Properties

Label 570.2.k.a.77.18
Level $570$
Weight $2$
Character 570.77
Analytic conductor $4.551$
Analytic rank $0$
Dimension $36$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 570 = 2 \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 570.k (of order \(4\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.55147291521\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(18\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 77.18
Character \(\chi\) \(=\) 570.77
Dual form 570.2.k.a.533.18

$q$-expansion

\(f(q)\) \(=\) \(q+(0.707107 - 0.707107i) q^{2} +(1.71008 + 0.274986i) q^{3} -1.00000i q^{4} +(-2.05001 - 0.893014i) q^{5} +(1.40366 - 1.01477i) q^{6} +(2.76585 + 2.76585i) q^{7} +(-0.707107 - 0.707107i) q^{8} +(2.84877 + 0.940499i) q^{9} +O(q^{10})\) \(q+(0.707107 - 0.707107i) q^{2} +(1.71008 + 0.274986i) q^{3} -1.00000i q^{4} +(-2.05001 - 0.893014i) q^{5} +(1.40366 - 1.01477i) q^{6} +(2.76585 + 2.76585i) q^{7} +(-0.707107 - 0.707107i) q^{8} +(2.84877 + 0.940499i) q^{9} +(-2.08103 + 0.818117i) q^{10} -4.37906i q^{11} +(0.274986 - 1.71008i) q^{12} +(-0.0858524 + 0.0858524i) q^{13} +3.91150 q^{14} +(-3.26011 - 2.09085i) q^{15} -1.00000 q^{16} +(4.90493 - 4.90493i) q^{17} +(2.67941 - 1.34935i) q^{18} +1.00000i q^{19} +(-0.893014 + 2.05001i) q^{20} +(3.96926 + 5.49040i) q^{21} +(-3.09646 - 3.09646i) q^{22} +(4.04057 + 4.04057i) q^{23} +(-1.01477 - 1.40366i) q^{24} +(3.40505 + 3.66137i) q^{25} +0.121414i q^{26} +(4.61300 + 2.39170i) q^{27} +(2.76585 - 2.76585i) q^{28} -7.73552 q^{29} +(-3.78370 + 0.826793i) q^{30} -4.80009 q^{31} +(-0.707107 + 0.707107i) q^{32} +(1.20418 - 7.48856i) q^{33} -6.93661i q^{34} +(-3.20007 - 8.13995i) q^{35} +(0.940499 - 2.84877i) q^{36} +(-1.15860 - 1.15860i) q^{37} +(0.707107 + 0.707107i) q^{38} +(-0.170423 + 0.123206i) q^{39} +(0.818117 + 2.08103i) q^{40} -3.99475i q^{41} +(6.68899 + 1.07561i) q^{42} +(-2.22743 + 2.22743i) q^{43} -4.37906 q^{44} +(-5.00011 - 4.47202i) q^{45} +5.71423 q^{46} +(-9.37516 + 9.37516i) q^{47} +(-1.71008 - 0.274986i) q^{48} +8.29985i q^{49} +(4.99671 + 0.181243i) q^{50} +(9.73662 - 7.03904i) q^{51} +(0.0858524 + 0.0858524i) q^{52} +(1.61864 + 1.61864i) q^{53} +(4.95307 - 1.57069i) q^{54} +(-3.91056 + 8.97711i) q^{55} -3.91150i q^{56} +(-0.274986 + 1.71008i) q^{57} +(-5.46984 + 5.46984i) q^{58} -13.6615 q^{59} +(-2.09085 + 3.26011i) q^{60} +13.0690 q^{61} +(-3.39418 + 3.39418i) q^{62} +(5.27798 + 10.4805i) q^{63} +1.00000i q^{64} +(0.252665 - 0.0993306i) q^{65} +(-4.44373 - 6.14670i) q^{66} +(-9.57951 - 9.57951i) q^{67} +(-4.90493 - 4.90493i) q^{68} +(5.79861 + 8.02081i) q^{69} +(-8.01860 - 3.49303i) q^{70} +10.1120i q^{71} +(-1.34935 - 2.67941i) q^{72} +(-3.04806 + 3.04806i) q^{73} -1.63851 q^{74} +(4.81609 + 7.19759i) q^{75} +1.00000 q^{76} +(12.1118 - 12.1118i) q^{77} +(-0.0333871 + 0.207627i) q^{78} +1.24732i q^{79} +(2.05001 + 0.893014i) q^{80} +(7.23092 + 5.35852i) q^{81} +(-2.82471 - 2.82471i) q^{82} +(9.27133 + 9.27133i) q^{83} +(5.49040 - 3.96926i) q^{84} +(-14.4353 + 5.67496i) q^{85} +3.15007i q^{86} +(-13.2284 - 2.12716i) q^{87} +(-3.09646 + 3.09646i) q^{88} -4.47665 q^{89} +(-6.69780 + 0.373418i) q^{90} -0.474910 q^{91} +(4.04057 - 4.04057i) q^{92} +(-8.20856 - 1.31996i) q^{93} +13.2585i q^{94} +(0.893014 - 2.05001i) q^{95} +(-1.40366 + 1.01477i) q^{96} +(-1.05430 - 1.05430i) q^{97} +(5.86888 + 5.86888i) q^{98} +(4.11850 - 12.4749i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36q + 4q^{3} + 4q^{6} - 12q^{7} + O(q^{10}) \) \( 36q + 4q^{3} + 4q^{6} - 12q^{7} - 4q^{10} - 4q^{12} + 8q^{13} + 4q^{15} - 36q^{16} - 32q^{21} - 4q^{22} + 32q^{25} + 28q^{27} - 12q^{28} - 8q^{30} + 8q^{31} + 36q^{33} + 4q^{36} - 32q^{37} - 8q^{40} + 12q^{42} - 24q^{43} - 28q^{45} - 16q^{46} - 4q^{48} - 40q^{51} - 8q^{52} - 4q^{55} + 4q^{57} - 4q^{58} - 24q^{60} + 200q^{61} + 28q^{63} + 12q^{70} - 68q^{73} - 36q^{75} + 36q^{76} + 24q^{78} - 92q^{81} + 24q^{82} + 24q^{85} + 28q^{87} - 4q^{88} - 68q^{90} + 64q^{91} + 16q^{93} - 4q^{96} - 148q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/570\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(211\) \(457\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 0.707107i 0.500000 0.500000i
\(3\) 1.71008 + 0.274986i 0.987317 + 0.158763i
\(4\) 1.00000i 0.500000i
\(5\) −2.05001 0.893014i −0.916791 0.399368i
\(6\) 1.40366 1.01477i 0.573040 0.414277i
\(7\) 2.76585 + 2.76585i 1.04539 + 1.04539i 0.998920 + 0.0464734i \(0.0147983\pi\)
0.0464734 + 0.998920i \(0.485202\pi\)
\(8\) −0.707107 0.707107i −0.250000 0.250000i
\(9\) 2.84877 + 0.940499i 0.949588 + 0.313500i
\(10\) −2.08103 + 0.818117i −0.658079 + 0.258711i
\(11\) 4.37906i 1.32034i −0.751117 0.660169i \(-0.770485\pi\)
0.751117 0.660169i \(-0.229515\pi\)
\(12\) 0.274986 1.71008i 0.0793817 0.493658i
\(13\) −0.0858524 + 0.0858524i −0.0238112 + 0.0238112i −0.718912 0.695101i \(-0.755360\pi\)
