Properties

Label 570.2.m.b.37.6
Level $570$
Weight $2$
Character 570.37
Analytic conductor $4.551$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 570 = 2 \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 570.m (of order \(4\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.55147291521\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Defining polynomial: \(x^{20} + 108 x^{16} + 1318 x^{12} + 4652 x^{8} + 5057 x^{4} + 256\)
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{9} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 37.6
Root \(-0.339574 + 0.339574i\) of defining polynomial
Character \(\chi\) \(=\) 570.37
Dual form 570.2.m.b.493.6

$q$-expansion

\(f(q)\) \(=\) \(q+(0.707107 - 0.707107i) q^{2} +(-0.707107 - 0.707107i) q^{3} -1.00000i q^{4} +(-1.29975 + 1.81952i) q^{5} -1.00000 q^{6} +(-0.728588 - 0.728588i) q^{7} +(-0.707107 - 0.707107i) q^{8} +1.00000i q^{9} +O(q^{10})\) \(q+(0.707107 - 0.707107i) q^{2} +(-0.707107 - 0.707107i) q^{3} -1.00000i q^{4} +(-1.29975 + 1.81952i) q^{5} -1.00000 q^{6} +(-0.728588 - 0.728588i) q^{7} +(-0.707107 - 0.707107i) q^{8} +1.00000i q^{9} +(0.367533 + 2.20566i) q^{10} -4.80832 q^{11} +(-0.707107 + 0.707107i) q^{12} +(0.531491 + 0.531491i) q^{13} -1.03038 q^{14} +(2.20566 - 0.367533i) q^{15} -1.00000 q^{16} +(-3.72984 - 3.72984i) q^{17} +(0.707107 + 0.707107i) q^{18} +(-2.90517 + 3.24961i) q^{19} +(1.81952 + 1.29975i) q^{20} +1.03038i q^{21} +(-3.39999 + 3.39999i) q^{22} +(-4.07973 + 4.07973i) q^{23} +1.00000i q^{24} +(-1.62130 - 4.72984i) q^{25} +0.751642 q^{26} +(0.707107 - 0.707107i) q^{27} +(-0.728588 + 0.728588i) q^{28} +0.494819 q^{29} +(1.29975 - 1.81952i) q^{30} +8.62312i q^{31} +(-0.707107 + 0.707107i) q^{32} +(3.39999 + 3.39999i) q^{33} -5.27479 q^{34} +(2.27266 - 0.378698i) q^{35} +1.00000 q^{36} +(5.47836 - 5.47836i) q^{37} +(0.243552 + 4.35209i) q^{38} -0.751642i q^{39} +(2.20566 - 0.367533i) q^{40} -5.82553i q^{41} +(0.728588 + 0.728588i) q^{42} +(-3.04079 + 3.04079i) q^{43} +4.80832i q^{44} +(-1.81952 - 1.29975i) q^{45} +5.76961i q^{46} +(0.910451 + 0.910451i) q^{47} +(0.707107 + 0.707107i) q^{48} -5.93832i q^{49} +(-4.49094 - 2.19807i) q^{50} +5.27479i q^{51} +(0.531491 - 0.531491i) q^{52} +(3.53266 + 3.53266i) q^{53} -1.00000i q^{54} +(6.24961 - 8.74883i) q^{55} +1.03038i q^{56} +(4.35209 - 0.243552i) q^{57} +(0.349890 - 0.349890i) q^{58} -12.1307 q^{59} +(-0.367533 - 2.20566i) q^{60} -5.32419 q^{61} +(6.09747 + 6.09747i) q^{62} +(0.728588 - 0.728588i) q^{63} +1.00000i q^{64} +(-1.65786 + 0.276253i) q^{65} +4.80832 q^{66} +(9.19128 - 9.19128i) q^{67} +(-3.72984 + 3.72984i) q^{68} +5.76961 q^{69} +(1.33924 - 1.87480i) q^{70} -2.06076i q^{71} +(0.707107 - 0.707107i) q^{72} +(3.31160 - 3.31160i) q^{73} -7.74758i q^{74} +(-2.19807 + 4.49094i) q^{75} +(3.24961 + 2.90517i) q^{76} +(3.50328 + 3.50328i) q^{77} +(-0.531491 - 0.531491i) q^{78} +2.77074 q^{79} +(1.29975 - 1.81952i) q^{80} -1.00000 q^{81} +(-4.11927 - 4.11927i) q^{82} +(-3.57770 + 3.57770i) q^{83} +1.03038 q^{84} +(11.6344 - 1.93866i) q^{85} +4.30033i q^{86} +(-0.349890 - 0.349890i) q^{87} +(3.39999 + 3.39999i) q^{88} +1.08630 q^{89} +(-2.20566 + 0.367533i) q^{90} -0.774476i q^{91} +(4.07973 + 4.07973i) q^{92} +(6.09747 - 6.09747i) q^{93} +1.28757 q^{94} +(-2.13673 - 9.50970i) q^{95} +1.00000 q^{96} +(2.81665 - 2.81665i) q^{97} +(-4.19903 - 4.19903i) q^{98} -4.80832i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20q + 12q^{5} - 20q^{6} - 4q^{7} + O(q^{10}) \) \( 20q + 12q^{5} - 20q^{6} - 4q^{7} - 8q^{11} - 20q^{16} - 12q^{17} - 4q^{23} - 28q^{25} + 24q^{26} - 4q^{28} - 12q^{30} + 4q^{35} + 20q^{36} - 12q^{38} + 4q^{42} - 12q^{43} - 44q^{47} + 64q^{55} + 12q^{57} - 8q^{58} - 24q^{62} + 4q^{63} + 8q^{66} - 12q^{68} - 4q^{73} + 4q^{76} + 88q^{77} - 12q^{80} - 20q^{81} - 8q^{82} + 76q^{83} - 12q^{85} + 8q^{87} + 4q^{92} - 24q^{93} - 24q^{95} + 20q^{96} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/570\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(211\) \(457\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 0.707107i 0.500000 0.500000i
\(3\) −0.707107 0.707107i −0.408248 0.408248i
\(4\) 1.00000i 0.500000i
\(5\) −1.29975 + 1.81952i −0.581266 + 0.813714i
\(6\) −1.00000 −0.408248
\(7\) −0.728588 0.728588i −0.275380 0.275380i 0.555881 0.831262i \(-0.312381\pi\)
−0.831262 + 0.555881i \(0.812381\pi\)
\(8\) −0.707107 0.707107i −0.250000 0.250000i
\(9\) 1.00000i 0.333333i
\(10\) 0.367533 + 2.20566i 0.116224 + 0.697490i
\(11\) −4.80832 −1.44976 −0.724881 0.688874i \(-0.758105\pi\)
−0.724881 + 0.688874i \(0.758105\pi\)
\(12\) −0.707107 + 0.707107i −0.204124 + 0.204124i
\(13\) 0.531491 + 0.531491i 0.147409 + 0.147409i 0.776960 0.629550i \(-0.216761\pi\)
−0.629550 + 0.776960i \(0.716761\pi\)
\(14\) −1.03038 −0.275380
\(15\) 2.20566 0.367533i 0.569498 0.0948965i
\(16\) −1.00000 −0.250000
\(17\) −3.72984 3.72984i −0.904619 0.904619i 0.0912125 0.995831i \(-0.470926\pi\)
−0.995831 + 0.0912125i \(0.970926\pi\)
\(18\) 0.707107 + 0.707107i 0.166667 + 0.166667i
\(19\) −2.90517 + 3.24961i −0.666493 + 0.745511i
\(20\) 1.81952 + 1.29975i 0.406857 + 0.290633i
\(21\) 1.03038i 0.224847i
\(22\) −3.39999 + 3.39999i −0.724881 + 0.724881i
\(23\) −4.07973 + 4.07973i −0.850682 + 0.850682i −0.990217 0.139535i \(-0.955439\pi\)
0.139535 + 0.990217i \(0.455439\pi\)
\(24\) 1.00000i 0.204124i
\(25\) −1.62130 4.72984i −0.324260 0.945968i
\(26\) 0.751642 0.147409
\(27\) 0.707107 0.707107i 0.136083 0.136083i
\(28\) −0.728588 + 0.728588i −0.137690 + 0.137690i
\(29\) 0.494819 0.0918856 0.0459428 0.998944i \(-0.485371\pi\)
0.0459428 + 0.998944i \(0.485371\pi\)
