Properties

Label 570.2.k.b.77.18
Level $570$
Weight $2$
Character 570.77
Analytic conductor $4.551$
Analytic rank $0$
Dimension $36$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 570 = 2 \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 570.k (of order \(4\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.55147291521\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 77.18
Character \(\chi\) \(=\) 570.77
Dual form 570.2.k.b.533.18

$q$-expansion

\(f(q)\) \(=\) \(q+(0.707107 - 0.707107i) q^{2} +(1.72963 + 0.0916341i) q^{3} -1.00000i q^{4} +(2.17182 + 0.532166i) q^{5} +(1.28782 - 1.15823i) q^{6} +(1.32508 + 1.32508i) q^{7} +(-0.707107 - 0.707107i) q^{8} +(2.98321 + 0.316985i) q^{9} +O(q^{10})\) \(q+(0.707107 - 0.707107i) q^{2} +(1.72963 + 0.0916341i) q^{3} -1.00000i q^{4} +(2.17182 + 0.532166i) q^{5} +(1.28782 - 1.15823i) q^{6} +(1.32508 + 1.32508i) q^{7} +(-0.707107 - 0.707107i) q^{8} +(2.98321 + 0.316985i) q^{9} +(1.91201 - 1.15941i) q^{10} -4.14708i q^{11} +(0.0916341 - 1.72963i) q^{12} +(-3.92411 + 3.92411i) q^{13} +1.87395 q^{14} +(3.70767 + 1.11946i) q^{15} -1.00000 q^{16} +(-5.01690 + 5.01690i) q^{17} +(2.33359 - 1.88530i) q^{18} -1.00000i q^{19} +(0.532166 - 2.17182i) q^{20} +(2.17047 + 2.41332i) q^{21} +(-2.93243 - 2.93243i) q^{22} +(-5.46874 - 5.46874i) q^{23} +(-1.15823 - 1.28782i) q^{24} +(4.43360 + 2.31154i) q^{25} +5.54954i q^{26} +(5.13078 + 0.821629i) q^{27} +(1.32508 - 1.32508i) q^{28} -0.0964393 q^{29} +(3.41330 - 1.83014i) q^{30} +0.0111704 q^{31} +(-0.707107 + 0.707107i) q^{32} +(0.380013 - 7.17289i) q^{33} +7.09497i q^{34} +(2.17267 + 3.58300i) q^{35} +(0.316985 - 2.98321i) q^{36} +(1.55524 + 1.55524i) q^{37} +(-0.707107 - 0.707107i) q^{38} +(-7.14683 + 6.42767i) q^{39} +(-1.15941 - 1.91201i) q^{40} -8.45893i q^{41} +(3.24123 + 0.171717i) q^{42} +(0.130534 - 0.130534i) q^{43} -4.14708 q^{44} +(6.31030 + 2.27600i) q^{45} -7.73397 q^{46} +(1.71433 - 1.71433i) q^{47} +(-1.72963 - 0.0916341i) q^{48} -3.48832i q^{49} +(4.76953 - 1.50052i) q^{50} +(-9.13708 + 8.21764i) q^{51} +(3.92411 + 3.92411i) q^{52} +(-8.88222 - 8.88222i) q^{53} +(4.20899 - 3.04703i) q^{54} +(2.20693 - 9.00670i) q^{55} -1.87395i q^{56} +(0.0916341 - 1.72963i) q^{57} +(-0.0681929 + 0.0681929i) q^{58} +6.40826 q^{59} +(1.11946 - 3.70767i) q^{60} -10.2484 q^{61} +(0.00789865 - 0.00789865i) q^{62} +(3.53296 + 4.37302i) q^{63} +1.00000i q^{64} +(-10.6107 + 6.43419i) q^{65} +(-4.80329 - 5.34071i) q^{66} +(4.77624 + 4.77624i) q^{67} +(5.01690 + 5.01690i) q^{68} +(-8.95775 - 9.95999i) q^{69} +(4.06987 + 0.997251i) q^{70} +9.47461i q^{71} +(-1.88530 - 2.33359i) q^{72} +(-4.04666 + 4.04666i) q^{73} +2.19944 q^{74} +(7.45665 + 4.40436i) q^{75} -1.00000 q^{76} +(5.49521 - 5.49521i) q^{77} +(-0.508527 + 9.59862i) q^{78} +12.4743i q^{79} +(-2.17182 - 0.532166i) q^{80} +(8.79904 + 1.89126i) q^{81} +(-5.98137 - 5.98137i) q^{82} +(-1.43685 - 1.43685i) q^{83} +(2.41332 - 2.17047i) q^{84} +(-13.5656 + 8.22598i) q^{85} -0.184604i q^{86} +(-0.166804 - 0.00883712i) q^{87} +(-2.93243 + 2.93243i) q^{88} +17.0881 q^{89} +(6.07143 - 2.85268i) q^{90} -10.3995 q^{91} +(-5.46874 + 5.46874i) q^{92} +(0.0193206 + 0.00102359i) q^{93} -2.42443i q^{94} +(0.532166 - 2.17182i) q^{95} +(-1.28782 + 1.15823i) q^{96} +(3.48454 + 3.48454i) q^{97} +(-2.46662 - 2.46662i) q^{98} +(1.31456 - 12.3716i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36q + 4q^{3} + 4q^{6} + 20q^{7} + O(q^{10}) \) \( 36q + 4q^{3} + 4q^{6} + 20q^{7} - 4q^{10} - 4q^{12} + 8q^{13} + 4q^{15} - 36q^{16} + 16q^{21} - 4q^{22} + 16q^{25} - 44q^{27} + 20q^{28} + 32q^{30} - 24q^{31} - 4q^{33} + 4q^{36} - 8q^{40} + 12q^{42} - 8q^{43} + 28q^{45} - 16q^{46} - 4q^{48} + 40q^{51} - 8q^{52} - 36q^{55} - 4q^{57} + 44q^{58} + 16q^{60} - 120q^{61} - 12q^{63} + 80q^{67} - 36q^{70} + 44q^{73} + 4q^{75} - 36q^{76} - 64q^{78} + 36q^{81} + 8q^{82} - 24q^{85} - 28q^{87} - 4q^{88} + 44q^{90} - 72q^{93} - 4q^{96} + 92q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/570\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(211\) \(457\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 0.707107i 0.500000 0.500000i
\(3\) 1.72963 + 0.0916341i 0.998600 + 0.0529049i
\(4\) 1.00000i 0.500000i
\(5\) 2.17182 + 0.532166i 0.971267 + 0.237992i
\(6\) 1.28782 1.15823i 0.525752 0.472847i
\(7\) 1.32508 + 1.32508i 0.500833 + 0.500833i 0.911697 0.410863i \(-0.134773\pi\)
−0.410863 + 0.911697i \(0.634773\pi\)
\(8\) −0.707107 0.707107i −0.250000 0.250000i
\(9\) 2.98321 + 0.316985i 0.994402 + 0.105662i
\(10\) 1.91201 1.15941i 0.604630 0.366638i
\(11\) 4.14708i 1.25039i −0.780468 0.625195i \(-0.785019\pi\)
0.780468 0.625195i \(-0.214981\pi\)
\(12\) 0.0916341 1.72963i 0.0264525 0.499300i
\(13\) −3.92411 + 3.92411i −1.08835 + 1.08835i −0.0926554 + 0.995698i \(0.529536\pi\)
−0.995698 + 0.0926554i \(0.970464\pi\)
\(14\) 1.87395 0.500833
\(15\) 3.70767 + 1.11946i 0.957316 + 0.289043i
\(16\) −1.00000 −0.250000
\(17\) −5.01690 + 5.01690i −1.21678 + 1.21678i −0.248024 + 0.968754i \(0.579781\pi\)
−0.968754 + 0.248024i \(0.920219\pi\)
\(18\) 2.33359 1.88530i 0.550032 0.444370i
\(19\) 1.00000i 0.229416i
\(20\) 0.532166 2.17182i 0.118996 0.485634i
\(21\) 2.17047 + 2.41332i 0.473635 + 0.526629i
\(22\) −2.93243 2.93243i −0.625195 0.625195i
\(23\) −5.46874 5.46874i −1.14031 1.14031i −0.988393 0.151918i \(-0.951455\pi\)
−0.151918 0.988393i \(-0.548545\pi\)
\(24\) −1.15823 1.28782i −0.236424 0.262876i
\(25\) 4.43360 + 2.31154i 0.886720 + 0.462307i
\(26\) 5.54954i 1.08835i
\(27\) 5.13078 + 0.821629i 0.987419 + 0.158123i
\(28\) 1.32508 1.32508i 0.250417 0.250417i
\(29\) −0.0964393 −0.0179083 −0.00895416 0.999960i \(-0.502850\pi\)
−0.00895416 + 0.999960i \(0.502850\pi\)
\(30\) 3.41330 1.83014i 0.623180 0.334136i
\(31\) 0.0111704 0.00200626 0.00100313 0.999999i \(-0.499681\pi\)
0.00100313 + 0.999999i \(0.499681\pi\)
