Properties

Label 570.2.k.b.77.9
Level $570$
Weight $2$
Character 570.77
Analytic conductor $4.551$
Analytic rank $0$
Dimension $36$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 570 = 2 \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 570.k (of order \(4\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.55147291521\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 77.9
Character \(\chi\) \(=\) 570.77
Dual form 570.2.k.b.533.9

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{2} +(1.72439 + 0.162692i) q^{3} -1.00000i q^{4} +(0.520052 + 2.17475i) q^{5} +(-1.33437 + 1.10429i) q^{6} +(0.496606 + 0.496606i) q^{7} +(0.707107 + 0.707107i) q^{8} +(2.94706 + 0.561090i) q^{9} +O(q^{10})\) \(q+(-0.707107 + 0.707107i) q^{2} +(1.72439 + 0.162692i) q^{3} -1.00000i q^{4} +(0.520052 + 2.17475i) q^{5} +(-1.33437 + 1.10429i) q^{6} +(0.496606 + 0.496606i) q^{7} +(0.707107 + 0.707107i) q^{8} +(2.94706 + 0.561090i) q^{9} +(-1.90551 - 1.17005i) q^{10} +1.60026i q^{11} +(0.162692 - 1.72439i) q^{12} +(0.465079 - 0.465079i) q^{13} -0.702307 q^{14} +(0.542960 + 3.83474i) q^{15} -1.00000 q^{16} +(-0.134587 + 0.134587i) q^{17} +(-2.48064 + 1.68714i) q^{18} -1.00000i q^{19} +(2.17475 - 0.520052i) q^{20} +(0.775550 + 0.937138i) q^{21} +(-1.13156 - 1.13156i) q^{22} +(0.307276 + 0.307276i) q^{23} +(1.10429 + 1.33437i) q^{24} +(-4.45909 + 2.26197i) q^{25} +0.657722i q^{26} +(4.99061 + 1.44700i) q^{27} +(0.496606 - 0.496606i) q^{28} -2.93712 q^{29} +(-3.09550 - 2.32764i) q^{30} -1.63168 q^{31} +(0.707107 - 0.707107i) q^{32} +(-0.260350 + 2.75948i) q^{33} -0.190335i q^{34} +(-0.821734 + 1.33826i) q^{35} +(0.561090 - 2.94706i) q^{36} +(4.03947 + 4.03947i) q^{37} +(0.707107 + 0.707107i) q^{38} +(0.877644 - 0.726315i) q^{39} +(-1.17005 + 1.90551i) q^{40} +3.54984i q^{41} +(-1.21105 - 0.114260i) q^{42} +(3.15359 - 3.15359i) q^{43} +1.60026 q^{44} +(0.312395 + 6.70093i) q^{45} -0.434554 q^{46} +(4.45089 - 4.45089i) q^{47} +(-1.72439 - 0.162692i) q^{48} -6.50676i q^{49} +(1.55360 - 4.75251i) q^{50} +(-0.253977 + 0.210185i) q^{51} +(-0.465079 - 0.465079i) q^{52} +(2.36753 + 2.36753i) q^{53} +(-4.55208 + 2.50571i) q^{54} +(-3.48017 + 0.832220i) q^{55} +0.702307i q^{56} +(0.162692 - 1.72439i) q^{57} +(2.07686 - 2.07686i) q^{58} -8.58688 q^{59} +(3.83474 - 0.542960i) q^{60} +6.10554 q^{61} +(1.15377 - 1.15377i) q^{62} +(1.18489 + 1.74217i) q^{63} +1.00000i q^{64} +(1.25330 + 0.769567i) q^{65} +(-1.76715 - 2.13534i) q^{66} +(-6.28833 - 6.28833i) q^{67} +(0.134587 + 0.134587i) q^{68} +(0.479873 + 0.579855i) q^{69} +(-0.365236 - 1.52734i) q^{70} +13.9322i q^{71} +(1.68714 + 2.48064i) q^{72} +(2.24565 - 2.24565i) q^{73} -5.71267 q^{74} +(-8.05723 + 3.17506i) q^{75} -1.00000 q^{76} +(-0.794700 + 0.794700i) q^{77} +(-0.107006 + 1.13417i) q^{78} -3.48349i q^{79} +(-0.520052 - 2.17475i) q^{80} +(8.37036 + 3.30713i) q^{81} +(-2.51012 - 2.51012i) q^{82} +(-1.76187 - 1.76187i) q^{83} +(0.937138 - 0.775550i) q^{84} +(-0.362685 - 0.222701i) q^{85} +4.45985i q^{86} +(-5.06474 - 0.477846i) q^{87} +(-1.13156 + 1.13156i) q^{88} -14.7492 q^{89} +(-4.95917 - 4.51737i) q^{90} +0.461923 q^{91} +(0.307276 - 0.307276i) q^{92} +(-2.81365 - 0.265461i) q^{93} +6.29451i q^{94} +(2.17475 - 0.520052i) q^{95} +(1.33437 - 1.10429i) q^{96} +(-0.0173490 - 0.0173490i) q^{97} +(4.60098 + 4.60098i) q^{98} +(-0.897892 + 4.71607i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36q + 4q^{3} + 4q^{6} + 20q^{7} + O(q^{10}) \) \( 36q + 4q^{3} + 4q^{6} + 20q^{7} - 4q^{10} - 4q^{12} + 8q^{13} + 4q^{15} - 36q^{16} + 16q^{21} - 4q^{22} + 16q^{25} - 44q^{27} + 20q^{28} + 32q^{30} - 24q^{31} - 4q^{33} + 4q^{36} - 8q^{40} + 12q^{42} - 8q^{43} + 28q^{45} - 16q^{46} - 4q^{48} + 40q^{51} - 8q^{52} - 36q^{55} - 4q^{57} + 44q^{58} + 16q^{60} - 120q^{61} - 12q^{63} + 80q^{67} - 36q^{70} + 44q^{73} + 4q^{75} - 36q^{76} - 64q^{78} + 36q^{81} + 8q^{82} - 24q^{85} - 28q^{87} - 4q^{88} + 44q^{90} - 72q^{93} - 4q^{96} + 92q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/570\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(211\) \(457\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 + 0.707107i −0.500000 + 0.500000i
\(3\) 1.72439 + 0.162692i 0.995579 + 0.0939303i
\(4\) 1.00000i 0.500000i
\(5\) 0.520052 + 2.17475i 0.232574 + 0.972579i
\(6\) −1.33437 + 1.10429i −0.544755 + 0.450824i
\(7\) 0.496606 + 0.496606i 0.187699 + 0.187699i 0.794701 0.607001i \(-0.207628\pi\)
−0.607001 + 0.794701i \(0.707628\pi\)
\(8\) 0.707107 + 0.707107i 0.250000 + 0.250000i
\(9\) 2.94706 + 0.561090i 0.982354 + 0.187030i
\(10\) −1.90551 1.17005i −0.602577 0.370002i
\(11\) 1.60026i 0.482497i 0.970463 + 0.241249i \(0.0775570\pi\)
−0.970463 + 0.241249i \(0.922443\pi\)
\(12\) 0.162692 1.72439i 0.0469651 0.497789i
\(13\) 0.465079 0.465079i 0.128990 0.128990i −0.639664 0.768654i \(-0.720927\pi\)
0.768654 + 0.639664i \(0.220927\pi\)
\(14\) −0.702307 −0.187699
\(15\) 0.542960 + 3.83474i 0.140192 + 0.990124i
\(16\) −1.00000 −0.250000
\(17\) −0.134587 + 0.134587i −0.0326421 + 0.0326421i −0.723239 0.690597i \(-0.757348\pi\)
0.690597 + 0.723239i \(0.257348\pi\)
\(18\) −2.48064 + 1.68714i −0.584692 + 0.397662i
\(19\) 1.00000i 0.229416i
\(20\) 2.17475 0.520052i 0.486289 0.116287i
\(21\) 0.775550 + 0.937138i 0.169239 + 0.204500i
\(22\) −1.13156 1.13156i −0.241249 0.241249i
\(23\) 0.307276 + 0.307276i 0.0640714 + 0.0640714i 0.738416 0.674345i \(-0.235574\pi\)
−0.674345 + 0.738416i \(0.735574\pi\)
\(24\) 1.10429 + 1.33437i 0.225412 + 0.272377i
\(25\) −4.45909 + 2.26197i −0.891818 + 0.452394i
\(26\) 0.657722i 0.128990i
\(27\) 4.99061 + 1.44700i 0.960443 + 0.278476i
\(28\) 0.496606 0.496606i 0.0938497 0.0938497i
\(29\) −2.93712 −0.545409 −0.272704 0.962098i \(-0.587918\pi\)
−0.272704 + 0.962098i \(0.587918\pi\)
\(30\) −3.09550 2.32764i −0.565158 0.424966i
\(31\) −1.63168 −0.293058 −0.146529 0.989206i \(-0.546810\pi\)
−0.146529 + 0.989206i \(0.546810\pi\)
