Properties

Label 570.2.k.b.77.11
Level $570$
Weight $2$
Character 570.77
Analytic conductor $4.551$
Analytic rank $0$
Dimension $36$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 570 = 2 \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 570.k (of order \(4\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.55147291521\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 77.11
Character \(\chi\) \(=\) 570.77
Dual form 570.2.k.b.533.11

$q$-expansion

\(f(q)\) \(=\) \(q+(0.707107 - 0.707107i) q^{2} +(-1.63290 - 0.577604i) q^{3} -1.00000i q^{4} +(-2.23603 + 0.0135681i) q^{5} +(-1.56306 + 0.746209i) q^{6} +(3.38538 + 3.38538i) q^{7} +(-0.707107 - 0.707107i) q^{8} +(2.33275 + 1.88634i) q^{9} +O(q^{10})\) \(q+(0.707107 - 0.707107i) q^{2} +(-1.63290 - 0.577604i) q^{3} -1.00000i q^{4} +(-2.23603 + 0.0135681i) q^{5} +(-1.56306 + 0.746209i) q^{6} +(3.38538 + 3.38538i) q^{7} +(-0.707107 - 0.707107i) q^{8} +(2.33275 + 1.88634i) q^{9} +(-1.57152 + 1.59070i) q^{10} +1.22574i q^{11} +(-0.577604 + 1.63290i) q^{12} +(3.51689 - 3.51689i) q^{13} +4.78765 q^{14} +(3.65905 + 1.26938i) q^{15} -1.00000 q^{16} +(-0.826034 + 0.826034i) q^{17} +(2.98335 - 0.315656i) q^{18} -1.00000i q^{19} +(0.0135681 + 2.23603i) q^{20} +(-3.57259 - 7.48341i) q^{21} +(0.866730 + 0.866730i) q^{22} +(1.04719 + 1.04719i) q^{23} +(0.746209 + 1.56306i) q^{24} +(4.99963 - 0.0606771i) q^{25} -4.97363i q^{26} +(-2.71959 - 4.42762i) q^{27} +(3.38538 - 3.38538i) q^{28} +8.14348 q^{29} +(3.48493 - 1.68975i) q^{30} +7.41990 q^{31} +(-0.707107 + 0.707107i) q^{32} +(0.707993 - 2.00152i) q^{33} +1.16819i q^{34} +(-7.61574 - 7.52387i) q^{35} +(1.88634 - 2.33275i) q^{36} +(-5.83375 - 5.83375i) q^{37} +(-0.707107 - 0.707107i) q^{38} +(-7.77411 + 3.71137i) q^{39} +(1.59070 + 1.57152i) q^{40} +3.53572i q^{41} +(-7.81778 - 2.76537i) q^{42} +(-2.68748 + 2.68748i) q^{43} +1.22574 q^{44} +(-5.24168 - 4.18626i) q^{45} +1.48094 q^{46} +(6.84848 - 6.84848i) q^{47} +(1.63290 + 0.577604i) q^{48} +15.9216i q^{49} +(3.49237 - 3.57818i) q^{50} +(1.82595 - 0.871713i) q^{51} +(-3.51689 - 3.51689i) q^{52} +(3.40629 + 3.40629i) q^{53} +(-5.05384 - 1.20776i) q^{54} +(-0.0166309 - 2.74079i) q^{55} -4.78765i q^{56} +(-0.577604 + 1.63290i) q^{57} +(5.75831 - 5.75831i) q^{58} +9.91906 q^{59} +(1.26938 - 3.65905i) q^{60} -10.5422 q^{61} +(5.24666 - 5.24666i) q^{62} +(1.51125 + 14.2832i) q^{63} +1.00000i q^{64} +(-7.81614 + 7.91158i) q^{65} +(-0.914660 - 1.91591i) q^{66} +(6.00309 + 6.00309i) q^{67} +(0.826034 + 0.826034i) q^{68} +(-1.10509 - 2.31481i) q^{69} +(-10.7053 + 0.0649592i) q^{70} +8.35839i q^{71} +(-0.315656 - 2.98335i) q^{72} +(-3.99393 + 3.99393i) q^{73} -8.25017 q^{74} +(-8.19896 - 2.78873i) q^{75} -1.00000 q^{76} +(-4.14960 + 4.14960i) q^{77} +(-2.87279 + 8.12146i) q^{78} +6.75057i q^{79} +(2.23603 - 0.0135681i) q^{80} +(1.88342 + 8.80072i) q^{81} +(2.50013 + 2.50013i) q^{82} +(-0.717790 - 0.717790i) q^{83} +(-7.48341 + 3.57259i) q^{84} +(1.83583 - 1.85824i) q^{85} +3.80067i q^{86} +(-13.2975 - 4.70370i) q^{87} +(0.866730 - 0.866730i) q^{88} +0.384471 q^{89} +(-6.66656 + 0.746293i) q^{90} +23.8120 q^{91} +(1.04719 - 1.04719i) q^{92} +(-12.1160 - 4.28576i) q^{93} -9.68521i q^{94} +(0.0135681 + 2.23603i) q^{95} +(1.56306 - 0.746209i) q^{96} +(-12.5444 - 12.5444i) q^{97} +(11.2583 + 11.2583i) q^{98} +(-2.31217 + 2.85934i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36q + 4q^{3} + 4q^{6} + 20q^{7} + O(q^{10}) \) \( 36q + 4q^{3} + 4q^{6} + 20q^{7} - 4q^{10} - 4q^{12} + 8q^{13} + 4q^{15} - 36q^{16} + 16q^{21} - 4q^{22} + 16q^{25} - 44q^{27} + 20q^{28} + 32q^{30} - 24q^{31} - 4q^{33} + 4q^{36} - 8q^{40} + 12q^{42} - 8q^{43} + 28q^{45} - 16q^{46} - 4q^{48} + 40q^{51} - 8q^{52} - 36q^{55} - 4q^{57} + 44q^{58} + 16q^{60} - 120q^{61} - 12q^{63} + 80q^{67} - 36q^{70} + 44q^{73} + 4q^{75} - 36q^{76} - 64q^{78} + 36q^{81} + 8q^{82} - 24q^{85} - 28q^{87} - 4q^{88} + 44q^{90} - 72q^{93} - 4q^{96} + 92q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/570\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(211\) \(457\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 0.707107i 0.500000 0.500000i
\(3\) −1.63290 0.577604i −0.942757 0.333480i
\(4\) 1.00000i 0.500000i
\(5\) −2.23603 + 0.0135681i −0.999982 + 0.00606782i
\(6\) −1.56306 + 0.746209i −0.638119 + 0.304639i
\(7\) 3.38538 + 3.38538i 1.27955 + 1.27955i 0.940917 + 0.338638i \(0.109966\pi\)
0.338638 + 0.940917i \(0.390034\pi\)
\(8\) −0.707107 0.707107i −0.250000 0.250000i
\(9\) 2.33275 + 1.88634i 0.777582 + 0.628781i
\(10\) −1.57152 + 1.59070i −0.496957 + 0.503025i
\(11\) 1.22574i 0.369575i 0.982779 + 0.184787i \(0.0591597\pi\)
−0.982779 + 0.184787i \(0.940840\pi\)
\(12\) −0.577604 + 1.63290i −0.166740 + 0.471379i
\(13\) 3.51689 3.51689i 0.975410 0.975410i −0.0242950 0.999705i \(-0.507734\pi\)
0.999705 + 0.0242950i \(0.00773410\pi\)
\(14\) 4.78765 1.27955
\(15\) 3.65905 + 1.26938i 0.944763 + 0.327753i
\(16\) −1.00000 −0.250000
\(17\) −0.826034 + 0.826034i −0.200343 + 0.200343i −0.800147 0.599804i \(-0.795245\pi\)
0.599804 + 0.800147i \(0.295245\pi\)
\(18\) 2.98335 0.315656i 0.703182 0.0744008i
\(19\) 1.00000i 0.229416i
\(20\) 0.0135681 + 2.23603i 0.00303391 + 0.499991i
\(21\) −3.57259 7.48341i −0.779604 1.63301i
\(22\) 0.866730 + 0.866730i 0.184787 + 0.184787i
\(23\) 1.04719 + 1.04719i 0.218353 + 0.218353i 0.807804 0.589451i \(-0.200656\pi\)
−0.589451 + 0.807804i \(0.700656\pi\)
\(24\) 0.746209 + 1.56306i 0.152319 + 0.319059i
\(25\) 4.99963 0.0606771i 0.999926 0.0121354i
\(26\) 4.97363i 0.975410i
\(27\) −2.71959 4.42762i −0.523386 0.852096i
\(28\) 3.38538 3.38538i 0.639777 0.639777i
\(29\) 8.14348 1.51221 0.756103 0.654453i \(-0.227101\pi\)
0.756103 + 0.654453i \(0.227101\pi\)
\(30\) 3.48493 1.68975i 0.636258 0.308505i
\(31\) 7.41990 1.33265 0.666327 0.745660i \(-0.267866\pi\)
0.666327 + 0.745660i \(0.267866\pi\)
