\pi$$
$$434$$ −6.60888 3.81564i −0.317237 0.183157i
$$435$$ −13.9279 + 5.67390i −0.667792 + 0.272043i
$$436$$ 6.97777i 0.334174i
$$437$$ 3.73055 + 6.50304i 0.178456 + 0.311083i
$$438$$ −5.07791 15.6012i −0.242632 0.745456i
$$439$$ −20.9417 12.0907i −0.999491 0.577057i −0.0913936 0.995815i $$-0.529132\pi$$
−0.908098 + 0.418758i $$0.862465\pi$$
$$440$$ −0.788771 10.9086i −0.0376032 0.520046i
$$441$$ 15.3615 + 6.82069i 0.731499 + 0.324795i
$$442$$ 0.687912 + 0.397166i 0.0327206 + 0.0188913i
$$443$$ −8.90395 15.4221i −0.423039 0.732726i 0.573196 0.819418i $$-0.305703\pi$$
−0.996235 + 0.0866929i $$0.972370\pi$$
$$444$$ −5.18296 15.9240i −0.245972 0.755719i
$$445$$ 9.12248 6.18468i 0.432447 0.293182i
$$446$$ 3.01134 1.73860i 0.142591 0.0823249i
$$447$$ 6.82994 + 6.14343i 0.323045 + 0.290574i
$$448$$ 1.18214i 0.0558508i
$$449$$ −5.69376 −0.268705 −0.134352 0.990934i $$-0.542895\pi$$
−0.134352 + 0.990934i $$0.542895\pi$$
$$450$$ 10.4818 + 10.7300i 0.494116 + 0.505816i
$$451$$ 51.5656 + 29.7714i 2.42813 + 1.40188i
$$452$$ −2.13607 + 1.23326i −0.100472 + 0.0580078i
$$453$$ −7.06690 + 33.3303i −0.332032 + 1.56600i
$$454$$ −9.81525 + 17.0005i −0.460653 + 0.797874i
$$455$$ −1.84764 2.72529i −0.0866186 0.127764i
$$456$$ −1.58640 + 7.38128i −0.0742900 + 0.345660i
$$457$$ 39.4920i 1.84736i −0.383166 0.923680i $$-0.625166\pi$$
0.383166 0.923680i $$-0.374834\pi$$
$$458$$ 8.76529 + 5.06064i 0.409575 + 0.236468i
$$459$$ −3.02509 + 1.35238i −0.141199 + 0.0631238i
$$460$$ 3.46068 + 1.67775i 0.161355 + 0.0782256i
$$461$$ 12.3322 + 7.12002i 0.574370 + 0.331612i 0.758893 0.651216i $$-0.225741\pi$$
−0.184523 + 0.982828i $$0.559074\pi$$
$$462$$ −7.44589 6.69746i −0.346414 0.311594i
$$463$$ 6.96999i 0.323923i −0.986797 0.161961i $$-0.948218\pi$$
0.986797 0.161961i $$-0.0517820\pi$$
$$464$$ −3.88313 −0.180270
$$465$$ 24.7686 + 3.40837i 1.14862 + 0.158059i
$$466$$ −10.7707 + 6.21846i −0.498942 + 0.288064i
$$467$$ −0.964919 −0.0446511 −0.0223256 0.999751i $$-0.507107\pi$$
−0.0223256 + 0.999751i $$0.507107\pi$$
$$468$$ 3.02092 2.19952i 0.139642 0.101673i
$$469$$ −5.47226 + 3.15941i −0.252685 + 0.145888i
$$470$$ −0.437208 + 0.0316134i −0.0201669 + 0.00145822i
$$471$$ 18.8574 + 16.9619i 0.868902 + 0.781565i
$$472$$ 2.18022 + 1.25875i 0.100353 + 0.0579388i
$$473$$ −26.3230 + 45.5928i −1.21033 + 2.09636i
$$474$$ 4.17425 + 12.8249i 0.191730 + 0.589066i