\(32\) 0.707107 0.707107i 0.125000 0.125000i
\(33\) −0.260350 + 2.75948i −0.0453211 + 0.480364i
\(34\) 0.190335i 0.0326421i
\(35\) −0.821734 + 1.33826i −0.138898 + 0.226207i
\(36\) 0.561090 2.94706i 0.0935150 0.491177i
\(37\) 4.03947 + 4.03947i 0.664085 + 0.664085i 0.956340 0.292256i \(-0.0944058\pi\)
−0.292256 + 0.956340i \(0.594406\pi\)
\(38\) 0.707107 + 0.707107i 0.114708 + 0.114708i
\(39\) 0.877644 0.726315i 0.140536 0.116303i
\(40\) −1.17005 + 1.90551i −0.185001 + 0.301288i
\(41\) 3.54984i 0.554392i 0.960813 + 0.277196i \(0.0894052\pi\)
−0.960813 + 0.277196i \(0.910595\pi\)
\(42\) −1.21105 0.114260i −0.186870 0.0176307i
\(43\) 3.15359 3.15359i 0.480918 0.480918i −0.424507 0.905425i \(-0.639553\pi\)
0.905425 + 0.424507i \(0.139553\pi\)
\(44\) 1.60026 0.241249
\(45\) 0.312395 + 6.70093i 0.0465691 + 0.998915i
\(46\) −0.434554 −0.0640714
\(47\) 4.45089 4.45089i 0.649229 0.649229i −0.303578 0.952807i \(-0.598181\pi\)
0.952807 + 0.303578i \(0.0981812\pi\)
\(48\) −1.72439 0.162692i −0.248895 0.0234826i
\(49\) 6.50676i 0.929538i
\(50\) 1.55360 4.75251i 0.219712 0.672106i
\(51\) −0.253977 + 0.210185i −0.0355639 + 0.0294317i
\(52\) −0.465079 0.465079i −0.0644949 0.0644949i
\(53\) 2.36753 + 2.36753i 0.325206 + 0.325206i 0.850760 0.525554i \(-0.176142\pi\)
−0.525554 + 0.850760i \(0.676142\pi\)
\(54\) −4.55208 + 2.50571i −0.619460 + 0.340984i
\(55\) −3.48017 + 0.832220i −0.469267 + 0.112217i
\(56\) 0.702307i 0.0938497i
\(57\) 0.162692 1.72439i 0.0215491 0.228401i
\(58\) 2.07686 2.07686i 0.272704 0.272704i
\(59\) −8.58688 −1.11792 −0.558958 0.829196i \(-0.688799\pi\)
−0.558958 + 0.829196i \(0.688799\pi\)
\(60\) 3.83474 0.542960i 0.495062 0.0700958i
\(61\) 6.10554 0.781734 0.390867 0.920447i \(-0.372175\pi\)
0.390867 + 0.920447i \(0.372175\pi\)
\(62\) 1.15377 1.15377i 0.146529 0.146529i
\(63\) 1.18489 + 1.74217i 0.149282 + 0.219493i
\(64\) 1.00000i 0.125000i
\(65\) 1.25330 + 0.769567i 0.155452 + 0.0954530i
\(66\) −1.76715 2.13534i −0.217522 0.262843i
\(67\) −6.28833 6.28833i −0.768241 0.768241i 0.209555 0.977797i \(-0.432798\pi\)
−0.977797 + 0.209555i \(0.932798\pi\)
\(68\) 0.134587 + 0.134587i 0.0163211 + 0.0163211i
\(69\) 0.479873 + 0.579855i 0.0577699 + 0.0698064i
\(70\) −0.365236 1.52734i −0.0436541 0.182552i
\(71\) 13.9322i 1.65345i 0.562610 + 0.826723i \(0.309797\pi\)
−0.562610 + 0.826723i \(0.690203\pi\)
\(72\) 1.68714 + 2.48064i 0.198831 + 0.292346i
\(73\) 2.24565 2.24565i 0.262833 0.262833i −0.563371 0.826204i \(-0.690496\pi\)
0.826204 + 0.563371i \(0.190496\pi\)
\(74\) −5.71267 −0.664085
\(75\) −8.05723 + 3.17506i −0.930369 + 0.366625i
\(76\) −1.00000 −0.114708
\(77\) −0.794700 + 0.794700i −0.0905645 + 0.0905645i
\(78\) −0.107006 + 1.13417i −0.0121161 + 0.128420i
\(79\) 3.48349i 0.391923i −0.980612 0.195962i \(-0.937217\pi\)
0.980612 0.195962i \(-0.0627828\pi\)
\(80\) −0.520052 2.17475i −0.0581436 0.243145i
\(81\) 8.37036 + 3.30713i 0.930040 + 0.367459i
\(82\) −2.51012 2.51012i −0.277196 0.277196i
\(83\) −1.76187 1.76187i −0.193390 0.193390i 0.603769 0.797159i \(-0.293665\pi\)
−0.797159 + 0.603769i \(0.793665\pi\)
\(84\) 0.937138 0.775550i 0.102250 0.0846195i
\(85\) −0.362685 0.222701i −0.0393388 0.0241553i
\(86\) 4.45985i 0.480918i
\(87\) −5.06474 0.477846i −0.542998 0.0512304i
\(88\) −1.13156 + 1.13156i −0.120624 + 0.120624i
\(89\) −14.7492 −1.56341 −0.781707 0.623646i \(-0.785651\pi\)
−0.781707 + 0.623646i \(0.785651\pi\)
\(90\) −4.95917 4.51737i −0.522742 0.476173i
\(91\) 0.461923 0.0484226
\(92\) 0.307276 0.307276i 0.0320357 0.0320357i
\(93\) −2.81365 0.265461i −0.291762 0.0275270i
\(94\) 6.29451i 0.649229i
\(95\) 2.17475 0.520052i 0.223125 0.0533562i
\(96\) 1.33437 1.10429i 0.136189 0.112706i
\(97\) −0.0173490 0.0173490i −0.00176152 0.00176152i 0.706225 0.707987i \(-0.250396\pi\)
−0.707987 + 0.706225i \(0.750396\pi\)
\(98\) 4.60098 + 4.60098i 0.464769 + 0.464769i
\(99\) −0.897892 + 4.71607i −0.0902415 + 0.473983i
\(100\) 2.26197 + 4.45909i 0.226197 + 0.445909i
\(101\) 1.92211i 0.191258i −0.995417 0.0956288i \(-0.969514\pi\)
0.995417 0.0956288i \(-0.0304862\pi\)
\(102\) 0.0309659 0.328212i 0.00306608 0.0324978i
\(103\) 8.69498 8.69498i 0.856742 0.856742i −0.134211 0.990953i \(-0.542850\pi\)
0.990953 + 0.134211i \(0.0428499\pi\)
\(104\) 0.657722 0.0644949
\(105\) −1.63472 + 2.17399i −0.159532 + 0.212160i
\(106\) −3.34820 −0.325206
\(107\) 12.4950 12.4950i 1.20794 1.20794i 0.236248 0.971693i \(-0.424082\pi\)
0.971693 0.236248i \(-0.0759179\pi\)
\(108\) 1.44700 4.99061i 0.139238 0.480222i
\(109\) 0.183803i 0.0176051i −0.999961 0.00880257i \(-0.997198\pi\)
0.999961 0.00880257i \(-0.00280198\pi\)
\(110\) 1.87239 3.04932i 0.178525 0.290742i
\(111\) 6.30844 + 7.62282i 0.598771 + 0.723526i
\(112\) −0.496606 0.496606i −0.0469249 0.0469249i
\(113\) −8.57949 8.57949i −0.807091 0.807091i 0.177102 0.984193i \(-0.443328\pi\)
−0.984193 + 0.177102i \(0.943328\pi\)
\(114\) 1.10429 + 1.33437i 0.103426 + 0.124975i
\(115\) −0.508449 + 0.828048i −0.0474131 + 0.0772159i
\(116\) 2.93712i 0.272704i
\(117\) 1.63157 1.10967i 0.150839 0.102589i
\(118\) 6.07184 6.07184i 0.558958 0.558958i
\(119\) −0.133673 −0.0122538
\(120\) −2.32764 + 3.09550i −0.212483 + 0.282579i
\(121\) 8.43916 0.767196
\(122\) −4.31727 + 4.31727i −0.390867 + 0.390867i
\(123\) −0.577531 + 6.12132i −0.0520742 + 0.551941i
\(124\) 1.63168i 0.146529i
\(125\) −7.23818 8.52108i −0.647403 0.762148i
\(126\) −2.06974 0.394057i −0.184387 0.0351054i
\(127\) −9.39884 9.39884i −0.834012 0.834012i 0.154051 0.988063i \(-0.450768\pi\)
−0.988063 + 0.154051i \(0.950768\pi\)
\(128\) −0.707107 0.707107i −0.0625000 0.0625000i
\(129\) 5.95109 4.92496i 0.523964 0.433619i
\(130\) −1.43038 + 0.342050i −0.125453 + 0.0299997i
\(131\) 7.18140i 0.627441i −0.949515 0.313721i \(-0.898424\pi\)
0.949515 0.313721i \(-0.101576\pi\)
\(132\) 2.75948 + 0.260350i 0.240182 + 0.0226606i
\(133\) 0.496606 0.496606i 0.0430612 0.0430612i
\(134\) 8.89304 0.768241