0.695101 + 0.718912i \(0.255360\pi\)
\(14\) 3.91150 1.04539
\(15\) −3.26011 2.09085i −0.841758 0.539855i
\(16\) −1.00000 −0.250000
\(17\) 4.90493 4.90493i 1.18962 1.18962i 0.212447 0.977173i \(-0.431857\pi\)
0.977173 0.212447i \(-0.0681432\pi\)
\(18\) 2.67941 1.34935i 0.631544 0.318044i
\(19\) 1.00000i 0.229416i
\(20\) −0.893014 + 2.05001i −0.199684 + 0.458395i
\(21\) 3.96926 + 5.49040i 0.866164 + 1.19810i
\(22\) −3.09646 3.09646i −0.660169 0.660169i
\(23\) 4.04057 + 4.04057i 0.842517 + 0.842517i 0.989186 0.146669i \(-0.0468551\pi\)
−0.146669 + 0.989186i \(0.546855\pi\)
\(24\) −1.01477 1.40366i −0.207138 0.286520i
\(25\) 3.40505 + 3.66137i 0.681010 + 0.732274i
\(26\) 0.121414i 0.0238112i
\(27\) 4.61300 + 2.39170i 0.887772 + 0.460283i
\(28\) 2.76585 2.76585i 0.522696 0.522696i
\(29\) −7.73552 −1.43645 −0.718225 0.695811i \(-0.755045\pi\)
−0.718225 + 0.695811i \(0.755045\pi\)
\(30\) −3.78370 + 0.826793i −0.690807 + 0.150951i
\(31\) −4.80009 −0.862122 −0.431061 0.902323i \(-0.641861\pi\)
−0.431061 + 0.902323i \(0.641861\pi\)
\(32\) −0.707107 + 0.707107i −0.125000 + 0.125000i
\(33\) 1.20418 7.48856i 0.209621 1.30359i
\(34\) 6.93661i 1.18962i
\(35\) −3.20007 8.13995i −0.540910 1.37590i
\(36\) 0.940499 2.84877i 0.156750 0.474794i
\(37\) −1.15860 1.15860i −0.190473 0.190473i 0.605427 0.795901i \(-0.293002\pi\)
−0.795901 + 0.605427i \(0.793002\pi\)
\(38\) 0.707107 + 0.707107i 0.114708 + 0.114708i
\(39\) −0.170423 + 0.123206i −0.0272895 + 0.0197288i
\(40\) 0.818117 + 2.08103i 0.129356 + 0.329040i
\(41\) 3.99475i 0.623874i −0.950103 0.311937i \(-0.899022\pi\)
0.950103 0.311937i \(-0.100978\pi\)
\(42\) 6.68899 + 1.07561i 1.03213 + 0.165970i
\(43\) −2.22743 + 2.22743i −0.339680 + 0.339680i −0.856247 0.516567i \(-0.827210\pi\)
0.516567 + 0.856247i \(0.327210\pi\)
\(44\) −4.37906 −0.660169
\(45\) −5.00011 4.47202i −0.745372 0.666649i
\(46\) 5.71423 0.842517
\(47\) −9.37516 + 9.37516i −1.36751 + 1.36751i −0.503528 + 0.863979i \(0.667965\pi\)
−0.863979 + 0.503528i \(0.832035\pi\)
\(48\) −1.71008 0.274986i −0.246829 0.0396909i
\(49\) 8.29985i 1.18569i
\(50\) 4.99671 + 0.181243i 0.706642 + 0.0256317i
\(51\) 9.73662 7.03904i 1.36340 0.985663i
\(52\) 0.0858524 + 0.0858524i 0.0119056 + 0.0119056i
\(53\) 1.61864 + 1.61864i 0.222337 + 0.222337i 0.809482 0.587145i \(-0.199748\pi\)
−0.587145 + 0.809482i \(0.699748\pi\)
\(54\) 4.95307 1.57069i 0.674028 0.213744i
\(55\) −3.91056 + 8.97711i −0.527300 + 1.21047i
\(56\) 3.91150i 0.522696i
\(57\) −0.274986 + 1.71008i −0.0364228 + 0.226506i
\(58\) −5.46984 + 5.46984i −0.718225 + 0.718225i
\(59\) −13.6615 −1.77857 −0.889286 0.457351i \(-0.848798\pi\)
−0.889286 + 0.457351i \(0.848798\pi\)
\(60\) −2.09085 + 3.26011i −0.269928 + 0.420879i
\(61\) 13.0690 1.67331 0.836655 0.547730i \(-0.184508\pi\)
0.836655 + 0.547730i \(0.184508\pi\)
\(62\) −3.39418 + 3.39418i −0.431061 + 0.431061i
\(63\) 5.27798 + 10.4805i 0.664963 + 1.32042i
\(64\) 1.00000i 0.125000i
\(65\) 0.252665 0.0993306i 0.0313393 0.0123204i
\(66\) −4.44373 6.14670i −0.546985 0.756606i
\(67\) −9.57951 9.57951i −1.17032 1.17032i −0.982132 0.188191i \(-0.939738\pi\)
−0.188191 0.982132i \(-0.560262\pi\)
\(68\) −4.90493 4.90493i −0.594810 0.594810i
\(69\) 5.79861 + 8.02081i 0.698070 + 0.965592i
\(70\) −8.01860 3.49303i −0.958407 0.417496i
\(71\) 10.1120i 1.20007i 0.799973 + 0.600036i \(0.204847\pi\)
−0.799973 + 0.600036i \(0.795153\pi\)
\(72\) −1.34935 2.67941i −0.159022 0.315772i
\(73\) −3.04806 + 3.04806i −0.356748 + 0.356748i −0.862613 0.505865i \(-0.831174\pi\)
0.505865 + 0.862613i \(0.331174\pi\)
\(74\) −1.63851 −0.190473
\(75\) 4.81609 + 7.19759i 0.556115 + 0.831106i
\(76\) 1.00000 0.114708
\(77\) 12.1118 12.1118i 1.38027 1.38027i
\(78\) −0.0333871 + 0.207627i −0.00378034 + 0.0235092i
\(79\) 1.24732i 0.140334i 0.997535 + 0.0701671i \(0.0223532\pi\)
−0.997535 + 0.0701671i \(0.977647\pi\)
\(80\) 2.05001 + 0.893014i 0.229198 + 0.0998420i
\(81\) 7.23092 + 5.35852i 0.803436 + 0.595391i
\(82\) −2.82471 2.82471i −0.311937 0.311937i
\(83\) 9.27133 + 9.27133i 1.01766 + 1.01766i 0.999841 + 0.0178196i \(0.00567245\pi\)
0.0178196 + 0.999841i \(0.494328\pi\)
\(84\) 5.49040 3.96926i 0.599052 0.433082i
\(85\) −14.4353 + 5.67496i −1.56573 + 0.615536i
\(86\) 3.15007i 0.339680i
\(87\) −13.2284 2.12716i −1.41823 0.228056i
\(88\) −3.09646 + 3.09646i −0.330084 + 0.330084i
\(89\) −4.47665 −0.474524 −0.237262 0.971446i \(-0.576250\pi\)
−0.237262 + 0.971446i \(0.576250\pi\)
\(90\) −6.69780 + 0.373418i −0.706010 + 0.0393617i
\(91\) −0.474910 −0.0497841
\(92\) 4.04057 4.04057i 0.421258 0.421258i
\(93\) −8.20856 1.31996i −0.851188 0.136874i
\(94\) 13.2585i 1.36751i
\(95\) 0.893014 2.05001i 0.0916213 0.210326i
\(96\) −1.40366 + 1.01477i −0.143260 + 0.103569i
\(97\) −1.05430 1.05430i −0.107048 0.107048i 0.651554 0.758602i \(-0.274117\pi\)
−0.758602 + 0.651554i \(0.774117\pi\)