$$475$$ −21.5764 + 3.07566i −0.989992 + 0.141121i
$$476$$ 0.753859i 0.0345531i
$$477$$ −5.42185 + 0.575427i −0.248249 + 0.0263470i
$$478$$ 1.17962 2.04316i 0.0539546 0.0934521i
$$479$$ −17.0678 + 9.85408i −0.779846 + 0.450244i −0.836376 0.548156i $$-0.815330\pi$$
0.0565295 + 0.998401i $$0.481996\pi$$
$$480$$ 1.46117 + 3.58678i 0.0666929 + 0.163713i
$$481$$ −6.02153 10.4296i −0.274558 0.475549i
$$482$$ 25.1306 1.14467
$$483$$ 3.34873 1.08995i 0.152373 0.0495944i
$$484$$ −6.46191 11.1924i −0.293723 0.508743i
$$485$$ 0.569590 + 0.276139i 0.0258637 + 0.0125388i
$$486$$ 0.0395809 + 15.5884i 0.00179543 + 0.707105i
$$487$$ −24.8549 −1.12628 −0.563141 0.826361i $$-0.690407\pi$$
−0.563141 + 0.826361i $$0.690407\pi$$
$$488$$ −9.89618 + 5.71356i −0.447979 + 0.258641i
$$489$$ 3.94780 18.6194i 0.178526 0.842000i
$$490$$ −5.46509 + 11.2728i −0.246887 + 0.509252i
$$491$$ −30.4914 17.6042i −1.37606 0.794466i −0.384374 0.923178i $$-0.625583\pi$$
−0.991682 + 0.128711i $$0.958916\pi$$
$$492$$ −20.6265 4.37336i −0.929916 0.197166i
$$493$$ 2.47630 0.111527
$$494$$ −0.0150399 + 5.42945i −0.000676676 + 0.244282i
$$495$$ 30.8702 + 11.1177i 1.38751 + 0.499702i
$$496$$ 5.59061 + 3.22774i 0.251026 + 0.144930i
$$497$$ 6.12796 + 3.53798i 0.274877 + 0.158700i
$$498$$ 10.5741 + 9.51122i 0.473836 + 0.426208i
$$499$$ −8.51263 + 14.7443i −0.381078 + 0.660046i −0.991217 0.132249i $$-0.957780\pi$$
0.610139 + 0.792294i $$0.291114\pi$$
$$500$$ −8.25524 + 7.53996i −0.369186 + 0.337197i
$$501$$ 25.0970 8.16859i 1.12125 0.364946i
$$502$$ 0.446330 0.0199207
$$503$$ −1.07048 1.85412i −0.0477302 0.0826711i 0.841173 0.540766i $$-0.181865\pi$$
−0.888903 + 0.458095i $$0.848532\pi$$
$$504$$ 3.24128 + 1.43917i 0.144378 + 0.0641056i
$$505$$ 20.4124 + 30.1086i 0.908341 + 1.33981i
$$506$$ 8.41263 0.373987
$$507$$ −13.2609 + 14.7428i −0.588938 + 0.654751i
$$508$$ 3.48711 6.03986i 0.154716 0.267975i
$$509$$ −3.12831 5.41839i −0.138660 0.240166i 0.788330 0.615253i $$-0.210946\pi$$
−0.926990 + 0.375087i $$0.877613\pi$$
$$510$$ −0.931798 2.28732i −0.0412607 0.101284i
$$511$$ 5.59889 9.69757i 0.247681 0.428995i
$$512$$ 1.00000i 0.0441942i
$$513$$ −18.3072 13.3359i −0.808284 0.588793i
$$514$$ −17.5534 −0.774246
$$515$$ 0.788490 + 10.9047i 0.0347450 + 0.480518i
$$516$$ 3.86679 18.2374i 0.170226 0.802855i
$$517$$ −0.830389 + 0.479425i −0.0365205 + 0.0210851i
$$518$$ 5.71472 9.89819i 0.251091 0.434902i