\(30\) 1.29975 1.81952i 0.237301 0.332197i
\(31\) 8.62312i 1.54876i 0.632722 + 0.774379i \(0.281938\pi\)
−0.632722 + 0.774379i \(0.718062\pi\)
\(32\) −0.707107 + 0.707107i −0.125000 + 0.125000i
\(33\) 3.39999 + 3.39999i 0.591863 + 0.591863i
\(34\) −5.27479 −0.904619
\(35\) 2.27266 0.378698i 0.384150 0.0640117i
\(36\) 1.00000 0.166667
\(37\) 5.47836 5.47836i 0.900637 0.900637i −0.0948538 0.995491i \(-0.530238\pi\)
0.995491 + 0.0948538i \(0.0302383\pi\)
\(38\) 0.243552 + 4.35209i 0.0395093 + 0.706002i
\(39\) 0.751642i 0.120359i
\(40\) 2.20566 0.367533i 0.348745 0.0581120i
\(41\) 5.82553i 0.909794i −0.890544 0.454897i \(-0.849676\pi\)
0.890544 0.454897i \(-0.150324\pi\)
\(42\) 0.728588 + 0.728588i 0.112424 + 0.112424i
\(43\) −3.04079 + 3.04079i −0.463716 + 0.463716i −0.899871 0.436155i \(-0.856340\pi\)
0.436155 + 0.899871i \(0.356340\pi\)
\(44\) 4.80832i 0.724881i
\(45\) −1.81952 1.29975i −0.271238 0.193755i
\(46\) 5.76961i 0.850682i
\(47\) 0.910451 + 0.910451i 0.132803 + 0.132803i 0.770384 0.637581i \(-0.220065\pi\)
−0.637581 + 0.770384i \(0.720065\pi\)
\(48\) 0.707107 + 0.707107i 0.102062 + 0.102062i
\(49\) 5.93832i 0.848331i
\(50\) −4.49094 2.19807i −0.635114 0.310854i
\(51\) 5.27479i 0.738618i
\(52\) 0.531491 0.531491i 0.0737046 0.0737046i
\(53\) 3.53266 + 3.53266i 0.485248 + 0.485248i 0.906803 0.421555i \(-0.138516\pi\)
−0.421555 + 0.906803i \(0.638516\pi\)
\(54\) 1.00000i 0.136083i
\(55\) 6.24961 8.74883i 0.842697 1.17969i
\(56\) 1.03038i 0.137690i
\(57\) 4.35209 0.243552i 0.576448 0.0322592i
\(58\) 0.349890 0.349890i 0.0459428 0.0459428i
\(59\) −12.1307 −1.57928 −0.789641 0.613569i \(-0.789733\pi\)
−0.789641 + 0.613569i \(0.789733\pi\)
\(60\) −0.367533 2.20566i −0.0474483 0.284749i
\(61\) −5.32419 −0.681692 −0.340846 0.940119i \(-0.610713\pi\)
−0.340846 + 0.940119i \(0.610713\pi\)
\(62\) 6.09747 + 6.09747i 0.774379 + 0.774379i
\(63\) 0.728588 0.728588i 0.0917935 0.0917935i
\(64\) 1.00000i 0.125000i
\(65\) −1.65786 + 0.276253i −0.205633 + 0.0342650i
\(66\) 4.80832 0.591863
\(67\) 9.19128 9.19128i 1.12289 1.12289i 0.131590 0.991304i \(-0.457992\pi\)
0.991304 0.131590i \(-0.0420081\pi\)
\(68\) −3.72984 + 3.72984i −0.452309 + 0.452309i
\(69\) 5.76961 0.694579
\(70\) 1.33924 1.87480i 0.160069 0.224081i
\(71\) 2.06076i 0.244567i −0.992495 0.122284i \(-0.960978\pi\)
0.992495 0.122284i \(-0.0390217\pi\)
\(72\) 0.707107 0.707107i 0.0833333 0.0833333i
\(73\) 3.31160 3.31160i 0.387594 0.387594i −0.486235 0.873828i \(-0.661630\pi\)
0.873828 + 0.486235i \(0.161630\pi\)
\(74\) 7.74758i 0.900637i
\(75\) −2.19807 + 4.49094i −0.253811 + 0.518569i
\(76\) 3.24961 + 2.90517i 0.372756 + 0.333246i
\(77\) 3.50328 + 3.50328i 0.399236 + 0.399236i
\(78\) −0.531491 0.531491i −0.0601795 0.0601795i
\(79\) 2.77074 0.311733 0.155866 0.987778i \(-0.450183\pi\)
0.155866 + 0.987778i \(0.450183\pi\)
\(80\) 1.29975 1.81952i 0.145316 0.203428i
\(81\) −1.00000 −0.111111
\(82\) −4.11927 4.11927i −0.454897 0.454897i
\(83\) −3.57770 + 3.57770i −0.392703 + 0.392703i −0.875650 0.482947i \(-0.839567\pi\)
0.482947 + 0.875650i \(0.339567\pi\)
\(84\) 1.03038 0.112424
\(85\) 11.6344 1.93866i 1.26192 0.210277i
\(86\) 4.30033i 0.463716i
\(87\) −0.349890 0.349890i −0.0375122 0.0375122i
\(88\) 3.39999 + 3.39999i 0.362441 + 0.362441i
\(89\) 1.08630 0.115147 0.0575736 0.998341i \(-0.481664\pi\)
0.0575736 + 0.998341i \(0.481664\pi\)
\(90\) −2.20566 + 0.367533i −0.232497 + 0.0387414i
\(91\) 0.774476i 0.0811872i
\(92\) 4.07973 + 4.07973i 0.425341 + 0.425341i
\(93\) 6.09747 6.09747i 0.632278 0.632278i
\(94\) 1.28757 0.132803
\(95\) −2.13673 9.50970i −0.219224 0.975675i
\(96\) 1.00000 0.102062
\(97\) 2.81665 2.81665i 0.285988 0.285988i −0.549503 0.835491i \(-0.685183\pi\)
0.835491 + 0.549503i \(0.185183\pi\)
\(98\) −4.19903 4.19903i −0.424166 0.424166i
\(99\) 4.80832i 0.483254i
\(100\) −4.72984 + 1.62130i −0.472984 + 0.162130i
\(101\) −14.0592 −1.39894 −0.699470 0.714662i \(-0.746581\pi\)
−0.699470 + 0.714662i \(0.746581\pi\)
\(102\) 3.72984 + 3.72984i 0.369309 + 0.369309i
\(103\) −6.63327 6.63327i −0.653596 0.653596i 0.300261 0.953857i \(-0.402926\pi\)
−0.953857 + 0.300261i \(0.902926\pi\)
\(104\) 0.751642i 0.0737046i
\(105\) −1.87480 1.33924i −0.182961 0.130696i
\(106\) 4.99593 0.485248
\(107\) 1.54262 1.54262i 0.149131 0.149131i −0.628599 0.777730i \(-0.716371\pi\)
0.777730 + 0.628599i \(0.216371\pi\)
\(108\) −0.707107 0.707107i −0.0680414 0.0680414i
\(109\) −18.4286 −1.76514 −0.882569 0.470183i \(-0.844188\pi\)
−0.882569 + 0.470183i \(0.844188\pi\)
\(110\) −1.76721 10.6055i −0.168497 1.01119i
\(111\) −7.74758 −0.735367
\(112\) 0.728588 + 0.728588i 0.0688451 + 0.0688451i
\(113\) −5.25913 5.25913i −0.494738 0.494738i 0.415058 0.909795i \(-0.363761\pi\)
−0.909795 + 0.415058i \(0.863761\pi\)
\(114\) 2.90517 3.24961i 0.272095 0.304354i
\(115\) −2.12052 12.7258i −0.197740 1.18668i
\(116\) 0.494819i 0.0459428i
\(117\) −0.531491 + 0.531491i −0.0491364 + 0.0491364i
\(118\) −8.57770 + 8.57770i −0.789641 + 0.789641i
\(119\) 5.43503i 0.498229i
\(120\) −1.81952 1.29975i −0.166099 0.118650i
\(121\) 12.1199 1.10181
\(122\) −3.76477 + 3.76477i −0.340846 + 0.340846i
\(123\) −4.11927 + 4.11927i −0.371422 + 0.371422i
\(124\) 8.62312 0.774379
\(125\) 10.7133 + 3.19762i 0.958229 + 0.286004i
\(126\) 1.03038i 0.0917935i
\(127\) 9.35800 9.35800i 0.830388 0.830388i −0.157181 0.987570i \(-0.550241\pi\)
0.987570 + 0.157181i \(0.0502408\pi\)
\(128\) 0.707107 + 0.707107i 0.0625000 + 0.0625000i
\(129\) 4.30033 0.378623
\(130\) −0.976946 + 1.36763i −0.0856839 + 0.119949i
\(131\) 12.6267 1.10320 0.551601 0.834108i \(-0.314017\pi\)
0.551601 + 0.834108i \(0.314017\pi\)