\(32\) −0.707107 + 0.707107i −0.125000 + 0.125000i
\(33\) 0.380013 7.17289i 0.0661519 1.24864i
\(34\) 7.09497i 1.21678i
\(35\) 2.17267 + 3.58300i 0.367249 + 0.605637i
\(36\) 0.316985 2.98321i 0.0528309 0.497201i
\(37\) 1.55524 + 1.55524i 0.255679 + 0.255679i 0.823294 0.567615i \(-0.192134\pi\)
−0.567615 + 0.823294i \(0.692134\pi\)
\(38\) −0.707107 0.707107i −0.114708 0.114708i
\(39\) −7.14683 + 6.42767i −1.14441 + 1.02925i
\(40\) −1.15941 1.91201i −0.183319 0.302315i
\(41\) 8.45893i 1.32106i −0.750798 0.660532i \(-0.770331\pi\)
0.750798 0.660532i \(-0.229669\pi\)
\(42\) 3.24123 + 0.171717i 0.500132 + 0.0264966i
\(43\) 0.130534 0.130534i 0.0199063 0.0199063i −0.697084 0.716990i \(-0.745519\pi\)
0.716990 + 0.697084i \(0.245519\pi\)
\(44\) −4.14708 −0.625195
\(45\) 6.31030 + 2.27600i 0.940683 + 0.339285i
\(46\) −7.73397 −1.14031
\(47\) 1.71433 1.71433i 0.250061 0.250061i −0.570934 0.820996i \(-0.693419\pi\)
0.820996 + 0.570934i \(0.193419\pi\)
\(48\) −1.72963 0.0916341i −0.249650 0.0132262i
\(49\) 3.48832i 0.498332i
\(50\) 4.76953 1.50052i 0.674514 0.212206i
\(51\) −9.13708 + 8.21764i −1.27945 + 1.15070i
\(52\) 3.92411 + 3.92411i 0.544177 + 0.544177i
\(53\) −8.88222 8.88222i −1.22007 1.22007i −0.967608 0.252459i \(-0.918761\pi\)
−0.252459 0.967608i \(-0.581239\pi\)
\(54\) 4.20899 3.04703i 0.572771 0.414648i
\(55\) 2.20693 9.00670i 0.297583 1.21446i
\(56\) 1.87395i 0.250417i
\(57\) 0.0916341 1.72963i 0.0121372 0.229094i
\(58\) −0.0681929 + 0.0681929i −0.00895416 + 0.00895416i
\(59\) 6.40826 0.834284 0.417142 0.908841i \(-0.363032\pi\)
0.417142 + 0.908841i \(0.363032\pi\)
\(60\) 1.11946 3.70767i 0.144522 0.478658i
\(61\) −10.2484 −1.31218 −0.656090 0.754683i \(-0.727791\pi\)
−0.656090 + 0.754683i \(0.727791\pi\)
\(62\) 0.00789865 0.00789865i 0.00100313 0.00100313i
\(63\) 3.53296 + 4.37302i 0.445111 + 0.550949i
\(64\) 1.00000i 0.125000i
\(65\) −10.6107 + 6.43419i −1.31610 + 0.798063i
\(66\) −4.80329 5.34071i −0.591244 0.657396i
\(67\) 4.77624 + 4.77624i 0.583511 + 0.583511i 0.935866 0.352355i \(-0.114619\pi\)
−0.352355 + 0.935866i \(0.614619\pi\)
\(68\) 5.01690 + 5.01690i 0.608389 + 0.608389i
\(69\) −8.95775 9.95999i −1.07839 1.19904i
\(70\) 4.06987 + 0.997251i 0.486443 + 0.119194i
\(71\) 9.47461i 1.12443i 0.826991 + 0.562215i \(0.190051\pi\)
−0.826991 + 0.562215i \(0.809949\pi\)
\(72\) −1.88530 2.33359i −0.222185 0.275016i
\(73\) −4.04666 + 4.04666i −0.473626 + 0.473626i −0.903086 0.429460i \(-0.858704\pi\)
0.429460 + 0.903086i \(0.358704\pi\)
\(74\) 2.19944 0.255679
\(75\) 7.45665 + 4.40436i 0.861020 + 0.508572i
\(76\) −1.00000 −0.114708
\(77\) 5.49521 5.49521i 0.626238 0.626238i
\(78\) −0.508527 + 9.59862i −0.0575793 + 1.08683i
\(79\) 12.4743i 1.40347i 0.712438 + 0.701735i \(0.247591\pi\)
−0.712438 + 0.701735i \(0.752409\pi\)
\(80\) −2.17182 0.532166i −0.242817 0.0594980i
\(81\) 8.79904 + 1.89126i 0.977671 + 0.210140i
\(82\) −5.98137 5.98137i −0.660532 0.660532i
\(83\) −1.43685 1.43685i −0.157715 0.157715i 0.623838 0.781553i \(-0.285572\pi\)
−0.781553 + 0.623838i \(0.785572\pi\)
\(84\) 2.41332 2.17047i 0.263314 0.236818i
\(85\) −13.5656 + 8.22598i −1.47140 + 0.892233i
\(86\) 0.184604i 0.0199063i
\(87\) −0.166804 0.00883712i −0.0178832 0.000947439i
\(88\) −2.93243 + 2.93243i −0.312598 + 0.312598i
\(89\) 17.0881 1.81134 0.905668 0.423988i \(-0.139370\pi\)
0.905668 + 0.423988i \(0.139370\pi\)
\(90\) 6.07143 2.85268i 0.639984 0.300699i
\(91\) −10.3995 −1.09017
\(92\) −5.46874 + 5.46874i −0.570155 + 0.570155i
\(93\) 0.0193206 + 0.00102359i 0.00200345 + 0.000106141i
\(94\) 2.42443i 0.250061i
\(95\) 0.532166 2.17182i 0.0545991 0.222824i
\(96\) −1.28782 + 1.15823i −0.131438 + 0.118212i
\(97\) 3.48454 + 3.48454i 0.353801 + 0.353801i 0.861522 0.507721i \(-0.169512\pi\)
−0.507721 + 0.861522i \(0.669512\pi\)
\(98\) −2.46662 2.46662i −0.249166 0.249166i
\(99\) 1.31456 12.3716i 0.132118 1.24339i
\(100\) 2.31154 4.43360i 0.231154 0.443360i
\(101\) 16.2835i 1.62027i −0.586244 0.810135i \(-0.699394\pi\)
0.586244 0.810135i \(-0.300606\pi\)
\(102\) −0.650141 + 12.2716i −0.0643736 + 1.21507i
\(103\) 2.44289 2.44289i 0.240705 0.240705i −0.576437 0.817142i \(-0.695557\pi\)
0.817142 + 0.576437i \(0.195557\pi\)
\(104\) 5.54954 0.544177
\(105\) 3.42959 + 6.39634i 0.334693 + 0.624219i
\(106\) −12.5614 −1.22007
\(107\) −1.32951 + 1.32951i −0.128529 + 0.128529i −0.768445 0.639916i \(-0.778969\pi\)
0.639916 + 0.768445i \(0.278969\pi\)
\(108\) 0.821629 5.13078i 0.0790613 0.493710i
\(109\) 8.51296i 0.815394i 0.913117 + 0.407697i \(0.133668\pi\)
−0.913117 + 0.407697i \(0.866332\pi\)
\(110\) −4.80816 7.92924i −0.458440 0.756023i
\(111\) 2.54746 + 2.83249i 0.241795 + 0.268848i
\(112\) −1.32508 1.32508i −0.125208 0.125208i
\(113\) 1.46934 + 1.46934i 0.138224 + 0.138224i 0.772833 0.634609i \(-0.218839\pi\)
−0.634609 + 0.772833i \(0.718839\pi\)
\(114\) −1.15823 1.28782i −0.108479 0.120616i
\(115\) −8.96684 14.7874i −0.836162 1.37893i
\(116\) 0.0964393i 0.00895416i
\(117\) −12.9503 + 10.4626i −1.19726 + 0.967264i
\(118\) 4.53132 4.53132i 0.417142 0.417142i
\(119\) −13.2956 −1.21881
\(120\) −1.83014 3.41330i −0.167068 0.311590i
\(121\) −6.19825 −0.563477
\(122\) −7.24675 + 7.24675i −0.656090 + 0.656090i
\(123\) 0.775126 14.6308i 0.0698908 1.31921i
\(124\) 0.0111704i 0.00100313i
\(125\) 8.39885 + 7.37965i 0.751216 + 0.660056i
\(126\) 5.59037 + 0.594013i 0.498030 + 0.0529189i
\(127\) −0.469960 0.469960i −0.0417022 0.0417022i 0.685948 0.727650i \(-0.259388\pi\)
−0.727650 + 0.685948i \(0.759388\pi\)
\(128\) 0.707107 + 0.707107i 0.0625000 + 0.0625000i
\(129\) 0.237737 0.213814i 0.0209316 0.0188253i
\(130\) −2.95328 + 12.0526i −0.259019 + 1.05708i
\(131\) 17.7953i 1.55478i 0.629018 + 0.777391i \(0.283457\pi\)
−0.629018 + 0.777391i \(0.716543\pi\)
\(132\) −7.17289 0.380013i −0.624320 0.0330759i
\(133\) 1.32508 1.32508i 0.114899 0.114899i
\(134\) 6.75463 0.583511
