Properties

Label 570.2.k.b.77.13
Level $570$
Weight $2$
Character 570.77
Analytic conductor $4.551$
Analytic rank $0$
Dimension $36$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 570 = 2 \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 570.k (of order \(4\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.55147291521\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 77.13
Character \(\chi\) \(=\) 570.77
Dual form 570.2.k.b.533.13

$q$-expansion

\(f(q)\) \(=\) \(q+(0.707107 - 0.707107i) q^{2} +(-0.162692 - 1.72439i) q^{3} -1.00000i q^{4} +(-0.520052 - 2.17475i) q^{5} +(-1.33437 - 1.10429i) q^{6} +(0.496606 + 0.496606i) q^{7} +(-0.707107 - 0.707107i) q^{8} +(-2.94706 + 0.561090i) q^{9} +O(q^{10})\) \(q+(0.707107 - 0.707107i) q^{2} +(-0.162692 - 1.72439i) q^{3} -1.00000i q^{4} +(-0.520052 - 2.17475i) q^{5} +(-1.33437 - 1.10429i) q^{6} +(0.496606 + 0.496606i) q^{7} +(-0.707107 - 0.707107i) q^{8} +(-2.94706 + 0.561090i) q^{9} +(-1.90551 - 1.17005i) q^{10} -1.60026i q^{11} +(-1.72439 + 0.162692i) q^{12} +(0.465079 - 0.465079i) q^{13} +0.702307 q^{14} +(-3.66552 + 1.25059i) q^{15} -1.00000 q^{16} +(0.134587 - 0.134587i) q^{17} +(-1.68714 + 2.48064i) q^{18} -1.00000i q^{19} +(-2.17475 + 0.520052i) q^{20} +(0.775550 - 0.937138i) q^{21} +(-1.13156 - 1.13156i) q^{22} +(-0.307276 - 0.307276i) q^{23} +(-1.10429 + 1.33437i) q^{24} +(-4.45909 + 2.26197i) q^{25} -0.657722i q^{26} +(1.44700 + 4.99061i) q^{27} +(0.496606 - 0.496606i) q^{28} +2.93712 q^{29} +(-1.70761 + 3.47621i) q^{30} -1.63168 q^{31} +(-0.707107 + 0.707107i) q^{32} +(-2.75948 + 0.260350i) q^{33} -0.190335i q^{34} +(0.821734 - 1.33826i) q^{35} +(0.561090 + 2.94706i) q^{36} +(4.03947 + 4.03947i) q^{37} +(-0.707107 - 0.707107i) q^{38} +(-0.877644 - 0.726315i) q^{39} +(-1.17005 + 1.90551i) q^{40} -3.54984i q^{41} +(-0.114260 - 1.21105i) q^{42} +(3.15359 - 3.15359i) q^{43} -1.60026 q^{44} +(2.75286 + 6.11733i) q^{45} -0.434554 q^{46} +(-4.45089 + 4.45089i) q^{47} +(0.162692 + 1.72439i) q^{48} -6.50676i q^{49} +(-1.55360 + 4.75251i) q^{50} +(-0.253977 - 0.210185i) q^{51} +(-0.465079 - 0.465079i) q^{52} +(-2.36753 - 2.36753i) q^{53} +(4.55208 + 2.50571i) q^{54} +(-3.48017 + 0.832220i) q^{55} -0.702307i q^{56} +(-1.72439 + 0.162692i) q^{57} +(2.07686 - 2.07686i) q^{58} +8.58688 q^{59} +(1.25059 + 3.66552i) q^{60} +6.10554 q^{61} +(-1.15377 + 1.15377i) q^{62} +(-1.74217 - 1.18489i) q^{63} +1.00000i q^{64} +(-1.25330 - 0.769567i) q^{65} +(-1.76715 + 2.13534i) q^{66} +(-6.28833 - 6.28833i) q^{67} +(-0.134587 - 0.134587i) q^{68} +(-0.479873 + 0.579855i) q^{69} +(-0.365236 - 1.52734i) q^{70} -13.9322i q^{71} +(2.48064 + 1.68714i) q^{72} +(2.24565 - 2.24565i) q^{73} +5.71267 q^{74} +(4.62598 + 7.32122i) q^{75} -1.00000 q^{76} +(0.794700 - 0.794700i) q^{77} +(-1.13417 + 0.107006i) q^{78} -3.48349i q^{79} +(0.520052 + 2.17475i) q^{80} +(8.37036 - 3.30713i) q^{81} +(-2.51012 - 2.51012i) q^{82} +(1.76187 + 1.76187i) q^{83} +(-0.937138 - 0.775550i) q^{84} +(-0.362685 - 0.222701i) q^{85} -4.45985i q^{86} +(-0.477846 - 5.06474i) q^{87} +(-1.13156 + 1.13156i) q^{88} +14.7492 q^{89} +(6.27217 + 2.37904i) q^{90} +0.461923 q^{91} +(-0.307276 + 0.307276i) q^{92} +(0.265461 + 2.81365i) q^{93} +6.29451i q^{94} +(-2.17475 + 0.520052i) q^{95} +(1.33437 + 1.10429i) q^{96} +(-0.0173490 - 0.0173490i) q^{97} +(-4.60098 - 4.60098i) q^{98} +(0.897892 + 4.71607i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36q + 4q^{3} + 4q^{6} + 20q^{7} + O(q^{10}) \) \( 36q + 4q^{3} + 4q^{6} + 20q^{7} - 4q^{10} - 4q^{12} + 8q^{13} + 4q^{15} - 36q^{16} + 16q^{21} - 4q^{22} + 16q^{25} - 44q^{27} + 20q^{28} + 32q^{30} - 24q^{31} - 4q^{33} + 4q^{36} - 8q^{40} + 12q^{42} - 8q^{43} + 28q^{45} - 16q^{46} - 4q^{48} + 40q^{51} - 8q^{52} - 36q^{55} - 4q^{57} + 44q^{58} + 16q^{60} - 120q^{61} - 12q^{63} + 80q^{67} - 36q^{70} + 44q^{73} + 4q^{75} - 36q^{76} - 64q^{78} + 36q^{81} + 8q^{82} - 24q^{85} - 28q^{87} - 4q^{88} + 44q^{90} - 72q^{93} - 4q^{96} + 92q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/570\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(211\) \(457\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
<
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 0.707107i 0.500000 0.500000i
\(3\) −0.162692 1.72439i −0.0939303 0.995579i
\(4\) 1.00000i 0.500000i
\(5\) −0.520052 2.17475i −0.232574 0.972579i
\(6\) −1.33437 1.10429i −0.544755 0.450824i
\(7\) 0.496606 + 0.496606i 0.187699 + 0.187699i 0.794701 0.607001i \(-0.207628\pi\)
−0.607001 + 0.794701i \(0.707628\pi\)
\(8\) −0.707107 0.707107i −0.250000 0.250000i
\(9\) −2.94706 + 0.561090i −0.982354 + 0.187030i
\(10\) −1.90551 1.17005i −0.602577 0.370002i
\(11\) 1.60026i 0.482497i −0.970463 0.241249i \(-0.922443\pi\)
0.970463 0.241249i \(-0.0775570\pi\)
\(12\) −1.72439 + 0.162692i −0.497789 + 0.0469651i
\(13\) 0.465079 0.465079i 0.128990 0.128990i −0.639664 0.768654i \(-0.720927\pi\)
0.768654 + 0.639664i \(0.220927\pi\)
\(14\) 0.702307 0.187699
\(15\) −3.66552 + 1.25059i −0.946433 + 0.322901i
\(16\) −1.00000 −0.250000
\(17\) 0.134587 0.134587i 0.0326421 0.0326421i −0.690597 0.723239i \(-0.742652\pi\)
0.723239 + 0.690597i \(0.242652\pi\)
\(18\) −1.68714 + 2.48064i −0.397662 + 0.584692i
\(19\) 1.00000i 0.229416i
\(20\) −2.17475 + 0.520052i −0.486289 + 0.116287i
\(21\) 0.775550 0.937138i 0.169239 0.204500i
\(22\) −1.13156 1.13156i −0.241249 0.241249i
\(23\) −0.307276 0.307276i −0.0640714 0.0640714i 0.674345 0.738416i \(-0.264426\pi\)
−0.738416 + 0.674345i \(0.764426\pi\)
\(24\) −1.10429 + 1.33437i −0.225412 + 0.272377i
\(25\) −4.45909 + 2.26197i −0.891818 + 0.452394i
\(26\) 0.657722i 0.128990i
\(27\) 1.44700 + 4.99061i 0.278476 + 0.960443i
\(28\) 0.496606 0.496606i 0.0938497 0.0938497i
\(29\) 2.93712 0.545409 0.272704 0.962098i \(-0.412082\pi\)
0.272704 + 0.962098i \(0.412082\pi\)
\(30\) −1.70761 + 3.47621i −0.311766 + 0.634667i
\(31\) −1.63168 −0.293058 −0.146529 0.989206i \(-0.546810\pi\)