\(132\) 3.39999 3.39999i 0.295931 0.295931i
\(133\) 4.48430 0.250951i 0.388838 0.0217602i
\(134\) 12.9984i 1.12289i
\(135\) 0.367533 + 2.20566i 0.0316322 + 0.189833i
\(136\) 5.27479i 0.452309i
\(137\) 0.378698 + 0.378698i 0.0323544 + 0.0323544i 0.723099 0.690745i \(-0.242717\pi\)
−0.690745 + 0.723099i \(0.742717\pi\)
\(138\) 4.07973 4.07973i 0.347290 0.347290i
\(139\) 22.7942i 1.93338i 0.255957 + 0.966688i \(0.417609\pi\)
−0.255957 + 0.966688i \(0.582391\pi\)
\(140\) −0.378698 2.27266i −0.0320058 0.192075i
\(141\) 1.28757i 0.108433i
\(142\) −1.45718 1.45718i −0.122284 0.122284i
\(143\) −2.55558 2.55558i −0.213708 0.213708i
\(144\) 1.00000i 0.0833333i
\(145\) −0.643141 + 0.900333i −0.0534100 + 0.0747686i
\(146\) 4.68331i 0.387594i
\(147\) −4.19903 + 4.19903i −0.346330 + 0.346330i
\(148\) −5.47836 5.47836i −0.450319 0.450319i
\(149\) 15.8801i 1.30095i 0.759529 + 0.650473i \(0.225429\pi\)
−0.759529 + 0.650473i \(0.774571\pi\)
\(150\) 1.62130 + 4.72984i 0.132379 + 0.386190i
\(151\) 13.3507i 1.08646i −0.839583 0.543231i \(-0.817201\pi\)
0.839583 0.543231i \(-0.182799\pi\)
\(152\) 4.35209 0.243552i 0.353001 0.0197547i
\(153\) 3.72984 3.72984i 0.301540 0.301540i
\(154\) 4.95439 0.399236
\(155\) −15.6899 11.2079i −1.26025 0.900240i
\(156\) −0.751642 −0.0601795
\(157\) 11.7372 + 11.7372i 0.936727 + 0.936727i 0.998114 0.0613870i \(-0.0195524\pi\)
−0.0613870 + 0.998114i \(0.519552\pi\)
\(158\) 1.95921 1.95921i 0.155866 0.155866i
\(159\) 4.99593i 0.396203i
\(160\) −0.367533 2.20566i −0.0290560 0.174372i
\(161\) 5.94489 0.468523
\(162\) −0.707107 + 0.707107i −0.0555556 + 0.0555556i
\(163\) −0.988668 + 0.988668i −0.0774384 + 0.0774384i −0.744765 0.667327i \(-0.767438\pi\)
0.667327 + 0.744765i \(0.267438\pi\)
\(164\) −5.82553 −0.454897
\(165\) −10.6055 + 1.76721i −0.825637 + 0.137577i
\(166\) 5.05963i 0.392703i
\(167\) 7.42584 7.42584i 0.574629 0.574629i −0.358790 0.933418i \(-0.616811\pi\)
0.933418 + 0.358790i \(0.116811\pi\)
\(168\) 0.728588 0.728588i 0.0562118 0.0562118i
\(169\) 12.4350i 0.956541i
\(170\) 6.85591 9.59758i 0.525824 0.736101i
\(171\) −3.24961 2.90517i −0.248504 0.222164i
\(172\) 3.04079 + 3.04079i 0.231858 + 0.231858i
\(173\) 11.0462 + 11.0462i 0.839825 + 0.839825i 0.988836 0.149011i \(-0.0476090\pi\)
−0.149011 + 0.988836i \(0.547609\pi\)
\(174\) −0.494819 −0.0375122
\(175\) −2.26484 + 4.62737i −0.171206 + 0.349796i
\(176\) 4.80832 0.362441
\(177\) 8.57770 + 8.57770i 0.644739 + 0.644739i
\(178\) 0.768128 0.768128i 0.0575736 0.0575736i
\(179\) −19.0425 −1.42330 −0.711652 0.702532i \(-0.752053\pi\)
−0.711652 + 0.702532i \(0.752053\pi\)
\(180\) −1.29975 + 1.81952i −0.0968776 + 0.135619i
\(181\) 1.78110i 0.132388i 0.997807 + 0.0661941i \(0.0210857\pi\)
−0.997807 + 0.0661941i \(0.978914\pi\)
\(182\) −0.547637 0.547637i −0.0405936 0.0405936i
\(183\) 3.76477 + 3.76477i 0.278300 + 0.278300i
\(184\) 5.76961 0.425341
\(185\) 2.84749 + 17.0885i 0.209351 + 1.25637i
\(186\) 8.62312i 0.632278i
\(187\) 17.9343 + 17.9343i 1.31148 + 1.31148i
\(188\) 0.910451 0.910451i 0.0664014 0.0664014i
\(189\) −1.03038 −0.0749491
\(190\) −8.23527 5.21348i −0.597449 0.378226i
\(191\) −14.8650 −1.07559 −0.537797 0.843075i \(-0.680743\pi\)
−0.537797 + 0.843075i \(0.680743\pi\)
\(192\) 0.707107 0.707107i 0.0510310 0.0510310i
\(193\) 5.04632 + 5.04632i 0.363242 + 0.363242i 0.865005 0.501763i \(-0.167315\pi\)
−0.501763 + 0.865005i \(0.667315\pi\)
\(194\) 3.98335i 0.285988i
\(195\) 1.36763 + 0.976946i 0.0979378 + 0.0699606i
\(196\) −5.93832 −0.424166
\(197\) −7.66209 7.66209i −0.545901 0.545901i 0.379351 0.925253i \(-0.376147\pi\)
−0.925253 + 0.379351i \(0.876147\pi\)
\(198\) −3.39999 3.39999i −0.241627 0.241627i
\(199\) 20.9302i 1.48370i 0.670565 + 0.741851i \(0.266052\pi\)
−0.670565 + 0.741851i \(0.733948\pi\)
\(200\) −2.19807 + 4.49094i −0.155427 + 0.317557i
\(201\) −12.9984 −0.916839
\(202\) −9.94134 + 9.94134i −0.699470 + 0.699470i
\(203\) −0.360520 0.360520i −0.0253035 0.0253035i
\(204\) 5.27479 0.369309
\(205\) 10.5997 + 7.57173i 0.740312 + 0.528832i
\(206\) −9.38086 −0.653596
\(207\) −4.07973 4.07973i −0.283561 0.283561i
\(208\) −0.531491 0.531491i −0.0368523 0.0368523i
\(209\) 13.9690 15.6252i 0.966256 1.08081i
\(210\) −2.27266 + 0.378698i −0.156829 + 0.0261327i
\(211\) 27.6388i 1.90273i 0.308062 + 0.951366i \(0.400319\pi\)
−0.308062 + 0.951366i \(0.599681\pi\)
\(212\) 3.53266 3.53266i 0.242624 0.242624i
\(213\) −1.45718 + 1.45718i −0.0998441 + 0.0998441i
\(214\) 2.18160i 0.149131i
\(215\) −1.58051 9.48504i −0.107790 0.646875i
\(216\) −1.00000 −0.0680414
\(217\) 6.28270 6.28270i 0.426498 0.426498i
\(218\) −13.0310 + 13.0310i −0.882569 + 0.882569i
\(219\) −4.68331 −0.316469
\(220\) −8.74883 6.24961i −0.589846 0.421349i
\(221\) 3.96475i 0.266698i
\(222\) −5.47836 + 5.47836i −0.367684 + 0.367684i
\(223\) −8.04571 8.04571i −0.538781 0.538781i 0.384390 0.923171i \(-0.374412\pi\)
−0.923171 + 0.384390i \(0.874412\pi\)
\(224\) 1.03038 0.0688451
\(225\) 4.72984 1.62130i 0.315323 0.108087i
\(226\) −7.43754 −0.494738
\(227\) −1.98330 + 1.98330i −0.131636 + 0.131636i −0.769855 0.638219i \(-0.779671\pi\)
0.638219 + 0.769855i \(0.279671\pi\)
\(228\) −0.243552 4.35209i −0.0161296 0.288224i
\(229\) 19.6443i 1.29813i −0.760732 0.649066i \(-0.775160\pi\)
0.760732 0.649066i \(-0.224840\pi\)
\(230\) −10.4979 7.49905i −0.692212 0.494473i
\(231\) 4.95439i 0.325975i
\(232\) −0.349890 0.349890i −0.0229714 0.0229714i
\(233\) −4.73992 + 4.73992i −0.310523 + 0.310523i −0.845112 0.534589i \(-0.820466\pi\)
0.534589 + 0.845112i \(0.320466\pi\)
\(234\) 0.751642i 0.0491364i
\(235\) −2.83994 + 0.473225i −0.185257 + 0.0308698i
\(236\) 12.1307i 0.789641i