\(135\) 10.7059 + 4.51486i 0.921416 + 0.388577i
\(136\) 7.09497 0.608389
\(137\) −9.30953 + 9.30953i −0.795367 + 0.795367i −0.982361 0.186994i \(-0.940125\pi\)
0.186994 + 0.982361i \(0.440125\pi\)
\(138\) −13.3769 0.708695i −1.13871 0.0603281i
\(139\) 12.4068i 1.05233i −0.850383 0.526165i \(-0.823630\pi\)
0.850383 0.526165i \(-0.176370\pi\)
\(140\) 3.58300 2.17267i 0.302819 0.183624i
\(141\) 3.12225 2.80806i 0.262941 0.236482i
\(142\) 6.69956 + 6.69956i 0.562215 + 0.562215i
\(143\) 16.2736 + 16.2736i 1.36087 + 1.36087i
\(144\) −2.98321 0.316985i −0.248601 0.0264154i
\(145\) −0.209449 0.0513217i −0.0173938 0.00426204i
\(146\) 5.72284i 0.473626i
\(147\) 0.319649 6.03349i 0.0263642 0.497634i
\(148\) 1.55524 1.55524i 0.127840 0.127840i
\(149\) −10.8534 −0.889142 −0.444571 0.895744i \(-0.646644\pi\)
−0.444571 + 0.895744i \(0.646644\pi\)
\(150\) 8.38700 2.15829i 0.684796 0.176224i
\(151\) 1.21233 0.0986577 0.0493288 0.998783i \(-0.484292\pi\)
0.0493288 + 0.998783i \(0.484292\pi\)
\(152\) −0.707107 + 0.707107i −0.0573539 + 0.0573539i
\(153\) −16.5567 + 13.3762i −1.33853 + 1.08140i
\(154\) 7.77140i 0.626238i
\(155\) 0.0242600 + 0.00594450i 0.00194861 + 0.000477474i
\(156\) 6.42767 + 7.14683i 0.514625 + 0.572204i
\(157\) 10.0557 + 10.0557i 0.802530 + 0.802530i 0.983490 0.180960i \(-0.0579204\pi\)
−0.180960 + 0.983490i \(0.557920\pi\)
\(158\) 8.82067 + 8.82067i 0.701735 + 0.701735i
\(159\) −14.5490 16.1768i −1.15381 1.28291i
\(160\) −1.91201 + 1.15941i −0.151157 + 0.0916594i
\(161\) 14.4930i 1.14221i
\(162\) 7.55919 4.88454i 0.593906 0.383765i
\(163\) −8.60942 + 8.60942i −0.674342 + 0.674342i −0.958714 0.284372i \(-0.908215\pi\)
0.284372 + 0.958714i \(0.408215\pi\)
\(164\) −8.45893 −0.660532
\(165\) 4.64249 15.3760i 0.361417 1.19702i
\(166\) −2.03202 −0.157715
\(167\) 2.30123 2.30123i 0.178074 0.178074i −0.612441 0.790516i \(-0.709812\pi\)
0.790516 + 0.612441i \(0.209812\pi\)
\(168\) 0.171717 3.24123i 0.0132483 0.250066i
\(169\) 17.7974i 1.36903i
\(170\) −3.77570 + 15.4090i −0.289583 + 1.18182i
\(171\) 0.316985 2.98321i 0.0242405 0.228131i
\(172\) −0.130534 0.130534i −0.00995316 0.00995316i
\(173\) 7.70257 + 7.70257i 0.585616 + 0.585616i 0.936441 0.350825i \(-0.114099\pi\)
−0.350825 + 0.936441i \(0.614099\pi\)
\(174\) −0.124197 + 0.111699i −0.00941534 + 0.00846790i
\(175\) 2.81190 + 8.93785i 0.212560 + 0.675638i
\(176\) 4.14708i 0.312598i
\(177\) 11.0839 + 0.587215i 0.833116 + 0.0441378i
\(178\) 12.0831 12.0831i 0.905668 0.905668i
\(179\) 9.05937 0.677129 0.338565 0.940943i \(-0.390059\pi\)
0.338565 + 0.940943i \(0.390059\pi\)
\(180\) 2.27600 6.31030i 0.169643 0.470342i
\(181\) −17.9179 −1.33183 −0.665915 0.746028i \(-0.731959\pi\)
−0.665915 + 0.746028i \(0.731959\pi\)
\(182\) −7.35358 + 7.35358i −0.545084 + 0.545084i
\(183\) −17.7260 0.939107i −1.31034 0.0694208i
\(184\) 7.73397i 0.570155i
\(185\) 2.55005 + 4.20534i 0.187483 + 0.309183i
\(186\) 0.0143855 0.0129379i 0.00105480 0.000948654i
\(187\) 20.8055 + 20.8055i 1.52145 + 1.52145i
\(188\) −1.71433 1.71433i −0.125031 0.125031i
\(189\) 5.70998 + 7.88743i 0.415340 + 0.573726i
\(190\) −1.15941 1.91201i −0.0841124 0.138712i
\(191\) 8.41348i 0.608778i 0.952548 + 0.304389i \(0.0984522\pi\)
−0.952548 + 0.304389i \(0.901548\pi\)
\(192\) −0.0916341 + 1.72963i −0.00661312 + 0.124825i
\(193\) 0.408503 0.408503i 0.0294047 0.0294047i −0.692252 0.721656i \(-0.743381\pi\)
0.721656 + 0.692252i \(0.243381\pi\)
\(194\) 4.92788 0.353801
\(195\) −18.9422 + 10.1564i −1.35648 + 0.727317i
\(196\) −3.48832 −0.249166
\(197\) −3.06602 + 3.06602i −0.218445 + 0.218445i −0.807843 0.589398i \(-0.799365\pi\)
0.589398 + 0.807843i \(0.299365\pi\)
\(198\) −7.81850 9.67757i −0.555636 0.687755i
\(199\) 21.9659i 1.55712i −0.627570 0.778560i \(-0.715950\pi\)
0.627570 0.778560i \(-0.284050\pi\)
\(200\) −1.50052 4.76953i −0.106103 0.337257i
\(201\) 7.82344 + 8.69878i 0.551823 + 0.613564i
\(202\) −11.5142 11.5142i −0.810135 0.810135i
\(203\) −0.127790 0.127790i −0.00896909 0.00896909i
\(204\) 8.21764 + 9.13708i 0.575350 + 0.639724i
\(205\) 4.50156 18.3713i 0.314402 1.28311i
\(206\) 3.45477i 0.240705i
\(207\) −14.5809 18.0479i −1.01344 1.25441i
\(208\) 3.92411 3.92411i 0.272088 0.272088i
\(209\) −4.14708 −0.286859
\(210\) 6.94798 + 2.09781i 0.479456 + 0.144763i
\(211\) 10.9572 0.754327 0.377163 0.926147i \(-0.376899\pi\)
0.377163 + 0.926147i \(0.376899\pi\)
\(212\) −8.88222 + 8.88222i −0.610033 + 0.610033i
\(213\) −0.868197 + 16.3875i −0.0594879 + 1.12285i
\(214\) 1.88021i 0.128529i
\(215\) 0.352963 0.214031i 0.0240719 0.0145968i
\(216\) −3.04703 4.20899i −0.207324 0.286386i
\(217\) 0.0148017 + 0.0148017i 0.00100480 + 0.00100480i
\(218\) 6.01957 + 6.01957i 0.407697 + 0.407697i
\(219\) −7.37001 + 6.62839i −0.498019 + 0.447905i
\(220\) −9.00670 2.20693i −0.607232 0.148791i
\(221\) 39.3738i 2.64857i
\(222\) 3.80420 + 0.201543i 0.255321 + 0.0135267i
\(223\) −3.81435 + 3.81435i −0.255428 + 0.255428i −0.823191 0.567764i \(-0.807809\pi\)
0.567764 + 0.823191i \(0.307809\pi\)
\(224\) −1.87395 −0.125208
\(225\) 12.4936 + 8.30118i 0.832908 + 0.553412i
\(226\) 2.07797 0.138224
\(227\) 8.48460 8.48460i 0.563143 0.563143i −0.367056 0.930199i \(-0.619634\pi\)
0.930199 + 0.367056i \(0.119634\pi\)
\(228\) −1.72963 0.0916341i −0.114547 0.00606861i
\(229\) 13.8975i 0.918372i 0.888340 + 0.459186i \(0.151859\pi\)
−0.888340 + 0.459186i \(0.848141\pi\)
\(230\) −16.7968 4.11575i −1.10755 0.271385i
\(231\) 10.0082 9.00111i 0.658492 0.592229i
\(232\) 0.0681929 + 0.0681929i 0.00447708 + 0.00447708i
\(233\) −21.1265 21.1265i −1.38404 1.38404i −0.837300 0.546744i \(-0.815867\pi\)
−0.546744 0.837300i \(-0.684133\pi\)
\(234\) −1.75912 + 16.5554i −0.114997 + 1.08226i
\(235\) 4.63553 2.81091i 0.302389 0.183364i
\(236\) 6.40826i 0.417142i
\(237\) −1.14307 + 21.5759i −0.0742505 + 1.40150i
\(238\) −9.40141 + 9.40141i −0.609403 + 0.609403i