$$519$$ −30.2678 27.2254i −1.32861 1.19506i
$$520$$ 1.56296 + 2.30539i 0.0685404 + 0.101098i
$$521$$ −37.8562 −1.65851 −0.829254 0.558872i $$-0.811234\pi$$
−0.829254 + 0.558872i $$0.811234\pi$$
$$522$$ 4.72742 10.6470i 0.206913 0.466008i
$$523$$ −11.1609 19.3312i −0.488030 0.845293i 0.511875 0.859060i $$-0.328951\pi$$
−0.999905 + 0.0137667i $$0.995618\pi$$
$$524$$ 14.1554i 0.618382i
$$525$$ −0.660564 + 10.2163i −0.0288294 + 0.445876i
$$526$$ 5.43101 3.13559i 0.236803 0.136718i
$$527$$ −3.56518 2.05836i −0.155302 0.0896634i
$$528$$ 6.29865 + 5.66554i 0.274114 + 0.246561i
$$529$$ 10.0209 17.3567i 0.435690 0.754638i
$$530$$ −0.293085 4.05332i −0.0127308 0.176065i
$$531$$ −6.10560 + 4.44546i −0.264961 + 0.192917i
$$532$$ −4.46960 + 2.56404i −0.193782 + 0.111165i
$$533$$ −15.1633 −0.656797
$$534$$ −1.77072 + 8.35144i −0.0766266 + 0.361402i
$$535$$ 9.41981 0.681122i 0.407254 0.0294475i
$$536$$ 4.62912 2.67262i 0.199947 0.115440i
$$537$$ 12.3130 + 2.61068i 0.531347 + 0.112659i
$$538$$ −10.1761 + 5.87519i −0.438724 + 0.253298i
$$539$$ 27.4032i 1.18034i
$$540$$ −11.6134 0.360298i −0.499760 0.0155047i
$$541$$ −9.42086 16.3174i −0.405034 0.701540i 0.589291 0.807921i $$-0.299407\pi$$
−0.994325 + 0.106381i $$0.966074\pi$$
$$542$$ −6.98803 + 4.03454i −0.300162 + 0.173298i
$$543$$ 11.6350 3.78696i 0.499304 0.162514i
$$544$$ 0.637707i 0.0273415i
$$545$$ 6.80656 14.0398i 0.291561 0.601400i
$$546$$ 2.49495 + 0.528993i 0.106774 + 0.0226388i
$$547$$ −7.03497 12.1849i −0.300794 0.520990i 0.675522 0.737340i $$-0.263918\pi$$
−0.976316 + 0.216350i $$0.930585\pi$$
$$548$$ −6.51986 + 11.2927i −0.278515 + 0.482401i
$$549$$ −3.61800 34.0899i −0.154413 1.45492i
$$550$$ −9.05385 + 22.7183i −0.386058 + 0.968713i
$$551$$ 8.42244 + 14.6819i 0.358808 + 0.625468i
$$552$$ −2.83277 + 0.922014i −0.120571 + 0.0392435i
$$553$$ −4.60253 + 7.97181i −0.195719 + 0.338996i
$$554$$ −3.09019 + 5.35236i −0.131290 + 0.227400i
$$555$$ −5.10475 + 37.0961i −0.216685 + 1.57464i
$$556$$ −11.0177 + 19.0832i −0.467253 + 0.809306i
$$557$$ 19.5014 + 33.7775i 0.826303 + 1.43120i 0.900919 + 0.433986i $$0.142893\pi$$
−0.0746166 + 0.997212i $$0.523773\pi$$
$$558$$ −15.6562 + 11.3992i −0.662781 + 0.482568i
$$559$$ 13.4070i 0.567054i
$$560$$ −1.15313 + 2.37856i −0.0487288 + 0.100512i
$$561$$ −4.01670 3.61296i −0.169585 0.152539i
$$562$$ 20.6639i 0.871653i
$$563$$ 24.1695i 1.01862i 0.860582 + 0.509311i $$0.170100\pi$$
