Properties

Label 570.2.m.a.37.8
Level $570$
Weight $2$
Character 570.37
Analytic conductor $4.551$
Analytic rank $0$
Dimension $20$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 570 = 2 \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 570.m (of order \(4\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.55147291521\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Defining polynomial: \(x^{20} + 153 x^{16} + 6416 x^{12} + 78648 x^{8} + 19120 x^{4} + 16\)
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{10} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 37.8
Root \(1.75036 - 1.75036i\) of defining polynomial
Character \(\chi\) \(=\) 570.37
Dual form 570.2.m.a.493.8

$q$-expansion

\(f(q)\) \(=\) \(q+(0.707107 - 0.707107i) q^{2} +(0.707107 + 0.707107i) q^{3} -1.00000i q^{4} +(-0.253765 - 2.22162i) q^{5} +1.00000 q^{6} +(-2.47539 - 2.47539i) q^{7} +(-0.707107 - 0.707107i) q^{8} +1.00000i q^{9} +O(q^{10})\) \(q+(0.707107 - 0.707107i) q^{2} +(0.707107 + 0.707107i) q^{3} -1.00000i q^{4} +(-0.253765 - 2.22162i) q^{5} +1.00000 q^{6} +(-2.47539 - 2.47539i) q^{7} +(-0.707107 - 0.707107i) q^{8} +1.00000i q^{9} +(-1.75036 - 1.39149i) q^{10} +2.74367 q^{11} +(0.707107 - 0.707107i) q^{12} +(-1.20178 - 1.20178i) q^{13} -3.50073 q^{14} +(1.39149 - 1.75036i) q^{15} -1.00000 q^{16} +(-4.87121 - 4.87121i) q^{17} +(0.707107 + 0.707107i) q^{18} +(1.94007 + 3.90335i) q^{19} +(-2.22162 + 0.253765i) q^{20} -3.50073i q^{21} +(1.94007 - 1.94007i) q^{22} +(0.0321428 - 0.0321428i) q^{23} -1.00000i q^{24} +(-4.87121 + 1.12754i) q^{25} -1.69957 q^{26} +(-0.707107 + 0.707107i) q^{27} +(-2.47539 + 2.47539i) q^{28} +6.50952 q^{29} +(-0.253765 - 2.22162i) q^{30} -6.50952i q^{31} +(-0.707107 + 0.707107i) q^{32} +(1.94007 + 1.94007i) q^{33} -6.88893 q^{34} +(-4.87121 + 6.12754i) q^{35} +1.00000 q^{36} +(4.58998 - 4.58998i) q^{37} +(4.13192 + 1.38825i) q^{38} -1.69957i q^{39} +(-1.39149 + 1.75036i) q^{40} +5.96665i q^{41} +(-2.47539 - 2.47539i) q^{42} +(5.39582 - 5.39582i) q^{43} -2.74367i q^{44} +(2.22162 - 0.253765i) q^{45} -0.0454567i q^{46} +(3.66743 + 3.66743i) q^{47} +(-0.707107 - 0.707107i) q^{48} +5.25508i q^{49} +(-2.64717 + 4.24175i) q^{50} -6.88893i q^{51} +(-1.20178 + 1.20178i) q^{52} +(8.97544 + 8.97544i) q^{53} +1.00000i q^{54} +(-0.696246 - 6.09540i) q^{55} +3.50073i q^{56} +(-1.38825 + 4.13192i) q^{57} +(4.60292 - 4.60292i) q^{58} +4.42301 q^{59} +(-1.75036 - 1.39149i) q^{60} -2.95077 q^{61} +(-4.60292 - 4.60292i) q^{62} +(2.47539 - 2.47539i) q^{63} +1.00000i q^{64} +(-2.36493 + 2.97487i) q^{65} +2.74367 q^{66} +(7.00145 - 7.00145i) q^{67} +(-4.87121 + 4.87121i) q^{68} +0.0454567 q^{69} +(0.888360 + 7.77729i) q^{70} +5.56594i q^{71} +(0.707107 - 0.707107i) q^{72} +(-2.19205 + 2.19205i) q^{73} -6.49122i q^{74} +(-4.24175 - 2.64717i) q^{75} +(3.90335 - 1.94007i) q^{76} +(-6.79164 - 6.79164i) q^{77} +(-1.20178 - 1.20178i) q^{78} -0.225823 q^{79} +(0.253765 + 2.22162i) q^{80} -1.00000 q^{81} +(4.21906 + 4.21906i) q^{82} +(-3.87246 + 3.87246i) q^{83} -3.50073 q^{84} +(-9.58584 + 12.0581i) q^{85} -7.63084i q^{86} +(4.60292 + 4.60292i) q^{87} +(-1.94007 - 1.94007i) q^{88} -9.13628 q^{89} +(1.39149 - 1.75036i) q^{90} +5.94974i q^{91} +(-0.0321428 - 0.0321428i) q^{92} +(4.60292 - 4.60292i) q^{93} +5.18653 q^{94} +(8.17945 - 5.30063i) q^{95} -1.00000 q^{96} +(-8.76663 + 8.76663i) q^{97} +(3.71590 + 3.71590i) q^{98} +2.74367i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20q - 4q^{5} + 20q^{6} - 4q^{7} + O(q^{10}) \) \( 20q - 4q^{5} + 20q^{6} - 4q^{7} - 8q^{11} - 20q^{16} + 4q^{17} + 44q^{23} + 4q^{25} - 8q^{26} - 4q^{28} - 4q^{30} + 4q^{35} + 20q^{36} - 4q^{38} - 4q^{42} + 52q^{43} + 4q^{47} + 16q^{55} - 4q^{57} + 8q^{58} + 32q^{61} - 8q^{62} + 4q^{63} - 8q^{66} + 4q^{68} - 20q^{73} + 20q^{76} - 24q^{77} + 4q^{80} - 20q^{81} - 24q^{82} - 116q^{83} - 60q^{85} + 8q^{87} - 44q^{92} + 8q^{93} - 32q^{95} - 20q^{96} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/570\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(211\) \(457\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 0.707107i 0.500000 0.500000i
\(3\) 0.707107 + 0.707107i 0.408248 + 0.408248i
\(4\) 1.00000i 0.500000i
\(5\) −0.253765 2.22162i −0.113487 0.993539i
\(6\) 1.00000 0.408248
\(7\) −2.47539 2.47539i −0.935608 0.935608i 0.0624406 0.998049i \(-0.480112\pi\)
−0.998049 + 0.0624406i \(0.980112\pi\)
\(8\) −0.707107 0.707107i −0.250000 0.250000i
\(9\) 1.00000i 0.333333i
\(10\) −1.75036 1.39149i −0.553513 0.440026i
\(11\) 2.74367 0.827247 0.413624 0.910448i \(-0.364263\pi\)
0.413624 + 0.910448i \(0.364263\pi\)
\(12\) 0.707107 0.707107i 0.204124 0.204124i
\(13\) −1.20178 1.20178i −0.333314 0.333314i 0.520530 0.853844i \(-0.325735\pi\)
−0.853844 + 0.520530i \(0.825735\pi\)
\(14\) −3.50073 −0.935608
\(15\) 1.39149 1.75036i 0.359280 0.451942i
\(16\) −1.00000 −0.250000
\(17\) −4.87121 4.87121i −1.18144 1.18144i −0.979371 0.202070i \(-0.935233\pi\)
−0.202070 0.979371i \(-0.564767\pi\)
\(18\) 0.707107 + 0.707107i 0.166667 + 0.166667i
\(19\) 1.94007 + 3.90335i 0.445082 + 0.895490i
\(20\) −2.22162 + 0.253765i −0.496770 + 0.0567435i
\(21\) 3.50073i 0.763921i
\(22\) 1.94007 1.94007i 0.413624 0.413624i
\(23\) 0.0321428 0.0321428i 0.00670223 0.00670223i −0.703748 0.710450i \(-0.748491\pi\)
0.710450 + 0.703748i \(0.248491\pi\)
\(24\) 1.00000i 0.204124i
\(25\) −4.87121 + 1.12754i −0.974241 + 0.225508i
\(26\) −1.69957 −0.333314
\(27\) −0.707107 + 0.707107i −0.136083 + 0.136083i
\(28\) −2.47539 + 2.47539i −0.467804 + 0.467804i
\(29\) 6.50952 1.20879 0.604394 0.796686i \(-0.293415\pi\)
0.604394 + 0.796686i \(0.293415\pi\)