\(239\) 3.09410 0.200141 0.100070 0.994980i \(-0.468093\pi\)
0.100070 + 0.994980i \(0.468093\pi\)
\(240\) −3.70767 1.11946i −0.239329 0.0722609i
\(241\) 6.62578 0.426804 0.213402 0.976964i \(-0.431546\pi\)
0.213402 + 0.976964i \(0.431546\pi\)
\(242\) −4.38282 + 4.38282i −0.281738 + 0.281738i
\(243\) 15.0457 + 4.07747i 0.965185 + 0.261570i
\(244\) 10.2484i 0.656090i
\(245\) 1.85637 7.57600i 0.118599 0.484013i
\(246\) −9.79743 10.8936i −0.624661 0.694552i
\(247\) 3.92411 + 3.92411i 0.249685 + 0.249685i
\(248\) −0.00789865 0.00789865i −0.000501565 0.000501565i
\(249\) −2.35355 2.61688i −0.149150 0.165838i
\(250\) 11.1571 0.720684i 0.705636 0.0455800i
\(251\) 21.3523i 1.34775i −0.738847 0.673874i \(-0.764629\pi\)
0.738847 0.673874i \(-0.235371\pi\)
\(252\) 4.37302 3.53296i 0.275474 0.222555i
\(253\) −22.6793 + 22.6793i −1.42583 + 1.42583i
\(254\) −0.664624 −0.0417022
\(255\) −24.2172 + 12.9848i −1.51654 + 0.813139i
\(256\) 1.00000 0.0625000
\(257\) −2.86047 + 2.86047i −0.178431 + 0.178431i −0.790672 0.612240i \(-0.790268\pi\)
0.612240 + 0.790672i \(0.290268\pi\)
\(258\) 0.0169160 0.319295i 0.00105314 0.0198784i
\(259\) 4.12163i 0.256106i
\(260\) 6.43419 + 10.6107i 0.399031 + 0.658051i
\(261\) −0.287698 0.0305698i −0.0178081 0.00189222i
\(262\) 12.5832 + 12.5832i 0.777391 + 0.777391i
\(263\) 19.5180 + 19.5180i 1.20353 + 1.20353i 0.973085 + 0.230446i \(0.0740184\pi\)
0.230446 + 0.973085i \(0.425982\pi\)
\(264\) −5.34071 + 4.80329i −0.328698 + 0.295622i
\(265\) −14.5638 24.0174i −0.894644 1.47538i
\(266\) 1.87395i 0.114899i
\(267\) 29.5560 + 1.56585i 1.80880 + 0.0958286i
\(268\) 4.77624 4.77624i 0.291756 0.291756i
\(269\) 9.59340 0.584920 0.292460 0.956278i \(-0.405526\pi\)
0.292460 + 0.956278i \(0.405526\pi\)
\(270\) 10.7627 4.37772i 0.654997 0.266420i
\(271\) 30.4023 1.84681 0.923405 0.383828i \(-0.125394\pi\)
0.923405 + 0.383828i \(0.125394\pi\)
\(272\) 5.01690 5.01690i 0.304195 0.304195i
\(273\) −17.9873 0.952952i −1.08864 0.0576753i
\(274\) 13.1657i 0.795367i
\(275\) 9.58612 18.3865i 0.578065 1.10875i
\(276\) −9.95999 + 8.95775i −0.599521 + 0.539193i
\(277\) −8.02745 8.02745i −0.482323 0.482323i 0.423550 0.905873i \(-0.360784\pi\)
−0.905873 + 0.423550i \(0.860784\pi\)
\(278\) −8.77292 8.77292i −0.526165 0.526165i
\(279\) 0.0333235 + 0.00354084i 0.00199503 + 0.000211985i
\(280\) 0.997251 4.06987i 0.0595972 0.243222i
\(281\) 13.4543i 0.802618i −0.915943 0.401309i \(-0.868555\pi\)
0.915943 0.401309i \(-0.131445\pi\)
\(282\) 0.222161 4.19336i 0.0132295 0.249711i
\(283\) 13.5068 13.5068i 0.802894 0.802894i −0.180653 0.983547i \(-0.557821\pi\)
0.983547 + 0.180653i \(0.0578209\pi\)
\(284\) 9.47461 0.562215
\(285\) 1.11946 3.70767i 0.0663111 0.219623i
\(286\) 23.0144 1.36087
\(287\) 11.2088 11.2088i 0.661633 0.661633i
\(288\) −2.33359 + 1.88530i −0.137508 + 0.111093i
\(289\) 33.3387i 1.96110i
\(290\) −0.184392 + 0.111813i −0.0108279 + 0.00656586i
\(291\) 5.70764 + 6.34625i 0.334588 + 0.372024i
\(292\) 4.04666 + 4.04666i 0.236813 + 0.236813i
\(293\) 1.92348 + 1.92348i 0.112371 + 0.112371i 0.761056 0.648686i \(-0.224681\pi\)
−0.648686 + 0.761056i \(0.724681\pi\)
\(294\) −4.04030 4.49235i −0.235635 0.261999i
\(295\) 13.9176 + 3.41026i 0.810313 + 0.198553i
\(296\) 2.19944i 0.127840i
\(297\) 3.40736 21.2777i 0.197715 1.23466i
\(298\) −7.67448 + 7.67448i −0.444571 + 0.444571i
\(299\) 42.9199 2.48212
\(300\) 4.40436 7.45665i 0.254286 0.430510i
\(301\) 0.345937 0.0199395
\(302\) 0.857244 0.857244i 0.0493288 0.0493288i
\(303\) 1.49212 28.1644i 0.0857203 1.61800i
\(304\) 1.00000i 0.0573539i
\(305\) −22.2578 5.45388i −1.27448 0.312288i
\(306\) −2.24900 + 21.1658i −0.128567 + 1.20997i
\(307\) −17.6649 17.6649i −1.00819 1.00819i −0.999966 0.00822043i \(-0.997383\pi\)
−0.00822043 0.999966i \(-0.502617\pi\)
\(308\) −5.49521 5.49521i −0.313119 0.313119i
\(309\) 4.44913 4.00143i 0.253102 0.227633i
\(310\) 0.0213578 0.0129510i 0.00121304 0.000735570i
\(311\) 9.64561i 0.546952i −0.961879 0.273476i \(-0.911827\pi\)
0.961879 0.273476i \(-0.0881735\pi\)
\(312\) 9.59862 + 0.508527i 0.543415 + 0.0287896i
\(313\) 10.1110 10.1110i 0.571508 0.571508i −0.361042 0.932550i \(-0.617579\pi\)
0.932550 + 0.361042i \(0.117579\pi\)
\(314\) 14.2209 0.802530
\(315\) 5.34577 + 11.3775i 0.301200 + 0.641051i
\(316\) 12.4743 0.701735
\(317\) 9.56745 9.56745i 0.537361 0.537361i −0.385392 0.922753i \(-0.625934\pi\)
0.922753 + 0.385392i \(0.125934\pi\)
\(318\) −21.7264 1.15105i −1.21836 0.0645475i
\(319\) 0.399941i 0.0223924i
\(320\) −0.532166 + 2.17182i −0.0297490 + 0.121408i
\(321\) −2.42138 + 2.17773i −0.135148 + 0.121549i
\(322\) −10.2481 10.2481i −0.571106 0.571106i
\(323\) 5.01690 + 5.01690i 0.279148 + 0.279148i
\(324\) 1.89126 8.79904i 0.105070 0.488836i
\(325\) −26.4687 + 8.32721i −1.46822 + 0.461911i
\(326\) 12.1756i 0.674342i
\(327\) −0.780077 + 14.7242i −0.0431384 + 0.814252i
\(328\) −5.98137 + 5.98137i −0.330266 + 0.330266i
\(329\) 4.54326 0.250478
\(330\) −7.58973 14.1552i −0.417801 0.779218i
\(331\) −10.8642 −0.597152 −0.298576 0.954386i \(-0.596512\pi\)
−0.298576 + 0.954386i \(0.596512\pi\)
\(332\) −1.43685 + 1.43685i −0.0788575 + 0.0788575i
\(333\) 4.14660 + 5.13258i 0.227233 + 0.281264i
\(334\) 3.25443i 0.178074i
\(335\) 7.83138 + 12.9149i 0.427874 + 0.705616i
\(336\) −2.17047 2.41332i −0.118409 0.131657i
\(337\) 2.83368 + 2.83368i 0.154361 + 0.154361i 0.780062 0.625702i \(-0.215187\pi\)
−0.625702 + 0.780062i \(0.715187\pi\)
\(338\) −12.5846 12.5846i −0.684514 0.684514i
\(339\) 2.40677 + 2.67606i 0.130718 + 0.145343i
\(340\) 8.22598 + 13.5656i 0.446117 + 0.735700i
\(341\) 0.0463244i 0.00250861i
\(342\) −1.88530 2.33359i −0.101946 0.126186i
\(343\) 13.8979 13.8979i 0.750415 0.750415i
\(344\) −0.184604 −0.00995316
\(345\) −14.1542 26.3983i −0.762038 1.42124i
\(346\) 10.8931 0.585616
\(347\) −12.2836 + 12.2836i −0.659418 + 0.659418i −0.955242 0.295825i \(-0.904406\pi\)