−0.860582 + 0.509311i $$0.829900\pi$$
$$564$$ 0.227071 0.252446i 0.00956143 0.0106299i
$$565$$ 5.50095 0.397760i 0.231427 0.0167339i
$$566$$ 8.26590 + 14.3170i 0.347442 + 0.601787i
$$567$$ −7.89203 + 7.13510i −0.331434 + 0.299646i
$$568$$ −5.18379 2.99286i −0.217507 0.125578i
$$569$$ 7.88191 0.330427 0.165213 0.986258i $$-0.447169\pi$$
0.165213 + 0.986258i $$0.447169\pi$$
$$570$$ 10.3921 13.3043i 0.435279 0.557254i
$$571$$ −5.31046 −0.222236 −0.111118 0.993807i $$-0.535443\pi$$
−0.111118 + 0.993807i $$0.535443\pi$$
$$572$$ 5.27626 + 3.04625i 0.220612 + 0.127370i
$$573$$ −2.69811 + 12.7254i −0.112715 + 0.531611i
$$574$$ −7.19537 12.4627i −0.300329 0.520185i
$$575$$ −5.32659 6.75155i −0.222134 0.281559i
$$576$$ −2.74187 1.21743i −0.114245 0.0507261i
$$577$$ 41.8771i 1.74337i 0.490070 + 0.871683i $$0.336971\pi$$
−0.490070 + 0.871683i $$0.663029\pi$$
$$578$$ 16.5933i 0.690192i
$$579$$ −12.0549 + 13.4021i −0.500986 + 0.556970i
$$580$$ 7.81316 + 3.78785i 0.324424 + 0.157282i
$$581$$ 9.70686i 0.402708i
$$582$$ −0.466243 + 0.151753i −0.0193264 + 0.00629037i
$$583$$ −4.44471 7.69846i −0.184081 0.318838i
$$584$$ −4.73624 + 8.20341i −0.195987 + 0.339459i
$$585$$ −8.22388 + 1.47881i −0.340015 + 0.0611411i
$$586$$ 0.0644687 0.111663i 0.00266318 0.00461276i
$$587$$ −16.3582 + 28.3333i −0.675176 + 1.16944i 0.301241 + 0.953548i $$0.402599\pi$$
−0.976417 + 0.215892i $$0.930734\pi$$
$$588$$ −3.00336 9.22743i −0.123856 0.380533i
$$589$$ 0.0779458 28.1387i 0.00321170 1.15944i
$$590$$ −3.15892 4.65944i −0.130051 0.191826i
$$591$$ −35.2930 7.48303i −1.45176 0.307811i
$$592$$ −4.83422 + 8.37312i −0.198685 + 0.344133i
$$593$$ 11.4339 + 19.8041i 0.469535 + 0.813259i 0.999393 0.0348277i $$-0.0110882\pi$$
−0.529858 + 0.848086i $$0.677755\pi$$
$$594$$ −23.2024 + 10.3727i −0.952004 + 0.425599i
$$595$$ 0.735363 1.51683i 0.0301469 0.0621838i
$$596$$ 5.30376i 0.217251i
$$597$$ −5.76236 17.7041i −0.235838 0.724582i
$$598$$ −1.85536 + 1.07119i −0.0758712 + 0.0438043i
$$599$$ −8.59070 14.8795i −0.351007 0.607961i 0.635419 0.772167i $$-0.280827\pi$$
−0.986426 + 0.164206i $$0.947494\pi$$
$$600$$ 0.558787 8.64221i 0.0228124 0.352817i
$$601$$ 25.0284i 1.02093i 0.859898 + 0.510466i $$0.170527\pi$$
−0.859898 + 0.510466i $$0.829473\pi$$
$$602$$ 11.0192 6.36193i 0.449108 0.259293i
$$603$$ 1.69239 + 15.9462i 0.0689193 + 0.649378i
$$604$$ 17.0356 9.83554i 0.693171 0.400202i