−0.146529 + 0.989206i \(0.546810\pi\)
\(32\) −0.707107 + 0.707107i −0.125000 + 0.125000i
\(33\) −2.75948 + 0.260350i −0.480364 + 0.0453211i
\(34\) 0.190335i 0.0326421i
\(35\) 0.821734 1.33826i 0.138898 0.226207i
\(36\) 0.561090 + 2.94706i 0.0935150 + 0.491177i
\(37\) 4.03947 + 4.03947i 0.664085 + 0.664085i 0.956340 0.292256i \(-0.0944058\pi\)
−0.292256 + 0.956340i \(0.594406\pi\)
\(38\) −0.707107 0.707107i −0.114708 0.114708i
\(39\) −0.877644 0.726315i −0.140536 0.116303i
\(40\) −1.17005 + 1.90551i −0.185001 + 0.301288i
\(41\) 3.54984i 0.554392i −0.960813 0.277196i \(-0.910595\pi\)
0.960813 0.277196i \(-0.0894052\pi\)
\(42\) −0.114260 1.21105i −0.0176307 0.186870i
\(43\) 3.15359 3.15359i 0.480918 0.480918i −0.424507 0.905425i \(-0.639553\pi\)
0.905425 + 0.424507i \(0.139553\pi\)
\(44\) −1.60026 −0.241249
\(45\) 2.75286 + 6.11733i 0.410372 + 0.911918i
\(46\) −0.434554 −0.0640714
\(47\) −4.45089 + 4.45089i −0.649229 + 0.649229i −0.952807 0.303578i \(-0.901819\pi\)
0.303578 + 0.952807i \(0.401819\pi\)
\(48\) 0.162692 + 1.72439i 0.0234826 + 0.248895i
\(49\) 6.50676i 0.929538i
\(50\) −1.55360 + 4.75251i −0.219712 + 0.672106i
\(51\) −0.253977 0.210185i −0.0355639 0.0294317i
\(52\) −0.465079 0.465079i −0.0644949 0.0644949i
\(53\) −2.36753 2.36753i −0.325206 0.325206i 0.525554 0.850760i \(-0.323858\pi\)
−0.850760 + 0.525554i \(0.823858\pi\)
\(54\) 4.55208 + 2.50571i 0.619460 + 0.340984i
\(55\) −3.48017 + 0.832220i −0.469267 + 0.112217i
\(56\) 0.702307i 0.0938497i
\(57\) −1.72439 + 0.162692i −0.228401 + 0.0215491i
\(58\) 2.07686 2.07686i 0.272704 0.272704i
\(59\) 8.58688 1.11792 0.558958 0.829196i \(-0.311201\pi\)
0.558958 + 0.829196i \(0.311201\pi\)
\(60\) 1.25059 + 3.66552i 0.161450 + 0.473216i
\(61\) 6.10554 0.781734 0.390867 0.920447i \(-0.372175\pi\)
0.390867 + 0.920447i \(0.372175\pi\)
\(62\) −1.15377 + 1.15377i −0.146529 + 0.146529i
\(63\) −1.74217 1.18489i −0.219493 0.149282i
\(64\) 1.00000i 0.125000i
\(65\) −1.25330 0.769567i −0.155452 0.0954530i
\(66\) −1.76715 + 2.13534i −0.217522 + 0.262843i
\(67\) −6.28833 6.28833i −0.768241 0.768241i 0.209555 0.977797i \(-0.432798\pi\)
−0.977797 + 0.209555i \(0.932798\pi\)
\(68\) −0.134587 0.134587i −0.0163211 0.0163211i
\(69\) −0.479873 + 0.579855i −0.0577699 + 0.0698064i
\(70\) −0.365236 1.52734i −0.0436541 0.182552i
\(71\) 13.9322i 1.65345i −0.562610 0.826723i \(-0.690203\pi\)
0.562610 0.826723i \(-0.309797\pi\)
\(72\) 2.48064 + 1.68714i 0.292346 + 0.198831i
\(73\) 2.24565 2.24565i 0.262833 0.262833i −0.563371 0.826204i \(-0.690496\pi\)
0.826204 + 0.563371i \(0.190496\pi\)
\(74\) 5.71267 0.664085
\(75\) 4.62598 + 7.32122i 0.534162 + 0.845382i
\(76\) −1.00000 −0.114708
\(77\) 0.794700 0.794700i 0.0905645 0.0905645i
\(78\) −1.13417 + 0.107006i −0.128420 + 0.0121161i
\(79\) 3.48349i 0.391923i −0.980612 0.195962i \(-0.937217\pi\)
0.980612 0.195962i \(-0.0627828\pi\)
\(80\) 0.520052 + 2.17475i 0.0581436 + 0.243145i
\(81\) 8.37036 3.30713i 0.930040 0.367459i
\(82\) −2.51012 2.51012i −0.277196 0.277196i
\(83\) 1.76187 + 1.76187i 0.193390 + 0.193390i 0.797159 0.603769i \(-0.206335\pi\)
−0.603769 + 0.797159i \(0.706335\pi\)
\(84\) −0.937138 0.775550i −0.102250 0.0846195i
\(85\) −0.362685 0.222701i −0.0393388 0.0241553i
\(86\) 4.45985i 0.480918i
\(87\) −0.477846 5.06474i −0.0512304 0.542998i
\(88\) −1.13156 + 1.13156i −0.120624 + 0.120624i
\(89\) 14.7492 1.56341 0.781707 0.623646i \(-0.214349\pi\)
0.781707 + 0.623646i \(0.214349\pi\)
\(90\) 6.27217 + 2.37904i 0.661145 + 0.250773i
\(91\) 0.461923 0.0484226
\(92\) −0.307276 + 0.307276i −0.0320357 + 0.0320357i
\(93\) 0.265461 + 2.81365i 0.0275270 + 0.291762i
\(94\) 6.29451i 0.649229i
\(95\) −2.17475 + 0.520052i −0.223125 + 0.0533562i
\(96\) 1.33437 + 1.10429i 0.136189 + 0.112706i
\(97\) −0.0173490 0.0173490i −0.00176152 0.00176152i 0.706225 0.707987i \(-0.250396\pi\)
−0.707987 + 0.706225i \(0.750396\pi\)
\(98\) −4.60098 4.60098i −0.464769 0.464769i
\(99\) 0.897892 + 4.71607i 0.0902415 + 0.473983i
\(100\) 2.26197 + 4.45909i 0.226197 + 0.445909i
\(101\) 1.92211i 0.191258i 0.995417 + 0.0956288i \(0.0304862\pi\)
−0.995417 + 0.0956288i \(0.969514\pi\)
\(102\) −0.328212 + 0.0309659i −0.0324978 + 0.00306608i
\(103\) 8.69498 8.69498i 0.856742 0.856742i −0.134211 0.990953i \(-0.542850\pi\)
0.990953 + 0.134211i \(0.0428499\pi\)
\(104\) −0.657722 −0.0644949
\(105\) −2.44137 1.19927i −0.238253 0.117037i
\(106\) −3.34820 −0.325206
\(107\) −12.4950 + 12.4950i −1.20794 + 1.20794i −0.236248 + 0.971693i \(0.575918\pi\)
−0.971693 + 0.236248i \(0.924082\pi\)
\(108\) 4.99061 1.44700i 0.480222 0.139238i
\(109\) 0.183803i 0.0176051i −0.999961 0.00880257i \(-0.997198\pi\)
0.999961 0.00880257i \(-0.00280198\pi\)
\(110\) −1.87239 + 3.04932i −0.178525 + 0.290742i
\(111\) 6.30844 7.62282i 0.598771 0.723526i
\(112\) −0.496606 0.496606i −0.0469249 0.0469249i
\(113\) 8.57949 + 8.57949i 0.807091 + 0.807091i 0.984193 0.177102i \(-0.0566722\pi\)
−0.177102 + 0.984193i \(0.556672\pi\)
\(114\) −1.10429 + 1.33437i −0.103426 + 0.124975i
\(115\) −0.508449 + 0.828048i −0.0474131 + 0.0772159i
\(116\) 2.93712i 0.272704i
\(117\) −1.10967 + 1.63157i −0.102589 + 0.150839i
\(118\) 6.07184 6.07184i 0.558958 0.558958i
\(119\) 0.133673 0.0122538
\(120\) 3.47621 + 1.70761i 0.317333 + 0.155883i
\(121\) 8.43916 0.767196
\(122\) 4.31727 4.31727i 0.390867 0.390867i
\(123\) −6.12132 + 0.577531i −0.551941 + 0.0520742i
\(124\) 1.63168i 0.146529i
\(125\) 7.23818 + 8.52108i 0.647403 + 0.762148i
\(126\) −2.06974 + 0.394057i −0.184387 + 0.0351054i
\(127\) −9.39884 9.39884i −0.834012 0.834012i 0.154051 0.988063i \(-0.450768\pi\)
−0.988063 + 0.154051i \(0.950768\pi\)
\(128\) 0.707107 + 0.707107i 0.0625000 + 0.0625000i
\(129\) −5.95109 4.92496i −0.523964 0.433619i
\(130\) −1.43038 + 0.342050i −0.125453 + 0.0299997i
\(131\) 7.18140i 0.627441i 0.949515 + 0.313721i \(0.101576\pi\)
−0.949515 + 0.313721i \(0.898424\pi\)
\(132\) 0.260350 + 2.75948i 0.0226606 + 0.240182i