\(98\) 5.86888 + 5.86888i 0.592846 + 0.592846i
\(99\) 4.11850 12.4749i 0.413925 1.25378i
\(100\) 3.66137 3.40505i 0.366137 0.340505i
\(101\) 1.32352i 0.131695i −0.997830 0.0658476i \(-0.979025\pi\)
0.997830 0.0658476i \(-0.0209751\pi\)
\(102\) 1.90747 11.8622i 0.188868 1.17453i
\(103\) 8.88033 8.88033i 0.875005 0.875005i −0.118008 0.993013i \(-0.537651\pi\)
0.993013 + 0.118008i \(0.0376508\pi\)
\(104\) 0.121414 0.0119056
\(105\) −3.23400 14.8000i −0.315606 1.44433i
\(106\) 2.28910 0.222337
\(107\) −7.02479 + 7.02479i −0.679112 + 0.679112i −0.959799 0.280687i \(-0.909438\pi\)
0.280687 + 0.959799i \(0.409438\pi\)
\(108\) 2.39170 4.61300i 0.230142 0.443886i
\(109\) 0.223709i 0.0214274i −0.999943 0.0107137i \(-0.996590\pi\)
0.999943 0.0107137i \(-0.00341035\pi\)
\(110\) 3.58259 + 9.11296i 0.341586 + 0.868887i
\(111\) −1.66271 2.29991i −0.157817 0.218298i
\(112\) −2.76585 2.76585i −0.261348 0.261348i
\(113\) −4.90305 4.90305i −0.461240 0.461240i 0.437822 0.899062i \(-0.355750\pi\)
−0.899062 + 0.437822i \(0.855750\pi\)
\(114\) 1.01477 + 1.40366i 0.0950416 + 0.131464i
\(115\) −4.67491 11.8915i −0.435937 1.10889i
\(116\) 7.73552i 0.718225i
\(117\) −0.325317 + 0.163829i −0.0300756 + 0.0151460i
\(118\) −9.66012 + 9.66012i −0.889286 + 0.889286i
\(119\) 27.1326 2.48724
\(120\) 0.826793 + 3.78370i 0.0754756 + 0.345403i
\(121\) −8.17619 −0.743290
\(122\) 9.24116 9.24116i 0.836655 0.836655i
\(123\) 1.09850 6.83135i 0.0990484 0.615962i
\(124\) 4.80009i 0.431061i
\(125\) −3.71073 10.5466i −0.331897 0.943316i
\(126\) 11.1430 + 3.67876i 0.992693 + 0.327730i
\(127\) 1.71446 + 1.71446i 0.152134 + 0.152134i 0.779070 0.626936i \(-0.215691\pi\)
−0.626936 + 0.779070i \(0.715691\pi\)
\(128\) 0.707107 + 0.707107i 0.0625000 + 0.0625000i
\(129\) −4.42161 + 3.19658i −0.389301 + 0.281443i
\(130\) 0.108424 0.248899i 0.00950942 0.0218299i
\(131\) 1.03462i 0.0903948i 0.998978 + 0.0451974i \(0.0143917\pi\)
−0.998978 + 0.0451974i \(0.985608\pi\)
\(132\) −7.48856 1.20418i −0.651795 0.104811i
\(133\) −2.76585 + 2.76585i −0.239830 + 0.239830i
\(134\) −13.5475 −1.17032
\(135\) −7.32086 9.02248i −0.630079 0.776531i
\(136\) −6.93661 −0.594810
\(137\) −3.90513 + 3.90513i −0.333638 + 0.333638i −0.853966 0.520328i \(-0.825810\pi\)
0.520328 + 0.853966i \(0.325810\pi\)
\(138\) 9.77180 + 1.57133i 0.831831 + 0.133761i
\(139\) 0.884659i 0.0750358i −0.999296 0.0375179i \(-0.988055\pi\)
0.999296 0.0375179i \(-0.0119451\pi\)
\(140\) −8.13995 + 3.20007i −0.687952 + 0.270455i
\(141\) −18.6103 + 13.4543i −1.56727 + 1.13305i
\(142\) 7.15026 + 7.15026i 0.600036 + 0.600036i
\(143\) 0.375953 + 0.375953i 0.0314388 + 0.0314388i
\(144\) −2.84877 0.940499i −0.237397 0.0783749i
\(145\) 15.8579 + 6.90793i 1.31692 + 0.573672i
\(146\) 4.31060i 0.356748i
\(147\) −2.28234 + 14.1934i −0.188245 + 1.17065i
\(148\) −1.15860 + 1.15860i −0.0952366 + 0.0952366i
\(149\) −14.4191 −1.18126 −0.590629 0.806943i \(-0.701120\pi\)
−0.590629 + 0.806943i \(0.701120\pi\)
\(150\) 8.49495 + 1.68397i 0.693610 + 0.137495i
\(151\) 12.5541 1.02164 0.510820 0.859687i \(-0.329342\pi\)
0.510820 + 0.859687i \(0.329342\pi\)
\(152\) 0.707107 0.707107i 0.0573539 0.0573539i
\(153\) 18.5861 9.35991i 1.50259 0.756704i
\(154\) 17.1287i 1.38027i
\(155\) 9.84022 + 4.28655i 0.790386 + 0.344304i
\(156\) 0.123206 + 0.170423i 0.00986441 + 0.0136448i
\(157\) −9.08703 9.08703i −0.725224 0.725224i 0.244440 0.969664i \(-0.421396\pi\)
−0.969664 + 0.244440i \(0.921396\pi\)
\(158\) 0.881987 + 0.881987i 0.0701671 + 0.0701671i
\(159\) 2.32290 + 3.21311i 0.184218 + 0.254816i
\(160\) 2.08103 0.818117i 0.164520 0.0646778i
\(161\) 22.3512i 1.76152i
\(162\) 8.90208 1.32399i 0.699414 0.104023i
\(163\) −2.97919 + 2.97919i −0.233348 + 0.233348i −0.814089 0.580740i \(-0.802763\pi\)
0.580740 + 0.814089i \(0.302763\pi\)
\(164\) −3.99475 −0.311937
\(165\) −9.15597 + 14.2762i −0.712791 + 1.11140i
\(166\) 13.1116 1.01766
\(167\) 6.66427 6.66427i 0.515697 0.515697i −0.400569 0.916266i \(-0.631188\pi\)
0.916266 + 0.400569i \(0.131188\pi\)
\(168\) 1.07561 6.68899i 0.0829851 0.516067i
\(169\) 12.9853i 0.998866i
\(170\) −6.19449 + 14.2201i −0.475096 + 1.09063i
\(171\) −0.940499 + 2.84877i −0.0719217 + 0.217851i
\(172\) 2.22743 + 2.22743i 0.169840 + 0.169840i
\(173\) −3.33173 3.33173i −0.253307 0.253307i 0.569018 0.822325i \(-0.307323\pi\)
−0.822325 + 0.569018i \(0.807323\pi\)
\(174\) −10.8580 + 7.84975i −0.823144 + 0.595088i
\(175\) −0.708933 + 19.5447i −0.0535903 + 1.47744i
\(176\) 4.37906i 0.330084i
\(177\) −23.3622 3.75672i −1.75601 0.282372i
\(178\) −3.16547 + 3.16547i −0.237262 + 0.237262i
\(179\) 20.3926 1.52421 0.762105 0.647453i \(-0.224166\pi\)
0.762105 + 0.647453i \(0.224166\pi\)
\(180\) −4.47202 + 5.00011i −0.333324 + 0.372686i
\(181\) −19.7998 −1.47171 −0.735855 0.677139i \(-0.763220\pi\)
−0.735855 + 0.677139i \(0.763220\pi\)
\(182\) −0.335812 + 0.335812i −0.0248920 + 0.0248920i