\(32\) −0.707107 + 0.707107i −0.125000 + 0.125000i
\(33\) 0.707993 2.00152i 0.123246 0.348419i
\(34\) 1.16819i 0.200343i
\(35\) −7.61574 7.52387i −1.28730 1.27177i
\(36\) 1.88634 2.33275i 0.314390 0.388791i
\(37\) −5.83375 5.83375i −0.959063 0.959063i 0.0401316 0.999194i \(-0.487222\pi\)
−0.999194 + 0.0401316i \(0.987222\pi\)
\(38\) −0.707107 0.707107i −0.114708 0.114708i
\(39\) −7.77411 + 3.71137i −1.24485 + 0.594295i
\(40\) 1.59070 + 1.57152i 0.251512 + 0.248478i
\(41\) 3.53572i 0.552187i 0.961131 + 0.276093i \(0.0890399\pi\)
−0.961131 + 0.276093i \(0.910960\pi\)
\(42\) −7.81778 2.76537i −1.20631 0.426706i
\(43\) −2.68748 + 2.68748i −0.409836 + 0.409836i −0.881681 0.471845i \(-0.843588\pi\)
0.471845 + 0.881681i \(0.343588\pi\)
\(44\) 1.22574 0.184787
\(45\) −5.24168 4.18626i −0.781383 0.624051i
\(46\) 1.48094 0.218353
\(47\) 6.84848 6.84848i 0.998953 0.998953i −0.00104620 0.999999i \(-0.500333\pi\)
0.999999 + 0.00104620i \(0.000333015\pi\)
\(48\) 1.63290 + 0.577604i 0.235689 + 0.0833699i
\(49\) 15.9216i 2.27452i
\(50\) 3.49237 3.57818i 0.493895 0.506031i
\(51\) 1.82595 0.871713i 0.255685 0.122064i
\(52\) −3.51689 3.51689i −0.487705 0.487705i
\(53\) 3.40629 + 3.40629i 0.467890 + 0.467890i 0.901230 0.433340i \(-0.142665\pi\)
−0.433340 + 0.901230i \(0.642665\pi\)
\(54\) −5.05384 1.20776i −0.687741 0.164355i
\(55\) −0.0166309 2.74079i −0.00224251 0.369568i
\(56\) 4.78765i 0.639777i
\(57\) −0.577604 + 1.63290i −0.0765055 + 0.216283i
\(58\) 5.75831 5.75831i 0.756103 0.756103i
\(59\) 9.91906 1.29135 0.645676 0.763612i \(-0.276576\pi\)
0.645676 + 0.763612i \(0.276576\pi\)
\(60\) 1.26938 3.65905i 0.163877 0.472382i
\(61\) −10.5422 −1.34979 −0.674894 0.737915i \(-0.735811\pi\)
−0.674894 + 0.737915i \(0.735811\pi\)
\(62\) 5.24666 5.24666i 0.666327 0.666327i
\(63\) 1.51125 + 14.2832i 0.190400 + 1.79952i
\(64\) 1.00000i 0.125000i
\(65\) −7.81614 + 7.91158i −0.969473 + 0.981310i
\(66\) −0.914660 1.91591i −0.112587 0.235833i
\(67\) 6.00309 + 6.00309i 0.733394 + 0.733394i 0.971291 0.237896i \(-0.0764579\pi\)
−0.237896 + 0.971291i \(0.576458\pi\)
\(68\) 0.826034 + 0.826034i 0.100171 + 0.100171i
\(69\) −1.10509 2.31481i −0.133038 0.278671i
\(70\) −10.7053 + 0.0649592i −1.27953 + 0.00776411i
\(71\) 8.35839i 0.991958i 0.868334 + 0.495979i \(0.165191\pi\)
−0.868334 + 0.495979i \(0.834809\pi\)
\(72\) −0.315656 2.98335i −0.0372004 0.351591i
\(73\) −3.99393 + 3.99393i −0.467454 + 0.467454i −0.901089 0.433635i \(-0.857231\pi\)
0.433635 + 0.901089i \(0.357231\pi\)
\(74\) −8.25017 −0.959063
\(75\) −8.19896 2.78873i −0.946735 0.322014i
\(76\) −1.00000 −0.114708
\(77\) −4.14960 + 4.14960i −0.472891 + 0.472891i
\(78\) −2.87279 + 8.12146i −0.325279 + 0.919575i
\(79\) 6.75057i 0.759498i 0.925090 + 0.379749i \(0.123990\pi\)
−0.925090 + 0.379749i \(0.876010\pi\)
\(80\) 2.23603 0.0135681i 0.249995 0.00151695i
\(81\) 1.88342 + 8.80072i 0.209269 + 0.977858i
\(82\) 2.50013 + 2.50013i 0.276093 + 0.276093i
\(83\) −0.717790 0.717790i −0.0787877 0.0787877i 0.666615 0.745402i \(-0.267743\pi\)
−0.745402 + 0.666615i \(0.767743\pi\)
\(84\) −7.48341 + 3.57259i −0.816507 + 0.389802i
\(85\) 1.83583 1.85824i 0.199123 0.201555i
\(86\) 3.80067i 0.409836i
\(87\) −13.2975 4.70370i −1.42564 0.504290i
\(88\) 0.866730 0.866730i 0.0923937 0.0923937i
\(89\) 0.384471 0.0407539 0.0203769 0.999792i \(-0.493513\pi\)
0.0203769 + 0.999792i \(0.493513\pi\)
\(90\) −6.66656 + 0.746293i −0.702717 + 0.0786662i
\(91\) 23.8120 2.49618
\(92\) 1.04719 1.04719i 0.109177 0.109177i
\(93\) −12.1160 4.28576i −1.25637 0.444413i
\(94\) 9.68521i 0.998953i
\(95\) 0.0135681 + 2.23603i 0.00139205 + 0.229412i
\(96\) 1.56306 0.746209i 0.159530 0.0761597i
\(97\) −12.5444 12.5444i −1.27369 1.27369i −0.944137 0.329554i \(-0.893101\pi\)
−0.329554 0.944137i \(-0.606899\pi\)
\(98\) 11.2583 + 11.2583i 1.13726 + 1.13726i
\(99\) −2.31217 + 2.85934i −0.232382 + 0.287375i
\(100\) −0.0606771 4.99963i −0.00606771 0.499963i
\(101\) 1.19949i 0.119354i 0.998218 + 0.0596768i \(0.0190070\pi\)
−0.998218 + 0.0596768i \(0.980993\pi\)
\(102\) 0.674750 1.90754i 0.0668102 0.188875i
\(103\) 13.1711 13.1711i 1.29778 1.29778i 0.367931 0.929853i \(-0.380066\pi\)
0.929853 0.367931i \(-0.119934\pi\)
\(104\) −4.97363 −0.487705
\(105\) 8.08995 + 16.6846i 0.789498 + 1.62825i
\(106\) 4.81722 0.467890
\(107\) −9.98389 + 9.98389i −0.965179 + 0.965179i −0.999414 0.0342348i \(-0.989101\pi\)
0.0342348 + 0.999414i \(0.489101\pi\)
\(108\) −4.42762 + 2.71959i −0.426048 + 0.261693i
\(109\) 8.95394i 0.857632i 0.903392 + 0.428816i \(0.141069\pi\)
−0.903392 + 0.428816i \(0.858931\pi\)
\(110\) −1.94979 1.92627i −0.185905 0.183663i
\(111\) 6.15635 + 12.8956i 0.584335 + 1.22399i
\(112\) −3.38538 3.38538i −0.319889 0.319889i
\(113\) −13.3747 13.3747i −1.25818 1.25818i −0.951959 0.306225i \(-0.900934\pi\)
−0.306225 0.951959i \(-0.599066\pi\)
\(114\) 0.746209 + 1.56306i 0.0698889 + 0.146394i
\(115\) −2.35574 2.32733i −0.219674 0.217024i
\(116\) 8.14348i 0.756103i
\(117\) 14.8381 1.56996i 1.37178 0.145142i
\(118\) 7.01383 7.01383i 0.645676 0.645676i
\(119\) −5.59288 −0.512699
\(120\) −1.68975 3.48493i −0.154253 0.318129i
\(121\) 9.49756 0.863414
\(122\) −7.45445 + 7.45445i −0.674894 + 0.674894i
\(123\) 2.04225 5.77349i 0.184143 0.520578i
\(124\) 7.41990i 0.666327i
\(125\) −11.1785 + 0.203511i −0.999834 + 0.0182026i
\(126\) 11.1684 + 9.03116i 0.994959 + 0.804560i
\(127\) −6.46428 6.46428i −0.573612 0.573612i 0.359524 0.933136i \(-0.382939\pi\)
−0.933136 + 0.359524i \(0.882939\pi\)
\(128\) 0.707107 + 0.707107i 0.0625000 + 0.0625000i
\(129\) 5.94069 2.83609i 0.523048 0.249704i
\(130\) 0.0674826 + 11.1212i 0.00591861 + 0.975392i
\(131\) 4.64733i 0.406039i −0.979175 0.203020i \(-0.934924\pi\)
0.979175 0.203020i \(-0.0650755\pi\)
\(132\) −2.00152 0.707993i −0.174210 0.0616229i
\(133\) 3.38538 3.38538i 0.293550 0.293550i
\(134\) 8.48965 0.733394