\(133\) 0.496606 0.496606i 0.0430612 0.0430612i
\(134\) −8.89304 −0.768241
\(135\) 10.1008 5.74225i 0.869340 0.494214i
\(136\) −0.190335 −0.0163211
\(137\) −8.35532 + 8.35532i −0.713844 + 0.713844i −0.967337 0.253494i \(-0.918420\pi\)
0.253494 + 0.967337i \(0.418420\pi\)
\(138\) 0.0706984 + 0.749341i 0.00601825 + 0.0637881i
\(139\) 17.4721i 1.48197i −0.671523 0.740984i \(-0.734360\pi\)
0.671523 0.740984i \(-0.265640\pi\)
\(140\) −1.33826 0.821734i −0.113103 0.0694492i
\(141\) 8.39921 + 6.95096i 0.707341 + 0.585376i
\(142\) −9.85154 9.85154i −0.826723 0.826723i
\(143\) −0.744249 0.744249i −0.0622373 0.0622373i
\(144\) 2.94706 0.561090i 0.245589 0.0467575i
\(145\) −1.52745 6.38750i −0.126848 0.530453i
\(146\) 3.17582i 0.262833i
\(147\) −11.2202 + 1.05860i −0.925428 + 0.0873118i
\(148\) 4.03947 4.03947i 0.332042 0.332042i
\(149\) 12.7621 1.04552 0.522758 0.852481i \(-0.324903\pi\)
0.522758 + 0.852481i \(0.324903\pi\)
\(150\) 8.44795 + 1.90582i 0.689772 + 0.155610i
\(151\) 1.67214 0.136076 0.0680382 0.997683i \(-0.478326\pi\)
0.0680382 + 0.997683i \(0.478326\pi\)
\(152\) −0.707107 + 0.707107i −0.0573539 + 0.0573539i
\(153\) −0.321121 + 0.472151i −0.0259611 + 0.0381712i
\(154\) 1.12388i 0.0905645i
\(155\) 0.848557 + 3.54849i 0.0681577 + 0.285022i
\(156\) −0.726315 + 0.877644i −0.0581517 + 0.0702678i
\(157\) 5.54265 + 5.54265i 0.442352 + 0.442352i 0.892802 0.450450i \(-0.148736\pi\)
−0.450450 + 0.892802i \(0.648736\pi\)
\(158\) −2.46320 2.46320i −0.195962 0.195962i
\(159\) −3.69738 + 4.46774i −0.293221 + 0.354315i
\(160\) 1.90551 + 1.17005i 0.150644 + 0.0925005i
\(161\) 0.305190i 0.0240523i
\(162\) 3.58024 8.25723i 0.281290 0.648749i
\(163\) 10.2639 10.2639i 0.803934 0.803934i −0.179774 0.983708i \(-0.557537\pi\)
0.983708 + 0.179774i \(0.0575367\pi\)
\(164\) −3.54984 −0.277196
\(165\) 2.00127 + 5.86579i 0.155799 + 0.456651i
\(166\) 2.49166 0.193390
\(167\) −16.4383 + 16.4383i −1.27204 + 1.27204i −0.327020 + 0.945018i \(0.606044\pi\)
−0.945018 + 0.327020i \(0.893956\pi\)
\(168\) −1.21105 + 0.114260i −0.0934348 + 0.00881533i
\(169\) 12.5674i 0.966723i
\(170\) −0.413931 + 0.0989840i −0.0317470 + 0.00759172i
\(171\) 0.561090 + 2.94706i 0.0429076 + 0.225368i
\(172\) −3.15359 3.15359i −0.240459 0.240459i
\(173\) 15.4881 + 15.4881i 1.17754 + 1.17754i 0.980370 + 0.197168i \(0.0631746\pi\)
0.197168 + 0.980370i \(0.436825\pi\)
\(174\) −3.91920 3.24343i −0.297114 0.245884i
\(175\) −3.33772 1.09110i −0.252308 0.0824797i
\(176\) 1.60026i 0.120624i
\(177\) −1.39702 14.8072i −0.105006 1.11297i
\(178\) 10.4293 10.4293i 0.781707 0.781707i
\(179\) −9.93061 −0.742248 −0.371124 0.928583i \(-0.621028\pi\)
−0.371124 + 0.928583i \(0.621028\pi\)
\(180\) 6.11733 2.75286i 0.455959 0.205186i
\(181\) 14.5675 1.08279 0.541396 0.840768i \(-0.317896\pi\)
0.541396 + 0.840768i \(0.317896\pi\)
\(182\) 0.326629 0.326629i 0.0242113 0.0242113i
\(183\) −0.993322 10.5283i −0.0734285 0.778278i
\(184\) 0.434554i 0.0320357i
\(185\) 6.68411 10.8856i 0.491425 0.800323i
\(186\) 2.17726 + 1.80184i 0.159644 + 0.132117i
\(187\) −0.215374 0.215374i −0.0157497 0.0157497i
\(188\) 4.45089 + 4.45089i 0.324614 + 0.324614i
\(189\) −1.75978 + 3.19696i −0.128005 + 0.232544i
\(190\) −1.17005 + 1.90551i −0.0848843 + 0.138241i
\(191\) 5.79370i 0.419218i −0.977785 0.209609i \(-0.932781\pi\)
0.977785 0.209609i \(-0.0672190\pi\)
\(192\) 1.72439 0.162692i 0.124447 0.0117413i
\(193\) −2.47519 + 2.47519i −0.178168 + 0.178168i −0.790557 0.612389i \(-0.790209\pi\)
0.612389 + 0.790557i \(0.290209\pi\)
\(194\) −0.0245352 −0.00176152
\(195\) −1.12313 + 2.28638i −0.0804293 + 0.163731i
\(196\) −6.50676 −0.464769
\(197\) 5.78154 5.78154i 0.411918 0.411918i −0.470488 0.882406i \(-0.655922\pi\)
0.882406 + 0.470488i \(0.155922\pi\)
\(198\) 3.96967 + 2.69986i 0.282112 + 0.191871i
\(199\) 11.7597i 0.833621i 0.908993 + 0.416810i \(0.136852\pi\)
−0.908993 + 0.416810i \(0.863148\pi\)
\(200\) 4.75251 + 1.55360i 0.336053 + 0.109856i
\(201\) −9.82049 + 11.8666i −0.692684 + 0.837006i
\(202\) 1.35914 + 1.35914i 0.0956288 + 0.0956288i
\(203\) 1.45859 + 1.45859i 0.102373 + 0.102373i
\(204\) −0.210185 + 0.253977i −0.0147159 + 0.0177819i
\(205\) −7.72002 + 1.84610i −0.539190 + 0.128937i
\(206\) 12.2966i 0.856742i
\(207\) 1.07797 + 0.733152i 0.0749241 + 0.0509576i
\(208\) −0.465079 + 0.465079i −0.0322475 + 0.0322475i
\(209\) −1.60026 −0.110692
\(210\) −2.57432 + 0.878298i −0.177645 + 0.0606083i
\(211\) −21.4490 −1.47661 −0.738306 0.674466i \(-0.764374\pi\)
−0.738306 + 0.674466i \(0.764374\pi\)
\(212\) −2.36753 + 2.36753i −0.162603 + 0.162603i
\(213\) −24.0245 + 2.26665i −1.64614 + 0.155309i
\(214\) 17.6707i 1.20794i
\(215\) −8.49830 5.21824i −0.579579 0.355881i
\(216\) 2.50571 4.55208i 0.170492 0.309730i
\(217\) −0.810300 0.810300i −0.0550068 0.0550068i
\(218\) −0.129968 0.129968i −0.00880257 0.00880257i
\(219\) −4.23773 3.50703i −0.286359 0.236983i
\(220\) 0.832220 + 3.48017i 0.0561083 + 0.234633i
\(221\) 0.125187i 0.00842100i
\(222\) −0.929406 9.85089i −0.0623777 0.661148i
\(223\) −7.58068 + 7.58068i −0.507640 + 0.507640i −0.913801 0.406162i \(-0.866867\pi\)
0.406162 + 0.913801i \(0.366867\pi\)
\(224\) −0.702307 −0.0469249
\(225\) 11.8721 9.16812i 0.791470 0.611208i
\(226\) 12.1332 0.807091
\(227\) −15.3160 + 15.3160i −1.01656 + 1.01656i −0.0167011 + 0.999861i \(0.505316\pi\)
−0.999861 + 0.0167011i \(0.994684\pi\)
\(228\) 0.162692 + 1.72439i 0.0107745 + 0.114201i
\(229\) 15.7592i 1.04140i 0.853741 + 0.520698i \(0.174328\pi\)
−0.853741 + 0.520698i \(0.825672\pi\)
\(230\) 0.225991 + 0.945046i 0.0149014 + 0.0623145i
\(231\) −1.49967 1.24108i −0.0986709 0.0816574i
\(232\) −2.07686 2.07686i −0.136352 0.136352i
\(233\) 1.34227 + 1.34227i 0.0879351 + 0.0879351i 0.749706 0.661771i \(-0.230195\pi\)
−0.661771 + 0.749706i \(0.730195\pi\)
\(234\) 0.369041 + 1.93835i 0.0241250 + 0.126714i
\(235\) 11.9943 + 7.36488i 0.782420 + 0.480432i
\(236\) 8.58688i 0.558958i
\(237\) −6.00691 + 0.566736i −0.390191 + 0.0368135i