\(183\) 22.3490 + 3.59379i 1.65209 + 0.265661i
\(184\) 5.71423i 0.421258i
\(185\) 1.34050 + 3.40979i 0.0985552 + 0.250693i
\(186\) −6.73768 + 4.87097i −0.494031 + 0.357157i
\(187\) −21.4790 21.4790i −1.57070 1.57070i
\(188\) 9.37516 + 9.37516i 0.683754 + 0.683754i
\(189\) 6.14378 + 19.3740i 0.446894 + 1.40925i
\(190\) −0.818117 2.08103i −0.0593525 0.150974i
\(191\) 16.0949i 1.16458i 0.812979 + 0.582292i \(0.197844\pi\)
−0.812979 + 0.582292i \(0.802156\pi\)
\(192\) −0.274986 + 1.71008i −0.0198454 + 0.123415i
\(193\) −2.75631 + 2.75631i −0.198404 + 0.198404i −0.799315 0.600912i \(-0.794804\pi\)
0.600912 + 0.799315i \(0.294804\pi\)
\(194\) −1.49100 −0.107048
\(195\) 0.459393 0.100384i 0.0328978 0.00718865i
\(196\) 8.29985 0.592846
\(197\) 9.52900 9.52900i 0.678913 0.678913i −0.280841 0.959754i \(-0.590613\pi\)
0.959754 + 0.280841i \(0.0906134\pi\)
\(198\) −5.90888 11.7333i −0.419926 0.833851i
\(199\) 7.61755i 0.539994i −0.962861 0.269997i \(-0.912977\pi\)
0.962861 0.269997i \(-0.0870227\pi\)
\(200\) 0.181243 4.99671i 0.0128158 0.353321i
\(201\) −13.7475 19.0160i −0.969675 1.34128i
\(202\) −0.935870 0.935870i −0.0658476 0.0658476i
\(203\) −21.3953 21.3953i −1.50166 1.50166i
\(204\) −7.03904 9.73662i −0.492831 0.681700i
\(205\) −3.56736 + 8.18925i −0.249155 + 0.571962i
\(206\) 12.5587i 0.875005i
\(207\) 7.71048 + 15.3108i 0.535916 + 1.06417i
\(208\) 0.0858524 0.0858524i 0.00595279 0.00595279i
\(209\) 4.37906 0.302906
\(210\) −12.7519 8.17837i −0.879968 0.564361i
\(211\) 5.54199 0.381526 0.190763 0.981636i \(-0.438904\pi\)
0.190763 + 0.981636i \(0.438904\pi\)
\(212\) 1.61864 1.61864i 0.111168 0.111168i
\(213\) −2.78066 + 17.2923i −0.190528 + 1.18485i
\(214\) 9.93455i 0.679112i
\(215\) 6.55538 2.57712i 0.447073 0.175758i
\(216\) −1.57069 4.95307i −0.106872 0.337014i
\(217\) −13.2763 13.2763i −0.901257 0.901257i
\(218\) −0.158186 0.158186i −0.0107137 0.0107137i
\(219\) −6.05060 + 4.37426i −0.408862 + 0.295585i
\(220\) 8.97711 + 3.91056i 0.605236 + 0.263650i
\(221\) 0.842199i 0.0566525i
\(222\) −2.80199 0.450568i −0.188057 0.0302402i
\(223\) 9.53065 9.53065i 0.638219 0.638219i −0.311897 0.950116i \(-0.600964\pi\)
0.950116 + 0.311897i \(0.100964\pi\)
\(224\) −3.91150 −0.261348
\(225\) 6.25668 + 13.6328i 0.417112 + 0.908855i
\(226\) −6.93395 −0.461240
\(227\) 13.7533 13.7533i 0.912836 0.912836i −0.0836582 0.996495i \(-0.526660\pi\)
0.996495 + 0.0836582i \(0.0266604\pi\)
\(228\) 1.71008 + 0.274986i 0.113253 + 0.0182114i
\(229\) 6.49460i 0.429175i 0.976705 + 0.214588i \(0.0688407\pi\)
−0.976705 + 0.214588i \(0.931159\pi\)
\(230\) −11.7142 5.10289i −0.772412 0.336474i
\(231\) 24.0428 17.3816i 1.58190 1.14363i
\(232\) 5.46984 + 5.46984i 0.359113 + 0.359113i
\(233\) −7.94673 7.94673i −0.520608 0.520608i 0.397147 0.917755i \(-0.370000\pi\)
−0.917755 + 0.397147i \(0.870000\pi\)
\(234\) −0.114189 + 0.345879i −0.00746479 + 0.0226108i
\(235\) 27.5913 10.8470i 1.79986 0.707579i
\(236\) 13.6615i 0.889286i
\(237\) −0.342995 + 2.13302i −0.0222799 + 0.138554i
\(238\) 19.1856 19.1856i 1.24362 1.24362i
\(239\) 7.51189 0.485903 0.242952 0.970038i \(-0.421884\pi\)
0.242952 + 0.970038i \(0.421884\pi\)
\(240\) 3.26011 + 2.09085i 0.210439 + 0.134964i
\(241\) 11.2111 0.722170 0.361085 0.932533i \(-0.382406\pi\)
0.361085 + 0.932533i \(0.382406\pi\)
\(242\) −5.78144 + 5.78144i −0.371645 + 0.371645i
\(243\) 10.8920 + 11.1519i 0.698720 + 0.715396i
\(244\) 13.0690i 0.836655i
\(245\) 7.41188 17.0147i 0.473528 1.08703i
\(246\) −4.05373 5.60725i −0.258457 0.357505i
\(247\) −0.0858524 0.0858524i −0.00546266 0.00546266i
\(248\) 3.39418 + 3.39418i 0.215531 + 0.215531i
\(249\) 13.3053 + 18.4042i 0.843186 + 1.16632i
\(250\) −10.0814 4.83369i −0.637606 0.305709i
\(251\) 10.7576i 0.679015i −0.940603 0.339508i \(-0.889740\pi\)
0.940603 0.339508i \(-0.110260\pi\)
\(252\) 10.4805 5.27798i 0.660212 0.332481i
\(253\) 17.6939 17.6939i 1.11241 1.11241i
\(254\) 2.42462 0.152134
\(255\) −26.2461 + 5.73515i −1.64359 + 0.359149i
\(256\) 1.00000 0.0625000
\(257\) 2.67697 2.67697i 0.166985 0.166985i −0.618668 0.785653i \(-0.712327\pi\)
0.785653 + 0.618668i \(0.212327\pi\)
\(258\) −0.866225 + 5.38688i −0.0539288 + 0.335372i
\(259\) 6.40905i 0.398239i
\(260\) −0.0993306 0.252665i −0.00616022 0.0156696i
\(261\) −22.0367 7.27525i −1.36404 0.450327i
\(262\) 0.731584 + 0.731584i 0.0451974 + 0.0451974i
\(263\) −16.7660 16.7660i −1.03384 1.03384i −0.999407 0.0344303i \(-0.989038\pi\)
−0.0344303 0.999407i \(-0.510962\pi\)
\(264\) −6.14670 + 4.44373i −0.378303 + 0.273492i
\(265\) −1.87275 4.76368i −0.115042 0.292631i
\(266\) 3.91150i 0.239830i
\(267\) −7.65545 1.23102i −0.468506 0.0753371i
\(268\) −9.57951 + 9.57951i −0.585162 + 0.585162i
\(269\) 12.5500 0.765186 0.382593 0.923917i \(-0.375031\pi\)
0.382593 + 0.923917i \(0.375031\pi\)
\(270\) −11.5565 1.20323i −0.703305 0.0732261i