\(135\) 6.14116 + 9.86338i 0.528547 + 0.848904i
\(136\) 1.16819 0.100171
\(137\) 0.825480 0.825480i 0.0705255 0.0705255i −0.670964 0.741490i \(-0.734120\pi\)
0.741490 + 0.670964i \(0.234120\pi\)
\(138\) −2.41824 0.855399i −0.205854 0.0728164i
\(139\) 3.47441i 0.294695i −0.989085 0.147348i \(-0.952926\pi\)
0.989085 0.147348i \(-0.0470736\pi\)
\(140\) −7.52387 + 7.61574i −0.635883 + 0.643648i
\(141\) −15.1386 + 7.22720i −1.27490 + 0.608640i
\(142\) 5.91027 + 5.91027i 0.495979 + 0.495979i
\(143\) 4.31080 + 4.31080i 0.360487 + 0.360487i
\(144\) −2.33275 1.88634i −0.194396 0.157195i
\(145\) −18.2090 + 0.110491i −1.51218 + 0.00917579i
\(146\) 5.64827i 0.467454i
\(147\) 9.19640 25.9985i 0.758506 2.14432i
\(148\) −5.83375 + 5.83375i −0.479531 + 0.479531i
\(149\) 1.10597 0.0906042 0.0453021 0.998973i \(-0.485575\pi\)
0.0453021 + 0.998973i \(0.485575\pi\)
\(150\) −7.76947 + 3.82561i −0.634375 + 0.312360i
\(151\) 3.28699 0.267491 0.133746 0.991016i \(-0.457299\pi\)
0.133746 + 0.991016i \(0.457299\pi\)
\(152\) −0.707107 + 0.707107i −0.0573539 + 0.0573539i
\(153\) −3.48511 + 0.368745i −0.281755 + 0.0298113i
\(154\) 5.86842i 0.472891i
\(155\) −16.5911 + 0.100674i −1.33263 + 0.00808630i
\(156\) 3.71137 + 7.77411i 0.297148 + 0.622427i
\(157\) −12.0134 12.0134i −0.958773 0.958773i 0.0404098 0.999183i \(-0.487134\pi\)
−0.999183 + 0.0404098i \(0.987134\pi\)
\(158\) 4.77337 + 4.77337i 0.379749 + 0.379749i
\(159\) −3.59466 7.52963i −0.285075 0.597138i
\(160\) 1.57152 1.59070i 0.124239 0.125756i
\(161\) 7.09025i 0.558790i
\(162\) 7.55483 + 4.89127i 0.593564 + 0.384295i
\(163\) 3.82552 3.82552i 0.299638 0.299638i −0.541234 0.840872i \(-0.682043\pi\)
0.840872 + 0.541234i \(0.182043\pi\)
\(164\) 3.53572 0.276093
\(165\) −1.55593 + 4.48505i −0.121129 + 0.349161i
\(166\) −1.01511 −0.0787877
\(167\) −14.1056 + 14.1056i −1.09152 + 1.09152i −0.0961553 + 0.995366i \(0.530655\pi\)
−0.995366 + 0.0961553i \(0.969345\pi\)
\(168\) −2.76537 + 7.81778i −0.213353 + 0.603155i
\(169\) 11.7370i 0.902849i
\(170\) −0.0158500 2.61210i −0.00121564 0.200339i
\(171\) 1.88634 2.33275i 0.144252 0.178390i
\(172\) 2.68748 + 2.68748i 0.204918 + 0.204918i
\(173\) −6.57463 6.57463i −0.499860 0.499860i 0.411535 0.911394i \(-0.364993\pi\)
−0.911394 + 0.411535i \(0.864993\pi\)
\(174\) −12.7288 + 6.07674i −0.964966 + 0.460676i
\(175\) 17.1311 + 16.7203i 1.29499 + 1.26393i
\(176\) 1.22574i 0.0923937i
\(177\) −16.1969 5.72929i −1.21743 0.430639i
\(178\) 0.271862 0.271862i 0.0203769 0.0203769i
\(179\) 11.2885 0.843741 0.421870 0.906656i \(-0.361374\pi\)
0.421870 + 0.906656i \(0.361374\pi\)
\(180\) −4.18626 + 5.24168i −0.312026 + 0.390692i
\(181\) −9.96083 −0.740383 −0.370191 0.928956i \(-0.620708\pi\)
−0.370191 + 0.928956i \(0.620708\pi\)
\(182\) 16.8377 16.8377i 1.24809 1.24809i
\(183\) 17.2144 + 6.08920i 1.27252 + 0.450127i
\(184\) 1.48094i 0.109177i
\(185\) 13.1236 + 12.9653i 0.964865 + 0.953226i
\(186\) −11.5978 + 5.53680i −0.850391 + 0.405978i
\(187\) −1.01250 1.01250i −0.0740416 0.0740416i
\(188\) −6.84848 6.84848i −0.499477 0.499477i
\(189\) 5.78233 24.1961i 0.420602 1.76000i
\(190\) 1.59070 + 1.57152i 0.115402 + 0.114010i
\(191\) 10.1454i 0.734095i −0.930202 0.367048i \(-0.880369\pi\)
0.930202 0.367048i \(-0.119631\pi\)
\(192\) 0.577604 1.63290i 0.0416850 0.117845i
\(193\) 1.33016 1.33016i 0.0957468 0.0957468i −0.657611 0.753358i \(-0.728433\pi\)
0.753358 + 0.657611i \(0.228433\pi\)
\(194\) −17.7405 −1.27369
\(195\) 17.3328 8.40421i 1.24123 0.601838i
\(196\) 15.9216 1.13726
\(197\) −3.67465 + 3.67465i −0.261808 + 0.261808i −0.825788 0.563980i \(-0.809269\pi\)
0.563980 + 0.825788i \(0.309269\pi\)
\(198\) 0.386912 + 3.65681i 0.0274966 + 0.259878i
\(199\) 0.894086i 0.0633801i −0.999498 0.0316900i \(-0.989911\pi\)
0.999498 0.0316900i \(-0.0100889\pi\)
\(200\) −3.57818 3.49237i −0.253015 0.246948i
\(201\) −6.33506 13.2699i −0.446841 0.935985i
\(202\) 0.848167 + 0.848167i 0.0596768 + 0.0596768i
\(203\) 27.5688 + 27.5688i 1.93495 + 1.93495i
\(204\) −0.871713 1.82595i −0.0610321 0.127842i
\(205\) −0.0479729 7.90597i −0.00335057 0.552177i
\(206\) 18.6267i 1.29778i
\(207\) 0.467469 + 4.41817i 0.0324913 + 0.307084i
\(208\) −3.51689 + 3.51689i −0.243852 + 0.243852i
\(209\) 1.22574 0.0847863
\(210\) 17.5183 + 6.07737i 1.20888 + 0.419378i
\(211\) −0.656325 −0.0451833 −0.0225916 0.999745i \(-0.507192\pi\)
−0.0225916 + 0.999745i \(0.507192\pi\)
\(212\) 3.40629 3.40629i 0.233945 0.233945i
\(213\) 4.82784 13.6484i 0.330798 0.935176i
\(214\) 14.1194i 0.965179i
\(215\) 5.97281 6.04574i 0.407342 0.412316i
\(216\) −1.20776 + 5.05384i −0.0821775 + 0.343870i
\(217\) 25.1192 + 25.1192i 1.70520 + 1.70520i
\(218\) 6.33139 + 6.33139i 0.428816 + 0.428816i
\(219\) 8.82861 4.21479i 0.596582 0.284809i
\(220\) −2.74079 + 0.0166309i −0.184784 + 0.00112126i
\(221\) 5.81014i 0.390832i
\(222\) 13.4717 + 4.76533i 0.904163 + 0.319828i
\(223\) −5.81309 + 5.81309i −0.389273 + 0.389273i −0.874428 0.485155i \(-0.838763\pi\)
0.485155 + 0.874428i \(0.338763\pi\)
\(224\) −4.78765 −0.319889
\(225\) 11.7773 + 9.28948i 0.785156 + 0.619298i
\(226\) −18.9147 −1.25818
\(227\) 11.1211 11.1211i 0.738133 0.738133i −0.234083 0.972217i \(-0.575209\pi\)
0.972217 + 0.234083i \(0.0752088\pi\)
\(228\) 1.63290 + 0.577604i 0.108142 + 0.0382528i
\(229\) 15.9766i 1.05576i 0.849318 + 0.527881i \(0.177013\pi\)
−0.849318 + 0.527881i \(0.822987\pi\)
\(230\) −3.31143 + 0.0200935i −0.218349 + 0.00132493i
\(231\) 9.17273 4.37907i 0.603521 0.288122i
\(232\) −5.75831 5.75831i −0.378051 0.378051i
\(233\) −10.3048 10.3048i −0.675090 0.675090i 0.283795 0.958885i \(-0.408407\pi\)
−0.958885 + 0.283795i \(0.908407\pi\)
\(234\) 9.38198 11.6022i 0.613319 0.758462i
\(235\) −15.2205 + 15.4063i −0.992873 + 1.00500i
\(236\) 9.91906i 0.645676i
\(237\) 3.89915 11.0230i 0.253277 0.716022i
\(238\) −3.95477 + 3.95477i −0.256349 + 0.256349i