\(238\) 0.0945214 0.0945214i 0.00612691 0.00612691i
\(239\) 27.4444 1.77523 0.887616 0.460585i \(-0.152360\pi\)
0.887616 + 0.460585i \(0.152360\pi\)
\(240\) 3.66552 1.25059i 0.236608 0.0807252i
\(241\) −29.4204 −1.89513 −0.947567 0.319557i \(-0.896466\pi\)
−0.947567 + 0.319557i \(0.896466\pi\)
\(242\) 5.96739 5.96739i 0.383598 0.383598i
\(243\) −7.06459 13.8957i −0.453194 0.891412i
\(244\) 6.10554i 0.390867i
\(245\) −14.1506 + 3.38386i −0.904049 + 0.216187i
\(246\) −3.92005 + 4.73680i −0.249933 + 0.302008i
\(247\) −0.465079 0.465079i −0.0295923 0.0295923i
\(248\) 1.15377 + 1.15377i 0.0732644 + 0.0732644i
\(249\) 2.75151 3.32480i 0.174370 0.210700i
\(250\) 11.1435 + 0.907143i 0.704775 + 0.0573728i
\(251\) 13.3163i 0.840516i 0.907405 + 0.420258i \(0.138060\pi\)
−0.907405 + 0.420258i \(0.861940\pi\)
\(252\) −1.18489 + 1.74217i −0.0746410 + 0.109746i
\(253\) −0.491722 + 0.491722i −0.0309143 + 0.0309143i
\(254\) −13.2920 −0.834012
\(255\) −0.325018 + 0.661644i −0.0203534 + 0.0414337i
\(256\) 1.00000 0.0625000
\(257\) 15.5278 15.5278i 0.968596 0.968596i −0.0309257 0.999522i \(-0.509846\pi\)
0.999522 + 0.0309257i \(0.00984554\pi\)
\(258\) −7.69053 + 0.725581i −0.478791 + 0.0451727i
\(259\) 4.01205i 0.249297i
\(260\) −0.769567 + 1.25330i −0.0477265 + 0.0777262i
\(261\) −8.65587 + 1.64799i −0.535785 + 0.102008i
\(262\) 5.07801 + 5.07801i 0.313721 + 0.313721i
\(263\) −10.7691 10.7691i −0.664054 0.664054i 0.292279 0.956333i \(-0.405586\pi\)
−0.956333 + 0.292279i \(0.905586\pi\)
\(264\) 2.13534 + 1.76715i 0.131421 + 0.108761i
\(265\) −3.91756 + 6.38004i −0.240654 + 0.391923i
\(266\) 0.702307i 0.0430612i
\(267\) −2.39958 25.4335i −0.146852 1.55650i
\(268\) −6.28833 + 6.28833i −0.384121 + 0.384121i
\(269\) −2.46904 −0.150540 −0.0752701 0.997163i \(-0.523982\pi\)
−0.0752701 + 0.997163i \(0.523982\pi\)
\(270\) 3.08197 11.2027i 0.187563 0.681777i
\(271\) 20.6505 1.25443 0.627215 0.778846i \(-0.284195\pi\)
0.627215 + 0.778846i \(0.284195\pi\)
\(272\) −0.134587 + 0.134587i −0.00816053 + 0.00816053i
\(273\) −0.0751511 0.796536i −0.00454835 0.0482086i
\(274\) 11.8162i 0.713844i
\(275\) 3.61975 + 7.13572i 0.218279 + 0.430300i
\(276\) 0.579855 + 0.479873i 0.0349032 + 0.0288850i
\(277\) 7.11389 + 7.11389i 0.427432 + 0.427432i 0.887753 0.460321i \(-0.152266\pi\)
−0.460321 + 0.887753i \(0.652266\pi\)
\(278\) −12.3547 12.3547i −0.740984 0.740984i
\(279\) 4.80865 0.915517i 0.287886 0.0548106i
\(280\) −1.52734 + 0.365236i −0.0912762 + 0.0218270i
\(281\) 4.48551i 0.267583i 0.991009 + 0.133792i \(0.0427153\pi\)
−0.991009 + 0.133792i \(0.957285\pi\)
\(282\) 10.8542 1.02407i 0.646358 0.0609823i
\(283\) −11.2511 + 11.2511i −0.668808 + 0.668808i −0.957440 0.288632i \(-0.906799\pi\)
0.288632 + 0.957440i \(0.406799\pi\)
\(284\) −13.9322 −0.826723
\(285\) 1.25059 + 3.66552i 0.0740785 + 0.217127i
\(286\) −1.05253 −0.0622373
\(287\) 1.76287 1.76287i 0.104059 0.104059i
\(288\) 1.68714 2.48064i 0.0994155 0.146173i
\(289\) 16.9638i 0.997869i
\(290\) −5.59672 3.43657i −0.328651 0.201802i
\(291\) −0.0270940 + 0.0327390i −0.00158828 + 0.00191920i
\(292\) −2.24565 2.24565i −0.131417 0.131417i
\(293\) −10.0085 10.0085i −0.584702 0.584702i 0.351490 0.936192i \(-0.385675\pi\)
−0.936192 + 0.351490i \(0.885675\pi\)
\(294\) −7.18535 + 8.68244i −0.419058 + 0.506370i
\(295\) −4.46563 18.6743i −0.259999 1.08726i
\(296\) 5.71267i 0.332042i
\(297\) 7.98629 2.31559i 0.463411 0.134364i
\(298\) 9.02420 9.02420i 0.522758 0.522758i
\(299\) −0.285815 −0.0165291
\(300\) 7.32122 4.62598i 0.422691 0.267081i
\(301\) 3.13218 0.180536
\(302\) 1.18238 1.18238i 0.0680382 0.0680382i
\(303\) 3.31448 0.312713i 0.190412 0.0179649i
\(304\) 1.00000i 0.0573539i
\(305\) −3.17520 13.2780i −0.181811 0.760298i
\(306\) 0.106795 + 0.560928i 0.00610506 + 0.0320661i
\(307\) 20.2254 + 20.2254i 1.15432 + 1.15432i 0.985677 + 0.168645i \(0.0539391\pi\)
0.168645 + 0.985677i \(0.446061\pi\)
\(308\) −0.794700 0.794700i −0.0452823 0.0452823i
\(309\) −16.4082 13.5790i −0.933428 0.772480i
\(310\) 3.10918 + 1.90914i 0.176590 + 0.108432i
\(311\) 9.46101i 0.536485i −0.963351 0.268242i \(-0.913557\pi\)
0.963351 0.268242i \(-0.0864428\pi\)
\(312\) 0.107006 + 1.13417i 0.00605803 + 0.0642098i
\(313\) −19.0390 + 19.0390i −1.07615 + 1.07615i −0.0792948 + 0.996851i \(0.525267\pi\)
−0.996851 + 0.0792948i \(0.974733\pi\)
\(314\) 7.83849 0.442352
\(315\) −1.67082 + 4.40499i −0.0941400 + 0.248193i
\(316\) −3.48349 −0.195962
\(317\) 18.1388 18.1388i 1.01878 1.01878i 0.0189572 0.999820i \(-0.493965\pi\)
0.999820 0.0189572i \(-0.00603464\pi\)
\(318\) 0.544725 + 5.77361i 0.0305467 + 0.323768i
\(319\) 4.70016i 0.263158i
\(320\) 2.17475 0.520052i 0.121572 0.0290718i
\(321\) 23.5792 + 19.5135i 1.31606 + 1.08914i
\(322\) −0.215802 0.215802i −0.0120262 0.0120262i
\(323\) −0.134587 0.134587i −0.00748862 0.00748862i
\(324\) −3.30713 8.37036i −0.183730 0.465020i
\(325\) −1.02184 + 3.12583i −0.0566813 + 0.173390i
\(326\) 14.5154i 0.803934i
\(327\) −0.316949 + 0.0299033i −0.0175273 + 0.00165366i
\(328\) −2.51012 + 2.51012i −0.138598 + 0.138598i
\(329\) −4.42068 −0.243720
\(330\) 5.56285 + 2.73263i 0.306225 + 0.150426i
\(331\) −10.0709 −0.553546 −0.276773 0.960935i \(-0.589265\pi\)
−0.276773 + 0.960935i \(0.589265\pi\)
\(332\) 1.76187 1.76187i 0.0966951 0.0966951i
\(333\) −14.1711 9.63806i −0.776570 0.528163i
\(334\) 23.2473i 1.27204i
\(335\) −10.4053 + 16.9458i −0.568502 + 0.925848i
\(336\) −0.775550 + 0.937138i −0.0423097 + 0.0511251i
\(337\) −20.9018 20.9018i −1.13860 1.13860i −0.988702 0.149893i \(-0.952107\pi\)
−0.149893 0.988702i \(-0.547893\pi\)
\(338\) 8.88650 + 8.88650i 0.483362 + 0.483362i
\(339\) 13.3986 16.1902i 0.727712 0.879332i
\(340\) −0.222701 + 0.362685i −0.0120777 + 0.0196694i
\(341\) 2.61111i 0.141400i
\(342\) 2.48064 + 1.68714i 0.134138 + 0.0912299i
\(343\) 6.70754 6.70754i 0.362173 0.362173i
\(344\) −4.45985 −0.240459
\(345\) 1.51060 + 0.742049i 0.0813280 + 0.0399506i