\(271\) −12.9702 −0.787886 −0.393943 0.919135i \(-0.628889\pi\)
−0.393943 + 0.919135i \(0.628889\pi\)
\(272\) −4.90493 + 4.90493i −0.297405 + 0.297405i
\(273\) −0.812135 0.130594i −0.0491526 0.00790389i
\(274\) 5.52269i 0.333638i
\(275\) 16.0334 14.9109i 0.966848 0.899163i
\(276\) 8.02081 5.79861i 0.482796 0.349035i
\(277\) 10.2241 + 10.2241i 0.614306 + 0.614306i 0.944065 0.329759i \(-0.106967\pi\)
−0.329759 + 0.944065i \(0.606967\pi\)
\(278\) −0.625548 0.625548i −0.0375179 0.0375179i
\(279\) −13.6743 4.51448i −0.818661 0.270275i
\(280\) −3.49303 + 8.01860i −0.208748 + 0.479203i
\(281\) 3.48157i 0.207693i −0.994593 0.103846i \(-0.966885\pi\)
0.994593 0.103846i \(-0.0331150\pi\)
\(282\) −3.64590 + 22.6731i −0.217110 + 1.35016i
\(283\) −3.43456 + 3.43456i −0.204164 + 0.204164i −0.801781 0.597618i \(-0.796114\pi\)
0.597618 + 0.801781i \(0.296114\pi\)
\(284\) 10.1120 0.600036
\(285\) 2.09085 3.26011i 0.123851 0.193112i
\(286\) 0.531678 0.0314388
\(287\) 11.0489 11.0489i 0.652194 0.652194i
\(288\) −2.67941 + 1.34935i −0.157886 + 0.0795111i
\(289\) 31.1166i 1.83039i
\(290\) 16.0979 6.32856i 0.945299 0.371626i
\(291\) −1.51302 2.09286i −0.0886949 0.122685i
\(292\) 3.04806 + 3.04806i 0.178374 + 0.178374i
\(293\) −4.27164 4.27164i −0.249552 0.249552i 0.571235 0.820787i \(-0.306465\pi\)
−0.820787 + 0.571235i \(0.806465\pi\)
\(294\) 8.42241 + 11.6501i 0.491205 + 0.679449i
\(295\) 28.0061 + 12.1999i 1.63058 + 0.710305i
\(296\) 1.63851i 0.0952366i
\(297\) 10.4734 20.2006i 0.607729 1.17216i
\(298\) −10.1958 + 10.1958i −0.590629 + 0.590629i
\(299\) −0.693785 −0.0401226
\(300\) 7.19759 4.81609i 0.415553 0.278057i
\(301\) −12.3215 −0.710199
\(302\) 8.87711 8.87711i 0.510820 0.510820i
\(303\) 0.363950 2.26333i 0.0209084 0.130025i
\(304\) 1.00000i 0.0573539i
\(305\) −26.7915 11.6708i −1.53408 0.668267i
\(306\) 6.52387 19.7608i 0.372945 1.12965i
\(307\) −12.5877 12.5877i −0.718417 0.718417i 0.249864 0.968281i \(-0.419614\pi\)
−0.968281 + 0.249864i \(0.919614\pi\)
\(308\) −12.1118 12.1118i −0.690136 0.690136i
\(309\) 17.6281 12.7441i 1.00283 0.724988i
\(310\) 9.98914 3.92704i 0.567345 0.223041i
\(311\) 2.19199i 0.124296i −0.998067 0.0621481i \(-0.980205\pi\)
0.998067 0.0621481i \(-0.0197951\pi\)
\(312\) 0.207627 + 0.0333871i 0.0117546 + 0.00189017i
\(313\) 12.2938 12.2938i 0.694888 0.694888i −0.268416 0.963303i \(-0.586500\pi\)
0.963303 + 0.268416i \(0.0865001\pi\)
\(314\) −12.8510 −0.725224
\(315\) −1.46063 26.1985i −0.0822970 1.47612i
\(316\) 1.24732 0.0701671
\(317\) −5.00014 + 5.00014i −0.280836 + 0.280836i −0.833442 0.552606i \(-0.813633\pi\)
0.552606 + 0.833442i \(0.313633\pi\)
\(318\) 3.91455 + 0.629471i 0.219517 + 0.0352990i
\(319\) 33.8743i 1.89660i
\(320\) 0.893014 2.05001i 0.0499210 0.114599i
\(321\) −13.9447 + 10.0813i −0.778317 + 0.562681i
\(322\) 15.8047 + 15.8047i 0.880761 + 0.880761i
\(323\) 4.90493 + 4.90493i 0.272917 + 0.272917i
\(324\) 5.35852 7.23092i 0.297695 0.401718i
\(325\) −0.606669 0.0220054i −0.0336520 0.00122064i
\(326\) 4.21322i 0.233348i
\(327\) 0.0615169 0.382561i 0.00340189 0.0211557i
\(328\) −2.82471 + 2.82471i −0.155969 + 0.155969i
\(329\) −51.8605 −2.85916
\(330\) 3.62058 + 16.5691i 0.199306 + 0.912098i
\(331\) 15.5843 0.856592 0.428296 0.903639i \(-0.359114\pi\)
0.428296 + 0.903639i \(0.359114\pi\)
\(332\) 9.27133 9.27133i 0.508830 0.508830i
\(333\) −2.21092 4.39025i −0.121158 0.240584i
\(334\) 9.42471i 0.515697i
\(335\) 11.0834 + 28.1927i 0.605552 + 1.54033i
\(336\) −3.96926 5.49040i −0.216541 0.299526i
\(337\) −12.8769 12.8769i −0.701449 0.701449i 0.263272 0.964722i \(-0.415198\pi\)
−0.964722 + 0.263272i \(0.915198\pi\)
\(338\) 9.18196 + 9.18196i 0.499433 + 0.499433i
\(339\) −7.03634 9.73288i −0.382162 0.528618i
\(340\) 5.67496 + 14.4353i 0.307768 + 0.782864i
\(341\) 21.0199i 1.13829i
\(342\) 1.34935 + 2.67941i 0.0729644 + 0.144886i
\(343\) −3.59519 + 3.59519i −0.194122 + 0.194122i
\(344\) 3.15007 0.169840
\(345\) −4.72449 21.6209i −0.254358 1.16403i
\(346\) −4.71178 −0.253307
\(347\) 5.40671 5.40671i 0.290247 0.290247i −0.546931 0.837178i \(-0.684204\pi\)
0.837178 + 0.546931i \(0.184204\pi\)
\(348\) −2.12716 + 13.2284i −0.114028 + 0.709116i
\(349\) 4.70970i 0.252104i 0.992024 + 0.126052i \(0.0402307\pi\)
−0.992024 + 0.126052i \(0.959769\pi\)
\(350\) 13.3189 + 14.3215i 0.711923 + 0.765514i
\(351\) −0.601370 + 0.190704i −0.0320988 + 0.0101790i
\(352\) 3.09646 + 3.09646i 0.165042 + 0.165042i
\(353\) 1.82994 + 1.82994i 0.0973976 + 0.0973976i 0.754127 0.656729i \(-0.228060\pi\)
−0.656729 + 0.754127i \(0.728060\pi\)
\(354\) −19.1760 + 13.8632i −1.01919 + 0.736821i
\(355\) 9.03015 20.7296i 0.479271 1.10022i
\(356\) 4.47665i 0.237262i
\(357\) 46.3990 + 7.46109i 2.45569 + 0.394883i
\(358\) 14.4197 14.4197i 0.762105 0.762105i
\(359\) −9.20818 −0.485989 −0.242995 0.970028i \(-0.578130\pi\)
−0.242995 + 0.970028i \(0.578130\pi\)