\(30\) −0.253765 2.22162i −0.0463309 0.405611i
\(31\) 6.50952i 1.16914i −0.811342 0.584572i \(-0.801262\pi\)
0.811342 0.584572i \(-0.198738\pi\)
\(32\) −0.707107 + 0.707107i −0.125000 + 0.125000i
\(33\) 1.94007 + 1.94007i 0.337722 + 0.337722i
\(34\) −6.88893 −1.18144
\(35\) −4.87121 + 6.12754i −0.823384 + 1.03574i
\(36\) 1.00000 0.166667
\(37\) 4.58998 4.58998i 0.754589 0.754589i −0.220743 0.975332i \(-0.570848\pi\)
0.975332 + 0.220743i \(0.0708483\pi\)
\(38\) 4.13192 + 1.38825i 0.670286 + 0.225204i
\(39\) 1.69957i 0.272150i
\(40\) −1.39149 + 1.75036i −0.220013 + 0.276757i
\(41\) 5.96665i 0.931833i 0.884829 + 0.465917i \(0.154275\pi\)
−0.884829 + 0.465917i \(0.845725\pi\)
\(42\) −2.47539 2.47539i −0.381960 0.381960i
\(43\) 5.39582 5.39582i 0.822855 0.822855i −0.163662 0.986517i \(-0.552331\pi\)
0.986517 + 0.163662i \(0.0523305\pi\)
\(44\) 2.74367i 0.413624i
\(45\) 2.22162 0.253765i 0.331180 0.0378290i
\(46\) 0.0454567i 0.00670223i
\(47\) 3.66743 + 3.66743i 0.534950 + 0.534950i 0.922041 0.387091i \(-0.126520\pi\)
−0.387091 + 0.922041i \(0.626520\pi\)
\(48\) −0.707107 0.707107i −0.102062 0.102062i
\(49\) 5.25508i 0.750725i
\(50\) −2.64717 + 4.24175i −0.374367 + 0.599875i
\(51\) 6.88893i 0.964643i
\(52\) −1.20178 + 1.20178i −0.166657 + 0.166657i
\(53\) 8.97544 + 8.97544i 1.23287 + 1.23287i 0.962856 + 0.270015i \(0.0870288\pi\)
0.270015 + 0.962856i \(0.412971\pi\)
\(54\) 1.00000i 0.136083i
\(55\) −0.696246 6.09540i −0.0938818 0.821903i
\(56\) 3.50073i 0.467804i
\(57\) −1.38825 + 4.13192i −0.183878 + 0.547286i
\(58\) 4.60292 4.60292i 0.604394 0.604394i
\(59\) 4.42301 0.575826 0.287913 0.957657i \(-0.407039\pi\)
0.287913 + 0.957657i \(0.407039\pi\)
\(60\) −1.75036 1.39149i −0.225971 0.179640i
\(61\) −2.95077 −0.377808 −0.188904 0.981996i \(-0.560493\pi\)
−0.188904 + 0.981996i \(0.560493\pi\)
\(62\) −4.60292 4.60292i −0.584572 0.584572i
\(63\) 2.47539 2.47539i 0.311869 0.311869i
\(64\) 1.00000i 0.125000i
\(65\) −2.36493 + 2.97487i −0.293334 + 0.368987i
\(66\) 2.74367 0.337722
\(67\) 7.00145 7.00145i 0.855363 0.855363i −0.135424 0.990788i \(-0.543240\pi\)
0.990788 + 0.135424i \(0.0432398\pi\)
\(68\) −4.87121 + 4.87121i −0.590721 + 0.590721i
\(69\) 0.0454567 0.00547235
\(70\) 0.888360 + 7.77729i 0.106179 + 0.929564i
\(71\) 5.56594i 0.660556i 0.943884 + 0.330278i \(0.107142\pi\)
−0.943884 + 0.330278i \(0.892858\pi\)
\(72\) 0.707107 0.707107i 0.0833333 0.0833333i
\(73\) −2.19205 + 2.19205i −0.256560 + 0.256560i −0.823653 0.567094i \(-0.808068\pi\)
0.567094 + 0.823653i \(0.308068\pi\)
\(74\) 6.49122i 0.754589i
\(75\) −4.24175 2.64717i −0.489795 0.305669i
\(76\) 3.90335 1.94007i 0.447745 0.222541i
\(77\) −6.79164 6.79164i −0.773979 0.773979i
\(78\) −1.20178 1.20178i −0.136075 0.136075i
\(79\) −0.225823 −0.0254070 −0.0127035 0.999919i \(-0.504044\pi\)
−0.0127035 + 0.999919i \(0.504044\pi\)
\(80\) 0.253765 + 2.22162i 0.0283717 + 0.248385i
\(81\) −1.00000 −0.111111
\(82\) 4.21906 + 4.21906i 0.465917 + 0.465917i
\(83\) −3.87246 + 3.87246i −0.425058 + 0.425058i −0.886941 0.461883i \(-0.847174\pi\)
0.461883 + 0.886941i \(0.347174\pi\)
\(84\) −3.50073 −0.381960
\(85\) −9.58584 + 12.0581i −1.03973 + 1.30789i
\(86\) 7.63084i 0.822855i
\(87\) 4.60292 + 4.60292i 0.493485 + 0.493485i
\(88\) −1.94007 1.94007i −0.206812 0.206812i
\(89\) −9.13628 −0.968444 −0.484222 0.874945i \(-0.660897\pi\)
−0.484222 + 0.874945i \(0.660897\pi\)
\(90\) 1.39149 1.75036i 0.146675 0.184504i
\(91\) 5.94974i 0.623703i
\(92\) −0.0321428 0.0321428i −0.00335112 0.00335112i
\(93\) 4.60292 4.60292i 0.477301 0.477301i
\(94\) 5.18653 0.534950
\(95\) 8.17945 5.30063i 0.839194 0.543833i
\(96\) −1.00000 −0.102062
\(97\) −8.76663 + 8.76663i −0.890117 + 0.890117i −0.994534 0.104417i \(-0.966702\pi\)
0.104417 + 0.994534i \(0.466702\pi\)
\(98\) 3.71590 + 3.71590i 0.375363 + 0.375363i
\(99\) 2.74367i 0.275749i
\(100\) 1.12754 + 4.87121i 0.112754 + 0.487121i
\(101\) 11.2650 1.12091 0.560455 0.828185i \(-0.310626\pi\)
0.560455 + 0.828185i \(0.310626\pi\)
\(102\) −4.87121 4.87121i −0.482321 0.482321i
\(103\) 0.762447 + 0.762447i 0.0751262 + 0.0751262i 0.743671 0.668545i \(-0.233083\pi\)
−0.668545 + 0.743671i \(0.733083\pi\)
\(104\) 1.69957i 0.166657i
\(105\) −7.77729 + 0.888360i −0.758986 + 0.0866951i
\(106\) 12.6932 1.23287
\(107\) −13.5351 + 13.5351i −1.30849 + 1.30849i −0.385985 + 0.922505i \(0.626139\pi\)
−0.922505 + 0.385985i \(0.873861\pi\)
\(108\) 0.707107 + 0.707107i 0.0680414 + 0.0680414i
\(109\) −4.37207 −0.418768 −0.209384 0.977833i \(-0.567146\pi\)
−0.209384 + 0.977833i \(0.567146\pi\)
\(110\) −4.80242 3.81777i −0.457892 0.364011i
\(111\) 6.49122 0.616119
\(112\) 2.47539 + 2.47539i 0.233902 + 0.233902i
\(113\) 6.95599 + 6.95599i 0.654365 + 0.654365i 0.954041 0.299676i \(-0.0968786\pi\)
−0.299676 + 0.954041i \(0.596879\pi\)
\(114\) 1.94007 + 3.90335i 0.181704 + 0.365582i
\(115\) −0.0795658 0.0632524i −0.00741955 0.00589832i
\(116\) 6.50952i 0.604394i
\(117\) 1.20178 1.20178i 0.111105 0.111105i
\(118\) 3.12754 3.12754i 0.287913 0.287913i
\(119\) 24.1162i 2.21073i
\(120\) −2.22162 + 0.253765i −0.202805 + 0.0231654i
\(121\) −3.47228 −0.315662
\(122\) −2.08651 + 2.08651i −0.188904 + 0.188904i
\(123\) −4.21906 + 4.21906i −0.380419 + 0.380419i
\(124\) −6.50952 −0.584572
\(125\) 3.74110 + 10.5359i 0.334614 + 0.942355i
\(126\) 3.50073i 0.311869i
\(127\) 13.7136 13.7136i 1.21689 1.21689i 0.248173 0.968716i \(-0.420170\pi\)
0.968716 0.248173i \(-0.0798302\pi\)
\(128\) 0.707107 + 0.707107i 0.0625000 + 0.0625000i
\(129\) 7.63084 0.671858
\(130\) 0.431292 + 3.77581i 0.0378268 + 0.331161i
\(131\) 8.01380 0.700169 0.350085 0.936718i \(-0.386153\pi\)