\(346\) 21.9035 1.17754
\(347\) −15.5656 + 15.5656i −0.835605 + 0.835605i −0.988277 0.152672i \(-0.951212\pi\)
0.152672 + 0.988277i \(0.451212\pi\)
\(348\) −5.06474 + 0.477846i −0.271499 + 0.0256152i
\(349\) 24.7339i 1.32397i 0.749515 + 0.661987i \(0.230287\pi\)
−0.749515 + 0.661987i \(0.769713\pi\)
\(350\) −3.13165 + 1.58860i −0.167394 + 0.0849141i
\(351\) 2.99400 + 1.64806i 0.159808 + 0.0879668i
\(352\) 1.13156 + 1.13156i 0.0603122 + 0.0603122i
\(353\) −12.1857 12.1857i −0.648577 0.648577i 0.304072 0.952649i \(-0.401654\pi\)
−0.952649 + 0.304072i \(0.901654\pi\)
\(354\) −11.4581 9.48240i −0.608990 0.503984i
\(355\) −30.2990 + 7.24546i −1.60811 + 0.384549i
\(356\) 14.7492i 0.781707i
\(357\) −0.0217476 0.230505i −0.00115100 0.0121996i
\(358\) −7.02200 + 7.02200i −0.371124 + 0.371124i
\(359\) −26.0241 −1.37350 −0.686750 0.726894i \(-0.740963\pi\)
−0.686750 + 0.726894i \(0.740963\pi\)
\(360\) 2.37904 6.27217i 0.125387 0.330573i
\(361\) −1.00000 −0.0526316
\(362\) 10.3008 10.3008i 0.541396 0.541396i
\(363\) −1.37298 14.5524i −0.0720630 0.763804i
\(364\) 0.461923i 0.0242113i
\(365\) −6.05158 3.71587i −0.316754 0.194498i
\(366\) −8.14705 6.74228i −0.425853 0.352425i
\(367\) 2.46917 + 2.46917i 0.128890 + 0.128890i 0.768609 0.639719i \(-0.220949\pi\)
−0.639719 + 0.768609i \(0.720949\pi\)
\(368\) 0.307276 + 0.307276i 0.0160179 + 0.0160179i
\(369\) 1.99178 + 10.4616i 0.103688 + 0.544609i
\(370\) −2.97089 12.4236i −0.154449 0.645874i
\(371\) 2.35146i 0.122082i
\(372\) 2.81365 0.265461i 0.145881 0.0137635i
\(373\) −8.01922 + 8.01922i −0.415220 + 0.415220i −0.883552 0.468333i \(-0.844855\pi\)
0.468333 + 0.883552i \(0.344855\pi\)
\(374\) −0.304585 −0.0157497
\(375\) 13.5161 13.8678i 0.697968 0.716129i
\(376\) 6.29451 0.324614
\(377\) 1.36599 1.36599i 0.0703522 0.0703522i
\(378\) 1.01624 + 3.50494i 0.0522698 + 0.180275i
\(379\) 31.2502i 1.60521i −0.596509 0.802606i \(-0.703446\pi\)
0.596509 0.802606i \(-0.296554\pi\)
\(380\) 0.520052 + 2.17475i 0.0266781 + 0.111562i
\(381\) −14.6782 + 17.7364i −0.751986 + 0.908664i
\(382\) −4.09677 4.09677i −0.209609 0.209609i
\(383\) 0.978037 + 0.978037i 0.0499753 + 0.0499753i 0.731653 0.681677i \(-0.238749\pi\)
−0.681677 + 0.731653i \(0.738749\pi\)
\(384\) 1.10429 1.33437i 0.0563530 0.0680943i
\(385\) −2.14156 1.31499i −0.109144 0.0670181i
\(386\) 3.50044i 0.178168i
\(387\) −7.52437 + 11.0633i −0.382485 + 0.562377i
\(388\) −0.0173490 + 0.0173490i −0.000880762 + 0.000880762i
\(389\) 4.44034 0.225134 0.112567 0.993644i \(-0.464093\pi\)
0.112567 + 0.993644i \(0.464093\pi\)
\(390\) 0.822540 + 2.41089i 0.0416509 + 0.122080i
\(391\) −0.0827106 −0.00418285
\(392\) −4.60098 + 4.60098i −0.232384 + 0.232384i
\(393\) 12.3835 1.16836i 0.624667 0.0589358i
\(394\) 8.17634i 0.411918i
\(395\) −7.57573 + 1.81160i −0.381176 + 0.0911513i
\(396\) 4.71607 0.897892i 0.236992 0.0451207i
\(397\) 19.6310 + 19.6310i 0.985250 + 0.985250i 0.999893 0.0146427i \(-0.00466108\pi\)
−0.0146427 + 0.999893i \(0.504661\pi\)
\(398\) 8.31534 + 8.31534i 0.416810 + 0.416810i
\(399\) −0.937138 0.775550i −0.0469156 0.0388261i
\(400\) 4.45909 2.26197i 0.222955 0.113098i
\(401\) 19.4963i 0.973598i 0.873514 + 0.486799i \(0.161836\pi\)
−0.873514 + 0.486799i \(0.838164\pi\)
\(402\) 1.44683 + 15.3351i 0.0721611 + 0.764845i
\(403\) −0.758859 + 0.758859i −0.0378015 + 0.0378015i
\(404\) 1.92211 0.0956288
\(405\) −11.5452 16.4836i −0.573687 0.819075i
\(406\) 2.06276 0.102373
\(407\) 6.46421 6.46421i 0.320419 0.320419i
\(408\) 0.0309659 + 0.328212i 0.00153304 + 0.0162489i
\(409\) 3.38039i 0.167150i −0.996502 0.0835748i \(-0.973366\pi\)
0.996502 0.0835748i \(-0.0266337\pi\)
\(410\) −4.15349 + 6.76427i −0.205126 + 0.334064i
\(411\) 15.7672 + 13.0485i 0.777739 + 0.643636i
\(412\) −8.69498 8.69498i −0.428371 0.428371i
\(413\) 4.26430 + 4.26430i 0.209832 + 0.209832i
\(414\) 1.28066 0.243824i 0.0629408 0.0119833i
\(415\) 2.91536 4.74789i 0.143110 0.233065i
\(416\) 0.657722i 0.0322475i
\(417\) −30.1288 + 2.84258i −1.47542 + 0.139202i
\(418\) −1.13156 + 1.13156i −0.0553462 + 0.0553462i
\(419\) 22.8080 1.11425 0.557123 0.830430i \(-0.311905\pi\)
0.557123 + 0.830430i \(0.311905\pi\)
\(420\) −1.19927 + 2.44137i −0.0585183 + 0.119127i
\(421\) −20.2915 −0.988946 −0.494473 0.869193i \(-0.664639\pi\)
−0.494473 + 0.869193i \(0.664639\pi\)
\(422\) −15.1667 + 15.1667i −0.738306 + 0.738306i
\(423\) 10.6197 15.6144i 0.516347 0.759198i
\(424\) 3.34820i 0.162603i
\(425\) −0.295704 + 0.904567i −0.0143437 + 0.0438779i
\(426\) −15.3852 + 18.5907i −0.745413 + 0.900722i
\(427\) 3.03205 + 3.03205i 0.146731 + 0.146731i
\(428\) 12.4950 + 12.4950i 0.603971 + 0.603971i
\(429\) −1.16229 + 1.40446i −0.0561161 + 0.0678081i
\(430\) −9.69906 + 2.31935i −0.467730 + 0.111849i
\(431\) 30.3366i 1.46126i −0.682772 0.730631i \(-0.739226\pi\)
0.682772 0.730631i \(-0.260774\pi\)
\(432\) −1.44700 4.99061i −0.0696190 0.240111i
\(433\) −8.49095 + 8.49095i −0.408049 + 0.408049i −0.881058 0.473009i \(-0.843168\pi\)
0.473009 + 0.881058i \(0.343168\pi\)
\(434\) −1.14594 −0.0550068
\(435\) −10.7661 + 3.67313i −0.516193 + 0.176113i
\(436\) −0.183803 −0.00880257
\(437\) −0.307276 + 0.307276i −0.0146990 + 0.0146990i
\(438\) −5.47637 + 0.516681i −0.261671 + 0.0246880i
\(439\) 20.3565i 0.971563i −0.874080 0.485781i \(-0.838535\pi\)
0.874080 0.485781i \(-0.161465\pi\)
\(440\) 3.04932 + 1.87239i 0.145371 + 0.0892625i
\(441\) 3.65088 + 19.1758i 0.173851 + 0.913135i
\(442\) −0.0885207 0.0885207i −0.00421050 0.00421050i
\(443\) 13.7782 + 13.7782i 0.654621 + 0.654621i 0.954102 0.299481i \(-0.0968135\pi\)
−0.299481 + 0.954102i \(0.596814\pi\)
\(444\) −7.62282 6.30844i −0.361763 0.299385i
\(445\) −7.67036 32.0759i −0.363610 1.52054i
\(446\) 10.7207i 0.507640i
\(447\) −2.07630 22.0070i −0.0982056 1.04089i
\(448\) −0.496606 + 0.496606i −0.0234624 + 0.0234624i
\(449\) 22.3302 1.05383 0.526913 0.849919i \(-0.323349\pi\)
0.526913 + 0.849919i \(0.323349\pi\)