\(360\) 0.373418 + 6.69780i 0.0196809 + 0.353005i
\(361\) −1.00000 −0.0526316
\(362\) −14.0006 + 14.0006i −0.735855 + 0.735855i
\(363\) −13.9820 2.24834i −0.733863 0.118007i
\(364\) 0.474910i 0.0248920i
\(365\) 8.97050 3.52658i 0.469537 0.184590i
\(366\) 18.3443 13.2620i 0.958874 0.693214i
\(367\) 14.0925 + 14.0925i 0.735621 + 0.735621i 0.971727 0.236107i \(-0.0758715\pi\)
−0.236107 + 0.971727i \(0.575871\pi\)
\(368\) −4.04057 4.04057i −0.210629 0.210629i
\(369\) 3.75705 11.3801i 0.195584 0.592424i
\(370\) 3.35896 + 1.46321i 0.174624 + 0.0760689i
\(371\) 8.95381i 0.464859i
\(372\) −1.31996 + 8.20856i −0.0684368 + 0.425594i
\(373\) −6.94081 + 6.94081i −0.359382 + 0.359382i −0.863585 0.504203i \(-0.831786\pi\)
0.504203 + 0.863585i \(0.331786\pi\)
\(374\) −30.3759 −1.57070
\(375\) −3.44548 19.0559i −0.177924 0.984044i
\(376\) 13.2585 0.683754
\(377\) 0.664113 0.664113i 0.0342036 0.0342036i
\(378\) 18.0438 + 9.35515i 0.928071 + 0.481177i
\(379\) 34.8937i 1.79237i 0.443683 + 0.896184i \(0.353671\pi\)
−0.443683 + 0.896184i \(0.646329\pi\)
\(380\) −2.05001 0.893014i −0.105163 0.0458107i
\(381\) 2.46042 + 3.40333i 0.126051 + 0.174358i
\(382\) 11.3808 + 11.3808i 0.582292 + 0.582292i
\(383\) 3.00238 + 3.00238i 0.153415 + 0.153415i 0.779641 0.626227i \(-0.215401\pi\)
−0.626227 + 0.779641i \(0.715401\pi\)
\(384\) 1.01477 + 1.40366i 0.0517846 + 0.0716300i
\(385\) −35.6454 + 14.0133i −1.81666 + 0.714184i
\(386\) 3.89801i 0.198404i
\(387\) −8.44033 + 4.25054i −0.429046 + 0.216067i
\(388\) −1.05430 + 1.05430i −0.0535239 + 0.0535239i
\(389\) −4.18737 −0.212308 −0.106154 0.994350i \(-0.533854\pi\)
−0.106154 + 0.994350i \(0.533854\pi\)
\(390\) 0.253858 0.395822i 0.0128546 0.0200432i
\(391\) 39.6374 2.00455
\(392\) 5.86888 5.86888i 0.296423 0.296423i
\(393\) −0.284505 + 1.76928i −0.0143514 + 0.0892483i
\(394\) 13.4760i 0.678913i
\(395\) 1.11387 2.55701i 0.0560450 0.128657i
\(396\) −12.4749 4.11850i −0.626888 0.206963i
\(397\) −6.47953 6.47953i −0.325198 0.325198i 0.525559 0.850757i \(-0.323856\pi\)
−0.850757 + 0.525559i \(0.823856\pi\)
\(398\) −5.38642 5.38642i −0.269997 0.269997i
\(399\) −5.49040 + 3.96926i −0.274864 + 0.198712i
\(400\) −3.40505 3.66137i −0.170253 0.183068i
\(401\) 12.0856i 0.603528i 0.953383 + 0.301764i \(0.0975754\pi\)
−0.953383 + 0.301764i \(0.902425\pi\)
\(402\) −23.1673 3.72537i −1.15548 0.185805i
\(403\) 0.412100 0.412100i 0.0205281 0.0205281i
\(404\) −1.32352 −0.0658476
\(405\) −10.0382 17.4423i −0.498803 0.866716i
\(406\) −30.2575 −1.50166
\(407\) −5.07360 + 5.07360i −0.251489 + 0.251489i
\(408\) −11.8622 1.90747i −0.587266 0.0944340i
\(409\) 14.2278i 0.703521i −0.936090 0.351760i \(-0.885583\pi\)
0.936090 0.351760i \(-0.114417\pi\)
\(410\) 3.26817 + 8.31318i 0.161403 + 0.410559i
\(411\) −7.75196 + 5.60424i −0.382376 + 0.276437i
\(412\) −8.88033 8.88033i −0.437502 0.437502i
\(413\) −37.7856 37.7856i −1.85931 1.85931i
\(414\) 16.2785 + 5.37422i 0.800044 + 0.264129i
\(415\) −10.7269 27.2857i −0.526561 1.33940i
\(416\) 0.121414i 0.00595279i
\(417\) 0.243269 1.51284i 0.0119129 0.0740841i
\(418\) 3.09646 3.09646i 0.151453 0.151453i
\(419\) 27.8666 1.36137 0.680686 0.732576i \(-0.261682\pi\)
0.680686 + 0.732576i \(0.261682\pi\)
\(420\) −14.8000 + 3.23400i −0.722164 + 0.157803i
\(421\) 30.3012 1.47679 0.738396 0.674368i \(-0.235584\pi\)
0.738396 + 0.674368i \(0.235584\pi\)
\(422\) 3.91878 3.91878i 0.190763 0.190763i
\(423\) −35.5249 + 17.8903i −1.72728 + 0.869856i
\(424\) 2.28910i 0.111168i
\(425\) 34.6603 + 1.25721i 1.68127 + 0.0609838i
\(426\) 10.2613 + 14.1938i 0.497162 + 0.687690i
\(427\) 36.1468 + 36.1468i 1.74927 + 1.74927i
\(428\) 7.02479 + 7.02479i 0.339556 + 0.339556i
\(429\) 0.539529 + 0.746293i 0.0260487 + 0.0360314i
\(430\) 2.81305 6.45766i 0.135658 0.311416i
\(431\) 23.2155i 1.11825i 0.829082 + 0.559126i \(0.188863\pi\)
−0.829082 + 0.559126i \(0.811137\pi\)
\(432\) −4.61300 2.39170i −0.221943 0.115071i
\(433\) 20.5816 20.5816i 0.989090 0.989090i −0.0108515 0.999941i \(-0.503454\pi\)
0.999941 + 0.0108515i \(0.00345420\pi\)
\(434\) −18.7756 −0.901257
\(435\) 25.2187 + 16.1738i 1.20914 + 0.775476i
\(436\) −0.223709 −0.0107137
\(437\) −4.04057 + 4.04057i −0.193287 + 0.193287i
\(438\) −1.18536 + 7.37149i −0.0566386 + 0.352223i
\(439\) 29.7544i 1.42010i −0.704151 0.710050i \(-0.748672\pi\)
0.704151 0.710050i \(-0.251328\pi\)
\(440\) 9.11296 3.58259i 0.434443 0.170793i
\(441\) −7.80600 + 23.6443i −0.371714 + 1.12592i
\(442\) 0.595525 + 0.595525i 0.0283262 + 0.0283262i
\(443\) −12.8988 12.8988i −0.612842 0.612842i 0.330844 0.943686i \(-0.392667\pi\)
−0.943686 + 0.330844i \(0.892667\pi\)
\(444\) −2.29991 + 1.66271i −0.109149 + 0.0789086i
\(445\) 9.17717 + 3.99771i 0.435040 + 0.189510i
\(446\) 13.4784i 0.638219i
\(447\) −24.6578 3.96505i −1.16628 0.187541i
\(448\) −2.76585 + 2.76585i −0.130674 + 0.130674i