\(135\) −0.551496 + 11.6059i −0.0474652 + 0.998873i
\(136\) −0.190335 −0.0163211
\(137\) 8.35532 8.35532i 0.713844 0.713844i −0.253494 0.967337i \(-0.581580\pi\)
0.967337 + 0.253494i \(0.0815796\pi\)
\(138\) −0.749341 0.0706984i −0.0637881 0.00601825i
\(139\) 17.4721i 1.48197i −0.671523 0.740984i \(-0.734360\pi\)
0.671523 0.740984i \(-0.265640\pi\)
\(140\) 1.33826 + 0.821734i 0.113103 + 0.0694492i
\(141\) 8.39921 6.95096i 0.707341 0.585376i
\(142\) −9.85154 9.85154i −0.826723 0.826723i
\(143\) 0.744249 + 0.744249i 0.0622373 + 0.0622373i
\(144\) −2.94706 0.561090i −0.245589 0.0467575i
\(145\) −1.52745 6.38750i −0.126848 0.530453i
\(146\) 3.17582i 0.262833i
\(147\) 1.05860 11.2202i 0.0873118 0.925428i
\(148\) 4.03947 4.03947i 0.332042 0.332042i
\(149\) −12.7621 −1.04552 −0.522758 0.852481i \(-0.675097\pi\)
−0.522758 + 0.852481i \(0.675097\pi\)
\(150\) 3.45221 7.94243i 0.281872 0.648497i
\(151\) 1.67214 0.136076 0.0680382 0.997683i \(-0.478326\pi\)
0.0680382 + 0.997683i \(0.478326\pi\)
\(152\) 0.707107 0.707107i 0.0573539 0.0573539i
\(153\) −0.472151 + 0.321121i −0.0381712 + 0.0259611i
\(154\) 1.12388i 0.0905645i
\(155\) −0.848557 3.54849i −0.0681577 0.285022i
\(156\) −0.726315 0.877644i −0.0581517 0.0702678i
\(157\) 5.54265 + 5.54265i 0.442352 + 0.442352i 0.892802 0.450450i \(-0.148736\pi\)
−0.450450 + 0.892802i \(0.648736\pi\)
\(158\) 2.46320 + 2.46320i 0.195962 + 0.195962i
\(159\) 3.69738 + 4.46774i 0.293221 + 0.354315i
\(160\) 1.90551 + 1.17005i 0.150644 + 0.0925005i
\(161\) 0.305190i 0.0240523i
\(162\) −8.25723 + 3.58024i −0.648749 + 0.281290i
\(163\) 10.2639 10.2639i 0.803934 0.803934i −0.179774 0.983708i \(-0.557537\pi\)
0.983708 + 0.179774i \(0.0575367\pi\)
\(164\) 3.54984 0.277196
\(165\) −6.13658 + 0.868878i −0.477732 + 0.0676421i
\(166\) 2.49166 0.193390
\(167\) 16.4383 16.4383i 1.27204 1.27204i 0.327020 0.945018i \(-0.393956\pi\)
0.945018 0.327020i \(-0.106044\pi\)
\(168\) −0.114260 + 1.21105i −0.00881533 + 0.0934348i
\(169\) 12.5674i 0.966723i
\(170\) 0.413931 0.0989840i 0.0317470 0.00759172i
\(171\) 0.561090 2.94706i 0.0429076 0.225368i
\(172\) −3.15359 3.15359i −0.240459 0.240459i
\(173\) −15.4881 15.4881i −1.17754 1.17754i −0.980370 0.197168i \(-0.936825\pi\)
−0.197168 0.980370i \(-0.563175\pi\)
\(174\) 3.91920 3.24343i 0.297114 0.245884i
\(175\) −3.33772 1.09110i −0.252308 0.0824797i
\(176\) 1.60026i 0.120624i
\(177\) −14.8072 1.39702i −1.11297 0.105006i
\(178\) 10.4293 10.4293i 0.781707 0.781707i
\(179\) 9.93061 0.742248 0.371124 0.928583i \(-0.378972\pi\)
0.371124 + 0.928583i \(0.378972\pi\)
\(180\) 6.70093 0.312395i 0.499458 0.0232845i
\(181\) 14.5675 1.08279 0.541396 0.840768i \(-0.317896\pi\)
0.541396 + 0.840768i \(0.317896\pi\)
\(182\) −0.326629 + 0.326629i −0.0242113 + 0.0242113i
\(183\) 10.5283 + 0.993322i 0.778278 + 0.0734285i
\(184\) 0.434554i 0.0320357i
\(185\) −6.68411 + 10.8856i −0.491425 + 0.800323i
\(186\) 2.17726 1.80184i 0.159644 0.132117i
\(187\) −0.215374 0.215374i −0.0157497 0.0157497i
\(188\) −4.45089 4.45089i −0.324614 0.324614i
\(189\) 1.75978 + 3.19696i 0.128005 + 0.232544i
\(190\) −1.17005 + 1.90551i −0.0848843 + 0.138241i
\(191\) 5.79370i 0.419218i 0.977785 + 0.209609i \(0.0672190\pi\)
−0.977785 + 0.209609i \(0.932781\pi\)
\(192\) −0.162692 + 1.72439i −0.0117413 + 0.124447i
\(193\) −2.47519 + 2.47519i −0.178168 + 0.178168i −0.790557 0.612389i \(-0.790209\pi\)
0.612389 + 0.790557i \(0.290209\pi\)
\(194\) 0.0245352 0.00176152
\(195\) 2.03598 + 1.53094i 0.145799 + 0.109633i
\(196\) −6.50676 −0.464769
\(197\) −5.78154 + 5.78154i −0.411918 + 0.411918i −0.882406 0.470488i \(-0.844078\pi\)
0.470488 + 0.882406i \(0.344078\pi\)
\(198\) −2.69986 3.96967i −0.191871 0.282112i
\(199\) 11.7597i 0.833621i 0.908993 + 0.416810i \(0.136852\pi\)
−0.908993 + 0.416810i \(0.863148\pi\)
\(200\) −4.75251 1.55360i −0.336053 0.109856i
\(201\) −9.82049 11.8666i −0.692684 0.837006i
\(202\) 1.35914 + 1.35914i 0.0956288 + 0.0956288i
\(203\) −1.45859 1.45859i −0.102373 0.102373i
\(204\) 0.210185 + 0.253977i 0.0147159 + 0.0177819i
\(205\) −7.72002 + 1.84610i −0.539190 + 0.128937i
\(206\) 12.2966i 0.856742i
\(207\) 0.733152 + 1.07797i 0.0509576 + 0.0749241i
\(208\) −0.465079 + 0.465079i −0.0322475 + 0.0322475i
\(209\) 1.60026 0.110692
\(210\) −0.381324 2.69316i −0.0263139 0.185846i
\(211\) −21.4490 −1.47661 −0.738306 0.674466i \(-0.764374\pi\)
−0.738306 + 0.674466i \(0.764374\pi\)
\(212\) 2.36753 2.36753i 0.162603 0.162603i
\(213\) −2.26665 + 24.0245i −0.155309 + 1.64614i
\(214\) 17.6707i 1.20794i
\(215\) 8.49830 + 5.21824i 0.579579 + 0.355881i
\(216\) 2.50571 + 4.55208i 0.170492 + 0.309730i
\(217\) −0.810300 0.810300i −0.0550068 0.0550068i
\(218\) 0.129968 + 0.129968i 0.00880257 + 0.00880257i
\(219\) 4.23773 3.50703i 0.286359 0.236983i
\(220\) 0.832220 + 3.48017i 0.0561083 + 0.234633i
\(221\) 0.125187i 0.00842100i
\(222\) −9.85089 0.929406i −0.661148 0.0623777i
\(223\) −7.58068 + 7.58068i −0.507640 + 0.507640i −0.913801 0.406162i \(-0.866867\pi\)
0.406162 + 0.913801i \(0.366867\pi\)
\(224\) 0.702307 0.0469249
\(225\) −14.4104 + 4.16421i −0.960693 + 0.277614i
\(226\) 12.1332 0.807091
\(227\) 15.3160 15.3160i 1.01656 1.01656i 0.0167011 0.999861i \(-0.494684\pi\)
0.999861 0.0167011i \(-0.00531639\pi\)
\(228\) −1.72439 0.162692i −0.114201 0.0107745i
\(229\) 15.7592i 1.04140i 0.853741 + 0.520698i \(0.174328\pi\)
−0.853741 + 0.520698i \(0.825672\pi\)
\(230\) −0.225991 0.945046i −0.0149014 0.0623145i
\(231\) −1.49967 + 1.24108i −0.0986709 + 0.0816574i
\(232\) −2.07686 2.07686i −0.136352 0.136352i
\(233\) −1.34227 1.34227i −0.0879351 0.0879351i 0.661771 0.749706i \(-0.269805\pi\)
−0.749706 + 0.661771i \(0.769805\pi\)
\(234\) −0.369041 + 1.93835i −0.0241250 + 0.126714i
\(235\) 11.9943 + 7.36488i 0.782420 + 0.480432i
\(236\) 8.58688i 0.558958i
\(237\) 0.566736 6.00691i 0.0368135 0.390191i
\(238\) 0.0945214 0.0945214i 0.00612691 0.00612691i