\(237\) −1.95921 1.95921i −0.127264 0.127264i
\(238\) 3.84315 + 3.84315i 0.249114 + 0.249114i
\(239\) 21.1851i 1.37035i −0.728378 0.685176i \(-0.759725\pi\)
0.728378 0.685176i \(-0.240275\pi\)
\(240\) −2.20566 + 0.367533i −0.142375 + 0.0237241i
\(241\) 16.2784i 1.04859i 0.851538 + 0.524293i \(0.175671\pi\)
−0.851538 + 0.524293i \(0.824329\pi\)
\(242\) 8.57008 8.57008i 0.550905 0.550905i
\(243\) 0.707107 + 0.707107i 0.0453609 + 0.0453609i
\(244\) 5.32419i 0.340846i
\(245\) 10.8049 + 7.71833i 0.690299 + 0.493106i
\(246\) 5.82553i 0.371422i
\(247\) −3.27121 + 0.183064i −0.208142 + 0.0116481i
\(248\) 6.09747 6.09747i 0.387190 0.387190i
\(249\) 5.05963 0.320641
\(250\) 9.83652 5.31441i 0.622116 0.336113i
\(251\) 5.24992 0.331372 0.165686 0.986179i \(-0.447016\pi\)
0.165686 + 0.986179i \(0.447016\pi\)
\(252\) −0.728588 0.728588i −0.0458967 0.0458967i
\(253\) 19.6166 19.6166i 1.23329 1.23329i
\(254\) 13.2342i 0.830388i
\(255\) −9.59758 6.85591i −0.601024 0.429333i
\(256\) 1.00000 0.0625000
\(257\) −16.0320 + 16.0320i −1.00005 + 1.00005i −4.94079e−5 1.00000i \(0.500016\pi\)
−1.00000 4.94079e-5i \(0.999984\pi\)
\(258\) 3.04079 3.04079i 0.189311 0.189311i
\(259\) −7.98294 −0.496036
\(260\) 0.276253 + 1.65786i 0.0171325 + 0.102816i
\(261\) 0.494819i 0.0306285i
\(262\) 8.92844 8.92844i 0.551601 0.551601i
\(263\) −5.94999 + 5.94999i −0.366892 + 0.366892i −0.866342 0.499450i \(-0.833535\pi\)
0.499450 + 0.866342i \(0.333535\pi\)
\(264\) 4.80832i 0.295931i
\(265\) −11.0193 + 1.83617i −0.676911 + 0.112795i
\(266\) 2.99343 3.34833i 0.183539 0.205299i
\(267\) −0.768128 0.768128i −0.0470087 0.0470087i
\(268\) −9.19128 9.19128i −0.561447 0.561447i
\(269\) 26.2880 1.60281 0.801404 0.598123i \(-0.204087\pi\)
0.801404 + 0.598123i \(0.204087\pi\)
\(270\) 1.81952 + 1.29975i 0.110732 + 0.0791002i
\(271\) −11.9318 −0.724802 −0.362401 0.932022i \(-0.618043\pi\)
−0.362401 + 0.932022i \(0.618043\pi\)
\(272\) 3.72984 + 3.72984i 0.226155 + 0.226155i
\(273\) −0.547637 + 0.547637i −0.0331445 + 0.0331445i
\(274\) 0.535560 0.0323544
\(275\) 7.79573 + 22.7426i 0.470100 + 1.37143i
\(276\) 5.76961i 0.347290i
\(277\) −13.1943 13.1943i −0.792771 0.792771i 0.189173 0.981944i \(-0.439419\pi\)
−0.981944 + 0.189173i \(0.939419\pi\)
\(278\) 16.1179 + 16.1179i 0.966688 + 0.966688i
\(279\) −8.62312 −0.516253
\(280\) −1.87480 1.33924i −0.112040 0.0800346i
\(281\) 25.4814i 1.52009i 0.649870 + 0.760045i \(0.274823\pi\)
−0.649870 + 0.760045i \(0.725177\pi\)
\(282\) −0.910451 0.910451i −0.0542165 0.0542165i
\(283\) −14.9451 + 14.9451i −0.888392 + 0.888392i −0.994369 0.105977i \(-0.966203\pi\)
0.105977 + 0.994369i \(0.466203\pi\)
\(284\) −2.06076 −0.122284
\(285\) −5.21348 + 8.23527i −0.308820 + 0.487815i
\(286\) −3.61413 −0.213708
\(287\) −4.24441 + 4.24441i −0.250540 + 0.250540i
\(288\) −0.707107 0.707107i −0.0416667 0.0416667i
\(289\) 10.8234i 0.636671i
\(290\) 0.181862 + 1.09140i 0.0106793 + 0.0640893i
\(291\) −3.98335 −0.233508
\(292\) −3.31160 3.31160i −0.193797 0.193797i
\(293\) 19.3388 + 19.3388i 1.12978 + 1.12978i 0.990212 + 0.139570i \(0.0445719\pi\)
0.139570 + 0.990212i \(0.455428\pi\)
\(294\) 5.93832i 0.346330i
\(295\) 15.7669 22.0720i 0.917982 1.28508i
\(296\) −7.74758 −0.450319
\(297\) −3.39999 + 3.39999i −0.197288 + 0.197288i
\(298\) 11.2289 + 11.2289i 0.650473 + 0.650473i
\(299\) −4.33668 −0.250797
\(300\) 4.49094 + 2.19807i 0.259284 + 0.126906i
\(301\) 4.43097 0.255397
\(302\) −9.44035 9.44035i −0.543231 0.543231i
\(303\) 9.94134 + 9.94134i 0.571115 + 0.571115i
\(304\) 2.90517 3.24961i 0.166623 0.186378i
\(305\) 6.92011 9.68746i 0.396244 0.554702i
\(306\) 5.27479i 0.301540i
\(307\) 0.00353863 0.00353863i 0.000201960 0.000201960i −0.707006 0.707208i \(-0.749955\pi\)
0.707208 + 0.707006i \(0.249955\pi\)
\(308\) 3.50328 3.50328i 0.199618 0.199618i
\(309\) 9.38086i 0.533659i
\(310\) −19.0196 + 3.16928i −1.08024 + 0.180003i
\(311\) −11.6925 −0.663019 −0.331509 0.943452i \(-0.607558\pi\)
−0.331509 + 0.943452i \(0.607558\pi\)
\(312\) −0.531491 + 0.531491i −0.0300898 + 0.0300898i
\(313\) −16.6688 + 16.6688i −0.942174 + 0.942174i −0.998417 0.0562432i \(-0.982088\pi\)
0.0562432 + 0.998417i \(0.482088\pi\)
\(314\) 16.5988 0.936727
\(315\) 0.378698 + 2.27266i 0.0213372 + 0.128050i
\(316\) 2.77074i 0.155866i
\(317\) −6.96737 + 6.96737i −0.391327 + 0.391327i −0.875160 0.483834i \(-0.839244\pi\)
0.483834 + 0.875160i \(0.339244\pi\)
\(318\) −3.53266 3.53266i −0.198102 0.198102i
\(319\) −2.37925 −0.133212
\(320\) −1.81952 1.29975i −0.101714 0.0726582i
\(321\) −2.18160 −0.121765
\(322\) 4.20367 4.20367i 0.234261 0.234261i
\(323\) 22.9564 1.28468i 1.27733 0.0714818i
\(324\) 1.00000i 0.0555556i
\(325\) 1.65216 3.37558i 0.0916454 0.187243i
\(326\) 1.39819i 0.0774384i
\(327\) 13.0310 + 13.0310i 0.720614 + 0.720614i
\(328\) −4.11927 + 4.11927i −0.227449 + 0.227449i
\(329\) 1.32669i 0.0731426i
\(330\) −6.24961 + 8.74883i −0.344030 + 0.481607i
\(331\) 12.2381i 0.672669i −0.941743 0.336335i \(-0.890813\pi\)
0.941743 0.336335i \(-0.109187\pi\)
\(332\) 3.57770 + 3.57770i 0.196352 + 0.196352i
\(333\) 5.47836 + 5.47836i 0.300212 + 0.300212i
\(334\) 10.5017i 0.574629i
\(335\) 4.77735 + 28.6701i 0.261015 + 1.56641i
\(336\) 1.03038i 0.0562118i
\(337\) −18.9918 + 18.9918i −1.03455 + 1.03455i −0.0351664 + 0.999381i \(0.511196\pi\)
−0.999381 + 0.0351664i \(0.988804\pi\)
\(338\) −8.79290 8.79290i −0.478271 0.478271i
\(339\) 7.43754i 0.403952i
\(340\) −1.93866 11.6344i −0.105138 0.630962i
\(341\) 41.4627i 2.24533i
\(342\) −4.35209 + 0.243552i −0.235334 + 0.0131698i
\(343\) −9.42671 + 9.42671i −0.508994 + 0.508994i
\(344\) 4.30033 0.231858
\(345\) −7.49905 + 10.4979i −0.403735 + 0.565189i