\(239\) −16.1045 −1.04172 −0.520858 0.853644i \(-0.674388\pi\)
−0.520858 + 0.853644i \(0.674388\pi\)
\(240\) −3.65905 1.26938i −0.236191 0.0819383i
\(241\) −19.9193 −1.28312 −0.641559 0.767074i \(-0.721712\pi\)
−0.641559 + 0.767074i \(0.721712\pi\)
\(242\) 6.71579 6.71579i 0.431707 0.431707i
\(243\) 2.00789 15.4586i 0.128806 0.991670i
\(244\) 10.5422i 0.674894i
\(245\) −0.216026 35.6012i −0.0138014 2.27448i
\(246\) −2.63839 5.52656i −0.168218 0.352361i
\(247\) −3.51689 3.51689i −0.223774 0.223774i
\(248\) −5.24666 5.24666i −0.333163 0.333163i
\(249\) 0.757484 + 1.58668i 0.0480036 + 0.100552i
\(250\) −7.76048 + 8.04829i −0.490816 + 0.509018i
\(251\) 17.8998i 1.12982i −0.825151 0.564912i \(-0.808910\pi\)
0.825151 0.564912i \(-0.191090\pi\)
\(252\) 14.2832 1.51125i 0.899759 0.0951998i
\(253\) −1.28358 + 1.28358i −0.0806979 + 0.0806979i
\(254\) −9.14187 −0.573612
\(255\) −4.07106 + 1.97395i −0.254939 + 0.123613i
\(256\) 1.00000 0.0625000
\(257\) −14.5464 + 14.5464i −0.907378 + 0.907378i −0.996060 0.0886822i \(-0.971734\pi\)
0.0886822 + 0.996060i \(0.471734\pi\)
\(258\) 2.19528 6.20612i 0.136672 0.386376i
\(259\) 39.4990i 2.45435i
\(260\) 7.91158 + 7.81614i 0.490655 + 0.484737i
\(261\) 18.9967 + 15.3614i 1.17586 + 0.950846i
\(262\) −3.28616 3.28616i −0.203020 0.203020i
\(263\) 6.05674 + 6.05674i 0.373475 + 0.373475i 0.868741 0.495266i \(-0.164930\pi\)
−0.495266 + 0.868741i \(0.664930\pi\)
\(264\) −1.91591 + 0.914660i −0.117916 + 0.0562934i
\(265\) −7.66277 7.57034i −0.470720 0.465042i
\(266\) 4.78765i 0.293550i
\(267\) −0.627804 0.222072i −0.0384210 0.0135906i
\(268\) 6.00309 6.00309i 0.366697 0.366697i
\(269\) −9.51326 −0.580034 −0.290017 0.957022i \(-0.593661\pi\)
−0.290017 + 0.957022i \(0.593661\pi\)
\(270\) 11.3169 + 2.63201i 0.688725 + 0.160179i
\(271\) 0.405502 0.0246325 0.0123162 0.999924i \(-0.496080\pi\)
0.0123162 + 0.999924i \(0.496080\pi\)
\(272\) 0.826034 0.826034i 0.0500857 0.0500857i
\(273\) −38.8828 13.7539i −2.35329 0.832426i
\(274\) 1.16740i 0.0705255i
\(275\) 0.0743744 + 6.12825i 0.00448494 + 0.369548i
\(276\) −2.31481 + 1.10509i −0.139335 + 0.0665189i
\(277\) 3.15621 + 3.15621i 0.189639 + 0.189639i 0.795540 0.605901i \(-0.207187\pi\)
−0.605901 + 0.795540i \(0.707187\pi\)
\(278\) −2.45678 2.45678i −0.147348 0.147348i
\(279\) 17.3088 + 13.9965i 1.03625 + 0.837947i
\(280\) 0.0649592 + 10.7053i 0.00388205 + 0.639765i
\(281\) 11.9223i 0.711227i −0.934633 0.355613i \(-0.884272\pi\)
0.934633 0.355613i \(-0.115728\pi\)
\(282\) −5.59422 + 15.8150i −0.333131 + 0.941770i
\(283\) 11.1386 11.1386i 0.662120 0.662120i −0.293759 0.955879i \(-0.594906\pi\)
0.955879 + 0.293759i \(0.0949063\pi\)
\(284\) 8.35839 0.495979
\(285\) 1.26938 3.65905i 0.0751917 0.216744i
\(286\) 6.09639 0.360487
\(287\) −11.9698 + 11.9698i −0.706553 + 0.706553i
\(288\) −2.98335 + 0.315656i −0.175795 + 0.0186002i
\(289\) 15.6353i 0.919726i
\(290\) −12.7976 + 12.9539i −0.751501 + 0.760677i
\(291\) 13.2381 + 27.7295i 0.776031 + 1.62553i
\(292\) 3.99393 + 3.99393i 0.233727 + 0.233727i
\(293\) 3.32969 + 3.32969i 0.194522 + 0.194522i 0.797647 0.603125i \(-0.206078\pi\)
−0.603125 + 0.797647i \(0.706078\pi\)
\(294\) −11.8809 24.8866i −0.692907 1.45141i
\(295\) −22.1793 + 0.134582i −1.29133 + 0.00783569i
\(296\) 8.25017i 0.479531i
\(297\) 5.42712 3.33352i 0.314913 0.193430i
\(298\) 0.782036 0.782036i 0.0453021 0.0453021i
\(299\) 7.36568 0.425968
\(300\) −2.78873 + 8.19896i −0.161007 + 0.473367i
\(301\) −18.1963 −1.04882
\(302\) 2.32425 2.32425i 0.133746 0.133746i
\(303\) 0.692830 1.95865i 0.0398020 0.112522i
\(304\) 1.00000i 0.0573539i
\(305\) 23.5726 0.143037i 1.34976 0.00819027i
\(306\) −2.20360 + 2.72509i −0.125972 + 0.155783i
\(307\) −1.69015 1.69015i −0.0964621 0.0964621i 0.657229 0.753691i \(-0.271728\pi\)
−0.753691 + 0.657229i \(0.771728\pi\)
\(308\) 4.14960 + 4.14960i 0.236446 + 0.236446i
\(309\) −29.1147 + 13.8994i −1.65628 + 0.790711i
\(310\) −11.6605 + 11.8029i −0.662271 + 0.670358i
\(311\) 14.3337i 0.812790i −0.913697 0.406395i \(-0.866786\pi\)
0.913697 0.406395i \(-0.133214\pi\)
\(312\) 8.12146 + 2.87279i 0.459787 + 0.162640i
\(313\) 1.56414 1.56414i 0.0884102 0.0884102i −0.661519 0.749929i \(-0.730088\pi\)
0.749929 + 0.661519i \(0.230088\pi\)
\(314\) −16.9895 −0.958773
\(315\) −3.57299 31.9172i −0.201315 1.79833i
\(316\) 6.75057 0.379749
\(317\) 21.5987 21.5987i 1.21311 1.21311i 0.243107 0.969999i \(-0.421833\pi\)
0.969999 0.243107i \(-0.0781666\pi\)
\(318\) −7.86606 2.78245i −0.441107 0.156032i
\(319\) 9.98179i 0.558873i
\(320\) −0.0135681 2.23603i −0.000758477 0.124998i
\(321\) 22.0695 10.5360i 1.23180 0.588062i
\(322\) 5.01356 + 5.01356i 0.279395 + 0.279395i
\(323\) 0.826034 + 0.826034i 0.0459618 + 0.0459618i
\(324\) 8.80072 1.88342i 0.488929 0.104635i
\(325\) 17.3698 17.7966i 0.963501 0.987175i
\(326\) 5.41010i 0.299638i
\(327\) 5.17183 14.6209i 0.286003 0.808538i
\(328\) 2.50013 2.50013i 0.138047 0.138047i
\(329\) 46.3694 2.55643
\(330\) 2.07120 + 4.27162i 0.114016 + 0.235145i
\(331\) −6.37126 −0.350196 −0.175098 0.984551i \(-0.556024\pi\)
−0.175098 + 0.984551i \(0.556024\pi\)
\(332\) −0.717790 + 0.717790i −0.0393939 + 0.0393939i
\(333\) −2.60421 24.6131i −0.142710 1.34879i
\(334\) 19.9483i 1.09152i
\(335\) −13.5045 13.3416i −0.737831 0.728931i
\(336\) 3.57259 + 7.48341i 0.194901 + 0.408254i
\(337\) 1.13280 + 1.13280i 0.0617073 + 0.0617073i 0.737287 0.675580i \(-0.236107\pi\)
−0.675580 + 0.737287i \(0.736107\pi\)
\(338\) −8.29934 8.29934i −0.451424 0.451424i
\(339\) 14.1143 + 29.5648i 0.766583 + 1.60574i
\(340\) −1.85824 1.83583i −0.100777 0.0995617i
\(341\) 9.09487i 0.492515i
\(342\) −0.315656 2.98335i −0.0170687 0.161321i
\(343\) −30.2032 + 30.2032i −1.63082 + 1.63082i
\(344\) 3.80067 0.204918
\(345\) 2.50243 + 5.16099i 0.134726 + 0.277858i
\(346\) −9.29793 −0.499860
\(347\) −22.1434 + 22.1434i −1.18872 + 1.18872i −0.211296 + 0.977422i \(0.567768\pi\)
