Newspace parameters
Level: | \( N \) | \(=\) | \( 570 = 2 \cdot 3 \cdot 5 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 570.k (of order \(4\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(4.55147291521\) |
Analytic rank: | \(0\) |
Dimension: | \(36\) |
Relative dimension: | \(18\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
77.1 | −0.707107 | + | 0.707107i | −1.69896 | − | 0.336929i | − | 1.00000i | 2.14526 | − | 0.630765i | 1.43959 | − | 0.963104i | 0.804978 | + | 0.804978i | 0.707107 | + | 0.707107i | 2.77296 | + | 1.14486i | −1.07091 | + | 1.96295i | |
77.2 | −0.707107 | + | 0.707107i | −1.63140 | + | 0.581841i | − | 1.00000i | −1.36872 | + | 1.76822i | 0.742149 | − | 1.56500i | 0.102829 | + | 0.102829i | 0.707107 | + | 0.707107i | 2.32292 | − | 1.89843i | −0.282491 | − | 2.21815i | |
77.3 | −0.707107 | + | 0.707107i | −1.32879 | − | 1.11099i | − | 1.00000i | −1.28568 | + | 1.82949i | 1.72519 | − | 0.154007i | 1.30605 | + | 1.30605i | 0.707107 | + | 0.707107i | 0.531382 | + | 2.95256i | −0.384532 | − | 2.20276i | |
77.4 | −0.707107 | + | 0.707107i | −0.0916341 | − | 1.72963i | − | 1.00000i | −2.17182 | − | 0.532166i | 1.28782 | + | 1.15823i | 1.32508 | + | 1.32508i | 0.707107 | + | 0.707107i | −2.98321 | + | 0.316985i | 1.91201 | − | 1.15941i | |
77.5 | −0.707107 | + | 0.707107i | 0.492817 | + | 1.66046i | − | 1.00000i | −1.86278 | + | 1.23695i | −1.52260 | − | 0.825649i | −3.33681 | − | 3.33681i | 0.707107 | + | 0.707107i | −2.51426 | + | 1.63661i | 0.442526 | − | 2.19184i | |
77.6 | −0.707107 | + | 0.707107i | 0.577604 | + | 1.63290i | − | 1.00000i | 2.23603 | − | 0.0135681i | −1.56306 | − | 0.746209i | 3.38538 | + | 3.38538i | 0.707107 | + | 0.707107i | −2.33275 | + | 1.88634i | −1.57152 | + | 1.59070i | |
77.7 | −0.707107 | + | 0.707107i | 0.901679 | − | 1.47884i | − | 1.00000i | 1.61979 | − | 1.54152i | 0.408116 | + | 1.68328i | −1.95232 | − | 1.95232i | 0.707107 | + | 0.707107i | −1.37395 | − | 2.66688i | −0.0553424 | + | 2.23538i | |
77.8 | −0.707107 | + | 0.707107i | 1.34719 | − | 1.08861i | − | 1.00000i | −0.539236 | − | 2.17007i | −0.182842 | + | 1.72237i | 2.86820 | + | 2.86820i | 0.707107 | + | 0.707107i | 0.629843 | − | 2.93314i | 1.91577 | + | 1.15318i | |
77.9 | −0.707107 | + | 0.707107i | 1.72439 | + | 0.162692i | − | 1.00000i | 0.520052 | + | 2.17475i | −1.33437 | + | 1.10429i | 0.496606 | + | 0.496606i | 0.707107 | + | 0.707107i | 2.94706 | + | 0.561090i | −1.90551 | − | 1.17005i | |
77.10 | 0.707107 | − | 0.707107i | −1.66046 | − | 0.492817i | − | 1.00000i | 1.86278 | − | 1.23695i | −1.52260 | + | 0.825649i | −3.33681 | − | 3.33681i | −0.707107 | − | 0.707107i | 2.51426 | + | 1.63661i | 0.442526 | − | 2.19184i | |
77.11 | 0.707107 | − | 0.707107i | −1.63290 | − | 0.577604i | − | 1.00000i | −2.23603 | + | 0.0135681i | −1.56306 | + | 0.746209i | 3.38538 | + | 3.38538i | −0.707107 | − | 0.707107i | 2.33275 | + | 1.88634i | −1.57152 | + | 1.59070i | |