\(450\) 1.91197 14.8776i 0.0901312 0.701339i
\(451\) −5.68068 −0.267493
\(452\) 8.57949 8.57949i 0.403545 0.403545i
\(453\) −0.272043 2.88342i −0.0127817 0.135475i
\(454\) 21.6602i 1.01656i
\(455\) −0.240224 1.00457i −0.0112619 0.0470948i
\(456\) 1.33437 + 1.10429i 0.0624876 + 0.0517131i
\(457\) 20.8943 + 20.8943i 0.977393 + 0.977393i 0.999750 0.0223568i \(-0.00711697\pi\)
−0.0223568 + 0.999750i \(0.507117\pi\)
\(458\) 11.1434 + 11.1434i 0.520698 + 0.520698i
\(459\) 0.866418 + 0.476923i 0.0404410 + 0.0222609i
\(460\) 0.828048 + 0.508449i 0.0386079 + 0.0237066i
\(461\) 15.6734i 0.729982i 0.931011 + 0.364991i \(0.118928\pi\)
−0.931011 + 0.364991i \(0.881072\pi\)
\(462\) −1.93800 + 0.182846i −0.0901641 + 0.00850675i
\(463\) −5.68075 + 5.68075i −0.264007 + 0.264007i −0.826680 0.562673i \(-0.809773\pi\)
0.562673 + 0.826680i \(0.309773\pi\)
\(464\) −2.93712 −0.136352
\(465\) 5.98094 2.04056i 0.277359 0.0946285i
\(466\) 1.89826 0.0879351
\(467\) 10.4678 10.4678i 0.484394 0.484394i −0.422138 0.906532i \(-0.638720\pi\)
0.906532 + 0.422138i \(0.138720\pi\)
\(468\) 1.63157 + 1.10967i 0.0754193 + 0.0512944i
\(469\) 6.24564i 0.288397i
\(470\) 13.6890 3.27347i 0.631426 0.150994i
\(471\) 8.65596 10.4595i 0.398846 0.481946i
\(472\) −6.07184 6.07184i −0.279479 0.279479i
\(473\) −5.04657 5.04657i −0.232041 0.232041i
\(474\) −3.84678 + 4.64827i −0.176689 + 0.213502i
\(475\) 2.26197 + 4.45909i 0.103786 + 0.204597i
\(476\) 0.133673i 0.00612691i
\(477\) 8.30567 + 5.64887i 0.380290 + 0.258644i
\(478\) 19.4061 19.4061i 0.887616 0.887616i
\(479\) 6.32202 0.288860 0.144430 0.989515i \(-0.453865\pi\)
0.144430 + 0.989515i \(0.453865\pi\)
\(480\) 1.70761 3.47621i 0.0779415 0.158667i
\(481\) 3.75735 0.171320
\(482\) −20.8034 + 20.8034i −0.947567 + 0.947567i
\(483\) −0.526268 + 0.0496520i −0.0239460 + 0.00225924i
\(484\) 8.43916i 0.383598i
\(485\) −0.0287074 + 0.0467522i −0.00130354 + 0.00212291i
\(486\) −14.8212 4.83035i −0.672303 0.219109i
\(487\) 25.1640 + 25.1640i 1.14029 + 1.14029i 0.988397 + 0.151891i \(0.0485363\pi\)
0.151891 + 0.988397i \(0.451464\pi\)
\(488\) −4.31727 4.31727i −0.195433 0.195433i
\(489\) −19.3689 16.0292i −0.875893 0.724866i
\(490\) −7.61324 + 12.3987i −0.343931 + 0.560118i
\(491\) 12.0526i 0.543925i −0.962308 0.271962i \(-0.912327\pi\)
0.962308 0.271962i \(-0.0876727\pi\)
\(492\) 0.577531 + 6.12132i 0.0260371 + 0.275971i
\(493\) 0.395298 0.395298i 0.0178033 0.0178033i
\(494\) −0.657722 −0.0295923
\(495\) 9.78934 4.40530i 0.439998 0.198003i
\(496\) 1.63168 0.0732644
\(497\) 6.91880 6.91880i 0.310351 0.310351i
\(498\) −0.405373 4.29660i −0.0181652 0.192535i
\(499\) 5.62152i 0.251654i −0.992052 0.125827i \(-0.959842\pi\)
0.992052 0.125827i \(-0.0401584\pi\)
\(500\) 8.52108 7.23818i 0.381074 0.323701i
\(501\) 31.0205 + 25.6718i 1.38590 + 1.14693i
\(502\) 9.41603 + 9.41603i 0.420258 + 0.420258i
\(503\) 23.1237 + 23.1237i 1.03104 + 1.03104i 0.999503 + 0.0315338i \(0.0100392\pi\)
0.0315338 + 0.999503i \(0.489961\pi\)
\(504\) 0.394057 + 2.06974i 0.0175527 + 0.0921937i
\(505\) 4.18012 0.999600i 0.186013 0.0444816i
\(506\) 0.695400i 0.0309143i
\(507\) 21.6711 2.04462i 0.962449 0.0908046i
\(508\) −9.39884 + 9.39884i −0.417006 + 0.417006i
\(509\) 20.8753 0.925282 0.462641 0.886546i \(-0.346902\pi\)
0.462641 + 0.886546i \(0.346902\pi\)
\(510\) 0.238030 + 0.697675i 0.0105402 + 0.0308936i
\(511\) 2.23040 0.0986672
\(512\) 0.707107 0.707107i 0.0312500 0.0312500i
\(513\) 4.99061 1.44700i 0.220341 0.0638868i
\(514\) 21.9596i 0.968596i
\(515\) −23.4313 14.3876i −1.03251 0.633993i
\(516\) −4.92496 + 5.95109i −0.216809 + 0.261982i
\(517\) 7.12259 + 7.12259i 0.313251 + 0.313251i
\(518\) 2.83695 + 2.83695i 0.124648 + 0.124648i
\(519\) 24.1878 29.2274i 1.06173 1.28294i
\(520\) 0.342050 + 1.43038i 0.0149999 + 0.0627264i
\(521\) 24.8032i 1.08665i −0.839523 0.543325i \(-0.817165\pi\)
0.839523 0.543325i \(-0.182835\pi\)
\(522\) −4.95532 + 7.28593i −0.216888 + 0.318896i
\(523\) 1.48367 1.48367i 0.0648764 0.0648764i −0.673924 0.738801i \(-0.735393\pi\)
0.738801 + 0.673924i \(0.235393\pi\)
\(524\) 7.18140 0.313721
\(525\) −1.33847 + 5.93305i −0.0584157 + 0.258940i
\(526\) −15.2299 −0.664054
\(527\) −0.219602 + 0.219602i −0.00956602 + 0.00956602i
\(528\) 2.75948 0.260350i 0.120091 0.0113303i
\(529\) 22.8112i 0.991790i
\(530\) 1.74124 + 7.28150i 0.0756345 + 0.316288i
\(531\) −25.3061 + 4.81801i −1.09819 + 0.209084i
\(532\) −0.496606 0.496606i −0.0215306 0.0215306i
\(533\) −1.65096 1.65096i −0.0715109 0.0715109i
\(534\) −19.6809 16.2874i −0.851677 0.704825i
\(535\) 33.6717 + 20.6755i 1.45575 + 0.893881i
\(536\) 8.89304i 0.384121i
\(537\) 1.61563 + 17.1243i 0.0697196 + 0.738967i
\(538\) −1.74588 + 1.74588i −0.0752701 + 0.0752701i
\(539\) −10.4125 −0.448500
\(540\) −5.74225 10.1008i −0.247107 0.434670i
\(541\) 45.1030 1.93913 0.969564 0.244838i \(-0.0787348\pi\)
0.969564 + 0.244838i \(0.0787348\pi\)
\(542\) 14.6021 14.6021i 0.627215 0.627215i
\(543\) −2.37001 25.1201i −0.101707 1.07800i
\(544\) 0.190335i 0.00816053i
\(545\) −0.399726 + 0.0955872i −0.0171224 + 0.00409450i
\(546\) −0.616376 0.510096i −0.0263785 0.0218301i
\(547\) 4.01648 + 4.01648i 0.171732 + 0.171732i 0.787740 0.616008i \(-0.211251\pi\)
−0.616008 + 0.787740i \(0.711251\pi\)
\(548\) 8.35532 + 8.35532i 0.356922 + 0.356922i
\(549\) −17.9934 + 3.42576i −0.767939 + 0.146208i
\(550\) 7.60526 + 2.48617i 0.324289 + 0.106011i
\(551\) 2.93712i 0.125125i
\(552\) 0.749341 0.0706984i 0.0318941 0.00300912i
\(553\) 1.72992 1.72992i 0.0735638 0.0735638i
\(554\) 10.0606 0.427432
\(555\) −19.8585 9.75503i −0.842945 0.414078i
\(556\) −17.4721 −0.740984
\(557\) 18.3814 18.3814i 0.778844 0.778844i −0.200790 0.979634i \(-0.564351\pi\)
0.979634 + 0.200790i \(0.0643509\pi\)
\(558\) 2.75286 4.04760i 0.116538 0.171348i
\(559\) 2.93334i 0.124067i
\(560\) −0.821734 + 1.33826i −0.0347246 + 0.0565516i
\(561\) −0.336351 + 0.406430i −0.0142007 + 0.0171595i
\(562\) 3.17174 + 3.17174i 0.133792 + 0.133792i