0.295825 + 0.955242i \(0.404406\pi\)
\(348\) −0.00883712 + 0.166804i −0.000473719 + 0.00894162i
\(349\) 25.9576i 1.38948i 0.719261 + 0.694740i \(0.244480\pi\)
−0.719261 + 0.694740i \(0.755520\pi\)
\(350\) 8.30833 + 4.33170i 0.444099 + 0.231539i
\(351\) −23.3579 + 16.9096i −1.24675 + 0.902568i
\(352\) 2.93243 + 2.93243i 0.156299 + 0.156299i
\(353\) 11.5702 + 11.5702i 0.615818 + 0.615818i 0.944456 0.328638i \(-0.106590\pi\)
−0.328638 + 0.944456i \(0.606590\pi\)
\(354\) 8.25271 7.42227i 0.438627 0.394489i
\(355\) −5.04207 + 20.5771i −0.267605 + 1.09212i
\(356\) 17.0881i 0.905668i
\(357\) −22.9964 1.21833i −1.21710 0.0644809i
\(358\) 6.40594 6.40594i 0.338565 0.338565i
\(359\) −31.0266 −1.63752 −0.818760 0.574136i \(-0.805338\pi\)
−0.818760 + 0.574136i \(0.805338\pi\)
\(360\) −2.85268 6.07143i −0.150350 0.319992i
\(361\) −1.00000 −0.0526316
\(362\) −12.6699 + 12.6699i −0.665915 + 0.665915i
\(363\) −10.7206 0.567970i −0.562688 0.0298107i
\(364\) 10.3995i 0.545084i
\(365\) −10.9421 + 6.63512i −0.572736 + 0.347298i
\(366\) −13.1982 + 11.8701i −0.689881 + 0.620460i
\(367\) 13.0593 + 13.0593i 0.681690 + 0.681690i 0.960381 0.278691i \(-0.0899004\pi\)
−0.278691 + 0.960381i \(0.589900\pi\)
\(368\) 5.46874 + 5.46874i 0.285078 + 0.285078i
\(369\) 2.68136 25.2347i 0.139586 1.31367i
\(370\) 4.77678 + 1.17047i 0.248333 + 0.0608496i
\(371\) 23.5393i 1.22210i
\(372\) 0.00102359 0.0193206i 5.30705e−5 0.00100172i
\(373\) 21.2626 21.2626i 1.10093 1.10093i 0.106636 0.994298i \(-0.465992\pi\)
0.994298 0.106636i \(-0.0340080\pi\)
\(374\) 29.4234 1.52145
\(375\) 13.8506 + 13.5337i 0.715244 + 0.698875i
\(376\) −2.42443 −0.125031
\(377\) 0.378439 0.378439i 0.0194906 0.0194906i
\(378\) 9.61481 + 1.53969i 0.494533 + 0.0791931i
\(379\) 27.4201i 1.40848i −0.709963 0.704239i \(-0.751288\pi\)
0.709963 0.704239i \(-0.248712\pi\)
\(380\) −2.17182 0.532166i −0.111412 0.0272995i
\(381\) −0.769791 0.855919i −0.0394376 0.0438501i
\(382\) 5.94923 + 5.94923i 0.304389 + 0.304389i
\(383\) −1.51688 1.51688i −0.0775089 0.0775089i 0.667290 0.744798i \(-0.267454\pi\)
−0.744798 + 0.667290i \(0.767454\pi\)
\(384\) 1.15823 + 1.28782i 0.0591059 + 0.0657190i
\(385\) 14.8590 9.01024i 0.757283 0.459204i
\(386\) 0.577710i 0.0294047i
\(387\) 0.430789 0.348034i 0.0218982 0.0176916i
\(388\) 3.48454 3.48454i 0.176901 0.176901i
\(389\) −27.2165 −1.37993 −0.689966 0.723841i \(-0.742375\pi\)
−0.689966 + 0.723841i \(0.742375\pi\)
\(390\) −6.21249 + 20.5758i −0.314582 + 1.04190i
\(391\) 54.8723 2.77501
\(392\) −2.46662 + 2.46662i −0.124583 + 0.124583i
\(393\) −1.63066 + 30.7792i −0.0822557 + 1.55260i
\(394\) 4.33601i 0.218445i
\(395\) −6.63841 + 27.0919i −0.334014 + 1.36314i
\(396\) −12.3716 1.31456i −0.621696 0.0660592i
\(397\) 11.0403 + 11.0403i 0.554095 + 0.554095i 0.927620 0.373525i \(-0.121851\pi\)
−0.373525 + 0.927620i \(0.621851\pi\)
\(398\) −15.5322 15.5322i −0.778560 0.778560i
\(399\) 2.41332 2.17047i 0.120817 0.108659i
\(400\) −4.43360 2.31154i −0.221680 0.115577i
\(401\) 9.33422i 0.466129i −0.972461 0.233064i \(-0.925125\pi\)
0.972461 0.233064i \(-0.0748753\pi\)
\(402\) 11.6830 + 0.618954i 0.582694 + 0.0308706i
\(403\) −0.0438339 + 0.0438339i −0.00218352 + 0.00218352i
\(404\) −16.2835 −0.810135
\(405\) 18.1035 + 8.79004i 0.899568 + 0.436780i
\(406\) −0.180722 −0.00896909
\(407\) 6.44969 6.44969i 0.319699 0.319699i
\(408\) 12.2716 + 0.650141i 0.607537 + 0.0321868i
\(409\) 15.1973i 0.751460i 0.926729 + 0.375730i \(0.122608\pi\)
−0.926729 + 0.375730i \(0.877392\pi\)
\(410\) −9.80737 16.1735i −0.484352 0.798754i
\(411\) −16.9551 + 15.2489i −0.836332 + 0.752174i
\(412\) −2.44289 2.44289i −0.120353 0.120353i
\(413\) 8.49146 + 8.49146i 0.417837 + 0.417837i
\(414\) −23.0720 2.45155i −1.13393 0.120487i
\(415\) −2.35594 3.88523i −0.115648 0.190718i
\(416\) 5.54954i 0.272088i
\(417\) 1.13688 21.4591i 0.0556734 1.05086i
\(418\) −2.93243 + 2.93243i −0.143430 + 0.143430i
\(419\) −3.37395 −0.164828 −0.0824142 0.996598i \(-0.526263\pi\)
−0.0824142 + 0.996598i \(0.526263\pi\)
\(420\) 6.39634 3.42959i 0.312109 0.167347i
\(421\) 16.8556 0.821493 0.410746 0.911750i \(-0.365268\pi\)
0.410746 + 0.911750i \(0.365268\pi\)
\(422\) 7.74793 7.74793i 0.377163 0.377163i
\(423\) 5.65763 4.57079i 0.275083 0.222240i
\(424\) 12.5614i 0.610033i
\(425\) −33.8397 + 10.6462i −1.64147 + 0.516415i
\(426\) 10.9738 + 12.2016i 0.531683 + 0.591171i
\(427\) −13.5800 13.5800i −0.657183 0.657183i
\(428\) 1.32951 + 1.32951i 0.0642643 + 0.0642643i
\(429\) 26.6560 + 29.6385i 1.28696 + 1.43096i
\(430\) 0.0982398 0.400926i 0.00473754 0.0193344i
\(431\) 16.6210i 0.800607i 0.916383 + 0.400303i \(0.131095\pi\)
−0.916383 + 0.400303i \(0.868905\pi\)
\(432\) −5.13078 0.821629i −0.246855 0.0395306i
\(433\) 10.6960 10.6960i 0.514019 0.514019i −0.401737 0.915755i \(-0.631593\pi\)
0.915755 + 0.401737i \(0.131593\pi\)
\(434\) 0.0209327 0.00100480
\(435\) −0.357565 0.107960i −0.0171439 0.00517628i
\(436\) 8.51296 0.407697
\(437\) −5.46874 + 5.46874i −0.261605 + 0.261605i
\(438\) −0.524407 + 9.89837i −0.0250571 + 0.472962i
\(439\) 18.1152i 0.864593i 0.901731 + 0.432297i \(0.142297\pi\)
−0.901731 + 0.432297i \(0.857703\pi\)
\(440\) −7.92924 + 4.80816i −0.378012 + 0.229220i
\(441\) 1.10575 10.4064i 0.0526546 0.495542i
\(442\) −27.8415 27.8415i −1.32428 1.32428i
\(443\) 15.6435 + 15.6435i 0.743247 + 0.743247i 0.973201 0.229955i \(-0.0738578\pi\)
−0.229955 + 0.973201i \(0.573858\pi\)
\(444\) 2.83249 2.54746i 0.134424 0.120897i
\(445\) 37.1123 + 9.09371i 1.75929 + 0.431083i
\(446\) 5.39430i 0.255428i
\(447\) −18.7722 0.994537i −0.887897 0.0470400i
\(448\) −1.32508 + 1.32508i −0.0626042 + 0.0626042i
\(449\) −4.48299 −0.211565 −0.105783 0.994389i \(-0.533735\pi\)
−0.105783 + 0.994389i \(0.533735\pi\)
\(450\) 14.7041 2.96450i 0.693160 0.139748i
\(451\) −35.0798 −1.65185
\(452\) 1.46934 1.46934i 0.0691122 0.0691122i