\(449\) 6.08743 0.287284 0.143642 0.989630i \(-0.454119\pi\)
0.143642 + 0.989630i \(0.454119\pi\)
\(450\) 14.0640 + 5.21572i 0.662984 + 0.245871i
\(451\) −17.4932 −0.823725
\(452\) −4.90305 + 4.90305i −0.230620 + 0.230620i
\(453\) 21.4686 + 3.45221i 1.00868 + 0.162199i
\(454\) 19.4501i 0.912836i
\(455\) 0.973568 + 0.424101i 0.0456416 + 0.0198822i
\(456\) 1.40366 1.01477i 0.0657322 0.0475208i
\(457\) 13.6315 + 13.6315i 0.637656 + 0.637656i 0.949977 0.312321i \(-0.101106\pi\)
−0.312321 + 0.949977i \(0.601106\pi\)
\(458\) 4.59237 + 4.59237i 0.214588 + 0.214588i
\(459\) 34.3575 10.8953i 1.60367 0.508549i
\(460\) −11.8915 + 4.67491i −0.554443 + 0.217969i
\(461\) 20.6355i 0.961091i 0.876970 + 0.480546i \(0.159561\pi\)
−0.876970 + 0.480546i \(0.840439\pi\)
\(462\) 4.71016 29.2915i 0.219137 1.36276i
\(463\) 1.47081 1.47081i 0.0683543 0.0683543i −0.672103 0.740458i \(-0.734609\pi\)
0.740458 + 0.672103i \(0.234609\pi\)
\(464\) 7.73552 0.359113
\(465\) 15.6489 + 10.0363i 0.725698 + 0.465422i
\(466\) −11.2384 −0.520608
\(467\) −24.9074 + 24.9074i −1.15258 + 1.15258i −0.166541 + 0.986035i \(0.553260\pi\)
−0.986035 + 0.166541i \(0.946740\pi\)
\(468\) 0.163829 + 0.325317i 0.00757301 + 0.0150378i
\(469\) 52.9910i 2.44690i
\(470\) 11.8400 27.1800i 0.546139 1.25372i
\(471\) −13.0408 18.0384i −0.600887 0.831165i
\(472\) 9.66012 + 9.66012i 0.444643 + 0.444643i
\(473\) 9.75407 + 9.75407i 0.448493 + 0.448493i
\(474\) 1.26574 + 1.75080i 0.0581372 + 0.0804171i
\(475\) −3.66137 + 3.40505i −0.167995 + 0.156235i
\(476\) 27.1326i 1.24362i
\(477\) 3.08879 + 6.13344i 0.141426 + 0.280831i
\(478\) 5.31171 5.31171i 0.242952 0.242952i
\(479\) 11.4278 0.522150 0.261075 0.965318i \(-0.415923\pi\)
0.261075 + 0.965318i \(0.415923\pi\)
\(480\) 3.78370 0.826793i 0.172702 0.0377378i
\(481\) 0.198938 0.00907078
\(482\) 7.92744 7.92744i 0.361085 0.361085i
\(483\) −6.14628 + 38.2224i −0.279665 + 1.73918i
\(484\) 8.17619i 0.371645i
\(485\) 1.21982 + 3.10282i 0.0553890 + 0.140892i
\(486\) 15.5874 + 0.183816i 0.707058 + 0.00833808i
\(487\) −6.40458 6.40458i −0.290219 0.290219i 0.546948 0.837167i \(-0.315790\pi\)
−0.837167 + 0.546948i \(0.815790\pi\)
\(488\) −9.24116 9.24116i −0.418328 0.418328i
\(489\) −5.91390 + 4.27543i −0.267436 + 0.193342i
\(490\) −6.79025 17.2722i −0.306752 0.780280i
\(491\) 8.15301i 0.367940i −0.982932 0.183970i \(-0.941105\pi\)
0.982932 0.183970i \(-0.0588950\pi\)
\(492\) −6.83135 1.09850i −0.307981 0.0495242i
\(493\) −37.9422 + 37.9422i −1.70883 + 1.70883i
\(494\) −0.121414 −0.00546266
\(495\) −19.5832 + 21.8958i −0.880201 + 0.984142i
\(496\) 4.80009 0.215531
\(497\) −27.9683 + 27.9683i −1.25455 + 1.25455i
\(498\) 22.4220 + 3.60552i 1.00475 + 0.161567i
\(499\) 1.46257i 0.0654738i 0.999464 + 0.0327369i \(0.0104223\pi\)
−0.999464 + 0.0327369i \(0.989578\pi\)
\(500\) −10.5466 + 3.71073i −0.471658 + 0.165949i
\(501\) 13.2290 9.56387i 0.591030 0.427282i
\(502\) −7.60679 7.60679i −0.339508 0.339508i
\(503\) 27.1555 + 27.1555i 1.21081 + 1.21081i 0.970762 + 0.240043i \(0.0771615\pi\)
0.240043 + 0.970762i \(0.422839\pi\)
\(504\) 3.67876 11.1430i 0.163865 0.496346i
\(505\) −1.18192 + 2.71323i −0.0525949 + 0.120737i
\(506\) 25.0230i 1.11241i
\(507\) −3.57077 + 22.2059i −0.158583 + 0.986197i
\(508\) 1.71446 1.71446i 0.0760670 0.0760670i
\(509\) −3.41038 −0.151162 −0.0755812 0.997140i \(-0.524081\pi\)
−0.0755812 + 0.997140i \(0.524081\pi\)
\(510\) −14.5034 + 22.6141i −0.642223 + 1.00137i
\(511\) −16.8609 −0.745884
\(512\) 0.707107 0.707107i 0.0312500 0.0312500i
\(513\) −2.39170 + 4.61300i −0.105596 + 0.203669i
\(514\) 3.78581i 0.166985i
\(515\) −26.1350 + 10.2745i −1.15165 + 0.452747i
\(516\) 3.19658 + 4.42161i 0.140722 + 0.194651i
\(517\) 41.0544 + 41.0544i 1.80557 + 1.80557i
\(518\) −4.53188 4.53188i −0.199119 0.199119i
\(519\) −4.78135 6.61371i −0.209878 0.290310i
\(520\) −0.248899 0.108424i −0.0109149 0.00475471i
\(521\) 26.3131i 1.15280i −0.817169 0.576399i \(-0.804457\pi\)
0.817169 0.576399i \(-0.195543\pi\)
\(522\) −20.7267 + 10.4379i −0.907182 + 0.456855i
\(523\) 1.67071 1.67071i 0.0730549 0.0730549i −0.669635 0.742690i \(-0.733550\pi\)
0.742690 + 0.669635i \(0.233550\pi\)
\(524\) 1.03462 0.0451974
\(525\) −6.58685 + 33.2280i −0.287474 + 1.45019i
\(526\) −23.7107 −1.03384
\(527\) −23.5441 + 23.5441i −1.02560 + 1.02560i
\(528\) −1.20418 + 7.48856i −0.0524053 + 0.325898i
\(529\) 9.65240i 0.419669i
\(530\) −4.69267 2.04420i −0.203836 0.0887942i
\(531\) −38.9183 12.8486i −1.68891 0.557582i
\(532\) 2.76585 + 2.76585i 0.119915 + 0.119915i
\(533\) 0.342959 + 0.342959i 0.0148552 + 0.0148552i
\(534\) −6.28368 + 4.54276i −0.271921 + 0.196584i
\(535\) 20.6741 8.12763i 0.893819 0.351388i
\(536\) 13.5475i 0.585162i
\(537\) 34.8729 + 5.60767i 1.50488 + 0.241989i
\(538\) 8.87418 8.87418i 0.382593 0.382593i
\(539\) 36.3456 1.56551
\(540\) −9.02248 + 7.32086i −0.388266 + 0.315039i