\(346\) 15.6216 0.839825
\(347\) 1.51527 + 1.51527i 0.0813438 + 0.0813438i 0.746608 0.665264i \(-0.231681\pi\)
−0.665264 + 0.746608i \(0.731681\pi\)
\(348\) −0.349890 + 0.349890i −0.0187561 + 0.0187561i
\(349\) 21.3136i 1.14089i 0.821336 + 0.570444i \(0.193229\pi\)
−0.821336 + 0.570444i \(0.806771\pi\)
\(350\) 1.67056 + 4.87353i 0.0892950 + 0.260501i
\(351\) 0.751642 0.0401197
\(352\) 3.39999 3.39999i 0.181220 0.181220i
\(353\) 9.37463 9.37463i 0.498961 0.498961i −0.412153 0.911115i \(-0.635223\pi\)
0.911115 + 0.412153i \(0.135223\pi\)
\(354\) 12.1307 0.644739
\(355\) 3.74959 + 2.67847i 0.199008 + 0.142158i
\(356\) 1.08630i 0.0575736i
\(357\) 3.84315 3.84315i 0.203401 0.203401i
\(358\) −13.4651 + 13.4651i −0.711652 + 0.711652i
\(359\) 30.1209i 1.58972i −0.606792 0.794861i \(-0.707544\pi\)
0.606792 0.794861i \(-0.292456\pi\)
\(360\) 0.367533 + 2.20566i 0.0193707 + 0.116248i
\(361\) −2.11992 18.8814i −0.111575 0.993756i
\(362\) 1.25943 + 1.25943i 0.0661941 + 0.0661941i
\(363\) −8.57008 8.57008i −0.449812 0.449812i
\(364\) −0.774476 −0.0405936
\(365\) 1.72127 + 10.3298i 0.0900954 + 0.540685i
\(366\) 5.32419 0.278300
\(367\) −10.0986 10.0986i −0.527140 0.527140i 0.392578 0.919719i \(-0.371583\pi\)
−0.919719 + 0.392578i \(0.871583\pi\)
\(368\) 4.07973 4.07973i 0.212671 0.212671i
\(369\) 5.82553 0.303265
\(370\) 14.0969 + 10.0699i 0.732861 + 0.523510i
\(371\) 5.14771i 0.267256i
\(372\) −6.09747 6.09747i −0.316139 0.316139i
\(373\) −11.5759 11.5759i −0.599377 0.599377i 0.340770 0.940147i \(-0.389312\pi\)
−0.940147 + 0.340770i \(0.889312\pi\)
\(374\) 25.3629 1.31148
\(375\) −5.31441 9.83652i −0.274435 0.507956i
\(376\) 1.28757i 0.0664014i
\(377\) 0.262992 + 0.262992i 0.0135448 + 0.0135448i
\(378\) −0.728588 + 0.728588i −0.0374745 + 0.0374745i
\(379\) −30.6895 −1.57641 −0.788206 0.615412i \(-0.788990\pi\)
−0.788206 + 0.615412i \(0.788990\pi\)
\(380\) −9.50970 + 2.13673i −0.487837 + 0.109612i
\(381\) −13.2342 −0.678009
\(382\) −10.5111 + 10.5111i −0.537797 + 0.537797i
\(383\) 6.71232 + 6.71232i 0.342983 + 0.342983i 0.857488 0.514504i \(-0.172024\pi\)
−0.514504 + 0.857488i \(0.672024\pi\)
\(384\) 1.00000i 0.0510310i
\(385\) −10.9277 + 1.82090i −0.556926 + 0.0928017i
\(386\) 7.13657 0.363242
\(387\) −3.04079 3.04079i −0.154572 0.154572i
\(388\) −2.81665 2.81665i −0.142994 0.142994i
\(389\) 1.69598i 0.0859894i 0.999075 + 0.0429947i \(0.0136899\pi\)
−0.999075 + 0.0429947i \(0.986310\pi\)
\(390\) 1.65786 0.276253i 0.0839492 0.0139886i
\(391\) 30.4335 1.53909
\(392\) −4.19903 + 4.19903i −0.212083 + 0.212083i
\(393\) −8.92844 8.92844i −0.450380 0.450380i
\(394\) −10.8358 −0.545901
\(395\) −3.60127 + 5.04142i −0.181199 + 0.253661i
\(396\) −4.80832 −0.241627
\(397\) −17.6346 17.6346i −0.885057 0.885057i 0.108986 0.994043i \(-0.465240\pi\)
−0.994043 + 0.108986i \(0.965240\pi\)
\(398\) 14.7999 + 14.7999i 0.741851 + 0.741851i
\(399\) −3.34833 2.99343i −0.167626 0.149859i
\(400\) 1.62130 + 4.72984i 0.0810651 + 0.236492i
\(401\) 1.30146i 0.0649918i 0.999472 + 0.0324959i \(0.0103456\pi\)
−0.999472 + 0.0324959i \(0.989654\pi\)
\(402\) −9.19128 + 9.19128i −0.458420 + 0.458420i
\(403\) −4.58311 + 4.58311i −0.228301 + 0.228301i
\(404\) 14.0592i 0.699470i
\(405\) 1.29975 1.81952i 0.0645851 0.0904126i
\(406\) −0.509852 −0.0253035
\(407\) −26.3417 + 26.3417i −1.30571 + 1.30571i
\(408\) 3.72984 3.72984i 0.184655 0.184655i
\(409\) −18.8682 −0.932971 −0.466485 0.884529i \(-0.654480\pi\)
−0.466485 + 0.884529i \(0.654480\pi\)
\(410\) 12.8491 2.14107i 0.634572 0.105740i
\(411\) 0.535560i 0.0264172i
\(412\) −6.63327 + 6.63327i −0.326798 + 0.326798i
\(413\) 8.83828 + 8.83828i 0.434903 + 0.434903i
\(414\) −5.76961 −0.283561
\(415\) −1.85958 11.1598i −0.0912831 0.547813i
\(416\) −0.751642 −0.0368523
\(417\) 16.1179 16.1179i 0.789298 0.789298i
\(418\) −1.17107 20.9262i −0.0572791 1.02354i
\(419\) 20.1568i 0.984725i 0.870390 + 0.492363i \(0.163867\pi\)
−0.870390 + 0.492363i \(0.836133\pi\)
\(420\) −1.33924 + 1.87480i −0.0653480 + 0.0914806i
\(421\) 8.85286i 0.431462i −0.976453 0.215731i \(-0.930787\pi\)
0.976453 0.215731i \(-0.0692134\pi\)
\(422\) 19.5436 + 19.5436i 0.951366 + 0.951366i
\(423\) −0.910451 + 0.910451i −0.0442676 + 0.0442676i
\(424\) 4.99593i 0.242624i
\(425\) −11.5943 + 23.6887i −0.562408 + 1.14907i
\(426\) 2.06076i 0.0998441i
\(427\) 3.87914 + 3.87914i 0.187725 + 0.187725i
\(428\) −1.54262 1.54262i −0.0745656 0.0745656i
\(429\) 3.61413i 0.174492i
\(430\) −7.82453 5.58935i −0.377332 0.269542i
\(431\) 25.3047i 1.21889i −0.792830 0.609443i \(-0.791393\pi\)
0.792830 0.609443i \(-0.208607\pi\)
\(432\) −0.707107 + 0.707107i −0.0340207 + 0.0340207i
\(433\) −6.00560 6.00560i −0.288611 0.288611i 0.547920 0.836531i \(-0.315420\pi\)
−0.836531 + 0.547920i \(0.815420\pi\)
\(434\) 8.88509i 0.426498i
\(435\) 1.09140 0.181862i 0.0523287 0.00871963i
\(436\) 18.4286i 0.882569i
\(437\) −1.40520 25.1099i −0.0672198 1.20117i
\(438\) −3.31160 + 3.31160i −0.158234 + 0.158234i
\(439\) 38.4260 1.83397 0.916986 0.398919i \(-0.130614\pi\)
0.916986 + 0.398919i \(0.130614\pi\)
\(440\) −10.6055 + 1.76721i −0.505597 + 0.0842486i
\(441\) 5.93832 0.282777
\(442\) −2.80350 2.80350i −0.133349 0.133349i
\(443\) 27.7457 27.7457i 1.31824 1.31824i 0.403066 0.915171i \(-0.367945\pi\)
0.915171 0.403066i \(-0.132055\pi\)
\(444\) 7.74758i 0.367684i
\(445\) −1.41191 + 1.97654i −0.0669311 + 0.0936969i
\(446\) −11.3784 −0.538781
\(447\) 11.2289 11.2289i 0.531109 0.531109i
\(448\) 0.728588 0.728588i 0.0344226 0.0344226i
\(449\) −28.1598 −1.32894 −0.664472 0.747313i \(-0.731344\pi\)
−0.664472 + 0.747313i \(0.731344\pi\)