\(453\) 2.09687 + 0.111090i 0.0985195 + 0.00521948i
\(454\) 11.9990i 0.563143i
\(455\) −22.5859 5.53428i −1.05884 0.259451i
\(456\) −1.28782 + 1.15823i −0.0603079 + 0.0542393i
\(457\) −6.38576 6.38576i −0.298713 0.298713i 0.541797 0.840510i \(-0.317744\pi\)
−0.840510 + 0.541797i \(0.817744\pi\)
\(458\) 9.82700 + 9.82700i 0.459186 + 0.459186i
\(459\) −29.8627 + 21.6186i −1.39387 + 1.00907i
\(460\) −14.7874 + 8.96684i −0.689466 + 0.418081i
\(461\) 9.14050i 0.425716i −0.977083 0.212858i \(-0.931723\pi\)
0.977083 0.212858i \(-0.0682771\pi\)
\(462\) 0.712125 13.4416i 0.0331311 0.625360i
\(463\) −11.7522 + 11.7522i −0.546170 + 0.546170i −0.925331 0.379161i \(-0.876213\pi\)
0.379161 + 0.925331i \(0.376213\pi\)
\(464\) 0.0964393 0.00447708
\(465\) 0.0414161 + 0.0125048i 0.00192062 + 0.000579896i
\(466\) −29.8774 −1.38404
\(467\) −10.8294 + 10.8294i −0.501124 + 0.501124i −0.911787 0.410663i \(-0.865297\pi\)
0.410663 + 0.911787i \(0.365297\pi\)
\(468\) 10.4626 + 12.9503i 0.483632 + 0.598629i
\(469\) 12.6578i 0.584484i
\(470\) 1.29020 5.26543i 0.0595126 0.242876i
\(471\) 16.4711 + 18.3140i 0.758949 + 0.843864i
\(472\) −4.53132 4.53132i −0.208571 0.208571i
\(473\) −0.541336 0.541336i −0.0248907 0.0248907i
\(474\) 14.4482 + 16.0647i 0.663627 + 0.737877i
\(475\) 2.31154 4.43360i 0.106061 0.203427i
\(476\) 13.2956i 0.609403i
\(477\) −23.6820 29.3130i −1.08432 1.34215i
\(478\) 2.18786 2.18786i 0.100070 0.100070i
\(479\) −16.6381 −0.760216 −0.380108 0.924942i \(-0.624113\pi\)
−0.380108 + 0.924942i \(0.624113\pi\)
\(480\) −3.41330 + 1.83014i −0.155795 + 0.0835341i
\(481\) −12.2059 −0.556539
\(482\) 4.68513 4.68513i 0.213402 0.213402i
\(483\) 1.32806 25.0675i 0.0604287 1.14061i
\(484\) 6.19825i 0.281738i
\(485\) 5.71343 + 9.42214i 0.259434 + 0.427837i
\(486\) 13.5222 7.75574i 0.613377 0.351807i
\(487\) 6.95016 + 6.95016i 0.314942 + 0.314942i 0.846820 0.531879i \(-0.178514\pi\)
−0.531879 + 0.846820i \(0.678514\pi\)
\(488\) 7.24675 + 7.24675i 0.328045 + 0.328045i
\(489\) −15.6800 + 14.1022i −0.709073 + 0.637721i
\(490\) −4.04439 6.66969i −0.182707 0.301306i
\(491\) 3.80980i 0.171934i −0.996298 0.0859670i \(-0.972602\pi\)
0.996298 0.0859670i \(-0.0273980\pi\)
\(492\) −14.6308 0.775126i −0.659607 0.0349454i
\(493\) 0.483827 0.483827i 0.0217905 0.0217905i
\(494\) 5.54954 0.249685
\(495\) 9.43873 26.1693i 0.424239 1.17622i
\(496\) −0.0111704 −0.000501565
\(497\) −12.5546 + 12.5546i −0.563152 + 0.563152i
\(498\) −3.51463 0.186202i −0.157494 0.00834390i
\(499\) 12.0717i 0.540405i −0.962804 0.270202i \(-0.912909\pi\)
0.962804 0.270202i \(-0.0870906\pi\)
\(500\) 7.37965 8.39885i 0.330028 0.375608i
\(501\) 4.19113 3.76939i 0.187246 0.168404i
\(502\) −15.0984 15.0984i −0.673874 0.673874i
\(503\) 8.43285 + 8.43285i 0.376002 + 0.376002i 0.869658 0.493655i \(-0.164340\pi\)
−0.493655 + 0.869658i \(0.664340\pi\)
\(504\) 0.594013 5.59037i 0.0264595 0.249015i
\(505\) 8.66553 35.3648i 0.385611 1.57371i
\(506\) 32.0733i 1.42583i
\(507\) 1.63084 30.7828i 0.0724283 1.36711i
\(508\) −0.469960 + 0.469960i −0.0208511 + 0.0208511i
\(509\) −14.4418 −0.640120 −0.320060 0.947397i \(-0.603703\pi\)
−0.320060 + 0.947397i \(0.603703\pi\)
\(510\) −7.94254 + 26.3058i −0.351702 + 1.16484i
\(511\) −10.7243 −0.474415
\(512\) 0.707107 0.707107i 0.0312500 0.0312500i
\(513\) 0.821629 5.13078i 0.0362758 0.226530i
\(514\) 4.04532i 0.178431i
\(515\) 6.60554 4.00549i 0.291075 0.176503i
\(516\) −0.213814 0.237737i −0.00941265 0.0104658i
\(517\) −7.10947 7.10947i −0.312674 0.312674i
\(518\) 2.91443 + 2.91443i 0.128053 + 0.128053i
\(519\) 12.6167 + 14.0284i 0.553814 + 0.615778i
\(520\) 12.0526 + 2.95328i 0.528541 + 0.129510i
\(521\) 36.0409i 1.57898i 0.613762 + 0.789491i \(0.289655\pi\)
−0.613762 + 0.789491i \(0.710345\pi\)
\(522\) −0.225049 + 0.181817i −0.00985015 + 0.00795792i
\(523\) 21.2547 21.2547i 0.929403 0.929403i −0.0682644 0.997667i \(-0.521746\pi\)
0.997667 + 0.0682644i \(0.0217461\pi\)
\(524\) 17.7953 0.777391
\(525\) 4.04453 + 15.7168i 0.176518 + 0.685937i
\(526\) 27.6026 1.20353
\(527\) −0.0560407 + 0.0560407i −0.00244117 + 0.00244117i
\(528\) −0.380013 + 7.17289i −0.0165380 + 0.312160i
\(529\) 36.8142i 1.60062i
\(530\) −27.2810 6.68473i −1.18501 0.290366i
\(531\) 19.1172 + 2.03132i 0.829614 + 0.0881519i
\(532\) −1.32508 1.32508i −0.0574495 0.0574495i
\(533\) 33.1938 + 33.1938i 1.43778 + 1.43778i
\(534\) 22.0065 19.7920i 0.952314 0.856485i
\(535\) −3.59497 + 2.17993i −0.155424 + 0.0942468i
\(536\) 6.75463i 0.291756i
\(537\) 15.6693 + 0.830147i 0.676181 + 0.0358235i
\(538\) 6.78356 6.78356i 0.292460 0.292460i
\(539\) −14.4663 −0.623109
\(540\) 4.51486 10.7059i 0.194289 0.460708i
\(541\) −10.6163 −0.456431 −0.228216 0.973611i \(-0.573289\pi\)
−0.228216 + 0.973611i \(0.573289\pi\)
\(542\) 21.4977 21.4977i 0.923405 0.923405i
\(543\) −30.9913 1.64189i −1.32996 0.0704604i
\(544\) 7.09497i 0.304195i
\(545\) −4.53031 + 18.4886i −0.194057 + 0.791965i
\(546\) −13.3928 + 12.0451i −0.573158 + 0.515483i
\(547\) 13.8661 + 13.8661i 0.592872 + 0.592872i 0.938406 0.345534i \(-0.112302\pi\)
−0.345534 + 0.938406i \(0.612302\pi\)
\(548\) 9.30953 + 9.30953i 0.397683 + 0.397683i
\(549\) −30.5732 3.24861i −1.30483 0.138647i
\(550\) −6.22279 19.7796i −0.265341 0.843406i
\(551\) 0.0964393i 0.00410845i
\(552\) −0.708695 + 13.3769i −0.0301640 + 0.569357i
\(553\) −16.5295 + 16.5295i −0.702905 + 0.702905i
\(554\) −11.3525 −0.482323
\(555\) 4.02528 + 7.50733i 0.170863 + 0.318668i
\(556\) −12.4068 −0.526165
\(557\) 0.548599 0.548599i 0.0232449 0.0232449i −0.695389 0.718634i \(-0.744768\pi\)
0.718634 + 0.695389i \(0.244768\pi\)
\(558\) 0.0260671 0.0210596i 0.00110351 0.000891522i
\(559\) 1.02446i 0.0433302i
\(560\) −2.17267 3.58300i −0.0918122 0.151409i
\(561\) 34.0792 + 37.8922i 1.43883 + 1.59981i
\(562\) −9.51365 9.51365i −0.401309 0.401309i
\(563\) 1.13682 + 1.13682i 0.0479114 + 0.0479114i 0.730657 0.682745i \(-0.239214\pi\)