0.350085 + 0.936718i \(0.386153\pi\)
\(132\) 1.94007 1.94007i 0.168861 0.168861i
\(133\) 4.85988 14.4647i 0.421405 1.25425i
\(134\) 9.90155i 0.855363i
\(135\) 1.75036 + 1.39149i 0.150647 + 0.119760i
\(136\) 6.88893i 0.590721i
\(137\) −12.6299 12.6299i −1.07905 1.07905i −0.996595 0.0824532i \(-0.973725\pi\)
−0.0824532 0.996595i \(-0.526275\pi\)
\(138\) 0.0321428 0.0321428i 0.00273617 0.00273617i
\(139\) 10.3499i 0.877869i −0.898519 0.438934i \(-0.855356\pi\)
0.898519 0.438934i \(-0.144644\pi\)
\(140\) 6.12754 + 4.87121i 0.517871 + 0.411692i
\(141\) 5.18653i 0.436785i
\(142\) 3.93571 + 3.93571i 0.330278 + 0.330278i
\(143\) −3.29729 3.29729i −0.275733 0.275733i
\(144\) 1.00000i 0.0833333i
\(145\) −1.65189 14.4617i −0.137182 1.20098i
\(146\) 3.10002i 0.256560i
\(147\) −3.71590 + 3.71590i −0.306482 + 0.306482i
\(148\) −4.58998 4.58998i −0.377294 0.377294i
\(149\) 9.07466i 0.743425i 0.928348 + 0.371712i \(0.121229\pi\)
−0.928348 + 0.371712i \(0.878771\pi\)
\(150\) −4.87121 + 1.12754i −0.397732 + 0.0920631i
\(151\) 1.75287i 0.142647i −0.997453 0.0713234i \(-0.977278\pi\)
0.997453 0.0713234i \(-0.0227222\pi\)
\(152\) 1.38825 4.13192i 0.112602 0.335143i
\(153\) 4.87121 4.87121i 0.393814 0.393814i
\(154\) −9.60483 −0.773979
\(155\) −14.4617 + 1.65189i −1.16159 + 0.132683i
\(156\) −1.69957 −0.136075
\(157\) 7.20733 + 7.20733i 0.575207 + 0.575207i 0.933579 0.358372i \(-0.116668\pi\)
−0.358372 + 0.933579i \(0.616668\pi\)
\(158\) −0.159681 + 0.159681i −0.0127035 + 0.0127035i
\(159\) 12.6932i 1.00664i
\(160\) 1.75036 + 1.39149i 0.138378 + 0.110007i
\(161\) −0.159132 −0.0125413
\(162\) −0.707107 + 0.707107i −0.0555556 + 0.0555556i
\(163\) 9.60292 9.60292i 0.752159 0.752159i −0.222723 0.974882i \(-0.571494\pi\)
0.974882 + 0.222723i \(0.0714945\pi\)
\(164\) 5.96665 0.465917
\(165\) 3.81777 4.80242i 0.297213 0.373868i
\(166\) 5.47649i 0.425058i
\(167\) 12.9013 12.9013i 0.998336 0.998336i −0.00166271 0.999999i \(-0.500529\pi\)
0.999999 + 0.00166271i \(0.000529259\pi\)
\(168\) −2.47539 + 2.47539i −0.190980 + 0.190980i
\(169\) 10.1114i 0.777804i
\(170\) 1.74817 + 15.3046i 0.134078 + 1.17381i
\(171\) −3.90335 + 1.94007i −0.298497 + 0.148361i
\(172\) −5.39582 5.39582i −0.411427 0.411427i
\(173\) 0.271593 + 0.271593i 0.0206488 + 0.0206488i 0.717356 0.696707i \(-0.245352\pi\)
−0.696707 + 0.717356i \(0.745352\pi\)
\(174\) 6.50952 0.493485
\(175\) 14.8492 + 9.26703i 1.12249 + 0.700521i
\(176\) −2.74367 −0.206812
\(177\) 3.12754 + 3.12754i 0.235080 + 0.235080i
\(178\) −6.46033 + 6.46033i −0.484222 + 0.484222i
\(179\) 16.1543 1.20743 0.603715 0.797200i \(-0.293686\pi\)
0.603715 + 0.797200i \(0.293686\pi\)
\(180\) −0.253765 2.22162i −0.0189145 0.165590i
\(181\) 16.1980i 1.20399i 0.798501 + 0.601994i \(0.205627\pi\)
−0.798501 + 0.601994i \(0.794373\pi\)
\(182\) 4.20710 + 4.20710i 0.311851 + 0.311851i
\(183\) −2.08651 2.08651i −0.154239 0.154239i
\(184\) −0.0454567 −0.00335112
\(185\) −11.3620 9.03243i −0.835349 0.664078i
\(186\) 6.50952i 0.477301i
\(187\) −13.3650 13.3650i −0.977344 0.977344i
\(188\) 3.66743 3.66743i 0.267475 0.267475i
\(189\) 3.50073 0.254640
\(190\) 2.03563 9.53185i 0.147680 0.691513i
\(191\) 14.6162 1.05759 0.528795 0.848750i \(-0.322644\pi\)
0.528795 + 0.848750i \(0.322644\pi\)
\(192\) −0.707107 + 0.707107i −0.0510310 + 0.0510310i
\(193\) 6.20432 + 6.20432i 0.446597 + 0.446597i 0.894221 0.447625i \(-0.147730\pi\)
−0.447625 + 0.894221i \(0.647730\pi\)
\(194\) 12.3979i 0.890117i
\(195\) −3.77581 + 0.431292i −0.270392 + 0.0308855i
\(196\) 5.25508 0.375363
\(197\) −9.77456 9.77456i −0.696408 0.696408i 0.267226 0.963634i \(-0.413893\pi\)
−0.963634 + 0.267226i \(0.913893\pi\)
\(198\) 1.94007 + 1.94007i 0.137875 + 0.137875i
\(199\) 7.77253i 0.550980i −0.961304 0.275490i \(-0.911160\pi\)
0.961304 0.275490i \(-0.0888401\pi\)
\(200\) 4.24175 + 2.64717i 0.299937 + 0.187183i
\(201\) 9.90155 0.698401
\(202\) 7.96556 7.96556i 0.560455 0.560455i
\(203\) −16.1136 16.1136i −1.13095 1.13095i
\(204\) −6.88893 −0.482321
\(205\) 13.2556 1.51412i 0.925813 0.105751i
\(206\) 1.07826 0.0751262
\(207\) 0.0321428 + 0.0321428i 0.00223408 + 0.00223408i
\(208\) 1.20178 + 1.20178i 0.0833285 + 0.0833285i
\(209\) 5.32290 + 10.7095i 0.368193 + 0.740792i
\(210\) −4.87121 + 6.12754i −0.336145 + 0.422840i
\(211\) 7.91902i 0.545168i 0.962132 + 0.272584i \(0.0878783\pi\)
−0.962132 + 0.272584i \(0.912122\pi\)
\(212\) 8.97544 8.97544i 0.616436 0.616436i
\(213\) −3.93571 + 3.93571i −0.269671 + 0.269671i
\(214\) 19.1416i 1.30849i
\(215\) −13.3567 10.6182i −0.910922 0.724156i
\(216\) 1.00000 0.0680414
\(217\) −16.1136 + 16.1136i −1.09386 + 1.09386i
\(218\) −3.09152 + 3.09152i −0.209384 + 0.209384i
\(219\) −3.10002 −0.209480
\(220\) −6.09540 + 0.696246i −0.410951 + 0.0469409i
\(221\) 11.7082i 0.787582i
\(222\) 4.58998 4.58998i 0.308059 0.308059i
\(223\) −14.3643 14.3643i −0.961907 0.961907i 0.0373940 0.999301i \(-0.488094\pi\)
−0.999301 + 0.0373940i \(0.988094\pi\)
\(224\) 3.50073 0.233902
\(225\) −1.12754 4.87121i −0.0751692 0.324747i
\(226\) 9.83726 0.654365
\(227\) −15.0385 + 15.0385i −0.998139 + 0.998139i −0.999998 0.00185921i \(-0.999408\pi\)
0.00185921 + 0.999998i \(0.499408\pi\)
\(228\) 4.13192 + 1.38825i 0.273643 + 0.0919391i
\(229\) 2.69570i 0.178137i −0.996026 0.0890683i \(-0.971611\pi\)
0.996026 0.0890683i \(-0.0283890\pi\)
\(230\) −0.100988 + 0.0115353i −0.00665893 + 0.000760616i
\(231\) 9.60483i 0.631951i
\(232\) −4.60292 4.60292i −0.302197 0.302197i
\(233\) −12.4775 + 12.4775i −0.817426 + 0.817426i −0.985734 0.168309i \(-0.946169\pi\)
0.168309 + 0.985734i \(0.446169\pi\)
\(234\) 1.69957i 0.111105i
\(235\) 7.21698 9.07831i 0.470784 0.592204i