−0.977422 + 0.211296i \(0.932232\pi\)
\(348\) −4.70370 + 13.2975i −0.252145 + 0.712821i
\(349\) 19.6754i 1.05320i −0.850113 0.526600i \(-0.823467\pi\)
0.850113 0.526600i \(-0.176533\pi\)
\(350\) 23.9365 0.290501i 1.27946 0.0155279i
\(351\) −25.1360 6.00695i −1.34166 0.320627i
\(352\) −0.866730 0.866730i −0.0461969 0.0461969i
\(353\) 24.9047 + 24.9047i 1.32554 + 1.32554i 0.909214 + 0.416330i \(0.136684\pi\)
0.416330 + 0.909214i \(0.363316\pi\)
\(354\) −15.5041 + 7.40169i −0.824035 + 0.393396i
\(355\) −0.113407 18.6896i −0.00601902 0.991940i
\(356\) 0.384471i 0.0203769i
\(357\) 9.13264 + 3.23047i 0.483350 + 0.170975i
\(358\) 7.98216 7.98216i 0.421870 0.421870i
\(359\) −20.9304 −1.10466 −0.552331 0.833625i \(-0.686261\pi\)
−0.552331 + 0.833625i \(0.686261\pi\)
\(360\) 0.746293 + 6.66656i 0.0393331 + 0.351359i
\(361\) −1.00000 −0.0526316
\(362\) −7.04337 + 7.04337i −0.370191 + 0.370191i
\(363\) −15.5086 5.48583i −0.813990 0.287931i
\(364\) 23.8120i 1.24809i
\(365\) 8.87634 8.98472i 0.464609 0.470282i
\(366\) 16.4781 7.86667i 0.861325 0.411198i
\(367\) 26.3718 + 26.3718i 1.37660 + 1.37660i 0.850298 + 0.526301i \(0.176422\pi\)
0.526301 + 0.850298i \(0.323578\pi\)
\(368\) −1.04719 1.04719i −0.0545883 0.0545883i
\(369\) −6.66958 + 8.24795i −0.347205 + 0.429371i
\(370\) 18.4476 0.111939i 0.959045 0.00581942i
\(371\) 23.0632i 1.19738i
\(372\) −4.28576 + 12.1160i −0.222206 + 0.628184i
\(373\) −6.66242 + 6.66242i −0.344967 + 0.344967i −0.858231 0.513264i \(-0.828436\pi\)
0.513264 + 0.858231i \(0.328436\pi\)
\(374\) −1.43190 −0.0740416
\(375\) 18.3709 + 6.12442i 0.948671 + 0.316264i
\(376\) −9.68521 −0.499477
\(377\) 28.6397 28.6397i 1.47502 1.47502i
\(378\) −13.0205 21.1979i −0.669701 1.09030i
\(379\) 0.205871i 0.0105749i 0.999986 + 0.00528745i \(0.00168305\pi\)
−0.999986 + 0.00528745i \(0.998317\pi\)
\(380\) 2.23603 0.0135681i 0.114706 0.000696027i
\(381\) 6.82175 + 14.2893i 0.349489 + 0.732065i
\(382\) −7.17388 7.17388i −0.367048 0.367048i
\(383\) −8.26926 8.26926i −0.422539 0.422539i 0.463538 0.886077i \(-0.346580\pi\)
−0.886077 + 0.463538i \(0.846580\pi\)
\(384\) −0.746209 1.56306i −0.0380798 0.0797648i
\(385\) 9.22232 9.33493i 0.470013 0.475752i
\(386\) 1.88113i 0.0957468i
\(387\) −11.3387 + 1.19970i −0.576379 + 0.0609843i
\(388\) −12.5444 + 12.5444i −0.636846 + 0.636846i
\(389\) −25.3999 −1.28782 −0.643912 0.765099i \(-0.722690\pi\)
−0.643912 + 0.765099i \(0.722690\pi\)
\(390\) 6.31344 18.1988i 0.319694 0.921532i
\(391\) −1.73002 −0.0874910
\(392\) 11.2583 11.2583i 0.568630 0.568630i
\(393\) −2.68432 + 7.58865i −0.135406 + 0.382797i
\(394\) 5.19674i 0.261808i
\(395\) −0.0915921 15.0944i −0.00460850 0.759484i
\(396\) 2.85934 + 2.31217i 0.143687 + 0.116191i
\(397\) 14.4297 + 14.4297i 0.724206 + 0.724206i 0.969459 0.245253i \(-0.0788711\pi\)
−0.245253 + 0.969459i \(0.578871\pi\)
\(398\) −0.632214 0.632214i −0.0316900 0.0316900i
\(399\) −7.48341 + 3.57259i −0.374639 + 0.178853i
\(400\) −4.99963 + 0.0606771i −0.249982 + 0.00303385i
\(401\) 8.03063i 0.401030i −0.979691 0.200515i \(-0.935738\pi\)
0.979691 0.200515i \(-0.0642616\pi\)
\(402\) −13.8628 4.90366i −0.691413 0.244572i
\(403\) 26.0950 26.0950i 1.29988 1.29988i
\(404\) 1.19949 0.0596768
\(405\) −4.33079 19.6531i −0.215199 0.976570i
\(406\) 38.9882 1.93495
\(407\) 7.15067 7.15067i 0.354445 0.354445i
\(408\) −1.90754 0.674750i −0.0944373 0.0334051i
\(409\) 13.8653i 0.685596i −0.939409 0.342798i \(-0.888625\pi\)
0.939409 0.342798i \(-0.111375\pi\)
\(410\) −5.62429 5.55644i −0.277764 0.274413i
\(411\) −1.82473 + 0.871129i −0.0900073 + 0.0429696i
\(412\) −13.1711 13.1711i −0.648892 0.648892i
\(413\) 33.5798 + 33.5798i 1.65235 + 1.65235i
\(414\) 3.45467 + 2.79357i 0.169788 + 0.137296i
\(415\) 1.61474 + 1.59526i 0.0792643 + 0.0783082i
\(416\) 4.97363i 0.243852i
\(417\) −2.00683 + 5.67337i −0.0982749 + 0.277826i
\(418\) 0.866730 0.866730i 0.0423931 0.0423931i
\(419\) 17.7272 0.866028 0.433014 0.901387i \(-0.357450\pi\)
0.433014 + 0.901387i \(0.357450\pi\)
\(420\) 16.6846 8.08995i 0.814127 0.394749i
\(421\) 2.65269 0.129284 0.0646420 0.997909i \(-0.479409\pi\)
0.0646420 + 0.997909i \(0.479409\pi\)
\(422\) −0.464092 + 0.464092i −0.0225916 + 0.0225916i
\(423\) 28.8943 3.05719i 1.40489 0.148646i
\(424\) 4.81722i 0.233945i
\(425\) −4.07974 + 4.17999i −0.197897 + 0.202759i
\(426\) −6.23711 13.0647i −0.302189 0.632987i
\(427\) −35.6893 35.6893i −1.72713 1.72713i
\(428\) 9.98389 + 9.98389i 0.482590 + 0.482590i
\(429\) −4.54918 9.52905i −0.219637 0.460067i
\(430\) −0.0515677 8.49839i −0.00248681 0.409829i
\(431\) 17.0087i 0.819280i −0.912247 0.409640i \(-0.865654\pi\)
0.912247 0.409640i \(-0.134346\pi\)
\(432\) 2.71959 + 4.42762i 0.130846 + 0.213024i
\(433\) 13.8732 13.8732i 0.666705 0.666705i −0.290247 0.956952i \(-0.593738\pi\)
0.956952 + 0.290247i \(0.0937375\pi\)
\(434\) 35.5239 1.70520
\(435\) 29.7974 + 10.3372i 1.42868 + 0.495630i
\(436\) 8.95394 0.428816
\(437\) 1.04719 1.04719i 0.0500937 0.0500937i
\(438\) 3.26246 9.22308i 0.155887 0.440696i
\(439\) 7.44257i 0.355214i 0.984101 + 0.177607i \(0.0568357\pi\)
−0.984101 + 0.177607i \(0.943164\pi\)
\(440\) −1.92627 + 1.94979i −0.0918314 + 0.0929526i
\(441\) −30.0337 + 37.1412i −1.43017 + 1.76863i
\(442\) 4.10839 + 4.10839i 0.195416 + 0.195416i
\(443\) −14.0091 14.0091i −0.665593 0.665593i 0.291100 0.956693i \(-0.405979\pi\)
−0.956693 + 0.291100i \(0.905979\pi\)
\(444\) 12.8956 6.15635i 0.611996 0.292168i
\(445\) −0.859688 + 0.00521653i −0.0407531 + 0.000247287i
\(446\) 8.22095i 0.389273i
\(447\) −1.80593 0.638810i −0.0854178 0.0302147i
\(448\) −3.38538 + 3.38538i −0.159944 + 0.159944i
\(449\) 17.0757 0.805851 0.402926 0.915233i \(-0.367993\pi\)
0.402926 + 0.915233i \(0.367993\pi\)
\(450\) 14.8965 1.75918i 0.702227 0.0829287i
\(451\) −4.33388 −0.204074
\(452\) −13.3747 + 13.3747i −0.629092 + 0.629092i