\(239\) −27.4444 −1.77523 −0.887616 0.460585i \(-0.847640\pi\)
−0.887616 + 0.460585i \(0.847640\pi\)
\(240\) −0.542960 3.83474i −0.0350479 0.247531i
\(241\) −29.4204 −1.89513 −0.947567 0.319557i \(-0.896466\pi\)
−0.947567 + 0.319557i \(0.896466\pi\)
\(242\) −5.96739 + 5.96739i −0.383598 + 0.383598i
\(243\) 13.8957 + 7.06459i 0.891412 + 0.453194i
\(244\) 6.10554i 0.390867i
\(245\) 14.1506 3.38386i 0.904049 0.216187i
\(246\) −3.92005 4.73680i −0.249933 0.302008i
\(247\) −0.465079 0.465079i −0.0295923 0.0295923i
\(248\) −1.15377 1.15377i −0.0732644 0.0732644i
\(249\) −2.75151 3.32480i −0.174370 0.210700i
\(250\) 11.1435 + 0.907143i 0.704775 + 0.0573728i
\(251\) 13.3163i 0.840516i −0.907405 0.420258i \(-0.861940\pi\)
0.907405 0.420258i \(-0.138060\pi\)
\(252\) 1.74217 1.18489i 0.109746 0.0746410i
\(253\) −0.491722 + 0.491722i −0.0309143 + 0.0309143i
\(254\) 13.2920 0.834012
\(255\) −0.589180 0.443030i −0.0368959 0.0277436i
\(256\) 1.00000 0.0625000
\(257\) −15.5278 + 15.5278i −0.968596 + 0.968596i −0.999522 0.0309257i \(-0.990154\pi\)
0.0309257 + 0.999522i \(0.490154\pi\)
\(258\) −0.725581 + 7.69053i −0.0451727 + 0.478791i
\(259\) 4.01205i 0.249297i
\(260\) 0.769567 1.25330i 0.0477265 0.0777262i
\(261\) −8.65587 1.64799i −0.535785 0.102008i
\(262\) 5.07801 + 5.07801i 0.313721 + 0.313721i
\(263\) 10.7691 + 10.7691i 0.664054 + 0.664054i 0.956333 0.292279i \(-0.0944137\pi\)
−0.292279 + 0.956333i \(0.594414\pi\)
\(264\) −2.13534 + 1.76715i −0.131421 + 0.108761i
\(265\) −3.91756 + 6.38004i −0.240654 + 0.391923i
\(266\) 0.702307i 0.0430612i
\(267\) −25.4335 2.39958i −1.55650 0.146852i
\(268\) −6.28833 + 6.28833i −0.384121 + 0.384121i
\(269\) 2.46904 0.150540 0.0752701 0.997163i \(-0.476018\pi\)
0.0752701 + 0.997163i \(0.476018\pi\)
\(270\) −7.81661 8.59654i −0.475704 0.523169i
\(271\) 20.6505 1.25443 0.627215 0.778846i \(-0.284195\pi\)
0.627215 + 0.778846i \(0.284195\pi\)
\(272\) 0.134587 0.134587i 0.00816053 0.00816053i
\(273\) 0.796536 + 0.0751511i 0.0482086 + 0.00454835i
\(274\) 11.8162i 0.713844i
\(275\) −3.61975 7.13572i −0.218279 0.430300i
\(276\) 0.579855 0.479873i 0.0349032 0.0288850i
\(277\) 7.11389 + 7.11389i 0.427432 + 0.427432i 0.887753 0.460321i \(-0.152266\pi\)
−0.460321 + 0.887753i \(0.652266\pi\)
\(278\) 12.3547 + 12.3547i 0.740984 + 0.740984i
\(279\) −4.80865 0.915517i −0.287886 0.0548106i
\(280\) −1.52734 + 0.365236i −0.0912762 + 0.0218270i
\(281\) 4.48551i 0.267583i −0.991009 0.133792i \(-0.957285\pi\)
0.991009 0.133792i \(-0.0427153\pi\)
\(282\) −1.02407 + 10.8542i −0.0609823 + 0.646358i
\(283\) −11.2511 + 11.2511i −0.668808 + 0.668808i −0.957440 0.288632i \(-0.906799\pi\)
0.288632 + 0.957440i \(0.406799\pi\)
\(284\) 13.9322 0.826723
\(285\) 3.83474 0.542960i 0.227150 0.0321622i
\(286\) −1.05253 −0.0622373
\(287\) −1.76287 + 1.76287i −0.104059 + 0.104059i
\(288\) 2.48064 1.68714i 0.146173 0.0994155i
\(289\) 16.9638i 0.997869i
\(290\) 5.59672 + 3.43657i 0.328651 + 0.201802i
\(291\) −0.0270940 0.0327390i −0.00158828 0.00191920i
\(292\) −2.24565 2.24565i −0.131417 0.131417i
\(293\) 10.0085 + 10.0085i 0.584702 + 0.584702i 0.936192 0.351490i \(-0.114325\pi\)
−0.351490 + 0.936192i \(0.614325\pi\)
\(294\) 7.18535 + 8.68244i 0.419058 + 0.506370i
\(295\) −4.46563 18.6743i −0.259999 1.08726i
\(296\) 5.71267i 0.332042i
\(297\) −2.31559 + 7.98629i −0.134364 + 0.463411i
\(298\) 9.02420 9.02420i 0.522758 0.522758i
\(299\) 0.285815 0.0165291
\(300\) 3.17506 + 8.05723i 0.183312 + 0.465184i
\(301\) 3.13218 0.180536
\(302\) −1.18238 + 1.18238i −0.0680382 + 0.0680382i
\(303\) 0.312713 3.31448i 0.0179649 0.190412i
\(304\) 1.00000i 0.0573539i
\(305\) 3.17520 + 13.2780i 0.181811 + 0.760298i
\(306\) 0.106795 0.560928i 0.00610506 0.0320661i
\(307\) 20.2254 + 20.2254i 1.15432 + 1.15432i 0.985677 + 0.168645i \(0.0539391\pi\)
0.168645 + 0.985677i \(0.446061\pi\)
\(308\) 0.794700 + 0.794700i 0.0452823 + 0.0452823i
\(309\) 16.4082 13.5790i 0.933428 0.772480i
\(310\) 3.10918 + 1.90914i 0.176590 + 0.108432i
\(311\) 9.46101i 0.536485i 0.963351 + 0.268242i \(0.0864428\pi\)
−0.963351 + 0.268242i \(0.913557\pi\)
\(312\) 1.13417 + 0.107006i 0.0642098 + 0.00605803i
\(313\) −19.0390 + 19.0390i −1.07615 + 1.07615i −0.0792948 + 0.996851i \(0.525267\pi\)
−0.996851 + 0.0792948i \(0.974733\pi\)
\(314\) −7.83849 −0.442352
\(315\) −3.17258 + 3.48286i −0.178755 + 0.196237i
\(316\) −3.48349 −0.195962
\(317\) −18.1388 + 18.1388i −1.01878 + 1.01878i −0.0189572 + 0.999820i \(0.506035\pi\)
−0.999820 + 0.0189572i \(0.993965\pi\)
\(318\) −5.77361 0.544725i −0.323768 0.0305467i
\(319\) 4.70016i 0.263158i
\(320\) −2.17475 + 0.520052i −0.121572 + 0.0290718i
\(321\) 23.5792 19.5135i 1.31606 1.08914i
\(322\) −0.215802 0.215802i −0.0120262 0.0120262i
\(323\) 0.134587 + 0.134587i 0.00748862 + 0.00748862i
\(324\) 3.30713 8.37036i 0.183730 0.465020i
\(325\) −1.02184 + 3.12583i −0.0566813 + 0.173390i
\(326\) 14.5154i 0.803934i
\(327\) 0.0299033 0.316949i 0.00165366 0.0175273i
\(328\) −2.51012 + 2.51012i −0.138598 + 0.138598i
\(329\) 4.42068 0.243720
\(330\) 3.72483 4.95361i 0.205045 0.272687i
\(331\) −10.0709 −0.553546 −0.276773 0.960935i \(-0.589265\pi\)
−0.276773 + 0.960935i \(0.589265\pi\)
\(332\) −1.76187 + 1.76187i −0.0966951 + 0.0966951i
\(333\) 9.63806 + 14.1711i 0.528163 + 0.776570i
\(334\) 23.2473i 1.27204i
\(335\) 10.4053 16.9458i 0.568502 0.925848i
\(336\) −0.775550 0.937138i −0.0423097 0.0511251i
\(337\) −20.9018 20.9018i −1.13860 1.13860i −0.988702 0.149893i \(-0.952107\pi\)
−0.149893 0.988702i \(-0.547893\pi\)
\(338\) −8.88650 8.88650i −0.483362 0.483362i
\(339\) −13.3986 16.1902i −0.727712 0.879332i
\(340\) −0.222701 + 0.362685i −0.0120777 + 0.0196694i
\(341\) 2.61111i 0.141400i
\(342\) 1.68714 + 2.48064i 0.0912299 + 0.134138i
\(343\) 6.70754 6.70754i 0.362173 0.362173i
\(344\) 4.45985 0.240459
\(345\) −1.01148 + 1.34516i −0.0544564 + 0.0724210i
\(346\) 21.9035 1.17754