\(236\) 4.42301i 0.287913i
\(237\) −0.159681 0.159681i −0.0103724 0.0103724i
\(238\) 17.0528 + 17.0528i 1.10537 + 1.10537i
\(239\) 27.2150i 1.76039i −0.474613 0.880195i \(-0.657412\pi\)
0.474613 0.880195i \(-0.342588\pi\)
\(240\) −1.39149 + 1.75036i −0.0898200 + 0.112985i
\(241\) 25.1111i 1.61755i 0.588120 + 0.808774i \(0.299868\pi\)
−0.588120 + 0.808774i \(0.700132\pi\)
\(242\) −2.45527 + 2.45527i −0.157831 + 0.157831i
\(243\) −0.707107 0.707107i −0.0453609 0.0453609i
\(244\) 2.95077i 0.188904i
\(245\) 11.6748 1.33355i 0.745875 0.0851975i
\(246\) 5.96665i 0.380419i
\(247\) 2.35944 7.02251i 0.150127 0.446831i
\(248\) −4.60292 + 4.60292i −0.292286 + 0.292286i
\(249\) −5.47649 −0.347058
\(250\) 10.0953 + 4.80461i 0.638485 + 0.303870i
\(251\) −2.30195 −0.145298 −0.0726489 0.997358i \(-0.523145\pi\)
−0.0726489 + 0.997358i \(0.523145\pi\)
\(252\) −2.47539 2.47539i −0.155935 0.155935i
\(253\) 0.0881891 0.0881891i 0.00554440 0.00554440i
\(254\) 19.3940i 1.21689i
\(255\) −15.3046 + 1.74817i −0.958411 + 0.109474i
\(256\) 1.00000 0.0625000
\(257\) 15.7752 15.7752i 0.984032 0.984032i −0.0158429 0.999874i \(-0.505043\pi\)
0.999874 + 0.0158429i \(0.00504315\pi\)
\(258\) 5.39582 5.39582i 0.335929 0.335929i
\(259\) −22.7240 −1.41200
\(260\) 2.97487 + 2.36493i 0.184494 + 0.146667i
\(261\) 6.50952i 0.402929i
\(262\) 5.66661 5.66661i 0.350085 0.350085i
\(263\) −1.21906 + 1.21906i −0.0751702 + 0.0751702i −0.743692 0.668522i \(-0.766927\pi\)
0.668522 + 0.743692i \(0.266927\pi\)
\(264\) 2.74367i 0.168861i
\(265\) 17.6624 22.2177i 1.08499 1.36482i
\(266\) −6.79164 13.6646i −0.416422 0.837828i
\(267\) −6.46033 6.46033i −0.395366 0.395366i
\(268\) −7.00145 7.00145i −0.427682 0.427682i
\(269\) −7.58430 −0.462423 −0.231211 0.972904i \(-0.574269\pi\)
−0.231211 + 0.972904i \(0.574269\pi\)
\(270\) 2.22162 0.253765i 0.135204 0.0154436i
\(271\) −25.6741 −1.55959 −0.779795 0.626036i \(-0.784676\pi\)
−0.779795 + 0.626036i \(0.784676\pi\)
\(272\) 4.87121 + 4.87121i 0.295360 + 0.295360i
\(273\) −4.20710 + 4.20710i −0.254626 + 0.254626i
\(274\) −17.8614 −1.07905
\(275\) −13.3650 + 3.09359i −0.805939 + 0.186551i
\(276\) 0.0454567i 0.00273617i
\(277\) −21.7414 21.7414i −1.30631 1.30631i −0.924056 0.382257i \(-0.875147\pi\)
−0.382257 0.924056i \(-0.624853\pi\)
\(278\) −7.31850 7.31850i −0.438934 0.438934i
\(279\) 6.50952 0.389715
\(280\) 7.77729 0.888360i 0.464782 0.0530897i
\(281\) 21.9050i 1.30674i 0.757037 + 0.653372i \(0.226646\pi\)
−0.757037 + 0.653372i \(0.773354\pi\)
\(282\) 3.66743 + 3.66743i 0.218392 + 0.218392i
\(283\) 15.7217 15.7217i 0.934557 0.934557i −0.0634298 0.997986i \(-0.520204\pi\)
0.997986 + 0.0634298i \(0.0202039\pi\)
\(284\) 5.56594 0.330278
\(285\) 9.53185 + 2.03563i 0.564618 + 0.120580i
\(286\) −4.66307 −0.275733
\(287\) 14.7698 14.7698i 0.871831 0.871831i
\(288\) −0.707107 0.707107i −0.0416667 0.0416667i
\(289\) 30.4573i 1.79161i
\(290\) −11.3940 9.05790i −0.669080 0.531898i
\(291\) −12.3979 −0.726777
\(292\) 2.19205 + 2.19205i 0.128280 + 0.128280i
\(293\) −8.25768 8.25768i −0.482419 0.482419i 0.423484 0.905903i \(-0.360807\pi\)
−0.905903 + 0.423484i \(0.860807\pi\)
\(294\) 5.25508i 0.306482i
\(295\) −1.12240 9.82625i −0.0653488 0.572106i
\(296\) −6.49122 −0.377294
\(297\) −1.94007 + 1.94007i −0.112574 + 0.112574i
\(298\) 6.41675 + 6.41675i 0.371712 + 0.371712i
\(299\) −0.0772571 −0.00446790
\(300\) −2.64717 + 4.24175i −0.152835 + 0.244898i
\(301\) −26.7135 −1.53974
\(302\) −1.23947 1.23947i −0.0713234 0.0713234i
\(303\) 7.96556 + 7.96556i 0.457609 + 0.457609i
\(304\) −1.94007 3.90335i −0.111270 0.223872i
\(305\) 0.748802 + 6.55550i 0.0428763 + 0.375367i
\(306\) 6.88893i 0.393814i
\(307\) −22.1239 + 22.1239i −1.26268 + 1.26268i −0.312887 + 0.949790i \(0.601296\pi\)
−0.949790 + 0.312887i \(0.898704\pi\)
\(308\) −6.79164 + 6.79164i −0.386990 + 0.386990i
\(309\) 1.07826i 0.0613403i
\(310\) −9.05790 + 11.3940i −0.514454 + 0.647137i
\(311\) 3.22108 0.182651 0.0913254 0.995821i \(-0.470890\pi\)
0.0913254 + 0.995821i \(0.470890\pi\)
\(312\) −1.20178 + 1.20178i −0.0680374 + 0.0680374i
\(313\) −14.9801 + 14.9801i −0.846724 + 0.846724i −0.989723 0.142999i \(-0.954326\pi\)
0.142999 + 0.989723i \(0.454326\pi\)
\(314\) 10.1927 0.575207
\(315\) −6.12754 4.87121i −0.345248 0.274461i
\(316\) 0.225823i 0.0127035i
\(317\) −13.3317 + 13.3317i −0.748782 + 0.748782i −0.974251 0.225468i \(-0.927609\pi\)
0.225468 + 0.974251i \(0.427609\pi\)
\(318\) 8.97544 + 8.97544i 0.503318 + 0.503318i
\(319\) 17.8600 0.999966
\(320\) 2.22162 0.253765i 0.124192 0.0141859i
\(321\) −19.1416 −1.06838
\(322\) −0.112523 + 0.112523i −0.00627066 + 0.00627066i
\(323\) 9.56356 28.4645i 0.532131 1.58381i
\(324\) 1.00000i 0.0555556i
\(325\) 7.20918 + 4.49907i 0.399893 + 0.249563i
\(326\) 13.5806i 0.752159i
\(327\) −3.09152 3.09152i −0.170961 0.170961i
\(328\) 4.21906 4.21906i 0.232958 0.232958i
\(329\) 18.1566i 1.00101i
\(330\) −0.696246 6.09540i −0.0383271 0.335540i
\(331\) 6.73163i 0.370004i −0.982738 0.185002i \(-0.940771\pi\)
0.982738 0.185002i \(-0.0592292\pi\)
\(332\) 3.87246 + 3.87246i 0.212529 + 0.212529i
\(333\) 4.58998 + 4.58998i 0.251530 + 0.251530i
\(334\) 18.2453i 0.998336i
\(335\) −17.3313 13.7779i −0.946910 0.752765i
\(336\) 3.50073i 0.190980i
\(337\) 14.1501 14.1501i 0.770806 0.770806i −0.207441 0.978247i \(-0.566514\pi\)
0.978247 + 0.207441i \(0.0665136\pi\)
\(338\) −7.14987 7.14987i −0.388902 0.388902i
\(339\) 9.83726i 0.534287i
\(340\) 12.0581 + 9.58584i 0.653943 + 0.519865i
\(341\) 17.8600i 0.967171i
\(342\) −1.38825 + 4.13192i −0.0750680 + 0.223429i
\(343\) −4.31936 + 4.31936i −0.233224 + 0.233224i
\(344\) −7.63084 −0.411427