−0.682745 + 0.730657i \(0.739214\pi\)
\(564\) −2.80806 3.12225i −0.118241 0.131470i
\(565\) 2.40922 + 3.97309i 0.101356 + 0.167149i
\(566\) 19.1015i 0.802894i
\(567\) 9.15336 + 14.1655i 0.384405 + 0.594896i
\(568\) 6.69956 6.69956i 0.281107 0.281107i
\(569\) −25.5607 −1.07156 −0.535781 0.844357i \(-0.679983\pi\)
−0.535781 + 0.844357i \(0.679983\pi\)
\(570\) −1.83014 3.41330i −0.0766561 0.142967i
\(571\) −28.9943 −1.21337 −0.606686 0.794942i \(-0.707501\pi\)
−0.606686 + 0.794942i \(0.707501\pi\)
\(572\) 16.2736 16.2736i 0.680434 0.680434i
\(573\) −0.770961 + 14.5522i −0.0322074 + 0.607925i
\(574\) 15.8516i 0.661633i
\(575\) −11.6050 36.8874i −0.483962 1.53831i
\(576\) −0.316985 + 2.98321i −0.0132077 + 0.124300i
\(577\) −28.4272 28.4272i −1.18344 1.18344i −0.978847 0.204594i \(-0.934413\pi\)
−0.204594 0.978847i \(-0.565587\pi\)
\(578\) −23.5740 23.5740i −0.980549 0.980549i
\(579\) 0.743990 0.669124i 0.0309192 0.0278079i
\(580\) −0.0513217 + 0.209449i −0.00213102 + 0.00869688i
\(581\) 3.80789i 0.157978i
\(582\) 8.52339 + 0.451562i 0.353306 + 0.0187178i
\(583\) −36.8352 + 36.8352i −1.52556 + 1.52556i
\(584\) 5.72284 0.236813
\(585\) −33.6936 + 15.8311i −1.39306 + 0.654534i
\(586\) 2.72021 0.112371
\(587\) 23.4065 23.4065i 0.966088 0.966088i −0.0333555 0.999444i \(-0.510619\pi\)
0.999444 + 0.0333555i \(0.0106194\pi\)
\(588\) −6.03349 0.319649i −0.248817 0.0131821i
\(589\) 0.0111704i 0.000460267i
\(590\) 12.2526 7.42980i 0.504433 0.305880i
\(591\) −5.58402 + 5.02211i −0.229696 + 0.206582i
\(592\) −1.55524 1.55524i −0.0639198 0.0639198i
\(593\) −17.7918 17.7918i −0.730620 0.730620i 0.240122 0.970743i \(-0.422812\pi\)
−0.970743 + 0.240122i \(0.922812\pi\)
\(594\) −12.6363 17.4550i −0.518473 0.716188i
\(595\) −28.8757 7.07547i −1.18379 0.290066i
\(596\) 10.8534i 0.444571i
\(597\) 2.01282 37.9927i 0.0823794 1.55494i
\(598\) 30.3490 30.3490i 1.24106 1.24106i
\(599\) 30.4391 1.24371 0.621854 0.783134i \(-0.286380\pi\)
0.621854 + 0.783134i \(0.286380\pi\)
\(600\) −2.15829 8.38700i −0.0881119 0.342398i
\(601\) 1.09778 0.0447792 0.0223896 0.999749i \(-0.492873\pi\)
0.0223896 + 0.999749i \(0.492873\pi\)
\(602\) 0.244615 0.244615i 0.00996975 0.00996975i
\(603\) 12.7345 + 15.7625i 0.518590 + 0.641899i
\(604\) 1.21233i 0.0493288i
\(605\) −13.4615 3.29850i −0.547287 0.134103i
\(606\) −18.8601 20.9703i −0.766140 0.851860i
\(607\) −8.70025 8.70025i −0.353132 0.353132i 0.508141 0.861274i \(-0.330333\pi\)
−0.861274 + 0.508141i \(0.830333\pi\)
\(608\) 0.707107 + 0.707107i 0.0286770 + 0.0286770i
\(609\) −0.209319 0.232738i −0.00848202 0.00943104i
\(610\) −19.5951 + 11.8822i −0.793382 + 0.481094i
\(611\) 13.4545i 0.544310i
\(612\) 13.3762 + 16.5567i 0.540700 + 0.669267i
\(613\) 4.40309 4.40309i 0.177839 0.177839i −0.612574 0.790413i \(-0.709866\pi\)
0.790413 + 0.612574i \(0.209866\pi\)
\(614\) −24.9819 −1.00819
\(615\) 9.46944 31.3629i 0.381845 1.26468i
\(616\) −7.77140 −0.313119
\(617\) −8.04047 + 8.04047i −0.323697 + 0.323697i −0.850183 0.526486i \(-0.823509\pi\)
0.526486 + 0.850183i \(0.323509\pi\)
\(618\) 0.316574 5.97545i 0.0127345 0.240368i
\(619\) 23.1721i 0.931366i −0.884952 0.465683i \(-0.845809\pi\)
0.884952 0.465683i \(-0.154191\pi\)
\(620\) 0.00594450 0.0242600i 0.000238737 0.000974307i
\(621\) −23.5656 32.5522i −0.945656 1.30627i
\(622\) −6.82047 6.82047i −0.273476 0.273476i
\(623\) 22.6431 + 22.6431i 0.907178 + 0.907178i
\(624\) 7.14683 6.42767i 0.286102 0.257313i
\(625\) 14.3136 + 20.4969i 0.572544 + 0.819874i
\(626\) 14.2991i 0.571508i
\(627\) −7.17289 0.380013i −0.286458 0.0151763i
\(628\) 10.0557 10.0557i 0.401265 0.401265i
\(629\) −15.6049 −0.622210
\(630\) 11.8252 + 4.26510i 0.471126 + 0.169925i
\(631\) −16.4094 −0.653249 −0.326625 0.945154i \(-0.605911\pi\)
−0.326625 + 0.945154i \(0.605911\pi\)
\(632\) 8.82067 8.82067i 0.350867 0.350867i
\(633\) 18.9519 + 1.00406i 0.753271 + 0.0399076i
\(634\) 13.5304i 0.537361i
\(635\) −0.770572 1.27077i −0.0305792 0.0504288i
\(636\) −16.1768 + 14.5490i −0.641453 + 0.576905i
\(637\) 13.6886 + 13.6886i 0.542361 + 0.542361i
\(638\) 0.282801 + 0.282801i 0.0111962 + 0.0111962i
\(639\) −3.00331 + 28.2647i −0.118809 + 1.11813i
\(640\) 1.15941 + 1.91201i 0.0458297 + 0.0755787i
\(641\) 28.1764i 1.11290i 0.830881 + 0.556450i \(0.187837\pi\)
−0.830881 + 0.556450i \(0.812163\pi\)
\(642\) −0.172291 + 3.25206i −0.00679980 + 0.128349i
\(643\) 4.86470 4.86470i 0.191845 0.191845i −0.604648 0.796493i \(-0.706686\pi\)
0.796493 + 0.604648i \(0.206686\pi\)
\(644\) −14.4930 −0.571106
\(645\) 0.630107 0.337850i 0.0248104 0.0133028i
\(646\) 7.09497 0.279148
\(647\) −7.02609 + 7.02609i −0.276224 + 0.276224i −0.831600 0.555376i \(-0.812575\pi\)
0.555376 + 0.831600i \(0.312575\pi\)
\(648\) −4.88454 7.55919i −0.191883 0.296953i
\(649\) 26.5755i 1.04318i
\(650\) −12.8280 + 24.6044i −0.503154 + 0.965065i
\(651\) 0.0242450 + 0.0269577i 0.000950236 + 0.00105655i
\(652\) 8.60942 + 8.60942i 0.337171 + 0.337171i
\(653\) −26.3564 26.3564i −1.03141 1.03141i −0.999491 0.0319150i \(-0.989839\pi\)
−0.0319150 0.999491i \(-0.510161\pi\)
\(654\) 9.86001 + 10.9632i 0.385557 + 0.428695i
\(655\) −9.47005 + 38.6482i −0.370026 + 1.51011i
\(656\) 8.45893i 0.330266i
\(657\) −13.3547 + 10.7893i −0.521018 + 0.420930i
\(658\) 3.21257 3.21257i 0.125239 0.125239i
\(659\) 11.1631 0.434853 0.217426 0.976077i \(-0.430234\pi\)
0.217426 + 0.976077i \(0.430234\pi\)
\(660\) −15.3760 4.64249i −0.598510 0.180709i
\(661\) 39.9360 1.55333 0.776665 0.629914i \(-0.216910\pi\)
0.776665 + 0.629914i \(0.216910\pi\)
\(662\) −7.68217 + 7.68217i −0.298576 + 0.298576i
\(663\) 3.60798 68.1019i 0.140122 2.64486i
\(664\) 2.03202i 0.0788575i
\(665\) 3.58300 2.17267i 0.138943 0.0842526i
\(666\) 6.56137 + 0.697189i 0.254248 + 0.0270155i
\(667\) 0.527401 + 0.527401i 0.0204211 + 0.0204211i
\(668\) −2.30123 2.30123i −0.0890372 0.0890372i