\(347\) 15.5656 15.5656i 0.835605 0.835605i −0.152672 0.988277i \(-0.548788\pi\)
0.988277 + 0.152672i \(0.0487879\pi\)
\(348\) −0.477846 + 5.06474i −0.0256152 + 0.271499i
\(349\) 24.7339i 1.32397i 0.749515 + 0.661987i \(0.230287\pi\)
−0.749515 + 0.661987i \(0.769713\pi\)
\(350\) 3.13165 1.58860i 0.167394 0.0849141i
\(351\) 2.99400 1.64806i 0.159808 0.0879668i
\(352\) 1.13156 + 1.13156i 0.0603122 + 0.0603122i
\(353\) 12.1857 + 12.1857i 0.648577 + 0.648577i 0.952649 0.304072i \(-0.0983463\pi\)
−0.304072 + 0.952649i \(0.598346\pi\)
\(354\) 11.4581 9.48240i 0.608990 0.503984i
\(355\) −30.2990 + 7.24546i −1.60811 + 0.384549i
\(356\) 14.7492i 0.781707i
\(357\) −0.230505 0.0217476i −0.0121996 0.00115100i
\(358\) −7.02200 + 7.02200i −0.371124 + 0.371124i
\(359\) 26.0241 1.37350 0.686750 0.726894i \(-0.259037\pi\)
0.686750 + 0.726894i \(0.259037\pi\)
\(360\) −4.51737 + 4.95917i −0.238086 + 0.261371i
\(361\) −1.00000 −0.0526316
\(362\) −10.3008 + 10.3008i −0.541396 + 0.541396i
\(363\) 14.5524 + 1.37298i 0.763804 + 0.0720630i
\(364\) 0.461923i 0.0242113i
\(365\) 6.05158 + 3.71587i 0.316754 + 0.194498i
\(366\) −8.14705 + 6.74228i −0.425853 + 0.352425i
\(367\) 2.46917 + 2.46917i 0.128890 + 0.128890i 0.768609 0.639719i \(-0.220949\pi\)
−0.639719 + 0.768609i \(0.720949\pi\)
\(368\) −0.307276 0.307276i −0.0160179 0.0160179i
\(369\) −1.99178 + 10.4616i −0.103688 + 0.544609i
\(370\) −2.97089 12.4236i −0.154449 0.645874i
\(371\) 2.35146i 0.122082i
\(372\) −0.265461 + 2.81365i −0.0137635 + 0.145881i
\(373\) −8.01922 + 8.01922i −0.415220 + 0.415220i −0.883552 0.468333i \(-0.844855\pi\)
0.468333 + 0.883552i \(0.344855\pi\)
\(374\) 0.304585 0.0157497
\(375\) −11.0952 15.8713i −0.572952 0.819589i
\(376\) 6.29451 0.324614
\(377\) −1.36599 + 1.36599i −0.0703522 + 0.0703522i
\(378\) −3.50494 1.01624i −0.180275 0.0522698i
\(379\) 31.2502i 1.60521i −0.596509 0.802606i \(-0.703446\pi\)
0.596509 0.802606i \(-0.296554\pi\)
\(380\) −0.520052 2.17475i −0.0266781 0.111562i
\(381\) −14.6782 17.7364i −0.751986 0.908664i
\(382\) −4.09677 4.09677i −0.209609 0.209609i
\(383\) −0.978037 0.978037i −0.0499753 0.0499753i 0.681677 0.731653i \(-0.261251\pi\)
−0.731653 + 0.681677i \(0.761251\pi\)
\(384\) −1.10429 1.33437i −0.0563530 0.0680943i
\(385\) −2.14156 1.31499i −0.109144 0.0670181i
\(386\) 3.50044i 0.178168i
\(387\) 11.0633 7.52437i 0.562377 0.382485i
\(388\) −0.0173490 + 0.0173490i −0.000880762 + 0.000880762i
\(389\) −4.44034 −0.225134 −0.112567 0.993644i \(-0.535907\pi\)
−0.112567 + 0.993644i \(0.535907\pi\)
\(390\) −2.52219 + 0.357116i −0.127716 + 0.0180833i
\(391\) −0.0827106 −0.00418285
\(392\) 4.60098 4.60098i 0.232384 0.232384i
\(393\) 1.16836 12.3835i 0.0589358 0.624667i
\(394\) 8.17634i 0.411918i
\(395\) 7.57573 1.81160i 0.381176 0.0911513i
\(396\) 4.71607 + 0.897892i 0.236992 + 0.0451207i
\(397\) 19.6310 + 19.6310i 0.985250 + 0.985250i 0.999893 0.0146427i \(-0.00466108\pi\)
−0.0146427 + 0.999893i \(0.504661\pi\)
\(398\) −8.31534 8.31534i −0.416810 0.416810i
\(399\) 0.937138 0.775550i 0.0469156 0.0388261i
\(400\) 4.45909 2.26197i 0.222955 0.113098i
\(401\) 19.4963i 0.973598i −0.873514 0.486799i \(-0.838164\pi\)
0.873514 0.486799i \(-0.161836\pi\)
\(402\) 15.3351 + 1.44683i 0.764845 + 0.0721611i
\(403\) −0.758859 + 0.758859i −0.0378015 + 0.0378015i
\(404\) −1.92211 −0.0956288
\(405\) −2.83918 + 19.9233i −0.141080 + 0.989998i
\(406\) 2.06276 0.102373
\(407\) −6.46421 + 6.46421i −0.320419 + 0.320419i
\(408\) −0.328212 0.0309659i −0.0162489 0.00153304i
\(409\) 3.38039i 0.167150i −0.996502 0.0835748i \(-0.973366\pi\)
0.996502 0.0835748i \(-0.0266337\pi\)
\(410\) 4.15349 6.76427i 0.205126 0.334064i
\(411\) 15.7672 13.0485i 0.777739 0.643636i
\(412\) −8.69498 8.69498i −0.428371 0.428371i
\(413\) −4.26430 4.26430i −0.209832 0.209832i
\(414\) −1.28066 0.243824i −0.0629408 0.0119833i
\(415\) 2.91536 4.74789i 0.143110 0.233065i
\(416\) 0.657722i 0.0322475i
\(417\) 2.84258 30.1288i 0.139202 1.47542i
\(418\) −1.13156 + 1.13156i −0.0553462 + 0.0553462i
\(419\) −22.8080 −1.11425 −0.557123 0.830430i \(-0.688095\pi\)
−0.557123 + 0.830430i \(0.688095\pi\)
\(420\) 2.17399 + 1.63472i 0.106080 + 0.0797660i
\(421\) −20.2915 −0.988946 −0.494473 0.869193i \(-0.664639\pi\)
−0.494473 + 0.869193i \(0.664639\pi\)
\(422\) 15.1667 15.1667i 0.738306 0.738306i
\(423\) 15.6144 10.6197i 0.759198 0.516347i
\(424\) 3.34820i 0.162603i
\(425\) 0.295704 0.904567i 0.0143437 0.0438779i
\(426\) −15.3852 18.5907i −0.745413 0.900722i
\(427\) 3.03205 + 3.03205i 0.146731 + 0.146731i
\(428\) −12.4950 12.4950i −0.603971 0.603971i
\(429\) 1.16229 + 1.40446i 0.0561161 + 0.0678081i
\(430\) −9.69906 + 2.31935i −0.467730 + 0.111849i
\(431\) 30.3366i 1.46126i 0.682772 + 0.730631i \(0.260774\pi\)
−0.682772 + 0.730631i \(0.739226\pi\)
\(432\) −4.99061 1.44700i −0.240111 0.0696190i
\(433\) −8.49095 + 8.49095i −0.408049 + 0.408049i −0.881058 0.473009i \(-0.843168\pi\)
0.473009 + 0.881058i \(0.343168\pi\)
\(434\) 1.14594 0.0550068
\(435\) −1.59474 11.2631i −0.0764617 0.540023i
\(436\) −0.183803 −0.00880257
\(437\) 0.307276 0.307276i 0.0146990 0.0146990i
\(438\) −0.516681 + 5.47637i −0.0246880 + 0.261671i
\(439\) 20.3565i 0.971563i −0.874080 0.485781i \(-0.838535\pi\)
0.874080 0.485781i \(-0.161465\pi\)
\(440\) −3.04932 1.87239i −0.145371 0.0892625i
\(441\) 3.65088 19.1758i 0.173851 0.913135i
\(442\) −0.0885207 0.0885207i −0.00421050 0.00421050i
\(443\) −13.7782 13.7782i −0.654621 0.654621i 0.299481 0.954102i \(-0.403186\pi\)
−0.954102 + 0.299481i \(0.903186\pi\)
\(444\) 7.62282 6.30844i 0.361763 0.299385i
\(445\) −7.67036 32.0759i −0.363610 1.52054i
\(446\) 10.7207i 0.507640i
\(447\) −22.0070 2.07630i −1.04089 0.0982056i
\(448\) −0.496606 + 0.496606i −0.0234624 + 0.0234624i
\(449\) −22.3302 −1.05383 −0.526913 0.849919i \(-0.676651\pi\)
−0.526913 + 0.849919i \(0.676651\pi\)
\(450\) 7.24514 13.1342i 0.341539 0.619153i
\(451\) −5.68068 −0.267493
\(452\) −8.57949 + 8.57949i −0.403545 + 0.403545i