\(345\) −0.0115353 0.100988i −0.000621040 0.00543700i
\(346\) 0.384091 0.0206488
\(347\) 6.84109 + 6.84109i 0.367249 + 0.367249i 0.866473 0.499224i \(-0.166382\pi\)
−0.499224 + 0.866473i \(0.666382\pi\)
\(348\) 4.60292 4.60292i 0.246743 0.246743i
\(349\) 33.2298i 1.77875i −0.457181 0.889374i \(-0.651141\pi\)
0.457181 0.889374i \(-0.348859\pi\)
\(350\) 17.0528 3.94720i 0.911508 0.210987i
\(351\) 1.69957 0.0907166
\(352\) −1.94007 + 1.94007i −0.103406 + 0.103406i
\(353\) 25.3639 25.3639i 1.34999 1.34999i 0.464318 0.885668i \(-0.346299\pi\)
0.885668 0.464318i \(-0.153701\pi\)
\(354\) 4.42301 0.235080
\(355\) 12.3654 1.41244i 0.656288 0.0749645i
\(356\) 9.13628i 0.484222i
\(357\) −17.0528 + 17.0528i −0.902528 + 0.902528i
\(358\) 11.4228 11.4228i 0.603715 0.603715i
\(359\) 9.12994i 0.481860i 0.970543 + 0.240930i \(0.0774524\pi\)
−0.970543 + 0.240930i \(0.922548\pi\)
\(360\) −1.75036 1.39149i −0.0922522 0.0733377i
\(361\) −11.4723 + 15.1455i −0.603804 + 0.797133i
\(362\) 11.4537 + 11.4537i 0.601994 + 0.601994i
\(363\) −2.45527 2.45527i −0.128868 0.128868i
\(364\) 5.94974 0.311851
\(365\) 5.42616 + 4.31363i 0.284018 + 0.225786i
\(366\) −2.95077 −0.154239
\(367\) 12.9778 + 12.9778i 0.677435 + 0.677435i 0.959419 0.281984i \(-0.0909926\pi\)
−0.281984 + 0.959419i \(0.590993\pi\)
\(368\) −0.0321428 + 0.0321428i −0.00167556 + 0.00167556i
\(369\) −5.96665 −0.310611
\(370\) −14.4210 + 1.64724i −0.749713 + 0.0856360i
\(371\) 44.4354i 2.30697i
\(372\) −4.60292 4.60292i −0.238651 0.238651i
\(373\) 6.92570 + 6.92570i 0.358599 + 0.358599i 0.863296 0.504697i \(-0.168396\pi\)
−0.504697 + 0.863296i \(0.668396\pi\)
\(374\) −18.9009 −0.977344
\(375\) −4.80461 + 10.0953i −0.248109 + 0.521321i
\(376\) 5.18653i 0.267475i
\(377\) −7.82301 7.82301i −0.402906 0.402906i
\(378\) 2.47539 2.47539i 0.127320 0.127320i
\(379\) 22.4882 1.15514 0.577570 0.816341i \(-0.304001\pi\)
0.577570 + 0.816341i \(0.304001\pi\)
\(380\) −5.30063 8.17945i −0.271916 0.419597i
\(381\) 19.3940 0.993586
\(382\) 10.3352 10.3352i 0.528795 0.528795i
\(383\) 14.9680 + 14.9680i 0.764830 + 0.764830i 0.977191 0.212361i \(-0.0681153\pi\)
−0.212361 + 0.977191i \(0.568115\pi\)
\(384\) 1.00000i 0.0510310i
\(385\) −13.3650 + 16.8119i −0.681142 + 0.856816i
\(386\) 8.77423 0.446597
\(387\) 5.39582 + 5.39582i 0.274285 + 0.274285i
\(388\) 8.76663 + 8.76663i 0.445058 + 0.445058i
\(389\) 10.1897i 0.516639i 0.966060 + 0.258319i \(0.0831687\pi\)
−0.966060 + 0.258319i \(0.916831\pi\)
\(390\) −2.36493 + 2.97487i −0.119753 + 0.150638i
\(391\) −0.313148 −0.0158366
\(392\) 3.71590 3.71590i 0.187681 0.187681i
\(393\) 5.66661 + 5.66661i 0.285843 + 0.285843i
\(394\) −13.8233 −0.696408
\(395\) 0.0573058 + 0.501693i 0.00288337 + 0.0252429i
\(396\) 2.74367 0.137875
\(397\) 14.9493 + 14.9493i 0.750284 + 0.750284i 0.974532 0.224248i \(-0.0719927\pi\)
−0.224248 + 0.974532i \(0.571993\pi\)
\(398\) −5.49601 5.49601i −0.275490 0.275490i
\(399\) 13.6646 6.79164i 0.684083 0.340007i
\(400\) 4.87121 1.12754i 0.243560 0.0563769i
\(401\) 17.1894i 0.858400i 0.903210 + 0.429200i \(0.141204\pi\)
−0.903210 + 0.429200i \(0.858796\pi\)
\(402\) 7.00145 7.00145i 0.349201 0.349201i
\(403\) −7.82301 + 7.82301i −0.389692 + 0.389692i
\(404\) 11.2650i 0.560455i
\(405\) 0.253765 + 2.22162i 0.0126097 + 0.110393i
\(406\) −22.7880 −1.13095
\(407\) 12.5934 12.5934i 0.624231 0.624231i
\(408\) −4.87121 + 4.87121i −0.241161 + 0.241161i
\(409\) −23.9489 −1.18420 −0.592099 0.805865i \(-0.701701\pi\)
−0.592099 + 0.805865i \(0.701701\pi\)
\(410\) 8.30250 10.4438i 0.410031 0.515782i
\(411\) 17.8614i 0.881039i
\(412\) 0.762447 0.762447i 0.0375631 0.0375631i
\(413\) −10.9487 10.9487i −0.538748 0.538748i
\(414\) 0.0454567 0.00223408
\(415\) 9.58584 + 7.62045i 0.470550 + 0.374073i
\(416\) 1.69957 0.0833285
\(417\) 7.31850 7.31850i 0.358388 0.358388i
\(418\) 11.3366 + 3.80890i 0.554492 + 0.186299i
\(419\) 21.4134i 1.04611i −0.852298 0.523056i \(-0.824792\pi\)
0.852298 0.523056i \(-0.175208\pi\)
\(420\) 0.888360 + 7.77729i 0.0433475 + 0.379493i
\(421\) 1.72609i 0.0841246i −0.999115 0.0420623i \(-0.986607\pi\)
0.999115 0.0420623i \(-0.0133928\pi\)
\(422\) 5.59960 + 5.59960i 0.272584 + 0.272584i
\(423\) −3.66743 + 3.66743i −0.178317 + 0.178317i
\(424\) 12.6932i 0.616436i
\(425\) 29.2211 + 18.2362i 1.41743 + 0.884585i
\(426\) 5.56594i 0.269671i
\(427\) 7.30430 + 7.30430i 0.353480 + 0.353480i
\(428\) 13.5351 + 13.5351i 0.654245 + 0.654245i
\(429\) 4.66307i 0.225135i
\(430\) −16.9528 + 1.93644i −0.817539 + 0.0933833i
\(431\) 29.5770i 1.42467i −0.701838 0.712337i \(-0.747637\pi\)
0.701838 0.712337i \(-0.252363\pi\)
\(432\) 0.707107 0.707107i 0.0340207 0.0340207i
\(433\) −18.7711 18.7711i −0.902081 0.902081i 0.0935354 0.995616i \(-0.470183\pi\)
−0.995616 + 0.0935354i \(0.970183\pi\)
\(434\) 22.7880i 1.09386i
\(435\) 9.05790 11.3940i 0.434293 0.546301i
\(436\) 4.37207i 0.209384i
\(437\) 0.187824 + 0.0631054i 0.00898482 + 0.00301874i
\(438\) −2.19205 + 2.19205i −0.104740 + 0.104740i
\(439\) 8.66125 0.413379 0.206690 0.978407i \(-0.433731\pi\)
0.206690 + 0.978407i \(0.433731\pi\)
\(440\) −3.81777 + 4.80242i −0.182005 + 0.228946i
\(441\) −5.25508 −0.250242
\(442\) 8.27898 + 8.27898i 0.393791 + 0.393791i
\(443\) −19.5669 + 19.5669i −0.929652 + 0.929652i −0.997683 0.0680315i \(-0.978328\pi\)
0.0680315 + 0.997683i \(0.478328\pi\)
\(444\) 6.49122i 0.308059i
\(445\) 2.31847 + 20.2974i 0.109906 + 0.962187i
\(446\) −20.3142 −0.961907
\(447\) −6.41675 + 6.41675i −0.303502 + 0.303502i
\(448\) 2.47539 2.47539i 0.116951 0.116951i
\(449\) 21.3429 1.00724 0.503618 0.863927i \(-0.332002\pi\)
0.503618 + 0.863927i \(0.332002\pi\)