$$605$$ 2.08414 + 28.8233i 0.0847322 + 1.17183i
$$606$$ −27.5638 5.84423i −1.11970 0.237406i
$$607$$ 42.2621 1.71537 0.857683 0.514179i $$-0.171903\pi$$
0.857683 + 0.514179i $$0.171903\pi$$
$$608$$ 3.78094 2.16898i 0.153337 0.0879639i
$$609$$ 7.56041 2.46077i 0.306363 0.0997155i
$$610$$ 25.4853 1.84278i 1.03187 0.0746118i
$$611$$ 0.122092 0.211469i 0.00493930 0.00855513i
$$612$$ 1.74851 + 0.776362i 0.0706795 + 0.0313826i
$$613$$ 23.5979 + 13.6243i 0.953111 + 0.550279i 0.894046 0.447976i $$-0.147855\pi$$
0.0590647 + 0.998254i $$0.481188\pi$$
$$614$$ 18.8920 10.9073i 0.762420 0.440184i
$$615$$ 37.2362 + 28.9200i 1.50151 + 1.16617i
$$616$$ 5.78208i 0.232966i
$$617$$ 3.86739 + 6.69852i 0.155695 + 0.269672i 0.933312 0.359066i $$-0.116905\pi$$
−0.777617 + 0.628739i $$0.783572\pi$$
$$618$$ −6.29641 5.66353i −0.253279 0.227820i
$$619$$ −28.3765 −1.14055 −0.570273 0.821455i $$-0.693163\pi$$
−0.570273 + 0.821455i $$0.693163\pi$$
$$620$$ −8.10022 11.9479i −0.325313 0.479840i
$$621$$ 0.920643 8.88959i 0.0369441 0.356727i
$$622$$ 13.0302 22.5689i 0.522463 0.904932i
$$623$$ −5.04602 + 2.91332i −0.202164 + 0.116720i
$$624$$ −2.11053 0.447488i −0.0844890 0.0179139i
$$625$$ 23.9652 7.11831i 0.958607 0.284732i
$$626$$ −33.7213 −1.34777
$$627$$ 7.75940 36.1033i 0.309881 1.44183i
$$628$$ 14.6436i 0.584345i
$$629$$ 3.08282 5.33960i 0.122920 0.212904i
$$630$$ −5.11785 6.05747i −0.203900 0.241335i
$$631$$ −10.6479 18.4427i −0.423886 0.734191i 0.572430 0.819954i $$-0.306001\pi$$
−0.996316 + 0.0857623i $$0.972667\pi$$
$$632$$ 3.89339 6.74355i 0.154871 0.268244i
$$633$$ 4.90345 + 4.41058i 0.194895 + 0.175305i
$$634$$ −20.7223 −0.822989
$$635$$ −12.9080 + 8.75113i −0.512239 + 0.347278i
$$636$$ 2.34040 + 2.10516i 0.0928031 + 0.0834749i
$$637$$ −3.48928 6.04361i −0.138250 0.239457i
$$638$$ 18.9931 0.751945
$$639$$ 14.5169 10.5697i 0.574281 0.418132i
$$640$$ 0.975465 2.01208i 0.0385586 0.0795345i
$$641$$ −1.93279 + 3.34770i −0.0763407 + 0.132226i −0.901669 0.432428i $$-0.857657\pi$$
0.825328 + 0.564654i $$0.190990\pi$$
$$642$$ −4.89233 + 5.43904i −0.193085 + 0.214662i
$$643$$ 21.2850 + 12.2889i 0.839399 + 0.484628i 0.857060 0.515217i $$-0.172288\pi$$
−0.0176606 + 0.999844i $$0.505622\pi$$
$$644$$ −1.76082 1.01661i −0.0693862 0.0400601i
$$645$$ −25.5702 + 32.9231i −1.00683 + 1.29635i
$$646$$ −2.41113 + 1.38318i −0.0948648 + 0.0544204i