\(453\) 2.88342 + 0.272043i 0.135475 + 0.0127817i
\(454\) 21.6602i 1.01656i
\(455\) 0.240224 + 1.00457i 0.0112619 + 0.0470948i
\(456\) 1.33437 1.10429i 0.0624876 0.0517131i
\(457\) 20.8943 + 20.8943i 0.977393 + 0.977393i 0.999750 0.0223568i \(-0.00711697\pi\)
−0.0223568 + 0.999750i \(0.507117\pi\)
\(458\) −11.1434 11.1434i −0.520698 0.520698i
\(459\) −0.866418 + 0.476923i −0.0404410 + 0.0222609i
\(460\) 0.828048 + 0.508449i 0.0386079 + 0.0237066i
\(461\) 15.6734i 0.729982i −0.931011 0.364991i \(-0.881072\pi\)
0.931011 0.364991i \(-0.118928\pi\)
\(462\) 0.182846 1.93800i 0.00850675 0.0901641i
\(463\) −5.68075 + 5.68075i −0.264007 + 0.264007i −0.826680 0.562673i \(-0.809773\pi\)
0.562673 + 0.826680i \(0.309773\pi\)
\(464\) 2.93712 0.136352
\(465\) −0.885934 6.25705i −0.0410842 0.290164i
\(466\) 1.89826 0.0879351
\(467\) −10.4678 + 10.4678i −0.484394 + 0.484394i −0.906532 0.422138i \(-0.861280\pi\)
0.422138 + 0.906532i \(0.361280\pi\)
\(468\) −1.10967 1.63157i −0.0512944 0.0754193i
\(469\) 6.24564i 0.288397i
\(470\) −13.6890 + 3.27347i −0.631426 + 0.150994i
\(471\) 8.65596 + 10.4595i 0.398846 + 0.481946i
\(472\) −6.07184 6.07184i −0.279479 0.279479i
\(473\) 5.04657 + 5.04657i 0.232041 + 0.232041i
\(474\) 3.84678 + 4.64827i 0.176689 + 0.213502i
\(475\) 2.26197 + 4.45909i 0.103786 + 0.204597i
\(476\) 0.133673i 0.00612691i
\(477\) 5.64887 + 8.30567i 0.258644 + 0.380290i
\(478\) 19.4061 19.4061i 0.887616 0.887616i
\(479\) −6.32202 −0.288860 −0.144430 0.989515i \(-0.546135\pi\)
−0.144430 + 0.989515i \(0.546135\pi\)
\(480\) 3.09550 + 2.32764i 0.141289 + 0.106242i
\(481\) 3.75735 0.171320
\(482\) 20.8034 20.8034i 0.947567 0.947567i
\(483\) −0.0496520 + 0.526268i −0.00225924 + 0.0239460i
\(484\) 8.43916i 0.383598i
\(485\) 0.0287074 0.0467522i 0.00130354 0.00212291i
\(486\) −14.8212 + 4.83035i −0.672303 + 0.219109i
\(487\) 25.1640 + 25.1640i 1.14029 + 1.14029i 0.988397 + 0.151891i \(0.0485363\pi\)
0.151891 + 0.988397i \(0.451464\pi\)
\(488\) 4.31727 + 4.31727i 0.195433 + 0.195433i
\(489\) 19.3689 16.0292i 0.875893 0.724866i
\(490\) −7.61324 + 12.3987i −0.343931 + 0.560118i
\(491\) 12.0526i 0.543925i 0.962308 + 0.271962i \(0.0876727\pi\)
−0.962308 + 0.271962i \(0.912327\pi\)
\(492\) 6.12132 + 0.577531i 0.275971 + 0.0260371i
\(493\) 0.395298 0.395298i 0.0178033 0.0178033i
\(494\) 0.657722 0.0295923
\(495\) −10.7232 + 0.499914i −0.481974 + 0.0224695i
\(496\) 1.63168 0.0732644
\(497\) −6.91880 + 6.91880i −0.310351 + 0.310351i
\(498\) 4.29660 + 0.405373i 0.192535 + 0.0181652i
\(499\) 5.62152i 0.251654i −0.992052 0.125827i \(-0.959842\pi\)
0.992052 0.125827i \(-0.0401584\pi\)
\(500\) −8.52108 + 7.23818i −0.381074 + 0.323701i
\(501\) 31.0205 25.6718i 1.38590 1.14693i
\(502\) 9.41603 + 9.41603i 0.420258 + 0.420258i
\(503\) −23.1237 23.1237i −1.03104 1.03104i −0.999503 0.0315338i \(-0.989961\pi\)
−0.0315338 0.999503i \(-0.510039\pi\)
\(504\) −0.394057 + 2.06974i −0.0175527 + 0.0921937i
\(505\) 4.18012 0.999600i 0.186013 0.0444816i
\(506\) 0.695400i 0.0309143i
\(507\) −2.04462 + 21.6711i −0.0908046 + 0.962449i
\(508\) −9.39884 + 9.39884i −0.417006 + 0.417006i
\(509\) −20.8753 −0.925282 −0.462641 0.886546i \(-0.653098\pi\)
−0.462641 + 0.886546i \(0.653098\pi\)
\(510\) 0.729883 0.103344i 0.0323198 0.00457615i
\(511\) 2.23040 0.0986672
\(512\) −0.707107 + 0.707107i −0.0312500 + 0.0312500i
\(513\) 1.44700 4.99061i 0.0638868 0.220341i
\(514\) 21.9596i 0.968596i
\(515\) 23.4313 + 14.3876i 1.03251 + 0.633993i
\(516\) −4.92496 5.95109i −0.216809 0.261982i
\(517\) 7.12259 + 7.12259i 0.313251 + 0.313251i
\(518\) −2.83695 2.83695i −0.124648 0.124648i
\(519\) −24.1878 29.2274i −1.06173 1.28294i
\(520\) 0.342050 + 1.43038i 0.0149999 + 0.0627264i
\(521\) 24.8032i 1.08665i 0.839523 + 0.543325i \(0.182835\pi\)
−0.839523 + 0.543325i \(0.817165\pi\)
\(522\) 7.28593 4.95532i 0.318896 0.216888i
\(523\) 1.48367 1.48367i 0.0648764 0.0648764i −0.673924 0.738801i \(-0.735393\pi\)
0.738801 + 0.673924i \(0.235393\pi\)
\(524\) −7.18140 −0.313721
\(525\) −5.57803 2.42451i −0.243445 0.105814i
\(526\) −15.2299 −0.664054
\(527\) 0.219602 0.219602i 0.00956602 0.00956602i
\(528\) 0.260350 2.75948i 0.0113303 0.120091i
\(529\) 22.8112i 0.991790i
\(530\) −1.74124 7.28150i −0.0756345 0.316288i
\(531\) −25.3061 4.81801i −1.09819 0.209084i
\(532\) −0.496606 0.496606i −0.0215306 0.0215306i
\(533\) 1.65096 + 1.65096i 0.0715109 + 0.0715109i
\(534\) 19.6809 16.2874i 0.851677 0.704825i
\(535\) 33.6717 + 20.6755i 1.45575 + 0.893881i
\(536\) 8.89304i 0.384121i
\(537\) 17.1243 + 1.61563i 0.738967 + 0.0697196i
\(538\) −1.74588 + 1.74588i −0.0752701 + 0.0752701i
\(539\) 10.4125 0.448500
\(540\) 11.6059 + 0.551496i 0.499436 + 0.0237326i
\(541\) 45.1030 1.93913 0.969564 0.244838i \(-0.0787348\pi\)
0.969564 + 0.244838i \(0.0787348\pi\)
\(542\) −14.6021 + 14.6021i −0.627215 + 0.627215i
\(543\) 25.1201 + 2.37001i 1.07800 + 0.101707i
\(544\) 0.190335i 0.00816053i
\(545\) 0.399726 0.0955872i 0.0171224 0.00409450i
\(546\) −0.616376 + 0.510096i −0.0263785 + 0.0218301i
\(547\) 4.01648 + 4.01648i 0.171732 + 0.171732i 0.787740 0.616008i \(-0.211251\pi\)
−0.616008 + 0.787740i \(0.711251\pi\)
\(548\) −8.35532 8.35532i −0.356922 0.356922i
\(549\) 17.9934 + 3.42576i 0.767939 + 0.146208i
\(550\) 7.60526 + 2.48617i 0.324289 + 0.106011i
\(551\) 2.93712i 0.125125i
\(552\) −0.0706984 + 0.749341i −0.00300912 + 0.0318941i
\(553\) 1.72992 1.72992i 0.0735638 0.0735638i
\(554\) −10.0606 −0.427432
\(555\) −13.2970 + 17.6836i −0.564427 + 0.750625i
\(556\) −17.4721 −0.740984
\(557\) −18.3814 + 18.3814i −0.778844 + 0.778844i −0.979634 0.200790i \(-0.935649\pi\)
0.200790 + 0.979634i \(0.435649\pi\)
\(558\) 4.04760 2.75286i 0.171348 0.116538i
\(559\) 2.93334i 0.124067i
\(560\) 0.821734 1.33826i 0.0347246 0.0565516i
\(561\) −0.336351 0.406430i −0.0142007 0.0171595i
\(562\) 3.17174 + 3.17174i 0.133792 + 0.133792i