\(450\) 2.19807 4.49094i 0.103618 0.211705i
\(451\) 28.0110i 1.31899i
\(452\) −5.25913 + 5.25913i −0.247369 + 0.247369i
\(453\) −9.44035 + 9.44035i −0.443546 + 0.443546i
\(454\) 2.80480i 0.131636i
\(455\) 1.40917 + 1.00663i 0.0660631 + 0.0471913i
\(456\) −3.24961 2.90517i −0.152177 0.136047i
\(457\) −19.5575 19.5575i −0.914859 0.914859i 0.0817904 0.996650i \(-0.473936\pi\)
−0.996650 + 0.0817904i \(0.973936\pi\)
\(458\) −13.8906 13.8906i −0.649066 0.649066i
\(459\) −5.27479 −0.246206
\(460\) −12.7258 + 2.12052i −0.593342 + 0.0988698i
\(461\) 9.61570 0.447848 0.223924 0.974607i \(-0.428113\pi\)
0.223924 + 0.974607i \(0.428113\pi\)
\(462\) −3.50328 3.50328i −0.162988 0.162988i
\(463\) 16.6735 16.6735i 0.774882 0.774882i −0.204074 0.978956i \(-0.565418\pi\)
0.978956 + 0.204074i \(0.0654182\pi\)
\(464\) −0.494819 −0.0229714
\(465\) 3.16928 + 19.0196i 0.146972 + 0.882015i
\(466\) 6.70326i 0.310523i
\(467\) −17.1190 17.1190i −0.792171 0.792171i 0.189676 0.981847i \(-0.439256\pi\)
−0.981847 + 0.189676i \(0.939256\pi\)
\(468\) 0.531491 + 0.531491i 0.0245682 + 0.0245682i
\(469\) −13.3933 −0.618446
\(470\) −1.67352 + 2.34276i −0.0771938 + 0.108064i
\(471\) 16.5988i 0.764834i
\(472\) 8.57770 + 8.57770i 0.394820 + 0.394820i
\(473\) 14.6211 14.6211i 0.672278 0.672278i
\(474\) −2.77074 −0.127264
\(475\) 20.0803 + 8.47241i 0.921347 + 0.388741i
\(476\) 5.43503 0.249114
\(477\) −3.53266 + 3.53266i −0.161749 + 0.161749i
\(478\) −14.9801 14.9801i −0.685176 0.685176i
\(479\) 14.2801i 0.652474i 0.945288 + 0.326237i \(0.105781\pi\)
−0.945288 + 0.326237i \(0.894219\pi\)
\(480\) −1.29975 + 1.81952i −0.0593252 + 0.0830493i
\(481\) 5.82340 0.265524
\(482\) 11.5106 + 11.5106i 0.524293 + 0.524293i
\(483\) −4.20367 4.20367i −0.191274 0.191274i
\(484\) 12.1199i 0.550905i
\(485\) 1.46401 + 8.78590i 0.0664774 + 0.398947i
\(486\) 1.00000 0.0453609
\(487\) 13.6790 13.6790i 0.619856 0.619856i −0.325639 0.945494i \(-0.605579\pi\)
0.945494 + 0.325639i \(0.105579\pi\)
\(488\) 3.76477 + 3.76477i 0.170423 + 0.170423i
\(489\) 1.39819 0.0632282
\(490\) 13.0979 2.18253i 0.591702 0.0985965i
\(491\) 6.60655 0.298150 0.149075 0.988826i \(-0.452370\pi\)
0.149075 + 0.988826i \(0.452370\pi\)
\(492\) 4.11927 + 4.11927i 0.185711 + 0.185711i
\(493\) −1.84560 1.84560i −0.0831215 0.0831215i
\(494\) −2.18365 + 2.44254i −0.0982471 + 0.109895i
\(495\) 8.74883 + 6.24961i 0.393231 + 0.280899i
\(496\) 8.62312i 0.387190i
\(497\) −1.50144 + 1.50144i −0.0673490 + 0.0673490i
\(498\) 3.57770 3.57770i 0.160320 0.160320i
\(499\) 35.7269i 1.59935i 0.600430 + 0.799677i \(0.294996\pi\)
−0.600430 + 0.799677i \(0.705004\pi\)
\(500\) 3.19762 10.7133i 0.143002 0.479114i
\(501\) −10.5017 −0.469182
\(502\) 3.71225 3.71225i 0.165686 0.165686i
\(503\) −8.52003 + 8.52003i −0.379889 + 0.379889i −0.871062 0.491173i \(-0.836568\pi\)
0.491173 + 0.871062i \(0.336568\pi\)
\(504\) −1.03038 −0.0458967
\(505\) 18.2734 25.5809i 0.813156 1.13834i
\(506\) 27.7421i 1.23329i
\(507\) −8.79290 + 8.79290i −0.390506 + 0.390506i
\(508\) −9.35800 9.35800i −0.415194 0.415194i
\(509\) 13.4408 0.595753 0.297877 0.954604i \(-0.403722\pi\)
0.297877 + 0.954604i \(0.403722\pi\)
\(510\) −11.6344 + 1.93866i −0.515179 + 0.0858452i
\(511\) −4.82559 −0.213471
\(512\) 0.707107 0.707107i 0.0312500 0.0312500i
\(513\) 0.243552 + 4.35209i 0.0107531 + 0.192149i
\(514\) 22.6727i 1.00005i
\(515\) 20.6910 3.44777i 0.911752 0.151927i
\(516\) 4.30033i 0.189311i
\(517\) −4.37774 4.37774i −0.192533 0.192533i
\(518\) −5.64479 + 5.64479i −0.248018 + 0.248018i
\(519\) 15.6216i 0.685714i
\(520\) 1.36763 + 0.976946i 0.0599744 + 0.0428419i
\(521\) 13.5544i 0.593831i −0.954904 0.296916i \(-0.904042\pi\)
0.954904 0.296916i \(-0.0959580\pi\)
\(522\) 0.349890 + 0.349890i 0.0153143 + 0.0153143i
\(523\) −5.40357 5.40357i −0.236282 0.236282i 0.579027 0.815308i \(-0.303433\pi\)
−0.815308 + 0.579027i \(0.803433\pi\)
\(524\) 12.6267i 0.551601i
\(525\) 4.87353 1.67056i 0.212698 0.0729090i
\(526\) 8.41456i 0.366892i
\(527\) 32.1629 32.1629i 1.40104 1.40104i
\(528\) −3.39999 3.39999i −0.147966 0.147966i
\(529\) 10.2884i 0.447321i
\(530\) −6.49346 + 9.09020i −0.282058 + 0.394853i
\(531\) 12.1307i 0.526427i
\(532\) −0.250951 4.48430i −0.0108801 0.194419i
\(533\) 3.09622 3.09622i 0.134112 0.134112i
\(534\) −1.08630 −0.0470087
\(535\) 0.801810 + 4.81186i 0.0346653 + 0.208035i
\(536\) −12.9984 −0.561447
\(537\) 13.4651 + 13.4651i 0.581062 + 0.581062i
\(538\) 18.5884 18.5884i 0.801404 0.801404i
\(539\) 28.5533i 1.22988i
\(540\) 2.20566 0.367533i 0.0949163 0.0158161i
\(541\) 7.68488 0.330399 0.165200 0.986260i \(-0.447173\pi\)
0.165200 + 0.986260i \(0.447173\pi\)
\(542\) −8.43702 + 8.43702i −0.362401 + 0.362401i
\(543\) 1.25943 1.25943i 0.0540473 0.0540473i
\(544\) 5.27479 0.226155
\(545\) 23.9525 33.5312i 1.02601 1.43632i
\(546\) 0.774476i 0.0331445i
\(547\) 17.8604 17.8604i 0.763656 0.763656i −0.213325 0.976981i \(-0.568429\pi\)
0.976981 + 0.213325i \(0.0684294\pi\)
\(548\) 0.378698 0.378698i 0.0161772 0.0161772i
\(549\) 5.32419i 0.227231i
\(550\) 21.5938 + 10.5690i 0.920765 + 0.450664i
\(551\) −1.43754 + 1.60797i −0.0612411 + 0.0685018i
\(552\) −4.07973 4.07973i −0.173645 0.173645i
\(553\) −2.01873 2.01873i −0.0858451 0.0858451i
\(554\) −18.6596 −0.792771
\(555\) 10.0699 14.0969i 0.427444 0.598379i
\(556\) 22.7942 0.966688
\(557\) 12.5198 + 12.5198i 0.530480 + 0.530480i 0.920715 0.390235i \(-0.127606\pi\)
−0.390235 + 0.920715i \(0.627606\pi\)
\(558\) −6.09747 + 6.09747i −0.258126 + 0.258126i
\(559\) −3.23231 −0.136712
\(560\) −2.27266 + 0.378698i −0.0960375 + 0.0160029i
\(561\) 25.3629i 1.07082i
\(562\) 18.0180 + 18.0180i 0.760045 + 0.760045i