\(563\) 4.15736 + 4.15736i 0.175212 + 0.175212i 0.789265 0.614053i \(-0.210462\pi\)
−0.614053 + 0.789265i \(0.710462\pi\)
\(564\) 6.95096 8.39921i 0.292688 0.353670i
\(565\) 14.1965 23.1200i 0.597250 0.972668i
\(566\) 15.9114i 0.668808i
\(567\) 5.79911 + 2.51443i 0.243540 + 0.105596i
\(568\) −9.85154 + 9.85154i −0.413361 + 0.413361i
\(569\) −25.7668 −1.08020 −0.540100 0.841601i \(-0.681614\pi\)
−0.540100 + 0.841601i \(0.681614\pi\)
\(570\) 3.47621 + 1.70761i 0.145603 + 0.0715240i
\(571\) 10.3705 0.433994 0.216997 0.976172i \(-0.430374\pi\)
0.216997 + 0.976172i \(0.430374\pi\)
\(572\) −0.744249 + 0.744249i −0.0311186 + 0.0311186i
\(573\) −9.99062 + 0.942589i −0.417364 + 0.0393772i
\(574\) 2.49308i 0.104059i
\(575\) 2.06522 + 0.675122i 0.0861256 + 0.0281546i
\(576\) −0.561090 2.94706i −0.0233788 0.122794i
\(577\) 8.95610 + 8.95610i 0.372847 + 0.372847i 0.868513 0.495666i \(-0.165076\pi\)
−0.495666 + 0.868513i \(0.665076\pi\)
\(578\) 11.9952 + 11.9952i 0.498934 + 0.498934i
\(579\) 4.67089 + 3.86550i 0.194115 + 0.160645i
\(580\) −6.38750 + 1.52745i −0.265227 + 0.0634241i
\(581\) 1.74991i 0.0725985i
\(582\) 0.00399168 + 0.0423083i 0.000165461 + 0.00175374i
\(583\) −3.78868 + 3.78868i −0.156911 + 0.156911i
\(584\) −3.17582 −0.131417
\(585\) 4.12534 + 1.56475i 0.170562 + 0.0646944i
\(586\) −14.1541 −0.584702
\(587\) −20.5743 + 20.5743i −0.849191 + 0.849191i −0.990032 0.140841i \(-0.955019\pi\)
0.140841 + 0.990032i \(0.455019\pi\)
\(588\) 1.05860 + 11.2202i 0.0436559 + 0.462714i
\(589\) 1.63168i 0.0672320i
\(590\) −16.3624 10.0471i −0.673631 0.413632i
\(591\) −10.9103 9.02904i −0.448788 0.371405i
\(592\) −4.03947 4.03947i −0.166021 0.166021i
\(593\) −10.9829 10.9829i −0.451015 0.451015i 0.444676 0.895691i \(-0.353319\pi\)
−0.895691 + 0.444676i \(0.853319\pi\)
\(594\) 4.00979 7.28452i 0.164524 0.298888i
\(595\) −0.0695171 0.290706i −0.00284992 0.0119178i
\(596\) 12.7621i 0.522758i
\(597\) 20.2783 1.91320i 0.829935 0.0783022i
\(598\) −0.202102 + 0.202102i −0.00826456 + 0.00826456i
\(599\) 15.1478 0.618921 0.309461 0.950912i \(-0.399852\pi\)
0.309461 + 0.950912i \(0.399852\pi\)
\(600\) 1.90582 8.44795i 0.0778049 0.344886i
\(601\) −29.3684 −1.19796 −0.598982 0.800763i \(-0.704428\pi\)
−0.598982 + 0.800763i \(0.704428\pi\)
\(602\) 2.21479 2.21479i 0.0902680 0.0902680i
\(603\) 22.0604 + 15.0038i 0.898369 + 0.611001i
\(604\) 1.67214i 0.0680382i
\(605\) −4.38880 18.3531i −0.178430 0.746159i
\(606\) 2.12257 2.56481i 0.0862236 0.104188i
\(607\) 24.8764 + 24.8764i 1.00970 + 1.00970i 0.999952 + 0.00975060i \(0.00310376\pi\)
0.00975060 + 0.999952i \(0.496896\pi\)
\(608\) 0.707107 + 0.707107i 0.0286770 + 0.0286770i
\(609\) 2.27788 2.75248i 0.0923044 0.111536i
\(610\) −11.6342 7.14378i −0.471054 0.289243i
\(611\) 4.14003i 0.167488i
\(612\) 0.472151 + 0.321121i 0.0190856 + 0.0129805i
\(613\) 3.82720 3.82720i 0.154579 0.154579i −0.625580 0.780160i \(-0.715138\pi\)
0.780160 + 0.625580i \(0.215138\pi\)
\(614\) 28.6030 1.15432
\(615\) 4.43939 + 13.0120i 0.179014 + 0.524695i
\(616\) −1.12388 −0.0452823
\(617\) 12.3701 12.3701i 0.498001 0.498001i −0.412815 0.910815i \(-0.635454\pi\)
0.910815 + 0.412815i \(0.135454\pi\)
\(618\) −21.2041 + 2.00055i −0.852954 + 0.0804740i
\(619\) 1.71966i 0.0691190i −0.999403 0.0345595i \(-0.988997\pi\)
0.999403 0.0345595i \(-0.0110028\pi\)
\(620\) 3.54849 0.848557i 0.142511 0.0340789i
\(621\) 1.08886 1.97812i 0.0436946 0.0793793i
\(622\) −6.68994 6.68994i −0.268242 0.268242i
\(623\) 7.32455 + 7.32455i 0.293452 + 0.293452i
\(624\) 0.877644 + 0.726315i 0.0351339 + 0.0290759i
\(625\) 14.7670 20.1727i 0.590680 0.806906i
\(626\) 26.9252i 1.07615i
\(627\) 0.260350 + 2.75948i 0.0103974 + 0.110203i
\(628\) 5.54265 5.54265i 0.221176 0.221176i
\(629\) 1.08732 0.0433543
\(630\) 1.93335 + 4.29625i 0.0770266 + 0.171167i
\(631\) 36.5998 1.45701 0.728507 0.685039i \(-0.240215\pi\)
0.728507 + 0.685039i \(0.240215\pi\)
\(632\) −2.46320 + 2.46320i −0.0979808 + 0.0979808i
\(633\) 3.48958 + 36.9865i 0.138699 + 1.47008i
\(634\) 25.6522i 1.01878i
\(635\) −15.5523 + 25.3280i −0.617172 + 1.00511i
\(636\) 4.46774 + 3.69738i 0.177157 + 0.146611i
\(637\) −3.02616 3.02616i −0.119901 0.119901i
\(638\) −3.32351 3.32351i −0.131579 0.131579i
\(639\) 7.81721 + 41.0590i 0.309244 + 1.62427i
\(640\) 1.17005 1.90551i 0.0462503 0.0753221i
\(641\) 34.9202i 1.37926i −0.724160 0.689632i \(-0.757772\pi\)
0.724160 0.689632i \(-0.242228\pi\)
\(642\) 30.4712 2.87487i 1.20260 0.113462i
\(643\) −24.8779 + 24.8779i −0.981088 + 0.981088i −0.999824 0.0187362i \(-0.994036\pi\)
0.0187362 + 0.999824i \(0.494036\pi\)
\(644\) −0.305190 −0.0120262
\(645\) −7.61569 + 15.5034i −0.299868 + 0.610445i
\(646\) −0.190335 −0.00748862
\(647\) −2.44228 + 2.44228i −0.0960160 + 0.0960160i −0.753483 0.657467i \(-0.771628\pi\)
0.657467 + 0.753483i \(0.271628\pi\)
\(648\) −8.25723 3.58024i −0.324375 0.140645i
\(649\) 13.7413i 0.539392i
\(650\) 1.48775 + 2.93284i 0.0583542 + 0.115035i
\(651\) −1.26545 + 1.52911i −0.0495968 + 0.0599304i
\(652\) −10.2639 10.2639i −0.401967 0.401967i
\(653\) 20.0032 + 20.0032i 0.782785 + 0.782785i 0.980300 0.197515i \(-0.0632870\pi\)
−0.197515 + 0.980300i \(0.563287\pi\)
\(654\) −0.202972 + 0.245261i −0.00793682 + 0.00959048i
\(655\) 15.6178 3.73470i 0.610236 0.145927i
\(656\) 3.54984i 0.138598i
\(657\) −5.35805 + 7.87807i −0.209037 + 0.307353i
\(658\) −3.12589 + 3.12589i −0.121860 + 0.121860i
\(659\) 12.1175 0.472029 0.236015 0.971750i \(-0.424159\pi\)
0.236015 + 0.971750i \(0.424159\pi\)
\(660\) 5.86579 2.00127i 0.228326 0.0778994i
\(661\) −15.0877 −0.586842 −0.293421 0.955983i \(-0.594794\pi\)
−0.293421 + 0.955983i \(0.594794\pi\)
\(662\) −7.12120 + 7.12120i −0.276773 + 0.276773i
\(663\) −0.215872 + 0.0203670i −0.00838377 + 0.000790987i
\(664\) 2.49166i 0.0966951i
\(665\) −1.33826 0.821734i −0.0518953 0.0318655i
\(666\) −16.8356 + 3.20532i −0.652366 + 0.124204i
\(667\) −0.902505 0.902505i −0.0349451 0.0349451i