\(563\) −4.15736 4.15736i −0.175212 0.175212i 0.614053 0.789265i \(-0.289538\pi\)
−0.789265 + 0.614053i \(0.789538\pi\)
\(564\) −6.95096 8.39921i −0.292688 0.353670i
\(565\) 14.1965 23.1200i 0.597250 0.972668i
\(566\) 15.9114i 0.668808i
\(567\) 2.51443 + 5.79911i 0.105596 + 0.243540i
\(568\) −9.85154 + 9.85154i −0.413361 + 0.413361i
\(569\) 25.7668 1.08020 0.540100 0.841601i \(-0.318386\pi\)
0.540100 + 0.841601i \(0.318386\pi\)
\(570\) −2.32764 + 3.09550i −0.0974940 + 0.129656i
\(571\) 10.3705 0.433994 0.216997 0.976172i \(-0.430374\pi\)
0.216997 + 0.976172i \(0.430374\pi\)
\(572\) 0.744249 0.744249i 0.0311186 0.0311186i
\(573\) −0.942589 + 9.99062i −0.0393772 + 0.417364i
\(574\) 2.49308i 0.104059i
\(575\) −2.06522 0.675122i −0.0861256 0.0281546i
\(576\) −0.561090 + 2.94706i −0.0233788 + 0.122794i
\(577\) 8.95610 + 8.95610i 0.372847 + 0.372847i 0.868513 0.495666i \(-0.165076\pi\)
−0.495666 + 0.868513i \(0.665076\pi\)
\(578\) −11.9952 11.9952i −0.498934 0.498934i
\(579\) −4.67089 + 3.86550i −0.194115 + 0.160645i
\(580\) −6.38750 + 1.52745i −0.265227 + 0.0634241i
\(581\) 1.74991i 0.0725985i
\(582\) 0.0423083 + 0.00399168i 0.00175374 + 0.000165461i
\(583\) −3.78868 + 3.78868i −0.156911 + 0.156911i
\(584\) 3.17582 0.131417
\(585\) 3.26175 + 2.97117i 0.134857 + 0.122843i
\(586\) −14.1541 −0.584702
\(587\) 20.5743 20.5743i 0.849191 0.849191i −0.140841 0.990032i \(-0.544981\pi\)
0.990032 + 0.140841i \(0.0449807\pi\)
\(588\) −11.2202 1.05860i −0.462714 0.0436559i
\(589\) 1.63168i 0.0672320i
\(590\) 16.3624 + 10.0471i 0.673631 + 0.413632i
\(591\) −10.9103 + 9.02904i −0.448788 + 0.371405i
\(592\) −4.03947 4.03947i −0.166021 0.166021i
\(593\) 10.9829 + 10.9829i 0.451015 + 0.451015i 0.895691 0.444676i \(-0.146681\pi\)
−0.444676 + 0.895691i \(0.646681\pi\)
\(594\) −4.00979 7.28452i −0.164524 0.298888i
\(595\) −0.0695171 0.290706i −0.00284992 0.0119178i
\(596\) 12.7621i 0.522758i
\(597\) −1.91320 + 20.2783i −0.0783022 + 0.829935i
\(598\) −0.202102 + 0.202102i −0.00826456 + 0.00826456i
\(599\) −15.1478 −0.618921 −0.309461 0.950912i \(-0.600148\pi\)
−0.309461 + 0.950912i \(0.600148\pi\)
\(600\) −7.94243 3.45221i −0.324248 0.140936i
\(601\) −29.3684 −1.19796 −0.598982 0.800763i \(-0.704428\pi\)
−0.598982 + 0.800763i \(0.704428\pi\)
\(602\) −2.21479 + 2.21479i −0.0902680 + 0.0902680i
\(603\) −15.0038 22.0604i −0.611001 0.898369i
\(604\) 1.67214i 0.0680382i
\(605\) 4.38880 + 18.3531i 0.178430 + 0.746159i
\(606\) 2.12257 + 2.56481i 0.0862236 + 0.104188i
\(607\) 24.8764 + 24.8764i 1.00970 + 1.00970i 0.999952 + 0.00975060i \(0.00310376\pi\)
0.00975060 + 0.999952i \(0.496896\pi\)
\(608\) −0.707107 0.707107i −0.0286770 0.0286770i
\(609\) −2.27788 2.75248i −0.0923044 0.111536i
\(610\) −11.6342 7.14378i −0.471054 0.289243i
\(611\) 4.14003i 0.167488i
\(612\) 0.321121 + 0.472151i 0.0129805 + 0.0190856i
\(613\) 3.82720 3.82720i 0.154579 0.154579i −0.625580 0.780160i \(-0.715138\pi\)
0.780160 + 0.625580i \(0.215138\pi\)
\(614\) −28.6030 −1.15432
\(615\) −13.6127 + 1.92742i −0.548917 + 0.0777211i
\(616\) −1.12388 −0.0452823
\(617\) −12.3701 + 12.3701i −0.498001 + 0.498001i −0.910815 0.412815i \(-0.864546\pi\)
0.412815 + 0.910815i \(0.364546\pi\)
\(618\) −2.00055 + 21.2041i −0.0804740 + 0.852954i
\(619\) 1.71966i 0.0691190i −0.999403 0.0345595i \(-0.988997\pi\)
0.999403 0.0345595i \(-0.0110028\pi\)
\(620\) −3.54849 + 0.848557i −0.142511 + 0.0340789i
\(621\) 1.08886 + 1.97812i 0.0436946 + 0.0793793i
\(622\) −6.68994 6.68994i −0.268242 0.268242i
\(623\) −7.32455 7.32455i −0.293452 0.293452i
\(624\) −0.877644 + 0.726315i −0.0351339 + 0.0290759i
\(625\) 14.7670 20.1727i 0.590680 0.806906i
\(626\) 26.9252i 1.07615i
\(627\) 2.75948 + 0.260350i 0.110203 + 0.0103974i
\(628\) 5.54265 5.54265i 0.221176 0.221176i
\(629\) −1.08732 −0.0433543
\(630\) −0.219397 4.70611i −0.00874099 0.187496i
\(631\) 36.5998 1.45701 0.728507 0.685039i \(-0.240215\pi\)
0.728507 + 0.685039i \(0.240215\pi\)
\(632\) 2.46320 2.46320i 0.0979808 0.0979808i
\(633\) −36.9865 3.48958i −1.47008 0.138699i
\(634\) 25.6522i 1.01878i
\(635\) 15.5523 25.3280i 0.617172 1.00511i
\(636\) 4.46774 3.69738i 0.177157 0.146611i
\(637\) −3.02616 3.02616i −0.119901 0.119901i
\(638\) 3.32351 + 3.32351i 0.131579 + 0.131579i
\(639\) −7.81721 + 41.0590i −0.309244 + 1.62427i
\(640\) 1.17005 1.90551i 0.0462503 0.0753221i
\(641\) 34.9202i 1.37926i 0.724160 + 0.689632i \(0.242228\pi\)
−0.724160 + 0.689632i \(0.757772\pi\)
\(642\) −2.87487 + 30.4712i −0.113462 + 1.20260i
\(643\) −24.8779 + 24.8779i −0.981088 + 0.981088i −0.999824 0.0187362i \(-0.994036\pi\)
0.0187362 + 0.999824i \(0.494036\pi\)
\(644\) 0.305190 0.0120262
\(645\) 13.8054 + 10.3809i 0.543589 + 0.408748i
\(646\) −0.190335 −0.00748862
\(647\) 2.44228 2.44228i 0.0960160 0.0960160i −0.657467 0.753483i \(-0.728372\pi\)
0.753483 + 0.657467i \(0.228372\pi\)
\(648\) 3.58024 + 8.25723i 0.140645 + 0.324375i
\(649\) 13.7413i 0.539392i
\(650\) −1.48775 2.93284i −0.0583542 0.115035i
\(651\) −1.26545 1.52911i −0.0495968 0.0599304i
\(652\) −10.2639 10.2639i −0.401967 0.401967i
\(653\) −20.0032 20.0032i −0.782785 0.782785i 0.197515 0.980300i \(-0.436713\pi\)
−0.980300 + 0.197515i \(0.936713\pi\)
\(654\) 0.202972 + 0.245261i 0.00793682 + 0.00959048i
\(655\) 15.6178 3.73470i 0.610236 0.145927i
\(656\) 3.54984i 0.138598i
\(657\) 7.87807 5.35805i 0.307353 0.209037i
\(658\) −3.12589 + 3.12589i −0.121860 + 0.121860i
\(659\) −12.1175 −0.472029 −0.236015 0.971750i \(-0.575841\pi\)
−0.236015 + 0.971750i \(0.575841\pi\)
\(660\) 0.868878 + 6.13658i 0.0338210 + 0.238866i
\(661\) −15.0877 −0.586842 −0.293421 0.955983i \(-0.594794\pi\)
−0.293421 + 0.955983i \(0.594794\pi\)
\(662\) 7.12120 7.12120i 0.276773 0.276773i
\(663\) −0.0203670 + 0.215872i −0.000790987 + 0.00838377i
\(664\) 2.49166i 0.0966951i
\(665\) 1.33826 + 0.821734i 0.0518953 + 0.0318655i
\(666\) −16.8356 3.20532i −0.652366 0.124204i
\(667\) −0.902505 0.902505i −0.0349451 0.0349451i