\(563\) −11.0759 11.0759i −0.466791 0.466791i 0.434082 0.900873i \(-0.357073\pi\)
−0.900873 + 0.434082i \(0.857073\pi\)
\(564\) −1.28757 −0.0542165
\(565\) 16.4046 2.73354i 0.690149 0.115001i
\(566\) 21.1355i 0.888392i
\(567\) 0.728588 + 0.728588i 0.0305978 + 0.0305978i
\(568\) −1.45718 + 1.45718i −0.0611418 + 0.0611418i
\(569\) 43.4414 1.82116 0.910579 0.413336i \(-0.135636\pi\)
0.910579 + 0.413336i \(0.135636\pi\)
\(570\) 2.13673 + 9.50970i 0.0894977 + 0.398318i
\(571\) 15.6768 0.656052 0.328026 0.944669i \(-0.393617\pi\)
0.328026 + 0.944669i \(0.393617\pi\)
\(572\) −2.55558 + 2.55558i −0.106854 + 0.106854i
\(573\) 10.5111 + 10.5111i 0.439109 + 0.439109i
\(574\) 6.00250i 0.250540i
\(575\) 25.9109 + 12.6820i 1.08056 + 0.528876i
\(576\) −1.00000 −0.0416667
\(577\) 6.59569 + 6.59569i 0.274582 + 0.274582i 0.830942 0.556359i \(-0.187802\pi\)
−0.556359 + 0.830942i \(0.687802\pi\)
\(578\) 7.65330 + 7.65330i 0.318335 + 0.318335i
\(579\) 7.13657i 0.296586i
\(580\) 0.900333 + 0.643141i 0.0373843 + 0.0267050i
\(581\) 5.21334 0.216286
\(582\) −2.81665 + 2.81665i −0.116754 + 0.116754i
\(583\) −16.9861 16.9861i −0.703494 0.703494i
\(584\) −4.68331 −0.193797
\(585\) −0.276253 1.65786i −0.0114217 0.0685442i
\(586\) 27.3491 1.12978
\(587\) −23.8623 23.8623i −0.984904 0.984904i 0.0149835 0.999888i \(-0.495230\pi\)
−0.999888 + 0.0149835i \(0.995230\pi\)
\(588\) 4.19903 + 4.19903i 0.173165 + 0.173165i
\(589\) −28.0218 25.0517i −1.15462 1.03224i
\(590\) −4.45843 26.7561i −0.183551 1.10153i
\(591\) 10.8358i 0.445727i
\(592\) −5.47836 + 5.47836i −0.225159 + 0.225159i
\(593\) 22.7988 22.7988i 0.936236 0.936236i −0.0618495 0.998085i \(-0.519700\pi\)
0.998085 + 0.0618495i \(0.0196999\pi\)
\(594\) 4.80832i 0.197288i
\(595\) −9.88915 7.06418i −0.405416 0.289603i
\(596\) 15.8801 0.650473
\(597\) 14.7999 14.7999i 0.605719 0.605719i
\(598\) −3.06650 + 3.06650i −0.125398 + 0.125398i
\(599\) 11.4248 0.466805 0.233402 0.972380i \(-0.425014\pi\)
0.233402 + 0.972380i \(0.425014\pi\)
\(600\) 4.72984 1.62130i 0.193095 0.0661894i
\(601\) 7.14156i 0.291310i 0.989335 + 0.145655i \(0.0465290\pi\)
−0.989335 + 0.145655i \(0.953471\pi\)
\(602\) 3.13317 3.13317i 0.127698 0.127698i
\(603\) 9.19128 + 9.19128i 0.374298 + 0.374298i
\(604\) −13.3507 −0.543231
\(605\) −15.7529 + 22.0524i −0.640445 + 0.896559i
\(606\) 14.0592 0.571115
\(607\) −6.44190 + 6.44190i −0.261469 + 0.261469i −0.825651 0.564182i \(-0.809192\pi\)
0.564182 + 0.825651i \(0.309192\pi\)
\(608\) −0.243552 4.35209i −0.00987733 0.176501i
\(609\) 0.509852i 0.0206602i
\(610\) −1.95681 11.7433i −0.0792290 0.475473i
\(611\) 0.967793i 0.0391527i
\(612\) −3.72984 3.72984i −0.150770 0.150770i
\(613\) −21.1379 + 21.1379i −0.853752 + 0.853752i −0.990593 0.136841i \(-0.956305\pi\)
0.136841 + 0.990593i \(0.456305\pi\)
\(614\) 0.00500438i 0.000201960i
\(615\) −2.14107 12.8491i −0.0863363 0.518126i
\(616\) 4.95439i 0.199618i
\(617\) −9.52678 9.52678i −0.383534 0.383534i 0.488840 0.872373i \(-0.337420\pi\)
−0.872373 + 0.488840i \(0.837420\pi\)
\(618\) 6.63327 + 6.63327i 0.266829 + 0.266829i
\(619\) 6.57762i 0.264377i −0.991225 0.132188i \(-0.957800\pi\)
0.991225 0.132188i \(-0.0422004\pi\)
\(620\) −11.2079 + 15.6899i −0.450120 + 0.630123i
\(621\) 5.76961i 0.231526i
\(622\) −8.26782 + 8.26782i −0.331509 + 0.331509i
\(623\) −0.791463 0.791463i −0.0317093 0.0317093i
\(624\) 0.751642i 0.0300898i
\(625\) −19.7428 + 15.3370i −0.789710 + 0.613480i
\(626\) 23.5732i 0.942174i
\(627\) −20.9262 + 1.17107i −0.835713 + 0.0467682i
\(628\) 11.7372 11.7372i 0.468363 0.468363i
\(629\) −40.8668 −1.62947
\(630\) 1.87480 + 1.33924i 0.0746936 + 0.0533564i
\(631\) −17.0875 −0.680241 −0.340121 0.940382i \(-0.610468\pi\)
−0.340121 + 0.940382i \(0.610468\pi\)
\(632\) −1.95921 1.95921i −0.0779332 0.0779332i
\(633\) 19.5436 19.5436i 0.776787 0.776787i
\(634\) 9.85335i 0.391327i
\(635\) 4.86401 + 29.1901i 0.193022 + 1.15837i
\(636\) −4.99593 −0.198102
\(637\) 3.15616 3.15616i 0.125052 0.125052i
\(638\) −1.68238 + 1.68238i −0.0666062 + 0.0666062i
\(639\) 2.06076 0.0815224
\(640\) −2.20566 + 0.367533i −0.0871862 + 0.0145280i
\(641\) 46.7376i 1.84602i −0.384773 0.923011i \(-0.625720\pi\)
0.384773 0.923011i \(-0.374280\pi\)
\(642\) −1.54262 + 1.54262i −0.0608825 + 0.0608825i
\(643\) −7.16897 + 7.16897i −0.282717 + 0.282717i −0.834191 0.551475i \(-0.814065\pi\)
0.551475 + 0.834191i \(0.314065\pi\)
\(644\) 5.94489i 0.234261i
\(645\) −5.58935 + 7.82453i −0.220080 + 0.308091i
\(646\) 15.3242 17.1410i 0.602922 0.674404i
\(647\) −6.19558 6.19558i −0.243574 0.243574i 0.574753 0.818327i \(-0.305098\pi\)
−0.818327 + 0.574753i \(0.805098\pi\)
\(648\) 0.707107 + 0.707107i 0.0277778 + 0.0277778i
\(649\) 58.3282 2.28958
\(650\) −1.21864 3.55515i −0.0477989 0.139444i
\(651\) −8.88509 −0.348234
\(652\) 0.988668 + 0.988668i 0.0387192 + 0.0387192i
\(653\) 17.2336 17.2336i 0.674401 0.674401i −0.284326 0.958728i \(-0.591770\pi\)
0.958728 + 0.284326i \(0.0917699\pi\)
\(654\) 18.4286 0.720614
\(655\) −16.4116 + 22.9746i −0.641253 + 0.897690i
\(656\) 5.82553i 0.227449i
\(657\) 3.31160 + 3.31160i 0.129198 + 0.129198i
\(658\) −0.938110 0.938110i −0.0365713 0.0365713i
\(659\) 21.6005 0.841436 0.420718 0.907191i \(-0.361778\pi\)
0.420718 + 0.907191i \(0.361778\pi\)
\(660\) 1.76721 + 10.6055i 0.0687887 + 0.412818i
\(661\) 1.49297i 0.0580696i 0.999578 + 0.0290348i \(0.00924337\pi\)
−0.999578 + 0.0290348i \(0.990757\pi\)
\(662\) −8.65367 8.65367i −0.336335 0.336335i
\(663\) −2.80350 + 2.80350i −0.108879 + 0.108879i
\(664\) 5.05963 0.196352
\(665\) −5.37186 + 8.48545i −0.208312 + 0.329052i
\(666\) 7.74758 0.300212
\(667\) −2.01873 + 2.01873i −0.0781655 + 0.0781655i