\(453\) −5.36734 1.89858i −0.252179 0.0892030i
\(454\) 15.7276i 0.738133i
\(455\) −53.2444 + 0.323083i −2.49613 + 0.0151464i
\(456\) 1.56306 0.746209i 0.0731972 0.0349445i
\(457\) −4.57545 4.57545i −0.214030 0.214030i 0.591947 0.805977i \(-0.298360\pi\)
−0.805977 + 0.591947i \(0.798360\pi\)
\(458\) 11.2971 + 11.2971i 0.527881 + 0.527881i
\(459\) 5.90384 + 1.41089i 0.275568 + 0.0658547i
\(460\) −2.32733 + 2.35574i −0.108512 + 0.109837i
\(461\) 0.120191i 0.00559787i −0.999996 0.00279893i \(-0.999109\pi\)
0.999996 0.00279893i \(-0.000890930\pi\)
\(462\) 3.38963 9.58257i 0.157700 0.445822i
\(463\) −5.82164 + 5.82164i −0.270555 + 0.270555i −0.829323 0.558769i \(-0.811274\pi\)
0.558769 + 0.829323i \(0.311274\pi\)
\(464\) −8.14348 −0.378051
\(465\) 27.1498 + 9.41869i 1.25904 + 0.436781i
\(466\) −14.5732 −0.675090
\(467\) −1.26700 + 1.26700i −0.0586298 + 0.0586298i −0.735814 0.677184i \(-0.763200\pi\)
0.677184 + 0.735814i \(0.263200\pi\)
\(468\) −1.56996 14.8381i −0.0725712 0.685890i
\(469\) 40.6455i 1.87684i
\(470\) 0.131410 + 21.6564i 0.00606147 + 0.998935i
\(471\) 12.6777 + 26.5557i 0.584159 + 1.22362i
\(472\) −7.01383 7.01383i −0.322838 0.322838i
\(473\) −3.29415 3.29415i −0.151465 0.151465i
\(474\) −5.03734 10.5516i −0.231373 0.484650i
\(475\) −0.0606771 4.99963i −0.00278406 0.229399i
\(476\) 5.59288i 0.256349i
\(477\) 1.52058 + 14.3714i 0.0696227 + 0.658023i
\(478\) −11.3876 + 11.3876i −0.520858 + 0.520858i
\(479\) −4.76857 −0.217881 −0.108941 0.994048i \(-0.534746\pi\)
−0.108941 + 0.994048i \(0.534746\pi\)
\(480\) −3.48493 + 1.68975i −0.159065 + 0.0771263i
\(481\) −41.0333 −1.87096
\(482\) −14.0851 + 14.0851i −0.641559 + 0.641559i
\(483\) 4.09536 11.5777i 0.186345 0.526803i
\(484\) 9.49756i 0.431707i
\(485\) 28.2198 + 27.8794i 1.28140 + 1.26594i
\(486\) −9.51109 12.3507i −0.431432 0.560238i
\(487\) 18.6777 + 18.6777i 0.846368 + 0.846368i 0.989678 0.143310i \(-0.0457747\pi\)
−0.143310 + 0.989678i \(0.545775\pi\)
\(488\) 7.45445 + 7.45445i 0.337447 + 0.337447i
\(489\) −8.45634 + 4.03707i −0.382409 + 0.182563i
\(490\) −25.3266 25.0211i −1.14414 1.13034i
\(491\) 42.9796i 1.93964i 0.243814 + 0.969822i \(0.421601\pi\)
−0.243814 + 0.969822i \(0.578399\pi\)
\(492\) −5.77349 2.04225i −0.260289 0.0920716i
\(493\) −6.72679 + 6.72679i −0.302959 + 0.302959i
\(494\) −4.97363 −0.223774
\(495\) 5.13127 6.42494i 0.230634 0.288780i
\(496\) −7.41990 −0.333163
\(497\) −28.2963 + 28.2963i −1.26926 + 1.26926i
\(498\) 1.65757 + 0.586331i 0.0742777 + 0.0262741i
\(499\) 20.8455i 0.933173i 0.884475 + 0.466587i \(0.154516\pi\)
−0.884475 + 0.466587i \(0.845484\pi\)
\(500\) 0.203511 + 11.1785i 0.00910128 + 0.499917i
\(501\) 31.1805 14.8856i 1.39304 0.665040i
\(502\) −12.6570 12.6570i −0.564912 0.564912i
\(503\) −15.7847 15.7847i −0.703804 0.703804i 0.261421 0.965225i \(-0.415809\pi\)
−0.965225 + 0.261421i \(0.915809\pi\)
\(504\) 9.03116 11.1684i 0.402280 0.497480i
\(505\) −0.0162747 2.68209i −0.000724216 0.119351i
\(506\) 1.81525i 0.0806979i
\(507\) −6.77936 + 19.1654i −0.301082 + 0.851167i
\(508\) −6.46428 + 6.46428i −0.286806 + 0.286806i
\(509\) 4.31039 0.191055 0.0955274 0.995427i \(-0.469546\pi\)
0.0955274 + 0.995427i \(0.469546\pi\)
\(510\) −1.48288 + 4.27446i −0.0656629 + 0.189276i
\(511\) −27.0420 −1.19627
\(512\) 0.707107 0.707107i 0.0312500 0.0312500i
\(513\) −4.42762 + 2.71959i −0.195484 + 0.120073i
\(514\) 20.5717i 0.907378i
\(515\) −29.2722 + 29.6296i −1.28989 + 1.30563i
\(516\) −2.83609 5.94069i −0.124852 0.261524i
\(517\) 8.39446 + 8.39446i 0.369188 + 0.369188i
\(518\) −27.9300 27.9300i −1.22717 1.22717i
\(519\) 6.93820 + 14.5333i 0.304553 + 0.637939i
\(520\) 11.1212 0.0674826i 0.487696 0.00295931i
\(521\) 11.7874i 0.516417i −0.966089 0.258208i \(-0.916868\pi\)
0.966089 0.258208i \(-0.0831321\pi\)
\(522\) 24.2948 2.57053i 1.06336 0.112509i
\(523\) −9.59018 + 9.59018i −0.419349 + 0.419349i −0.884979 0.465630i \(-0.845828\pi\)
0.465630 + 0.884979i \(0.345828\pi\)
\(524\) −4.64733 −0.203020
\(525\) −18.3157 37.1975i −0.799364 1.62343i
\(526\) 8.56553 0.373475
\(527\) −6.12909 + 6.12909i −0.266987 + 0.266987i
\(528\) −0.707993 + 2.00152i −0.0308114 + 0.0871048i
\(529\) 20.8068i 0.904644i
\(530\) −10.7714 + 0.0653603i −0.467881 + 0.00283907i
\(531\) 23.1387 + 18.7107i 1.00413 + 0.811977i
\(532\) −3.38538 3.38538i −0.146775 0.146775i
\(533\) 12.4347 + 12.4347i 0.538609 + 0.538609i
\(534\) −0.600953 + 0.286896i −0.0260058 + 0.0124152i
\(535\) 22.1888 22.4597i 0.959305 0.971018i
\(536\) 8.48965i 0.366697i
\(537\) −18.4330 6.52027i −0.795443 0.281370i
\(538\) −6.72689 + 6.72689i −0.290017 + 0.290017i
\(539\) −19.5158 −0.840605
\(540\) 9.86338 6.14116i 0.424452 0.264273i
\(541\) −29.8151 −1.28185 −0.640925 0.767603i \(-0.721449\pi\)
−0.640925 + 0.767603i \(0.721449\pi\)
\(542\) 0.286733 0.286733i 0.0123162 0.0123162i
\(543\) 16.2651 + 5.75341i 0.698001 + 0.246903i
\(544\) 1.16819i 0.0500857i
\(545\) −0.121488 20.0212i −0.00520395 0.857616i
\(546\) −37.2198 + 17.7688i −1.59286 + 0.760433i
\(547\) −9.70052 9.70052i −0.414764 0.414764i 0.468630 0.883395i \(-0.344748\pi\)
−0.883395 + 0.468630i \(0.844748\pi\)
\(548\) −0.825480 0.825480i −0.0352628 0.0352628i
\(549\) −24.5922 19.8862i −1.04957 0.848721i
\(550\) 4.38592 + 4.28074i 0.187016 + 0.182531i
\(551\) 8.14348i 0.346924i
\(552\) −0.855399 + 2.41824i −0.0364082 + 0.102927i
\(553\) −22.8533 + 22.8533i −0.971819 + 0.971819i
\(554\) 4.46356 0.189639
\(555\) −13.9407 28.7513i −0.591752 1.22042i
\(556\) −3.47441 −0.147348
\(557\) −19.7758 + 19.7758i −0.837928 + 0.837928i −0.988586 0.150658i \(-0.951861\pi\)
0.150658 + 0.988586i \(0.451861\pi\)
\(558\) 22.1361 2.34213i 0.937097 0.0991504i
\(559\) 18.9031i 0.799517i
\(560\) 7.61574 + 7.52387i 0.321824 + 0.317942i
\(561\) 1.06849 + 2.23815i 0.0451119 + 0.0944946i
\(562\) −8.43036 8.43036i −0.355613 0.355613i