\(668\) −16.4383 16.4383i −0.636019 0.636019i
\(669\) −14.3054 + 11.8388i −0.553078 + 0.457713i
\(670\) 4.62484 + 19.3402i 0.178673 + 0.747175i
\(671\) 9.77046i 0.377185i
\(672\) 1.21105 + 0.114260i 0.0467174 + 0.00440767i
\(673\) −0.936746 + 0.936746i −0.0361089 + 0.0361089i −0.724931 0.688822i \(-0.758128\pi\)
0.688822 + 0.724931i \(0.258128\pi\)
\(674\) 29.5596 1.13860
\(675\) −25.5267 + 4.83628i −0.982522 + 0.186149i
\(676\) 12.5674 0.483362
\(677\) −17.3503 + 17.3503i −0.666826 + 0.666826i −0.956980 0.290154i \(-0.906294\pi\)
0.290154 + 0.956980i \(0.406294\pi\)
\(678\) 20.9225 + 1.97398i 0.803522 + 0.0758103i
\(679\) 0.0172312i 0.000661274i
\(680\) −0.0989840 0.413931i −0.00379586 0.0158735i
\(681\) 28.9027 23.9191i 1.10755 0.916581i
\(682\) 1.84633 + 1.84633i 0.0706998 + 0.0706998i
\(683\) 10.9787 + 10.9787i 0.420088 + 0.420088i 0.885234 0.465146i \(-0.153998\pi\)
−0.465146 + 0.885234i \(0.653998\pi\)
\(684\) −2.94706 0.561090i −0.112684 0.0214538i
\(685\) 22.5160 + 13.8256i 0.860291 + 0.528247i
\(686\) 9.48590i 0.362173i
\(687\) −2.56389 + 27.1750i −0.0978187 + 1.03679i
\(688\) −3.15359 + 3.15359i −0.120229 + 0.120229i
\(689\) 2.20218 0.0838964
\(690\) −0.235945 1.66640i −0.00898227 0.0634387i
\(691\) −29.8179 −1.13433 −0.567163 0.823606i \(-0.691959\pi\)
−0.567163 + 0.823606i \(0.691959\pi\)
\(692\) −15.4881 + 15.4881i −0.588769 + 0.588769i
\(693\) −2.78793 + 1.89613i −0.105905 + 0.0720281i
\(694\) 22.0131i 0.835605i
\(695\) 37.9976 9.08643i 1.44133 0.344668i
\(696\) −3.24343 3.91920i −0.122942 0.148557i
\(697\) −0.477762 0.477762i −0.0180965 0.0180965i
\(698\) −17.4895 17.4895i −0.661987 0.661987i
\(699\) −2.09622 2.53298i −0.0792865 0.0958060i
\(700\) −1.09110 + 3.33772i −0.0412399 + 0.126154i
\(701\) 30.1321i 1.13807i −0.822312 0.569036i \(-0.807316\pi\)
0.822312 0.569036i \(-0.192684\pi\)
\(702\) −0.951725 + 3.28243i −0.0359206 + 0.123887i
\(703\) 4.03947 4.03947i 0.152351 0.152351i
\(704\) −1.60026 −0.0603122
\(705\) 19.4846 + 14.6513i 0.733834 + 0.551801i
\(706\) −17.2331 −0.648577
\(707\) 0.954534 0.954534i 0.0358989 0.0358989i
\(708\) −1.39702 + 14.8072i −0.0525031 + 0.556487i
\(709\) 40.2650i 1.51218i −0.654465 0.756092i \(-0.727106\pi\)
0.654465 0.756092i \(-0.272894\pi\)
\(710\) 16.3013 26.5480i 0.611778 0.996327i
\(711\) 1.95455 10.2661i 0.0733014 0.385008i
\(712\) −10.4293 10.4293i −0.390854 0.390854i
\(713\) −0.501374 0.501374i −0.0187766 0.0187766i
\(714\) 0.178370 0.147614i 0.00667532 0.00552432i
\(715\) −1.23151 + 2.00561i −0.0460558 + 0.0750054i
\(716\) 9.93061i 0.371124i
\(717\) −47.3250 4.46499i −1.76738 0.166748i
\(718\) −18.4018 + 18.4018i −0.686750 + 0.686750i
\(719\) 14.0389 0.523562 0.261781 0.965127i \(-0.415690\pi\)
0.261781 + 0.965127i \(0.415690\pi\)
\(720\) −0.312395 6.70093i −0.0116423 0.249729i
\(721\) 8.63596 0.321620
\(722\) 0.707107 0.707107i 0.0263158 0.0263158i
\(723\) −50.7323 4.78646i −1.88675 0.178010i
\(724\) 14.5675i 0.541396i
\(725\) 13.0969 6.64367i 0.486406 0.246740i
\(726\) −11.2610 + 9.31927i −0.417934 + 0.345871i
\(727\) 4.11587 + 4.11587i 0.152649 + 0.152649i 0.779300 0.626651i \(-0.215575\pi\)
−0.626651 + 0.779300i \(0.715575\pi\)
\(728\) 0.326629 + 0.326629i 0.0121057 + 0.0121057i
\(729\) 22.8124 + 14.4429i 0.844902 + 0.534921i
\(730\) −6.90663 + 1.65159i −0.255626 + 0.0611282i
\(731\) 0.848863i 0.0313963i
\(732\) 0.993322 10.5283i 0.0367142 0.389139i
\(733\) 26.3118 26.3118i 0.971848 0.971848i −0.0277661 0.999614i \(-0.508839\pi\)
0.999614 + 0.0277661i \(0.00883936\pi\)
\(734\) −3.49194 −0.128890
\(735\) 24.9517 3.53291i 0.920358 0.130313i
\(736\) 0.434554 0.0160179
\(737\) 10.0630 10.0630i 0.370675 0.370675i
\(738\) −5.98907 8.80587i −0.220461 0.324149i
\(739\) 3.65844i 0.134578i −0.997734 0.0672889i \(-0.978565\pi\)
0.997734 0.0672889i \(-0.0214349\pi\)
\(740\) 10.8856 + 6.68411i 0.400162 + 0.245713i
\(741\) −0.726315 0.877644i −0.0266818 0.0322411i
\(742\) −1.66274 1.66274i −0.0610409 0.0610409i
\(743\) −10.1780 10.1780i −0.373394 0.373394i 0.495318 0.868712i \(-0.335052\pi\)
−0.868712 + 0.495318i \(0.835052\pi\)
\(744\) −1.80184 2.17726i −0.0660587 0.0798222i
\(745\) −6.63698 27.7545i −0.243160 1.01685i
\(746\) 11.3409i 0.415220i
\(747\) −4.20377 6.18090i −0.153808 0.226147i
\(748\) −0.215374 + 0.215374i −0.00787487 + 0.00787487i
\(749\) 12.4102 0.453460
\(750\) 19.0682 + 3.37723i 0.696270 + 0.123319i
\(751\) −31.8982 −1.16398 −0.581991 0.813195i \(-0.697726\pi\)
−0.581991 + 0.813195i \(0.697726\pi\)
\(752\) −4.45089 + 4.45089i −0.162307 + 0.162307i
\(753\) 2.16645 22.9625i 0.0789499 0.836800i
\(754\) 1.93181i 0.0703522i
\(755\) 0.869598 + 3.63648i 0.0316479 + 0.132345i
\(756\) 3.19696 1.75978i 0.116272 0.0640024i
\(757\) −24.1785 24.1785i −0.878783 0.878783i 0.114626 0.993409i \(-0.463433\pi\)
−0.993409 + 0.114626i \(0.963433\pi\)
\(758\) 22.0972 + 22.0972i 0.802606 + 0.802606i
\(759\) −0.927921 + 0.767923i −0.0336814 + 0.0278738i
\(760\) 1.90551 + 1.17005i 0.0691203 + 0.0424422i
\(761\) 2.79700i 0.101391i 0.998714 + 0.0506956i \(0.0161438\pi\)
−0.998714 + 0.0506956i \(0.983856\pi\)
\(762\) 22.9206 + 2.16250i 0.830325 + 0.0783390i
\(763\) 0.0912777 0.0912777i 0.00330447 0.00330447i
\(764\) 5.79370 0.209609
\(765\) −0.943901 0.859813i −0.0341268 0.0310866i
\(766\) 1.38315 0.0499753
\(767\) −3.99358 + 3.99358i −0.144200 + 0.144200i
\(768\) 1.72439 + 0.162692i 0.0622237 + 0.00587064i
\(769\) 0.345966i 0.0124759i −0.999981 0.00623793i \(-0.998014\pi\)
0.999981 0.00623793i \(-0.00198561\pi\)
\(770\) 2.44415 0.584474i 0.0880811 0.0210630i
\(771\) −29.3022 + 24.2497i −1.05529 + 0.873333i
\(772\) 2.47519 + 2.47519i 0.0890839 + 0.0890839i
\(773\) 24.4179 + 24.4179i 0.878251 + 0.878251i 0.993354 0.115102i \(-0.0367196\pi\)
−0.115102 + 0.993354i \(0.536720\pi\)
\(774\) −2.50237 + 13.1434i −0.0899460 + 0.472431i
\(775\) 7.27579 3.69080i 0.261354 0.132577i
\(776\) 0.0245352i 0.000880762i
\(777\) −0.652728 + 6.91835i