77.12 | 0.707107 | − | 0.707107i | −0.581841 | + | 1.63140i | − | 1.00000i | 1.36872 | − | 1.76822i | 0.742149 | + | 1.56500i | 0.102829 | + | 0.102829i | −0.707107 | − | 0.707107i | −2.32292 | − | 1.89843i | −0.282491 | − | 2.21815i | |
77.13 | 0.707107 | − | 0.707107i | −0.162692 | − | 1.72439i | − | 1.00000i | −0.520052 | − | 2.17475i | −1.33437 | − | 1.10429i | 0.496606 | + | 0.496606i | −0.707107 | − | 0.707107i | −2.94706 | + | 0.561090i | −1.90551 | − | 1.17005i | |
77.14 | 0.707107 | − | 0.707107i | 0.336929 | + | 1.69896i | − | 1.00000i | −2.14526 | + | 0.630765i | 1.43959 | + | 0.963104i | 0.804978 | + | 0.804978i | −0.707107 | − | 0.707107i | −2.77296 | + | 1.14486i | −1.07091 | + | 1.96295i | |
77.15 | 0.707107 | − | 0.707107i | 1.08861 | − | 1.34719i | − | 1.00000i | 0.539236 | + | 2.17007i | −0.182842 | − | 1.72237i | 2.86820 | + | 2.86820i | −0.707107 | − | 0.707107i | −0.629843 | − | 2.93314i | 1.91577 | + | 1.15318i | |
77.16 | 0.707107 | − | 0.707107i | 1.11099 | + | 1.32879i | − | 1.00000i | 1.28568 | − | 1.82949i | 1.72519 | + | 0.154007i | 1.30605 | + | 1.30605i | −0.707107 | − | 0.707107i | −0.531382 | + | 2.95256i | −0.384532 | − | 2.20276i | |
77.17 | 0.707107 | − | 0.707107i | 1.47884 | − | 0.901679i | − | 1.00000i | −1.61979 | + | 1.54152i | 0.408116 | − | 1.68328i | −1.95232 | − | 1.95232i | −0.707107 | − | 0.707107i | 1.37395 | − | 2.66688i | −0.0553424 | + | 2.23538i | |
77.18 | 0.707107 | − | 0.707107i | 1.72963 | + | 0.0916341i | − | 1.00000i | 2.17182 | + | 0.532166i | 1.28782 | − | 1.15823i | 1.32508 | + | 1.32508i | −0.707107 | − | 0.707107i | 2.98321 | + | 0.316985i | 1.91201 | − | 1.15941i | |
533.1 | −0.707107 | − | 0.707107i | −1.69896 | + | 0.336929i | 1.00000i | 2.14526 | + | 0.630765i | 1.43959 | + | 0.963104i | 0.804978 | − | 0.804978i | 0.707107 | − | 0.707107i | 2.77296 | − | 1.14486i | −1.07091 | − | 1.96295i | ||
533.2 | −0.707107 | − | 0.707107i | −1.63140 | − | 0.581841i | 1.00000i | −1.36872 | − | 1.76822i | 0.742149 | + | 1.56500i | 0.102829 | − | 0.102829i | 0.707107 | − | 0.707107i | 2.32292 | + | 1.89843i | −0.282491 | + | 2.21815i | ||
See all 36 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
5.c | odd | 4 | 1 | inner |
15.e | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 570.2.k.b | ✓ | 36 |
3.b | odd | 2 | 1 | inner | 570.2.k.b | ✓ | 36 |
5.c | odd | 4 | 1 | inner | 570.2.k.b | ✓ | 36 |
15.e | even | 4 | 1 | inner | 570.2.k.b | ✓ | 36 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
570.2.k.b | ✓ | 36 | 1.a | even | 1 | 1 | trivial |
570.2.k.b | ✓ | 36 | 3.b | odd | 2 | 1 | inner |
570.2.k.b | ✓ | 36 | 5.c | odd | 4 | 1 | inner |
570.2.k.b | ✓ | 36 | 15.e | even | 4 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{7}^{18} - 10 T_{7}^{17} + 50 T_{7}^{16} - 136 T_{7}^{15} + 798 T_{7}^{14} - 5852 T_{7}^{13} + 27868 T_{7}^{12} - 75632 T_{7}^{11} + 164009 T_{7}^{10} - 458282 T_{7}^{9} + 1552610 T_{7}^{8} - 4009000 T_{7}^{7} + \cdots + 10368 \)
acting on \(S_{2}^{\mathrm{new}}(570, [\chi])\).