\(563\) −26.3822 26.3822i −1.11188 1.11188i −0.992896 0.118981i \(-0.962037\pi\)
−0.118981 0.992896i \(-0.537963\pi\)
\(564\) 7.22720 + 15.1386i 0.304320 + 0.637451i
\(565\) 30.0876 + 29.7247i 1.26580 + 1.25053i
\(566\) 15.7523i 0.662120i
\(567\) −23.4177 + 36.1699i −0.983452 + 1.51899i
\(568\) 5.91027 5.91027i 0.247990 0.247990i
\(569\) 21.7175 0.910445 0.455222 0.890378i \(-0.349560\pi\)
0.455222 + 0.890378i \(0.349560\pi\)
\(570\) −1.68975 3.48493i −0.0707759 0.145968i
\(571\) −15.2769 −0.639319 −0.319660 0.947532i \(-0.603569\pi\)
−0.319660 + 0.947532i \(0.603569\pi\)
\(572\) 4.31080 4.31080i 0.180243 0.180243i
\(573\) −5.86002 + 16.5665i −0.244806 + 0.692073i
\(574\) 16.9278i 0.706553i
\(575\) 5.29908 + 5.17200i 0.220987 + 0.215687i
\(576\) −1.88634 + 2.33275i −0.0785976 + 0.0971978i
\(577\) 7.00181 + 7.00181i 0.291489 + 0.291489i 0.837668 0.546179i \(-0.183918\pi\)
−0.546179 + 0.837668i \(0.683918\pi\)
\(578\) 11.0559 + 11.0559i 0.459863 + 0.459863i
\(579\) −2.94032 + 1.40371i −0.122196 + 0.0583364i
\(580\) 0.110491 + 18.2090i 0.00458790 + 0.756089i
\(581\) 4.85999i 0.201626i
\(582\) 28.9685 + 10.2470i 1.20078 + 0.424750i
\(583\) −4.17523 + 4.17523i −0.172920 + 0.172920i
\(584\) 5.64827 0.233727
\(585\) −33.1570 + 3.71179i −1.37087 + 0.153464i
\(586\) 4.70889 0.194522
\(587\) 5.53868 5.53868i 0.228606 0.228606i −0.583504 0.812110i \(-0.698319\pi\)
0.812110 + 0.583504i \(0.198319\pi\)
\(588\) −25.9985 9.19640i −1.07216 0.379253i
\(589\) 7.41990i 0.305732i
\(590\) −15.5880 + 15.7783i −0.641746 + 0.649582i
\(591\) 8.12283 3.87785i 0.334129 0.159514i
\(592\) 5.83375 + 5.83375i 0.239766 + 0.239766i
\(593\) −31.4864 31.4864i −1.29299 1.29299i −0.932929 0.360061i \(-0.882756\pi\)
−0.360061 0.932929i \(-0.617244\pi\)
\(594\) 1.48040 6.19470i 0.0607415 0.254172i
\(595\) 12.5058 0.0758846i 0.512689 0.00311096i
\(596\) 1.10597i 0.0453021i
\(597\) −0.516428 + 1.45996i −0.0211360 + 0.0597520i
\(598\) 5.20832 5.20832i 0.212984 0.212984i
\(599\) 31.3766 1.28201 0.641007 0.767535i \(-0.278517\pi\)
0.641007 + 0.767535i \(0.278517\pi\)
\(600\) 3.82561 + 7.76947i 0.156180 + 0.317187i
\(601\) −36.3695 −1.48354 −0.741771 0.670654i \(-0.766014\pi\)
−0.741771 + 0.670654i \(0.766014\pi\)
\(602\) −12.8667 + 12.8667i −0.524408 + 0.524408i
\(603\) 2.67981 + 25.3276i 0.109130 + 1.03142i
\(604\) 3.28699i 0.133746i
\(605\) −21.2368 + 0.128863i −0.863399 + 0.00523904i
\(606\) −0.895070 1.87488i −0.0363597 0.0761618i
\(607\) 8.74748 + 8.74748i 0.355049 + 0.355049i 0.861984 0.506935i \(-0.169222\pi\)
−0.506935 + 0.861984i \(0.669222\pi\)
\(608\) 0.707107 + 0.707107i 0.0286770 + 0.0286770i
\(609\) −29.0933 60.9410i −1.17892 2.46945i
\(610\) 16.5672 16.7695i 0.670786 0.678977i
\(611\) 48.1707i 1.94878i
\(612\) 0.368745 + 3.48511i 0.0149056 + 0.140877i
\(613\) −1.37399 + 1.37399i −0.0554951 + 0.0554951i −0.734310 0.678815i \(-0.762494\pi\)
0.678815 + 0.734310i \(0.262494\pi\)
\(614\) −2.39024 −0.0964621
\(615\) −4.48818 + 12.9374i −0.180981 + 0.521686i
\(616\) 5.86842 0.236446
\(617\) −11.8837 + 11.8837i −0.478419 + 0.478419i −0.904626 0.426207i \(-0.859850\pi\)
0.426207 + 0.904626i \(0.359850\pi\)
\(618\) −10.7589 + 30.4156i −0.432785 + 1.22350i
\(619\) 4.06759i 0.163490i 0.996653 + 0.0817450i \(0.0260493\pi\)
−0.996653 + 0.0817450i \(0.973951\pi\)
\(620\) 0.100674 + 16.5911i 0.00404315 + 0.666314i
\(621\) 1.78862 7.48446i 0.0717750 0.300341i
\(622\) −10.1355 10.1355i −0.406395 0.406395i
\(623\) 1.30158 + 1.30158i 0.0521468 + 0.0521468i
\(624\) 7.77411 3.71137i 0.311214 0.148574i
\(625\) 24.9926 0.606726i 0.999705 0.0242690i
\(626\) 2.21202i 0.0884102i
\(627\) −2.00152 0.707993i −0.0799329 0.0282745i
\(628\) −12.0134 + 12.0134i −0.479387 + 0.479387i
\(629\) 9.63775 0.384282
\(630\) −25.0954 20.0424i −0.999823 0.798507i
\(631\) −5.67496 −0.225917 −0.112958 0.993600i \(-0.536033\pi\)
−0.112958 + 0.993600i \(0.536033\pi\)
\(632\) 4.77337 4.77337i 0.189875 0.189875i
\(633\) 1.07172 + 0.379096i 0.0425969 + 0.0150677i
\(634\) 30.5452i 1.21311i
\(635\) 14.5420 + 14.3666i 0.577082 + 0.570121i
\(636\) −7.52963 + 3.59466i −0.298569 + 0.142537i
\(637\) 55.9947 + 55.9947i 2.21859 + 2.21859i
\(638\) 7.05819 + 7.05819i 0.279437 + 0.279437i
\(639\) −15.7668 + 19.4980i −0.623724 + 0.771329i
\(640\) −1.59070 1.57152i −0.0628781 0.0621196i
\(641\) 1.58825i 0.0627323i −0.999508 0.0313661i \(-0.990014\pi\)
0.999508 0.0313661i \(-0.00998579\pi\)
\(642\) 8.15539 23.0555i 0.321868 0.909930i
\(643\) −8.25666 + 8.25666i −0.325611 + 0.325611i −0.850915 0.525304i \(-0.823952\pi\)
0.525304 + 0.850915i \(0.323952\pi\)
\(644\) 7.09025 0.279395
\(645\) −13.2451 + 6.42219i −0.521524 + 0.252873i
\(646\) 1.16819 0.0459618
\(647\) 12.9377 12.9377i 0.508635 0.508635i −0.405472 0.914107i \(-0.632893\pi\)
0.914107 + 0.405472i \(0.132893\pi\)
\(648\) 4.89127 7.55483i 0.192147 0.296782i
\(649\) 12.1582i 0.477251i
\(650\) −0.301786 24.8663i −0.0118370 0.975338i
\(651\) −26.5083 55.5262i −1.03894 2.17624i
\(652\) −3.82552 3.82552i −0.149819 0.149819i
\(653\) −16.2867 16.2867i −0.637350 0.637350i 0.312551 0.949901i \(-0.398816\pi\)
−0.949901 + 0.312551i \(0.898816\pi\)
\(654\) −6.68151 13.9956i −0.261268 0.547271i
\(655\) 0.0630553 + 10.3916i 0.00246377 + 0.406032i
\(656\) 3.53572i 0.138047i
\(657\) −16.8508 + 1.78291i −0.657410 + 0.0695579i
\(658\) 32.7882 32.7882i 1.27822 1.27822i
\(659\) 40.1270 1.56313 0.781563 0.623827i \(-0.214423\pi\)
0.781563 + 0.623827i \(0.214423\pi\)
\(660\) 4.48505 + 1.55593i 0.174580 + 0.0605647i
\(661\) −17.8333 −0.693634 −0.346817 0.937933i \(-0.612737\pi\)
−0.346817 + 0.937933i \(0.612737\pi\)
\(662\) −4.50516 + 4.50516i −0.175098 + 0.175098i
\(663\) 3.35596 9.48740i 0.130335 0.368460i
\(664\) 1.01511i 0.0393939i
\(665\) −7.52387 + 7.61574i −0.291763 + 0.295326i
\(666\) −19.2456 15.5626i −0.745750 0.603040i
\(667\) 8.52773 + 8.52773i 0.330195 + 0.330195i
\(668\) 14.1056 + 14.1056i 0.545761 + 0.545761i