\(669\) −6.94691 + 6.24787i −0.268583 + 0.241556i
\(670\) 14.6698 + 3.59458i 0.566745 + 0.138871i
\(671\) 42.5011i 1.64074i
\(672\) −3.24123 0.171717i −0.125033 0.00662414i
\(673\) −27.5847 + 27.5847i −1.06331 + 1.06331i −0.0654567 + 0.997855i \(0.520850\pi\)
−0.997855 + 0.0654567i \(0.979150\pi\)
\(674\) 4.00743 0.154361
\(675\) 20.8486 + 15.5028i 0.802463 + 0.596702i
\(676\) −17.7974 −0.684514
\(677\) −18.4404 + 18.4404i −0.708721 + 0.708721i −0.966266 0.257545i \(-0.917086\pi\)
0.257545 + 0.966266i \(0.417086\pi\)
\(678\) 3.59410 + 0.190413i 0.138031 + 0.00731275i
\(679\) 9.23459i 0.354391i
\(680\) 15.4090 + 3.77570i 0.590908 + 0.144792i
\(681\) 15.4527 13.8977i 0.592147 0.532561i
\(682\) −0.0327563 0.0327563i −0.00125430 0.00125430i
\(683\) 6.88800 + 6.88800i 0.263562 + 0.263562i 0.826500 0.562937i \(-0.190329\pi\)
−0.562937 + 0.826500i \(0.690329\pi\)
\(684\) −2.98321 0.316985i −0.114066 0.0121202i
\(685\) −25.1728 + 15.2644i −0.961804 + 0.583223i
\(686\) 19.6546i 0.750415i
\(687\) −1.27348 + 24.0374i −0.0485864 + 0.917085i
\(688\) −0.130534 + 0.130534i −0.00497658 + 0.00497658i
\(689\) 69.7097 2.65573
\(690\) −28.6750 8.65787i −1.09164 0.329599i
\(691\) −6.70656 −0.255129 −0.127565 0.991830i \(-0.540716\pi\)
−0.127565 + 0.991830i \(0.540716\pi\)
\(692\) 7.70257 7.70257i 0.292808 0.292808i
\(693\) 18.1353 14.6515i 0.688901 0.556563i
\(694\) 17.3716i 0.659418i
\(695\) 6.60247 26.9453i 0.250446 1.02209i
\(696\) 0.111699 + 0.124197i 0.00423395 + 0.00470767i
\(697\) 42.4377 + 42.4377i 1.60744 + 1.60744i
\(698\) 18.3548 + 18.3548i 0.694740 + 0.694740i
\(699\) −34.6050 38.4769i −1.30888 1.45533i
\(700\) 8.93785 2.81190i 0.337819 0.106280i
\(701\) 8.68700i 0.328104i 0.986452 + 0.164052i \(0.0524564\pi\)
−0.986452 + 0.164052i \(0.947544\pi\)
\(702\) −4.55966 + 28.4735i −0.172093 + 1.07466i
\(703\) 1.55524 1.55524i 0.0586569 0.0586569i
\(704\) 4.14708 0.156299
\(705\) 8.27531 4.43705i 0.311666 0.167109i
\(706\) 16.3627 0.615818
\(707\) 21.5770 21.5770i 0.811485 0.811485i
\(708\) 0.587215 11.0839i 0.0220689 0.416558i
\(709\) 20.6106i 0.774049i 0.922070 + 0.387024i \(0.126497\pi\)
−0.922070 + 0.387024i \(0.873503\pi\)
\(710\) 10.9850 + 18.1155i 0.412258 + 0.679863i
\(711\) −3.95417 + 37.2134i −0.148293 + 1.39561i
\(712\) −12.0831 12.0831i −0.452834 0.452834i
\(713\) −0.0610879 0.0610879i −0.00228776 0.00228776i
\(714\) −17.1224 + 15.3994i −0.640790 + 0.576309i
\(715\) 26.6831 + 44.0036i 0.997890 + 1.64564i
\(716\) 9.05937i 0.338565i
\(717\) 5.35164 + 0.283525i 0.199861 + 0.0105884i
\(718\) −21.9391 + 21.9391i −0.818760 + 0.818760i
\(719\) −39.9182 −1.48870 −0.744350 0.667790i \(-0.767240\pi\)
−0.744350 + 0.667790i \(0.767240\pi\)
\(720\) −6.31030 2.27600i −0.235171 0.0848214i
\(721\) 6.47405 0.241106
\(722\) −0.707107 + 0.707107i −0.0263158 + 0.0263158i
\(723\) 11.4601 + 0.607147i 0.426206 + 0.0225800i
\(724\) 17.9179i 0.665915i
\(725\) −0.427573 0.222923i −0.0158797 0.00827915i
\(726\) −7.98226 + 7.17902i −0.296249 + 0.266439i
\(727\) −4.40463 4.40463i −0.163359 0.163359i 0.620694 0.784053i \(-0.286851\pi\)
−0.784053 + 0.620694i \(0.786851\pi\)
\(728\) 7.35358 + 7.35358i 0.272542 + 0.272542i
\(729\) 25.6499 + 8.43120i 0.949995 + 0.312267i
\(730\) −3.04550 + 12.4290i −0.112719 + 0.460017i
\(731\) 1.30976i 0.0484431i
\(732\) −0.939107 + 17.7260i −0.0347104 + 0.655171i
\(733\) −13.9718 + 13.9718i −0.516061 + 0.516061i −0.916377 0.400316i \(-0.868900\pi\)
0.400316 + 0.916377i \(0.368900\pi\)
\(734\) 18.4687 0.681690
\(735\) 3.90504 12.9335i 0.144040 0.477061i
\(736\) 7.73397 0.285078
\(737\) 19.8074 19.8074i 0.729617 0.729617i
\(738\) −15.9477 19.7397i −0.587041 0.726627i
\(739\) 38.9043i 1.43112i −0.698553 0.715558i \(-0.746172\pi\)
0.698553 0.715558i \(-0.253828\pi\)
\(740\) 4.20534 2.55005i 0.154591 0.0937417i
\(741\) 6.42767 + 7.14683i 0.236126 + 0.262545i
\(742\) −16.6448 16.6448i −0.611050 0.611050i
\(743\) −31.6523 31.6523i −1.16121 1.16121i −0.984211 0.177000i \(-0.943361\pi\)
−0.177000 0.984211i \(-0.556639\pi\)
\(744\) −0.0129379 0.0143855i −0.000474327 0.000527398i
\(745\) −23.5715 5.77579i −0.863594 0.211609i
\(746\) 30.0698i 1.10093i
\(747\) −3.83097 4.74189i −0.140168 0.173497i
\(748\) 20.8055 20.8055i 0.760724 0.760724i
\(749\) −3.52342 −0.128743
\(750\) 19.3636 0.224143i 0.707059 0.00818456i
\(751\) −35.5821 −1.29841 −0.649205 0.760613i \(-0.724898\pi\)
−0.649205 + 0.760613i \(0.724898\pi\)
\(752\) −1.71433 + 1.71433i −0.0625153 + 0.0625153i
\(753\) 1.95660 36.9315i 0.0713025 1.34586i
\(754\) 0.535193i 0.0194906i
\(755\) 2.63295 + 0.645159i 0.0958230 + 0.0234797i
\(756\) 7.88743 5.70998i 0.286863 0.207670i
\(757\) −11.1640 11.1640i −0.405762 0.405762i 0.474496 0.880258i \(-0.342630\pi\)
−0.880258 + 0.474496i \(0.842630\pi\)
\(758\) −19.3890 19.3890i −0.704239 0.704239i
\(759\) −41.3049 + 37.1485i −1.49927 + 1.34840i
\(760\) −1.91201 + 1.15941i −0.0693558 + 0.0420562i
\(761\) 9.30941i 0.337466i −0.985662 0.168733i \(-0.946032\pi\)
0.985662 0.168733i \(-0.0539675\pi\)
\(762\) −1.14955 0.0609022i −0.0416438 0.00220625i
\(763\) −11.2804 + 11.2804i −0.408377 + 0.408377i
\(764\) 8.41348 0.304389
\(765\) −43.0766 + 20.2397i −1.55744 + 0.731768i
\(766\) −2.14519 −0.0775089
\(767\) −25.1467 + 25.1467i −0.907996 + 0.907996i
\(768\) 1.72963 + 0.0916341i 0.0624125 + 0.00330656i
\(769\) 36.9866i 1.33377i 0.745161 + 0.666885i \(0.232373\pi\)
−0.745161 + 0.666885i \(0.767627\pi\)
\(770\) 4.13568 16.8781i 0.149039 0.608244i
\(771\) −5.20966 + 4.68542i −0.187621 + 0.168741i
\(772\) −0.408503 0.408503i −0.0147023 0.0147023i
\(773\) −32.3504 32.3504i −1.16356 1.16356i −0.983690 0.179873i \(-0.942431\pi\)
−0.179873 0.983690i \(-0.557569\pi\)
\(774\) 0.0585166 0.550711i 0.00210334 0.0197949i
\(775\) 0.0495250 + 0.0258207i 0.00177899 + 0.000927509i
\(776\) 4.92788i 0.176901i
\(777\) −0.377682 + 7.12887i −0.0135492 + 0.255747i