$$647$$ −43.4177 −1.70693 −0.853464 0.521152i $$-0.825502\pi$$
−0.853464 + 0.521152i $$0.825502\pi$$
$$648$$ 6.67606 6.03575i 0.262260 0.237107i
$$649$$ −10.6639 6.15681i −0.418595 0.241676i
$$650$$ −0.895981 6.16324i −0.0351433 0.241742i
$$651$$ −12.9303 2.74156i −0.506779 0.107450i
$$652$$ −9.51668 + 5.49446i −0.372702 + 0.215180i
$$653$$ −14.7907 −0.578804 −0.289402 0.957208i $$-0.593456\pi$$
−0.289402 + 0.957208i $$0.593456\pi$$
$$654$$ 3.74057 + 11.4924i 0.146268 + 0.449389i
$$655$$ 13.8081 28.4818i 0.539527 1.11288i
$$656$$ 6.08673 + 10.5425i 0.237647 + 0.411617i
$$657$$ −16.7267 22.9732i −0.652570 0.896271i
$$658$$ 0.231742 0.00903424
$$659$$ 3.94515 + 6.83320i 0.153681 + 0.266184i 0.932578 0.360968i $$-0.117554\pi$$
−0.778897 + 0.627152i $$0.784220\pi$$
$$660$$ −7.14686 17.5436i −0.278191 0.682886i
$$661$$ 33.7114 19.4633i 1.31122 0.757035i 0.328924 0.944356i $$-0.393314\pi$$
0.982299 + 0.187322i $$0.0599807\pi$$
$$662$$ 6.69092 11.5890i 0.260050 0.450420i
$$663$$ 1.34590 + 0.285366i 0.0522706 + 0.0110827i
$$664$$ 8.21126i 0.318659i
$$665$$ 11.4943 0.799125i 0.445731 0.0309887i
$$666$$ −17.0727 23.4485i −0.661555 0.908610i
$$667$$ −3.33940 + 5.78400i −0.129302 + 0.223958i
$$668$$ −13.1964 7.61896i −0.510585 0.294786i
$$669$$ 4.02768 4.47777i 0.155719 0.173120i
$$670$$ −11.9212 + 0.861992i −0.460556 + 0.0333016i
$$671$$ 48.4042 27.9462i 1.86862 1.07885i
$$672$$ −0.633709 1.94699i −0.0244459 0.0751068i
$$673$$ −7.79388 −0.300432 −0.150216 0.988653i $$-0.547997\pi$$
−0.150216 + 0.988653i $$0.547997\pi$$
$$674$$ 16.3748 9.45399i 0.630733 0.364154i
$$675$$ 23.0156 + 12.0534i 0.885870 + 0.463934i
$$676$$ 11.4485 0.440326
$$677$$ 31.7619i 1.22071i −0.792128 0.610355i $$-0.791027\pi$$
0.792128 0.610355i $$-0.208973\pi$$
$$678$$ −2.85701 + 3.17627i −0.109723 + 0.121984i
$$679$$ −0.289812 0.167323i −0.0111220 0.00642126i
$$680$$ −0.622061 + 1.28312i −0.0238550 + 0.0492054i
$$681$$ −7.05232 + 33.2616i −0.270246 + 1.27459i
$$682$$ −27.3448 15.7875i −1.04709 0.604536i
$$683$$ 40.8203i 1.56194i −0.624566 0.780972i $$-0.714724\pi$$
0.624566 0.780972i $$-0.285276\pi$$
$$684$$ 1.34407 + 13.0074i 0.0513918 + 0.497352i
$$685$$ 24.1341 16.3620i 0.922118 0.625159i
$$686$$ 7.44898 12.9020i 0.284403 0.492601i
$$687$$ 17.1494 + 3.63611i 0.654289 + 0.138726i
$$688$$ −9.32139 + 5.38171i −0.355375 + 0.205176i
$$689$$ 1.96051 + 1.13190i 0.0746896 + 0.0431220i