\(450\) −4.24175 2.64717i −0.199958 0.124789i
\(451\) 16.3705i 0.770857i
\(452\) 6.95599 6.95599i 0.327182 0.327182i
\(453\) 1.23947 1.23947i 0.0582353 0.0582353i
\(454\) 21.2676i 0.998139i
\(455\) 13.2181 1.50983i 0.619673 0.0707821i
\(456\) 3.90335 1.94007i 0.182791 0.0908520i
\(457\) 21.3371 + 21.3371i 0.998110 + 0.998110i 0.999998 0.00188859i \(-0.000601157\pi\)
−0.00188859 + 0.999998i \(0.500601\pi\)
\(458\) −1.90615 1.90615i −0.0890683 0.0890683i
\(459\) 6.88893 0.321548
\(460\) −0.0632524 + 0.0795658i −0.00294916 + 0.00370977i
\(461\) 0.603474 0.0281066 0.0140533 0.999901i \(-0.495527\pi\)
0.0140533 + 0.999901i \(0.495527\pi\)
\(462\) −6.79164 6.79164i −0.315976 0.315976i
\(463\) −13.8679 + 13.8679i −0.644495 + 0.644495i −0.951657 0.307162i \(-0.900621\pi\)
0.307162 + 0.951657i \(0.400621\pi\)
\(464\) −6.50952 −0.302197
\(465\) −11.3940 9.05790i −0.528385 0.420050i
\(466\) 17.6458i 0.817426i
\(467\) 5.10843 + 5.10843i 0.236390 + 0.236390i 0.815353 0.578964i \(-0.196543\pi\)
−0.578964 + 0.815353i \(0.696543\pi\)
\(468\) −1.20178 1.20178i −0.0555523 0.0555523i
\(469\) −34.6626 −1.60057
\(470\) −1.31616 11.5225i −0.0607098 0.531494i
\(471\) 10.1927i 0.469655i
\(472\) −3.12754 3.12754i −0.143957 0.143957i
\(473\) 14.8043 14.8043i 0.680705 0.680705i
\(474\) −0.225823 −0.0103724
\(475\) −13.8516 16.8265i −0.635557 0.772054i
\(476\) 24.1162 1.10537
\(477\) −8.97544 + 8.97544i −0.410957 + 0.410957i
\(478\) −19.2439 19.2439i −0.880195 0.880195i
\(479\) 0.676761i 0.0309220i 0.999880 + 0.0154610i \(0.00492158\pi\)
−0.999880 + 0.0154610i \(0.995078\pi\)
\(480\) 0.253765 + 2.22162i 0.0115827 + 0.101403i
\(481\) −11.0323 −0.503030
\(482\) 17.7562 + 17.7562i 0.808774 + 0.808774i
\(483\) −0.112523 0.112523i −0.00511997 0.00511997i
\(484\) 3.47228i 0.157831i
\(485\) 21.7008 + 17.2515i 0.985383 + 0.783350i
\(486\) −1.00000 −0.0453609
\(487\) −2.31334 + 2.31334i −0.104828 + 0.104828i −0.757575 0.652748i \(-0.773616\pi\)
0.652748 + 0.757575i \(0.273616\pi\)
\(488\) 2.08651 + 2.08651i 0.0944519 + 0.0944519i
\(489\) 13.5806 0.614135
\(490\) 7.31236 9.19829i 0.330339 0.415536i
\(491\) −0.0138034 −0.000622939 −0.000311469 1.00000i \(-0.500099\pi\)
−0.000311469 1.00000i \(0.500099\pi\)
\(492\) 4.21906 + 4.21906i 0.190210 + 0.190210i
\(493\) −31.7092 31.7092i −1.42811 1.42811i
\(494\) −3.29729 6.63403i −0.148352 0.298479i
\(495\) 6.09540 0.696246i 0.273968 0.0312939i
\(496\) 6.50952i 0.292286i
\(497\) 13.7779 13.7779i 0.618021 0.618021i
\(498\) −3.87246 + 3.87246i −0.173529 + 0.173529i
\(499\) 19.0461i 0.852619i 0.904577 + 0.426309i \(0.140187\pi\)
−0.904577 + 0.426309i \(0.859813\pi\)
\(500\) 10.5359 3.74110i 0.471178 0.167307i
\(501\) 18.2453 0.815138
\(502\) −1.62772 + 1.62772i −0.0726489 + 0.0726489i
\(503\) −15.5475 + 15.5475i −0.693230 + 0.693230i −0.962941 0.269711i \(-0.913072\pi\)
0.269711 + 0.962941i \(0.413072\pi\)
\(504\) −3.50073 −0.155935
\(505\) −2.85866 25.0266i −0.127209 1.11367i
\(506\) 0.124718i 0.00554440i
\(507\) 7.14987 7.14987i 0.317537 0.317537i
\(508\) −13.7136 13.7136i −0.608444 0.608444i
\(509\) 4.08859 0.181224 0.0906118 0.995886i \(-0.471118\pi\)
0.0906118 + 0.995886i \(0.471118\pi\)
\(510\) −9.58584 + 12.0581i −0.424468 + 0.533943i
\(511\) 10.8523 0.480078
\(512\) 0.707107 0.707107i 0.0312500 0.0312500i
\(513\) −4.13192 1.38825i −0.182429 0.0612928i
\(514\) 22.3095i 0.984032i
\(515\) 1.50039 1.88735i 0.0661150 0.0831667i
\(516\) 7.63084i 0.335929i
\(517\) 10.0622 + 10.0622i 0.442536 + 0.442536i
\(518\) −16.0683 + 16.0683i −0.705999 + 0.705999i
\(519\) 0.384091i 0.0168597i
\(520\) 3.77581 0.431292i 0.165580 0.0189134i
\(521\) 29.8730i 1.30876i −0.756166 0.654380i \(-0.772930\pi\)
0.756166 0.654380i \(-0.227070\pi\)
\(522\) 4.60292 + 4.60292i 0.201465 + 0.201465i
\(523\) −20.1935 20.1935i −0.883001 0.883001i 0.110837 0.993839i \(-0.464647\pi\)
−0.993839 + 0.110837i \(0.964647\pi\)
\(524\) 8.01380i 0.350085i
\(525\) 3.94720 + 17.0528i 0.172270 + 0.744243i
\(526\) 1.72400i 0.0751702i
\(527\) −31.7092 + 31.7092i −1.38127 + 1.38127i
\(528\) −1.94007 1.94007i −0.0844306 0.0844306i
\(529\) 22.9979i 0.999910i
\(530\) −3.22108 28.1995i −0.139915 1.22491i
\(531\) 4.42301i 0.191942i
\(532\) −14.4647 4.85988i −0.627125 0.210703i
\(533\) 7.17060 7.17060i 0.310593 0.310593i
\(534\) −9.13628 −0.395366
\(535\) 33.5047 + 26.6352i 1.44853 + 1.15154i
\(536\) −9.90155 −0.427682
\(537\) 11.4228 + 11.4228i 0.492932 + 0.492932i
\(538\) −5.36291 + 5.36291i −0.231211 + 0.231211i
\(539\) 14.4182i 0.621035i
\(540\) 1.39149 1.75036i 0.0598800 0.0753236i
\(541\) −25.3583 −1.09024 −0.545120 0.838358i \(-0.683516\pi\)
−0.545120 + 0.838358i \(0.683516\pi\)
\(542\) −18.1543 + 18.1543i −0.779795 + 0.779795i
\(543\) −11.4537 + 11.4537i −0.491526 + 0.491526i
\(544\) 6.88893 0.295360
\(545\) 1.10948 + 9.71308i 0.0475247 + 0.416063i
\(546\) 5.94974i 0.254626i
\(547\) −13.3457 + 13.3457i −0.570622 + 0.570622i −0.932302 0.361680i \(-0.882203\pi\)
0.361680 + 0.932302i \(0.382203\pi\)
\(548\) −12.6299 + 12.6299i −0.539524 + 0.539524i
\(549\) 2.95077i 0.125936i
\(550\) −7.26297 + 11.6380i −0.309694 + 0.496245i
\(551\) 12.6289 + 25.4089i 0.538009 + 1.08246i
\(552\) −0.0321428 0.0321428i −0.00136809 0.00136809i
\(553\) 0.558998 + 0.558998i 0.0237710 + 0.0237710i
\(554\) −30.7470 −1.30631
\(555\) −1.64724 14.4210i −0.0699215 0.612138i
\(556\) −10.3499 −0.438934
\(557\) −8.05867 8.05867i −0.341457 0.341457i 0.515458 0.856915i \(-0.327622\pi\)
−0.856915 + 0.515458i \(0.827622\pi\)
\(558\) 4.60292 4.60292i 0.194857 0.194857i
\(559\) −12.9692 −0.548538
\(560\) 4.87121 6.12754i 0.205846 0.258936i
\(561\) 18.9009i 0.797998i