\(668\) −7.42584 7.42584i −0.287314 0.287314i
\(669\) 11.3784i 0.439913i
\(670\) 23.6509 + 16.8947i 0.913714 + 0.652700i
\(671\) 25.6004 0.988291
\(672\) −0.728588 0.728588i −0.0281059 0.0281059i
\(673\) 8.49705 + 8.49705i 0.327537 + 0.327537i 0.851649 0.524112i \(-0.175603\pi\)
−0.524112 + 0.851649i \(0.675603\pi\)
\(674\) 26.8584i 1.03455i
\(675\) −4.49094 2.19807i −0.172856 0.0846037i
\(676\) −12.4350 −0.478271
\(677\) 5.92660 5.92660i 0.227778 0.227778i −0.583986 0.811764i \(-0.698508\pi\)
0.811764 + 0.583986i \(0.198508\pi\)
\(678\) 5.25913 + 5.25913i 0.201976 + 0.201976i
\(679\) −4.10436 −0.157511
\(680\) −9.59758 6.85591i −0.368050 0.262912i
\(681\) 2.80480 0.107480
\(682\) −29.3186 29.3186i −1.12267 1.12267i
\(683\) −26.3647 26.3647i −1.00882 1.00882i −0.999961 0.00885484i \(-0.997181\pi\)
−0.00885484 0.999961i \(-0.502819\pi\)
\(684\) −2.90517 + 3.24961i −0.111082 + 0.124252i
\(685\) −1.18126 + 0.196836i −0.0451337 + 0.00752071i
\(686\) 13.3314i 0.508994i
\(687\) −13.8906 + 13.8906i −0.529960 + 0.529960i
\(688\) 3.04079 3.04079i 0.115929 0.115929i
\(689\) 3.75515i 0.143060i
\(690\) 2.12052 + 12.7258i 0.0807268 + 0.484462i
\(691\) 19.3186 0.734913 0.367456 0.930041i \(-0.380229\pi\)
0.367456 + 0.930041i \(0.380229\pi\)
\(692\) 11.0462 11.0462i 0.419912 0.419912i
\(693\) −3.50328 + 3.50328i −0.133079 + 0.133079i
\(694\) 2.14291 0.0813438
\(695\) −41.4744 29.6267i −1.57322 1.12381i
\(696\) 0.494819i 0.0187561i
\(697\) −21.7283 + 21.7283i −0.823017 + 0.823017i
\(698\) 15.0710 + 15.0710i 0.570444 + 0.570444i
\(699\) 6.70326 0.253541
\(700\) 4.62737 + 2.26484i 0.174898 + 0.0856031i
\(701\) 8.82340 0.333255 0.166628 0.986020i \(-0.446712\pi\)
0.166628 + 0.986020i \(0.446712\pi\)
\(702\) 0.531491 0.531491i 0.0200598 0.0200598i
\(703\) 1.88694 + 33.7181i 0.0711672 + 1.27170i
\(704\) 4.80832i 0.181220i
\(705\) 2.34276 + 1.67352i 0.0882335 + 0.0630284i
\(706\) 13.2577i 0.498961i
\(707\) 10.2434 + 10.2434i 0.385241 + 0.385241i
\(708\) 8.57770 8.57770i 0.322370 0.322370i
\(709\) 1.20583i 0.0452859i 0.999744 + 0.0226429i \(0.00720808\pi\)
−0.999744 + 0.0226429i \(0.992792\pi\)
\(710\) 4.54533 0.757396i 0.170583 0.0284246i
\(711\) 2.77074i 0.103911i
\(712\) −0.768128 0.768128i −0.0287868 0.0287868i
\(713\) −35.1800 35.1800i −1.31750 1.31750i
\(714\) 5.43503i 0.203401i
\(715\) 7.97154 1.32831i 0.298119 0.0496761i
\(716\) 19.0425i 0.711652i
\(717\) −14.9801 + 14.9801i −0.559443 + 0.559443i
\(718\) −21.2987 21.2987i −0.794861 0.794861i
\(719\) 9.38938i 0.350165i 0.984554 + 0.175082i \(0.0560192\pi\)
−0.984554 + 0.175082i \(0.943981\pi\)
\(720\) 1.81952 + 1.29975i 0.0678095 + 0.0484388i
\(721\) 9.66585i 0.359975i
\(722\) −14.8502 11.8521i −0.552665 0.441091i
\(723\) 11.5106 11.5106i 0.428084 0.428084i
\(724\) 1.78110 0.0661941
\(725\) −0.802251 2.34042i −0.0297949 0.0869209i
\(726\) −12.1199 −0.449812
\(727\) −17.4688 17.4688i −0.647884 0.647884i 0.304597 0.952481i \(-0.401478\pi\)
−0.952481 + 0.304597i \(0.901478\pi\)
\(728\) −0.547637 + 0.547637i −0.0202968 + 0.0202968i
\(729\) 1.00000i 0.0370370i
\(730\) 8.52138 + 6.08713i 0.315390 + 0.225295i
\(731\) 22.6833 0.838973
\(732\) 3.76477 3.76477i 0.139150 0.139150i
\(733\) 13.1840 13.1840i 0.486963 0.486963i −0.420383 0.907347i \(-0.638104\pi\)
0.907347 + 0.420383i \(0.138104\pi\)
\(734\) −14.2815 −0.527140
\(735\) −2.18253 13.0979i −0.0805037 0.483123i
\(736\) 5.76961i 0.212671i
\(737\) −44.1946 + 44.1946i −1.62793 + 1.62793i
\(738\) 4.11927 4.11927i 0.151632 0.151632i
\(739\) 47.8710i 1.76096i −0.474080 0.880482i \(-0.657219\pi\)
0.474080 0.880482i \(-0.342781\pi\)
\(740\) 17.0885 2.84749i 0.628185 0.104676i
\(741\) 2.44254 + 2.18365i 0.0897290 + 0.0802184i
\(742\) −3.63998 3.63998i −0.133628 0.133628i
\(743\) −19.4260 19.4260i −0.712670 0.712670i 0.254423 0.967093i \(-0.418114\pi\)
−0.967093 + 0.254423i \(0.918114\pi\)
\(744\) −8.62312 −0.316139
\(745\) −28.8941 20.6401i −1.05860 0.756196i
\(746\) −16.3708 −0.599377
\(747\) −3.57770 3.57770i −0.130901 0.130901i
\(748\) 17.9343 17.9343i 0.655741 0.655741i
\(749\) −2.24788 −0.0821356
\(750\) −10.7133 3.19762i −0.391195 0.116760i
\(751\) 23.5009i 0.857559i 0.903409 + 0.428779i \(0.141056\pi\)
−0.903409 + 0.428779i \(0.858944\pi\)
\(752\) −0.910451 0.910451i −0.0332007 0.0332007i
\(753\) −3.71225 3.71225i −0.135282 0.135282i
\(754\) 0.371927 0.0135448
\(755\) 24.2918 + 17.3525i 0.884069 + 0.631523i
\(756\) 1.03038i 0.0374745i
\(757\) 19.2062 + 19.2062i 0.698060 + 0.698060i 0.963992 0.265932i \(-0.0856796\pi\)
−0.265932 + 0.963992i \(0.585680\pi\)
\(758\) −21.7007 + 21.7007i −0.788206 + 0.788206i
\(759\) −27.7421 −1.00697
\(760\) −5.21348 + 8.23527i −0.189113 + 0.298725i
\(761\) −23.7982 −0.862685 −0.431343 0.902188i \(-0.641960\pi\)
−0.431343 + 0.902188i \(0.641960\pi\)
\(762\) −9.35800 + 9.35800i −0.339005 + 0.339005i
\(763\) 13.4268 + 13.4268i 0.486084 + 0.486084i
\(764\) 14.8650i 0.537797i
\(765\) 1.93866 + 11.6344i 0.0700923 + 0.420642i
\(766\) 9.49265 0.342983
\(767\) −6.44736 6.44736i −0.232801 0.232801i
\(768\) −0.707107 0.707107i −0.0255155 0.0255155i
\(769\) 28.9884i 1.04535i 0.852532 + 0.522675i \(0.175066\pi\)
−0.852532 + 0.522675i \(0.824934\pi\)
\(770\) −6.43947 + 9.01461i −0.232062 + 0.324864i
\(771\) 22.6727 0.816537
\(772\) 5.04632 5.04632i 0.181621 0.181621i
\(773\) −29.2365 29.2365i −1.05156 1.05156i −0.998596 0.0529667i \(-0.983132\pi\)
−0.0529667 0.998596i \(-0.516868\pi\)
\(774\) −4.30033 −0.154572
\(775\) 40.7860 13.9807i 1.46508 0.502201i
\(776\) −3.98335 −0.142994
\(777\) 5.64479 + 5.64479i 0.202506 + 0.202506i
\(778\) 1.19924 + 1.19924i 0.0429947 + 0.0429947i