$$690$$ 6.59916 + 0.908102i 0.251226 + 0.0345709i
$$691$$ −0.368227 −0.0140080 −0.00700400 0.999975i $$-0.502229\pi$$
−0.00700400 + 0.999975i $$0.502229\pi$$
$$692$$ 23.5044i 0.893501i
$$693$$ −15.8537 7.03925i −0.602233 0.267399i
$$694$$ 17.7584 10.2528i 0.674101 0.389193i
$$695$$ 40.7834 27.6495i 1.54700 1.04881i
$$696$$ −6.39553 + 2.08163i −0.242422 + 0.0789038i
$$697$$ −3.88156 6.72305i −0.147024 0.254654i
$$698$$ 15.9318 + 9.19823i 0.603028 + 0.348158i
$$699$$ −14.4059 + 16.0157i −0.544880 + 0.605768i
$$700$$ 4.64040 3.66101i 0.175391 0.138373i
$$701$$ −22.0697 12.7420i −0.833563 0.481258i 0.0215082 0.999769i $$-0.493153\pi$$
−0.855071 + 0.518511i $$0.826487\pi$$
$$702$$ 3.79637 5.24204i 0.143285 0.197848i
$$703$$ 42.1436 + 0.116740i 1.58948 + 0.00440294i
$$704$$ 4.89120i 0.184344i
$$705$$ −0.703138 + 0.286442i −0.0264817 + 0.0107880i
$$706$$ −5.75533 3.32284i −0.216605 0.125057i
$$707$$ −9.61536 16.6543i −0.361623 0.626349i
$$708$$ 4.26562 + 0.904422i 0.160312 + 0.0339903i
$$709$$ −10.9886 19.0328i −0.412685 0.714792i 0.582497 0.812833i $$-0.302076\pi$$
−0.995182 + 0.0980411i $$0.968742\pi$$
$$710$$ 7.51078 + 11.0785i 0.281874 + 0.415768i
$$711$$ 13.7500 + 18.8850i 0.515667 + 0.708241i
$$712$$ 4.26855 2.46445i 0.159971 0.0923591i
$$713$$ 9.61559 5.55157i 0.360107 0.207908i
$$714$$ 0.404121 + 1.24161i 0.0151238 + 0.0464661i
$$715$$ −7.64476 11.2761i −0.285898 0.421703i
$$716$$ −3.63348 6.29338i −0.135790 0.235195i
$$717$$ 0.847565 3.99746i 0.0316529 0.149288i
$$718$$ 3.17426 + 5.49798i 0.118462 + 0.205183i
$$719$$ 32.4837 + 18.7545i 1.21144 + 0.699424i 0.963072 0.269242i $$-0.0867733\pi$$
0.248365 + 0.968666i $$0.420107\pi$$
$$720$$ 4.32932 + 5.12416i 0.161344 + 0.190966i
$$721$$ 5.78002i 0.215259i
$$722$$ −16.4016 9.59101i −0.610404 0.356941i
$$723$$ 41.3902 13.4717i 1.53932 0.501020i
$$724$$ −6.11788 3.53216i −0.227369 0.131272i
$$725$$ −12.0258 15.2429i −0.446627 0.566108i
$$726$$ −16.6427 14.9698i −0.617668 0.555583i
$$727$$ −33.2590 19.2021i −1.23351 0.712166i −0.265749 0.964042i $$-0.585619\pi$$
−0.967760 + 0.251876i $$0.918953\pi$$
$$728$$ −0.736240 1.27520i −0.0272869 0.0472622i
$$729$$ 8.42166 + 25.6530i 0.311913 + 0.950111i
$$730$$ 17.5318 11.8859i 0.648882 0.439916i
$$731$$ 5.94432 3.43195i 0.219859 0.126935i
$$732$$ −13.2362 + 14.7153i −0.489224 + 0.543894i
$$733$$ 11.6754i 0.431241i −0.976477 0.215621i $$-0.930823\pi$$