\(562\) 15.4892 + 15.4892i 0.653372 + 0.653372i
\(563\) 28.6648 + 28.6648i 1.20808 + 1.20808i 0.971648 + 0.236430i \(0.0759775\pi\)
0.236430 + 0.971648i \(0.424022\pi\)
\(564\) 5.18653 0.218392
\(565\) 13.6884 17.2188i 0.575875 0.724399i
\(566\) 22.2338i 0.934557i
\(567\) 2.47539 + 2.47539i 0.103956 + 0.103956i
\(568\) 3.93571 3.93571i 0.165139 0.165139i
\(569\) −8.54540 −0.358242 −0.179121 0.983827i \(-0.557325\pi\)
−0.179121 + 0.983827i \(0.557325\pi\)
\(570\) 8.17945 5.30063i 0.342599 0.222019i
\(571\) 45.4169 1.90064 0.950320 0.311275i \(-0.100756\pi\)
0.950320 + 0.311275i \(0.100756\pi\)
\(572\) −3.29729 + 3.29729i −0.137867 + 0.137867i
\(573\) 10.3352 + 10.3352i 0.431759 + 0.431759i
\(574\) 20.8876i 0.871831i
\(575\) −0.120332 + 0.192816i −0.00501819 + 0.00804100i
\(576\) −1.00000 −0.0416667
\(577\) 12.1650 + 12.1650i 0.506437 + 0.506437i 0.913431 0.406994i \(-0.133423\pi\)
−0.406994 + 0.913431i \(0.633423\pi\)
\(578\) 21.5366 + 21.5366i 0.895803 + 0.895803i
\(579\) 8.77423i 0.364645i
\(580\) −14.4617 + 1.65189i −0.600489 + 0.0685908i
\(581\) 19.1717 0.795375
\(582\) −8.76663 + 8.76663i −0.363389 + 0.363389i
\(583\) 24.6256 + 24.6256i 1.01989 + 1.01989i
\(584\) 3.10002 0.128280
\(585\) −2.97487 2.36493i −0.122996 0.0977779i
\(586\) −11.6781 −0.482419
\(587\) −5.32968 5.32968i −0.219980 0.219980i 0.588510 0.808490i \(-0.299715\pi\)
−0.808490 + 0.588510i \(0.799715\pi\)
\(588\) 3.71590 + 3.71590i 0.153241 + 0.153241i
\(589\) 25.4089 12.6289i 1.04696 0.520365i
\(590\) −7.74186 6.15455i −0.318728 0.253379i
\(591\) 13.8233i 0.568615i
\(592\) −4.58998 + 4.58998i −0.188647 + 0.188647i
\(593\) −1.80818 + 1.80818i −0.0742529 + 0.0742529i −0.743258 0.669005i \(-0.766720\pi\)
0.669005 + 0.743258i \(0.266720\pi\)
\(594\) 2.74367i 0.112574i
\(595\) 53.5772 6.11985i 2.19645 0.250889i
\(596\) 9.07466 0.371712
\(597\) 5.49601 5.49601i 0.224937 0.224937i
\(598\) −0.0546290 + 0.0546290i −0.00223395 + 0.00223395i
\(599\) 25.3131 1.03426 0.517132 0.855906i \(-0.327000\pi\)
0.517132 + 0.855906i \(0.327000\pi\)
\(600\) 1.12754 + 4.87121i 0.0460315 + 0.198866i
\(601\) 18.5367i 0.756126i 0.925780 + 0.378063i \(0.123410\pi\)
−0.925780 + 0.378063i \(0.876590\pi\)
\(602\) −18.8893 + 18.8893i −0.769870 + 0.769870i
\(603\) 7.00145 + 7.00145i 0.285121 + 0.285121i
\(604\) −1.75287 −0.0713234
\(605\) 0.881142 + 7.71409i 0.0358235 + 0.313622i
\(606\) 11.2650 0.457609
\(607\) −11.5164 + 11.5164i −0.467435 + 0.467435i −0.901083 0.433647i \(-0.857226\pi\)
0.433647 + 0.901083i \(0.357226\pi\)
\(608\) −4.13192 1.38825i −0.167571 0.0563010i
\(609\) 22.7880i 0.923418i
\(610\) 5.16492 + 4.10596i 0.209122 + 0.166245i
\(611\) 8.81490i 0.356613i
\(612\) −4.87121 4.87121i −0.196907 0.196907i
\(613\) −7.66890 + 7.66890i −0.309744 + 0.309744i −0.844810 0.535066i \(-0.820287\pi\)
0.535066 + 0.844810i \(0.320287\pi\)
\(614\) 31.2879i 1.26268i
\(615\) 10.4438 + 8.30250i 0.421134 + 0.334789i
\(616\) 9.60483i 0.386990i
\(617\) 33.2792 + 33.2792i 1.33977 + 1.33977i 0.896278 + 0.443492i \(0.146260\pi\)
0.443492 + 0.896278i \(0.353740\pi\)
\(618\) 0.762447 + 0.762447i 0.0306701 + 0.0306701i
\(619\) 3.87513i 0.155755i −0.996963 0.0778774i \(-0.975186\pi\)
0.996963 0.0778774i \(-0.0248143\pi\)
\(620\) 1.65189 + 14.4617i 0.0663413 + 0.580795i
\(621\) 0.0454567i 0.00182412i
\(622\) 2.27765 2.27765i 0.0913254 0.0913254i
\(623\) 22.6158 + 22.6158i 0.906084 + 0.906084i
\(624\) 1.69957i 0.0680374i
\(625\) 22.4573 10.9849i 0.898293 0.439398i
\(626\) 21.1850i 0.846724i
\(627\) −3.80890 + 11.3366i −0.152113 + 0.452741i
\(628\) 7.20733 7.20733i 0.287604 0.287604i
\(629\) −44.7175 −1.78300
\(630\) −7.77729 + 0.888360i −0.309855 + 0.0353931i
\(631\) 1.80965 0.0720412 0.0360206 0.999351i \(-0.488532\pi\)
0.0360206 + 0.999351i \(0.488532\pi\)
\(632\) 0.159681 + 0.159681i 0.00635176 + 0.00635176i
\(633\) −5.59960 + 5.59960i −0.222564 + 0.222564i
\(634\) 18.8539i 0.748782i
\(635\) −33.9466 26.9865i −1.34713 1.07093i
\(636\) 12.6932 0.503318
\(637\) 6.31545 6.31545i 0.250227 0.250227i
\(638\) 12.6289 12.6289i 0.499983 0.499983i
\(639\) −5.56594 −0.220185
\(640\) 1.39149 1.75036i 0.0550033 0.0691892i
\(641\) 6.61503i 0.261278i 0.991430 + 0.130639i \(0.0417029\pi\)
−0.991430 + 0.130639i \(0.958297\pi\)
\(642\) −13.5351 + 13.5351i −0.534189 + 0.534189i
\(643\) −30.3608 + 30.3608i −1.19731 + 1.19731i −0.222347 + 0.974968i \(0.571372\pi\)
−0.974968 + 0.222347i \(0.928628\pi\)
\(644\) 0.159132i 0.00627066i
\(645\) −1.93644 16.9528i −0.0762472 0.667518i
\(646\) −13.3650 26.8899i −0.525838 1.05797i
\(647\) 5.83884 + 5.83884i 0.229549 + 0.229549i 0.812504 0.582956i \(-0.198104\pi\)
−0.582956 + 0.812504i \(0.698104\pi\)
\(648\) 0.707107 + 0.707107i 0.0277778 + 0.0277778i
\(649\) 12.1353 0.476351
\(650\) 8.27898 1.91633i 0.324728 0.0751648i
\(651\) −22.7880 −0.893133
\(652\) −9.60292 9.60292i −0.376080 0.376080i
\(653\) −19.7797 + 19.7797i −0.774039 + 0.774039i −0.978810 0.204771i \(-0.934355\pi\)
0.204771 + 0.978810i \(0.434355\pi\)
\(654\) −4.37207 −0.170961
\(655\) −2.03362 17.8036i −0.0794601 0.695646i
\(656\) 5.96665i 0.232958i
\(657\) −2.19205 2.19205i −0.0855198 0.0855198i
\(658\) −12.8387 12.8387i −0.500503 0.500503i
\(659\) 8.44761 0.329072 0.164536 0.986371i \(-0.447387\pi\)
0.164536 + 0.986371i \(0.447387\pi\)
\(660\) −4.80242 3.81777i −0.186934 0.148607i
\(661\) 23.8283i 0.926814i 0.886146 + 0.463407i \(0.153373\pi\)
−0.886146 + 0.463407i \(0.846627\pi\)
\(662\) −4.75998 4.75998i −0.185002 0.185002i
\(663\) −8.27898 + 8.27898i −0.321529 + 0.321529i
\(664\) 5.47649 0.212529
\(665\) −33.3684 7.12619i −1.29397 0.276342i
\(666\) 6.49122 0.251530