\(669\) 12.8499 6.13455i 0.496805 0.237176i
\(670\) −18.9831 + 0.115188i −0.733381 + 0.00445010i
\(671\) 12.9220i 0.498848i
\(672\) 7.81778 + 2.76537i 0.301577 + 0.106676i
\(673\) 15.7599 15.7599i 0.607498 0.607498i −0.334793 0.942292i \(-0.608667\pi\)
0.942292 + 0.334793i \(0.108667\pi\)
\(674\) 1.60201 0.0617073
\(675\) −13.8656 21.9715i −0.533688 0.845682i
\(676\) −11.7370 −0.451424
\(677\) −28.0078 + 28.0078i −1.07643 + 1.07643i −0.0795985 + 0.996827i \(0.525364\pi\)
−0.996827 + 0.0795985i \(0.974636\pi\)
\(678\) 30.8858 + 10.9252i 1.18616 + 0.419579i
\(679\) 84.9352i 3.25951i
\(680\) −2.61210 + 0.0158500i −0.100169 + 0.000607822i
\(681\) −24.5833 + 11.7361i −0.942033 + 0.449728i
\(682\) 6.43105 + 6.43105i 0.246258 + 0.246258i
\(683\) 11.0403 + 11.0403i 0.422444 + 0.422444i 0.886045 0.463600i \(-0.153443\pi\)
−0.463600 + 0.886045i \(0.653443\pi\)
\(684\) −2.33275 1.88634i −0.0891948 0.0721261i
\(685\) −1.83459 + 1.85700i −0.0700963 + 0.0709521i
\(686\) 42.7137i 1.63082i
\(687\) 9.22813 26.0882i 0.352075 0.995327i
\(688\) 2.68748 2.68748i 0.102459 0.102459i
\(689\) 23.9591 0.912769
\(690\) 5.41885 + 1.87989i 0.206292 + 0.0715660i
\(691\) −34.6717 −1.31897 −0.659486 0.751717i \(-0.729226\pi\)
−0.659486 + 0.751717i \(0.729226\pi\)
\(692\) −6.57463 + 6.57463i −0.249930 + 0.249930i
\(693\) −17.5075 + 1.85240i −0.665057 + 0.0703669i
\(694\) 31.3154i 1.18872i
\(695\) 0.0471409 + 7.76887i 0.00178816 + 0.294690i
\(696\) 6.07674 + 12.7288i 0.230338 + 0.482483i
\(697\) −2.92063 2.92063i −0.110627 0.110627i
\(698\) −13.9126 13.9126i −0.526600 0.526600i
\(699\) 10.8747 + 22.7788i 0.411317 + 0.861575i
\(700\) 16.7203 17.1311i 0.631966 0.647494i
\(701\) 2.11730i 0.0799692i 0.999200 + 0.0399846i \(0.0127309\pi\)
−0.999200 + 0.0399846i \(0.987269\pi\)
\(702\) −22.0214 + 13.5263i −0.831143 + 0.510516i
\(703\) −5.83375 + 5.83375i −0.220024 + 0.220024i
\(704\) −1.22574 −0.0461969
\(705\) 33.7523 16.3656i 1.27118 0.616364i
\(706\) 35.2206 1.32554
\(707\) −4.06073 + 4.06073i −0.152719 + 0.152719i
\(708\) −5.72929 + 16.1969i −0.215320 + 0.608715i
\(709\) 14.5305i 0.545705i −0.962056 0.272852i \(-0.912033\pi\)
0.962056 0.272852i \(-0.0879670\pi\)
\(710\) −13.2957 13.1353i −0.498979 0.492960i
\(711\) −12.7339 + 15.7474i −0.477558 + 0.590572i
\(712\) −0.271862 0.271862i −0.0101885 0.0101885i
\(713\) 7.77001 + 7.77001i 0.290989 + 0.290989i
\(714\) 8.74204 4.17346i 0.327163 0.156188i
\(715\) −9.69755 9.58057i −0.362668 0.358293i
\(716\) 11.2885i 0.421870i
\(717\) 26.2971 + 9.30204i 0.982085 + 0.347391i
\(718\) −14.8000 + 14.8000i −0.552331 + 0.552331i
\(719\) 2.51322 0.0937272 0.0468636 0.998901i \(-0.485077\pi\)
0.0468636 + 0.998901i \(0.485077\pi\)
\(720\) 5.24168 + 4.18626i 0.195346 + 0.156013i
\(721\) 89.1782 3.32117
\(722\) −0.707107 + 0.707107i −0.0263158 + 0.0263158i
\(723\) 32.5264 + 11.5055i 1.20967 + 0.427894i
\(724\) 9.96083i 0.370191i
\(725\) 40.7144 0.494122i 1.51209 0.0183512i
\(726\) −14.8453 + 7.08717i −0.550961 + 0.263029i
\(727\) −7.64794 7.64794i −0.283646 0.283646i 0.550915 0.834561i \(-0.314279\pi\)
−0.834561 + 0.550915i \(0.814279\pi\)
\(728\) −16.8377 16.8377i −0.624045 0.624045i
\(729\) −12.2076 + 24.0826i −0.452135 + 0.891950i
\(730\) −0.0766361 12.6297i −0.00283643 0.467446i
\(731\) 4.43990i 0.164215i
\(732\) 6.08920 17.2144i 0.225063 0.636261i
\(733\) 24.3729 24.3729i 0.900235 0.900235i −0.0952214 0.995456i \(-0.530356\pi\)
0.995456 + 0.0952214i \(0.0303559\pi\)
\(734\) 37.2954 1.37660
\(735\) −20.2106 + 58.2581i −0.745481 + 2.14888i
\(736\) −1.48094 −0.0545883
\(737\) −7.35823 + 7.35823i −0.271044 + 0.271044i
\(738\) 1.11607 + 10.5483i 0.0410831 + 0.388288i
\(739\) 30.8274i 1.13401i −0.823716 0.567003i \(-0.808103\pi\)
0.823716 0.567003i \(-0.191897\pi\)
\(740\) 12.9653 13.1236i 0.476613 0.482432i
\(741\) 3.71137 + 7.77411i 0.136341 + 0.285589i
\(742\) 16.3081 + 16.3081i 0.598691 + 0.598691i
\(743\) 23.0214 + 23.0214i 0.844574 + 0.844574i 0.989450 0.144876i \(-0.0462783\pi\)
−0.144876 + 0.989450i \(0.546278\pi\)
\(744\) 5.53680 + 11.5978i 0.202989 + 0.425195i
\(745\) −2.47297 + 0.0150058i −0.0906026 + 0.000549770i
\(746\) 9.42209i 0.344967i
\(747\) −0.320425 3.02842i −0.0117237 0.110804i
\(748\) −1.01250 + 1.01250i −0.0370208 + 0.0370208i
\(749\) −67.5986 −2.47000
\(750\) 17.3208 8.65959i 0.632468 0.316204i
\(751\) 43.6630 1.59329 0.796643 0.604450i \(-0.206607\pi\)
0.796643 + 0.604450i \(0.206607\pi\)
\(752\) −6.84848 + 6.84848i −0.249738 + 0.249738i
\(753\) −10.3390 + 29.2286i −0.376773 + 1.06515i
\(754\) 40.5027i 1.47502i
\(755\) −7.34980 + 0.0445981i −0.267486 + 0.00162309i
\(756\) −24.1961 5.78233i −0.880002 0.210301i
\(757\) −8.25576 8.25576i −0.300061 0.300061i 0.540977 0.841038i \(-0.318055\pi\)
−0.841038 + 0.540977i \(0.818055\pi\)
\(758\) 0.145573 + 0.145573i 0.00528745 + 0.00528745i
\(759\) 2.83736 1.35456i 0.102990 0.0491674i
\(760\) 1.57152 1.59070i 0.0570049 0.0577009i
\(761\) 45.4398i 1.64719i −0.567176 0.823596i \(-0.691964\pi\)
0.567176 0.823596i \(-0.308036\pi\)
\(762\) 14.9278 + 5.28038i 0.540777 + 0.191288i
\(763\) −30.3125 + 30.3125i −1.09739 + 1.09739i
\(764\) −10.1454 −0.367048
\(765\) 7.78780 0.871811i 0.281569 0.0315204i
\(766\) −11.6945 −0.422539
\(767\) 34.8842 34.8842i 1.25960 1.25960i
\(768\) −1.63290 0.577604i −0.0589223 0.0208425i
\(769\) 14.3253i 0.516582i −0.966067 0.258291i \(-0.916841\pi\)
0.966067 0.258291i \(-0.0831593\pi\)
\(770\) −0.0796231 13.1220i −0.00286942 0.472882i
\(771\) 32.1549 15.3508i 1.15803 0.552845i
\(772\) −1.33016 1.33016i −0.0478734 0.0478734i
\(773\) 30.7793 + 30.7793i 1.10706 + 1.10706i 0.993536 + 0.113520i \(0.0362125\pi\)
0.113520 + 0.993536i \(0.463788\pi\)
\(774\) −7.16936 + 8.86600i −0.257697 + 0.318682i
\(775\) 37.0968 0.450218i 1.33256 0.0161723i
\(776\) 17.7405i 0.636846i
\(777\) −22.8148 + 64.4980i −0.818475 + 2.31385i