\(668\) 16.4383 + 16.4383i 0.636019 + 0.636019i
\(669\) 14.3054 + 11.8388i 0.553078 + 0.457713i
\(670\) 4.62484 + 19.3402i 0.178673 + 0.747175i
\(671\) 9.77046i 0.377185i
\(672\) 0.114260 + 1.21105i 0.00440767 + 0.0467174i
\(673\) −0.936746 + 0.936746i −0.0361089 + 0.0361089i −0.724931 0.688822i \(-0.758128\pi\)
0.688822 + 0.724931i \(0.258128\pi\)
\(674\) −29.5596 −1.13860
\(675\) −17.7409 18.9805i −0.682848 0.730560i
\(676\) 12.5674 0.483362
\(677\) 17.3503 17.3503i 0.666826 0.666826i −0.290154 0.956980i \(-0.593706\pi\)
0.956980 + 0.290154i \(0.0937064\pi\)
\(678\) −1.97398 20.9225i −0.0758103 0.803522i
\(679\) 0.0172312i 0.000661274i
\(680\) 0.0989840 + 0.413931i 0.00379586 + 0.0158735i
\(681\) 28.9027 + 23.9191i 1.10755 + 0.916581i
\(682\) 1.84633 + 1.84633i 0.0706998 + 0.0706998i
\(683\) −10.9787 10.9787i −0.420088 0.420088i 0.465146 0.885234i \(-0.346002\pi\)
−0.885234 + 0.465146i \(0.846002\pi\)
\(684\) 2.94706 0.561090i 0.112684 0.0214538i
\(685\) 22.5160 + 13.8256i 0.860291 + 0.528247i
\(686\) 9.48590i 0.362173i
\(687\) 27.1750 2.56389i 1.03679 0.0978187i
\(688\) −3.15359 + 3.15359i −0.120229 + 0.120229i
\(689\) −2.20218 −0.0838964
\(690\) 1.59286 0.543448i 0.0606393 0.0206887i
\(691\) −29.8179 −1.13433 −0.567163 0.823606i \(-0.691959\pi\)
−0.567163 + 0.823606i \(0.691959\pi\)
\(692\) 15.4881 15.4881i 0.588769 0.588769i
\(693\) −1.89613 + 2.78793i −0.0720281 + 0.105905i
\(694\) 22.0131i 0.835605i
\(695\) −37.9976 + 9.08643i −1.44133 + 0.344668i
\(696\) −3.24343 + 3.91920i −0.122942 + 0.148557i
\(697\) −0.477762 0.477762i −0.0180965 0.0180965i
\(698\) 17.4895 + 17.4895i 0.661987 + 0.661987i
\(699\) 2.09622 2.53298i 0.0792865 0.0958060i
\(700\) −1.09110 + 3.33772i −0.0412399 + 0.126154i
\(701\) 30.1321i 1.13807i 0.822312 + 0.569036i \(0.192684\pi\)
−0.822312 + 0.569036i \(0.807316\pi\)
\(702\) 3.28243 0.951725i 0.123887 0.0359206i
\(703\) 4.03947 4.03947i 0.152351 0.152351i
\(704\) 1.60026 0.0603122
\(705\) 10.7486 21.8810i 0.404815 0.824088i
\(706\) −17.2331 −0.648577
\(707\) −0.954534 + 0.954534i −0.0358989 + 0.0358989i
\(708\) −14.8072 + 1.39702i −0.556487 + 0.0525031i
\(709\) 40.2650i 1.51218i −0.654465 0.756092i \(-0.727106\pi\)
0.654465 0.756092i \(-0.272894\pi\)
\(710\) −16.3013 + 26.5480i −0.611778 + 0.996327i
\(711\) 1.95455 + 10.2661i 0.0733014 + 0.385008i
\(712\) −10.4293 10.4293i −0.390854 0.390854i
\(713\) 0.501374 + 0.501374i 0.0187766 + 0.0187766i
\(714\) −0.178370 0.147614i −0.00667532 0.00552432i
\(715\) −1.23151 + 2.00561i −0.0460558 + 0.0750054i
\(716\) 9.93061i 0.371124i
\(717\) −4.46499 47.3250i −0.166748 1.76738i
\(718\) −18.4018 + 18.4018i −0.686750 + 0.686750i
\(719\) −14.0389 −0.523562 −0.261781 0.965127i \(-0.584310\pi\)
−0.261781 + 0.965127i \(0.584310\pi\)
\(720\) −2.75286 6.11733i −0.102593 0.227980i
\(721\) 8.63596 0.321620
\(722\) −0.707107 + 0.707107i −0.0263158 + 0.0263158i
\(723\) 4.78646 + 50.7323i 0.178010 + 1.88675i
\(724\) 14.5675i 0.541396i
\(725\) −13.0969 + 6.64367i −0.486406 + 0.246740i
\(726\) −11.2610 9.31927i −0.417934 0.345871i
\(727\) 4.11587 + 4.11587i 0.152649 + 0.152649i 0.779300 0.626651i \(-0.215575\pi\)
−0.626651 + 0.779300i \(0.715575\pi\)
\(728\) −0.326629 0.326629i −0.0121057 0.0121057i
\(729\) −22.8124 + 14.4429i −0.844902 + 0.534921i
\(730\) −6.90663 + 1.65159i −0.255626 + 0.0611282i
\(731\) 0.848863i 0.0313963i
\(732\) −10.5283 + 0.993322i −0.389139 + 0.0367142i
\(733\) 26.3118 26.3118i 0.971848 0.971848i −0.0277661 0.999614i \(-0.508839\pi\)
0.999614 + 0.0277661i \(0.00883936\pi\)
\(734\) 3.49194 0.128890
\(735\) 8.13729 + 23.8507i 0.300148 + 0.879745i
\(736\) 0.434554 0.0160179
\(737\) −10.0630 + 10.0630i −0.370675 + 0.370675i
\(738\) 8.80587 + 5.98907i 0.324149 + 0.220461i
\(739\) 3.65844i 0.134578i −0.997734 0.0672889i \(-0.978565\pi\)
0.997734 0.0672889i \(-0.0214349\pi\)
\(740\) −10.8856 6.68411i −0.400162 0.245713i
\(741\) −0.726315 + 0.877644i −0.0266818 + 0.0322411i
\(742\) −1.66274 1.66274i −0.0610409 0.0610409i
\(743\) 10.1780 + 10.1780i 0.373394 + 0.373394i 0.868712 0.495318i \(-0.164948\pi\)
−0.495318 + 0.868712i \(0.664948\pi\)
\(744\) 1.80184 2.17726i 0.0660587 0.0798222i
\(745\) −6.63698 27.7545i −0.243160 1.01685i
\(746\) 11.3409i 0.415220i
\(747\) −6.18090 4.20377i −0.226147 0.153808i
\(748\) −0.215374 + 0.215374i −0.00787487 + 0.00787487i
\(749\) −12.4102 −0.453460
\(750\) −0.248684 19.3633i −0.00908066 0.707048i
\(751\) −31.8982 −1.16398 −0.581991 0.813195i \(-0.697726\pi\)
−0.581991 + 0.813195i \(0.697726\pi\)
\(752\) 4.45089 4.45089i 0.162307 0.162307i
\(753\) 22.9625 2.16645i 0.836800 0.0789499i
\(754\) 1.93181i 0.0703522i
\(755\) −0.869598 3.63648i −0.0316479 0.132345i
\(756\) 3.19696 + 1.75978i 0.116272 + 0.0640024i
\(757\) −24.1785 24.1785i −0.878783 0.878783i 0.114626 0.993409i \(-0.463433\pi\)
−0.993409 + 0.114626i \(0.963433\pi\)
\(758\) −22.0972 22.0972i −0.802606 0.802606i
\(759\) 0.927921 + 0.767923i 0.0336814 + 0.0278738i
\(760\) 1.90551 + 1.17005i 0.0691203 + 0.0424422i
\(761\) 2.79700i 0.101391i −0.998714 0.0506956i \(-0.983856\pi\)
0.998714 0.0506956i \(-0.0161438\pi\)
\(762\) 2.16250 + 22.9206i 0.0783390 + 0.830325i
\(763\) 0.0912777 0.0912777i 0.00330447 0.00330447i
\(764\) −5.79370 −0.209609
\(765\) 1.19381 + 0.452814i 0.0431624 + 0.0163715i
\(766\) 1.38315 0.0499753
\(767\) 3.99358 3.99358i 0.144200 0.144200i
\(768\) −0.162692 1.72439i −0.00587064 0.0622237i
\(769\) 0.345966i 0.0124759i −0.999981 0.00623793i \(-0.998014\pi\)
0.999981 0.00623793i \(-0.00198561\pi\)
\(770\) −2.44415 + 0.584474i −0.0880811 + 0.0210630i
\(771\) −29.3022 24.2497i −1.05529 0.873333i
\(772\) 2.47519 + 2.47519i 0.0890839 + 0.0890839i
\(773\) −24.4179 24.4179i −0.878251 0.878251i 0.115102 0.993354i \(-0.463280\pi\)
−0.993354 + 0.115102i \(0.963280\pi\)
\(774\) 2.50237 + 13.1434i 0.0899460 + 0.472431i
\(775\) 7.27579 3.69080i 0.261354 0.132577i
\(776\) 0.0245352i 0.000880762i
\(777\) 6.91835 0.652728i 0.248194