0.976477 0.215621i $$-0.0691775\pi$$
$$734$$ −8.56680 −0.316206
$$735$$ −2.95804 + 21.4960i −0.109109 + 0.792892i
$$736$$ 1.48952 + 0.859976i 0.0549045 + 0.0316992i
$$737$$ −22.6419 + 13.0723i −0.834026 + 0.481525i
$$738$$ −36.3164 + 3.85431i −1.33683 + 0.141879i
$$739$$ 14.3124 24.7898i 0.526491 0.911909i −0.473033 0.881045i $$-0.656841\pi$$
0.999524 0.0308638i $$-0.00982581\pi$$
$$740$$ 17.8945 12.1318i 0.657816 0.445973i
$$741$$ 2.88579 + 8.95040i 0.106012 + 0.328801i
$$742$$ 2.14846i 0.0788724i
$$743$$ 11.3898 + 6.57588i 0.417850 + 0.241246i 0.694157 0.719824i $$-0.255777\pi$$
−0.276307 + 0.961069i $$0.589111\pi$$
$$744$$ 10.9381 + 2.31915i 0.401009 + 0.0850243i
$$745$$ −5.17363 + 10.6716i −0.189547 + 0.390977i
$$746$$ 28.9623 + 16.7214i 1.06038 + 0.612213i
$$747$$ 22.5143 + 9.99660i 0.823753 + 0.365757i
$$748$$ 3.11915i 0.114048i
$$749$$ −4.99296 −0.182439
$$750$$ −9.55449 + 16.8437i −0.348881 + 0.615047i
$$751$$ −28.1156 + 16.2326i −1.02595 + 0.592335i −0.915823 0.401582i $$-0.868461\pi$$
−0.110131 + 0.993917i $$0.535127\pi$$
$$752$$ −0.196036 −0.00714870
$$753$$ 0.735109 0.239264i 0.0267889 0.00871927i
$$754$$ −4.18883 + 2.41842i −0.152548 + 0.0880737i
$$755$$ −43.8713 + 3.17222i −1.59664 + 0.115449i
$$756$$ 6.10990 + 0.632766i 0.222215 + 0.0230135i
$$757$$ 20.7846 + 12.0000i 0.755430 + 0.436148i 0.827653 0.561241i $$-0.189676\pi$$
−0.0722226 + 0.997389i $$0.523009\pi$$
$$758$$ 3.36701 5.83183i 0.122295 0.211822i
$$759$$ 13.8557 4.50976i 0.502928 0.163694i
$$760$$ −9.72332 + 0.675999i −0.352702 + 0.0245211i
$$761$$ 37.9550i 1.37587i −0.725773 0.687935i $$-0.758518\pi$$
0.725773 0.687935i $$-0.241482\pi$$
$$762$$ 2.50551 11.8170i 0.0907652 0.428086i
$$763$$ −4.12435 + 7.14358i −0.149311 + 0.258615i
$$764$$ 6.50414 3.75517i 0.235312 0.135857i
$$765$$ −2.76084 3.26772i −0.0998183 0.118144i
$$766$$ 17.9619 + 31.1110i 0.648990 + 1.12408i
$$767$$ 3.13582 0.113228
$$768$$ 0.536070 + 1.64701i 0.0193437 + 0.0594312i
$$769$$ −5.02601 8.70531i −0.181243 0.313922i 0.761061 0.648680i $$-0.224679\pi$$
−0.942304 + 0.334758i $$0.891345\pi$$
$$770$$ 5.64021 11.6340i 0.203259 0.419260i
$$771$$ −28.9105 + 9.40983i −1.04119 + 0.338887i
$$772$$ 10.4073 0.374568
$$773$$ 11.5762 6.68354i 0.416368 0.240390i −0.277154 0.960826i $$-0.589391\pi$$
0.693522 + 0.720435i $$0.256058\pi$$
$$774$$ −3.40786 32.1099i −0.122493 1.15417i
$$775$$ 4.64352 + 31.9417i 0.166800 + 1.14738i