\(667\) 0.209234 0.209234i 0.00810157 0.00810157i
\(668\) −12.9013 12.9013i −0.499168 0.499168i
\(669\) 20.3142i 0.785393i
\(670\) −21.9975 + 2.51266i −0.849837 + 0.0970726i
\(671\) −8.09594 −0.312540
\(672\) 2.47539 + 2.47539i 0.0954901 + 0.0954901i
\(673\) −31.9422 31.9422i −1.23128 1.23128i −0.963471 0.267812i \(-0.913700\pi\)
−0.267812 0.963471i \(-0.586300\pi\)
\(674\) 20.0113i 0.770806i
\(675\) 2.64717 4.24175i 0.101890 0.163265i
\(676\) −10.1114 −0.388902
\(677\) −11.7115 + 11.7115i −0.450111 + 0.450111i −0.895391 0.445280i \(-0.853104\pi\)
0.445280 + 0.895391i \(0.353104\pi\)
\(678\) 6.95599 + 6.95599i 0.267143 + 0.267143i
\(679\) 43.4016 1.66560
\(680\) 15.3046 1.74817i 0.586904 0.0670391i
\(681\) −21.2676 −0.814977
\(682\) −12.6289 12.6289i −0.483586 0.483586i
\(683\) −3.55375 3.55375i −0.135981 0.135981i 0.635840 0.771821i \(-0.280654\pi\)
−0.771821 + 0.635840i \(0.780654\pi\)
\(684\) 1.94007 + 3.90335i 0.0741803 + 0.149248i
\(685\) −24.8539 + 31.2640i −0.949619 + 1.19453i
\(686\) 6.10850i 0.233224i
\(687\) 1.90615 1.90615i 0.0727240 0.0727240i
\(688\) −5.39582 + 5.39582i −0.205714 + 0.205714i
\(689\) 21.5730i 0.821867i
\(690\) −0.0795658 0.0632524i −0.00302902 0.00240798i
\(691\) 9.74241 0.370619 0.185309 0.982680i \(-0.440671\pi\)
0.185309 + 0.982680i \(0.440671\pi\)
\(692\) 0.271593 0.271593i 0.0103244 0.0103244i
\(693\) 6.79164 6.79164i 0.257993 0.257993i
\(694\) 9.67476 0.367249
\(695\) −22.9936 + 2.62644i −0.872197 + 0.0996267i
\(696\) 6.50952i 0.246743i
\(697\) 29.0648 29.0648i 1.10091 1.10091i
\(698\) −23.4970 23.4970i −0.889374 0.889374i
\(699\) −17.6458 −0.667425
\(700\) 9.26703 14.8492i 0.350261 0.561247i
\(701\) −10.3224 −0.389873 −0.194936 0.980816i \(-0.562450\pi\)
−0.194936 + 0.980816i \(0.562450\pi\)
\(702\) 1.20178 1.20178i 0.0453583 0.0453583i
\(703\) 26.8212 + 9.01143i 1.01158 + 0.339873i
\(704\) 2.74367i 0.103406i
\(705\) 11.5225 1.31616i 0.433963 0.0495694i
\(706\) 35.8700i 1.34999i
\(707\) −27.8852 27.8852i −1.04873 1.04873i
\(708\) 3.12754 3.12754i 0.117540 0.117540i
\(709\) 10.3223i 0.387663i −0.981035 0.193831i \(-0.937909\pi\)
0.981035 0.193831i \(-0.0620915\pi\)
\(710\) 7.74492 9.74241i 0.290662 0.365626i
\(711\) 0.225823i 0.00846901i
\(712\) 6.46033 + 6.46033i 0.242111 + 0.242111i
\(713\) −0.209234 0.209234i −0.00783587 0.00783587i
\(714\) 24.1162i 0.902528i
\(715\) −6.48859 + 8.16206i −0.242660 + 0.305244i
\(716\) 16.1543i 0.603715i
\(717\) 19.2439 19.2439i 0.718676 0.718676i
\(718\) 6.45584 + 6.45584i 0.240930 + 0.240930i
\(719\) 34.9029i 1.30166i 0.759224 + 0.650830i \(0.225579\pi\)
−0.759224 + 0.650830i \(0.774421\pi\)
\(720\) −2.22162 + 0.253765i −0.0827950 + 0.00945725i
\(721\) 3.77470i 0.140577i
\(722\) 2.59737 + 18.8216i 0.0966642 + 0.700468i
\(723\) −17.7562 + 17.7562i −0.660361 + 0.660361i
\(724\) 16.1980 0.601994
\(725\) −31.7092 + 7.33973i −1.17765 + 0.272591i
\(726\) −3.47228 −0.128868
\(727\) 12.8595 + 12.8595i 0.476932 + 0.476932i 0.904149 0.427217i \(-0.140506\pi\)
−0.427217 + 0.904149i \(0.640506\pi\)
\(728\) 4.20710 4.20710i 0.155926 0.155926i
\(729\) 1.00000i 0.0370370i
\(730\) 6.88707 0.786675i 0.254902 0.0291162i
\(731\) −52.5683 −1.94431
\(732\) −2.08651 + 2.08651i −0.0771197 + 0.0771197i
\(733\) 11.1047 11.1047i 0.410162 0.410162i −0.471633 0.881795i \(-0.656335\pi\)
0.881795 + 0.471633i \(0.156335\pi\)
\(734\) 18.3534 0.677435
\(735\) 9.19829 + 7.31236i 0.339284 + 0.269720i
\(736\) 0.0454567i 0.00167556i
\(737\) 19.2097 19.2097i 0.707597 0.707597i
\(738\) −4.21906 + 4.21906i −0.155306 + 0.155306i
\(739\) 18.1001i 0.665823i −0.942958 0.332911i \(-0.891969\pi\)
0.942958 0.332911i \(-0.108031\pi\)
\(740\) −9.03243 + 11.3620i −0.332039 + 0.417675i
\(741\) 6.63403 3.29729i 0.243707 0.121129i
\(742\) −31.4205 31.4205i −1.15348 1.15348i
\(743\) 26.9208 + 26.9208i 0.987630 + 0.987630i 0.999924 0.0122949i \(-0.00391368\pi\)
−0.0122949 + 0.999924i \(0.503914\pi\)
\(744\) −6.50952 −0.238651
\(745\) 20.1605 2.30283i 0.738622 0.0843690i
\(746\) 9.79442 0.358599
\(747\) −3.87246 3.87246i −0.141686 0.141686i
\(748\) −13.3650 + 13.3650i −0.488672 + 0.488672i
\(749\) 67.0093 2.44847
\(750\) 3.74110 + 10.5359i 0.136606 + 0.384715i
\(751\) 9.91849i 0.361931i 0.983489 + 0.180965i \(0.0579222\pi\)
−0.983489 + 0.180965i \(0.942078\pi\)
\(752\) −3.66743 3.66743i −0.133737 0.133737i
\(753\) −1.62772 1.62772i −0.0593176 0.0593176i
\(754\) −11.0634 −0.402906
\(755\) −3.89422 + 0.444817i −0.141725 + 0.0161886i
\(756\) 3.50073i 0.127320i
\(757\) 3.01763 + 3.01763i 0.109678 + 0.109678i 0.759816 0.650138i \(-0.225289\pi\)
−0.650138 + 0.759816i \(0.725289\pi\)
\(758\) 15.9015 15.9015i 0.577570 0.577570i
\(759\) 0.124718 0.00452699
\(760\) −9.53185 2.03563i −0.345757 0.0738402i
\(761\) −11.1416 −0.403881 −0.201941 0.979398i \(-0.564725\pi\)
−0.201941 + 0.979398i \(0.564725\pi\)
\(762\) 13.7136 13.7136i 0.496793 0.496793i
\(763\) 10.8226 + 10.8226i 0.391803 + 0.391803i
\(764\) 14.6162i 0.528795i
\(765\) −12.0581 9.58584i −0.435962 0.346577i
\(766\) 21.1680 0.764830
\(767\) −5.31548 5.31548i −0.191931 0.191931i
\(768\) 0.707107 + 0.707107i 0.0255155 + 0.0255155i
\(769\) 32.8840i 1.18583i 0.805266 + 0.592913i \(0.202022\pi\)
−0.805266 + 0.592913i \(0.797978\pi\)
\(770\) 2.43737 + 21.3383i 0.0878366 + 0.768979i
\(771\) 22.3095 0.803458
\(772\) 6.20432 6.20432i 0.223298 0.223298i
\(773\) −31.2573 31.2573i −1.12425 1.12425i −0.991096 0.133152i \(-0.957490\pi\)
−0.133152 0.991096i \(-0.542510\pi\)
\(774\) 7.63084 0.274285
\(775\) 7.33973 + 31.7092i 0.263651 + 1.13903i
\(776\) 12.3979 0.445058
\(777\) −16.0683 16.0683i −0.576446 0.576446i
\(778\) 7.20521 + 7.20521i 0.258319 + 0.258319i