\(541\) −23.9511 −1.02974 −0.514870 0.857269i \(-0.672160\pi\)
−0.514870 + 0.857269i \(0.672160\pi\)
\(542\) −9.17134 + 9.17134i −0.393943 + 0.393943i
\(543\) −33.8594 5.44469i −1.45304 0.233654i
\(544\) 6.93661i 0.297405i
\(545\) −0.199775 + 0.458605i −0.00855743 + 0.0196445i
\(546\) −0.666610 + 0.481922i −0.0285283 + 0.0206244i
\(547\) −18.6458 18.6458i −0.797236 0.797236i 0.185423 0.982659i \(-0.440634\pi\)
−0.982659 + 0.185423i \(0.940634\pi\)
\(548\) 3.90513 + 3.90513i 0.166819 + 0.166819i
\(549\) 37.2304 + 12.2914i 1.58896 + 0.524582i
\(550\) 0.793675 21.8809i 0.0338424 0.933006i
\(551\) 7.73552i 0.329544i
\(552\) 1.57133 9.77180i 0.0668804 0.415915i
\(553\) −3.44989 + 3.44989i −0.146704 + 0.146704i
\(554\) 14.4590 0.614306
\(555\) 1.35471 + 6.19965i 0.0575043 + 0.263160i
\(556\) −0.884659 −0.0375179
\(557\) 4.22121 4.22121i 0.178859 0.178859i −0.612000 0.790858i \(-0.709635\pi\)
0.790858 + 0.612000i \(0.209635\pi\)
\(558\) −12.8614 + 6.47700i −0.544468 + 0.274193i
\(559\) 0.382461i 0.0161764i
\(560\) 3.20007 + 8.13995i 0.135228 + 0.343976i
\(561\) −30.8244 42.6373i −1.30141 1.80015i
\(562\) −2.46184 2.46184i −0.103846 0.103846i
\(563\) −11.0358 11.0358i −0.465105 0.465105i 0.435219 0.900325i \(-0.356671\pi\)
−0.900325 + 0.435219i \(0.856671\pi\)
\(564\) 13.4543 + 18.6103i 0.566526 + 0.783636i
\(565\) 5.67279 + 14.4298i 0.238656 + 0.607065i
\(566\) 4.85720i 0.204164i
\(567\) 5.17879 + 34.8205i 0.217489 + 1.46232i
\(568\) 7.15026 7.15026i 0.300018 0.300018i
\(569\) −16.3299 −0.684585 −0.342293 0.939593i \(-0.611203\pi\)
−0.342293 + 0.939593i \(0.611203\pi\)
\(570\) −0.826793 3.78370i −0.0346306 0.158482i
\(571\) 28.8841 1.20876 0.604381 0.796695i \(-0.293421\pi\)
0.604381 + 0.796695i \(0.293421\pi\)
\(572\) 0.375953 0.375953i 0.0157194 0.0157194i
\(573\) −4.42587 + 27.5236i −0.184893 + 1.14981i
\(574\) 15.6255i 0.652194i
\(575\) −1.03566 + 28.5524i −0.0431902 + 1.19072i
\(576\) −0.940499 + 2.84877i −0.0391874 + 0.118699i
\(577\) −10.6942 10.6942i −0.445205 0.445205i 0.448552 0.893757i \(-0.351940\pi\)
−0.893757 + 0.448552i \(0.851940\pi\)
\(578\) −22.0028 22.0028i −0.915194 0.915194i
\(579\) −5.47147 + 3.95557i −0.227386 + 0.164388i
\(580\) 6.90793 15.8579i 0.286836 0.658462i
\(581\) 51.2862i 2.12771i
\(582\) −2.54974 0.410006i −0.105690 0.0169953i
\(583\) 7.08811 7.08811i 0.293560 0.293560i
\(584\) 4.31060 0.178374
\(585\) 0.813205 0.0453381i 0.0336219 0.00187450i
\(586\) −6.04102 −0.249552
\(587\) 26.1994 26.1994i 1.08136 1.08136i 0.0849807 0.996383i \(-0.472917\pi\)
0.996383 0.0849807i \(-0.0270829\pi\)
\(588\) 14.1934 + 2.28234i 0.585327 + 0.0941223i
\(589\) 4.80009i 0.197784i
\(590\) 28.4299 11.1767i 1.17044 0.460137i
\(591\) 18.9157 13.6750i 0.778089 0.562516i
\(592\) 1.15860 + 1.15860i 0.0476183 + 0.0476183i
\(593\) −13.6587 13.6587i −0.560897 0.560897i 0.368665 0.929562i \(-0.379815\pi\)
−0.929562 + 0.368665i \(0.879815\pi\)
\(594\) −6.87817 21.6898i −0.282215 0.889944i
\(595\) −55.6220 24.2298i −2.28028 0.993324i
\(596\) 14.4191i 0.590629i
\(597\) 2.09472 13.0266i 0.0857313 0.533145i
\(598\) −0.490580 + 0.490580i −0.0200613 + 0.0200613i
\(599\) −29.0472 −1.18684 −0.593418 0.804894i \(-0.702222\pi\)
−0.593418 + 0.804894i \(0.702222\pi\)
\(600\) 1.68397 8.49495i 0.0687477 0.346805i
\(601\) −14.9410 −0.609458 −0.304729 0.952439i \(-0.598566\pi\)
−0.304729 + 0.952439i \(0.598566\pi\)
\(602\) −8.71261 + 8.71261i −0.355100 + 0.355100i
\(603\) −18.2803 36.2993i −0.744430 1.47822i
\(604\) 12.5541i 0.510820i
\(605\) 16.7612 + 7.30145i 0.681441 + 0.296846i
\(606\) −1.34306 1.85777i −0.0545583 0.0754666i
\(607\) 8.68114 + 8.68114i 0.352357 + 0.352357i 0.860986 0.508629i \(-0.169848\pi\)
−0.508629 + 0.860986i \(0.669848\pi\)
\(608\) −0.707107 0.707107i −0.0286770 0.0286770i
\(609\) −30.7043 42.4711i −1.24420 1.72102i
\(610\) −27.1969 + 10.6920i −1.10117 + 0.432905i
\(611\) 1.60976i 0.0651239i
\(612\) −9.35991 18.5861i −0.378352 0.751297i
\(613\) −5.07536 + 5.07536i −0.204992 + 0.204992i −0.802135 0.597143i \(-0.796303\pi\)
0.597143 + 0.802135i \(0.296303\pi\)
\(614\) −17.8017 −0.718417
\(615\) −8.35242 + 13.0233i −0.336802 + 0.525151i
\(616\) −17.1287 −0.690136
\(617\) 4.31435 4.31435i 0.173689 0.173689i −0.614909 0.788598i \(-0.710807\pi\)
0.788598 + 0.614909i \(0.210807\pi\)
\(618\) 3.45346 21.4764i 0.138919 0.863907i
\(619\) 6.95816i 0.279672i −0.990175 0.139836i \(-0.955342\pi\)
0.990175 0.139836i \(-0.0446575\pi\)
\(620\) 4.28655 9.84022i 0.172152 0.395193i
\(621\) 8.97531 + 28.3030i 0.360167 + 1.13576i
\(622\) −1.54997 1.54997i −0.0621481 0.0621481i
\(623\) −12.3818 12.3818i −0.496064 0.496064i
\(624\) 0.170423 0.123206i 0.00682238 0.00493221i
\(625\) −1.81124 + 24.9343i −0.0724496 + 0.997372i
\(626\) 17.3861i 0.694888i
\(627\) 7.48856 + 1.20418i 0.299064 + 0.0480904i
\(628\) −9.08703 + 9.08703i −0.362612 + 0.362612i
\(629\) −11.3657 −0.453181
\(630\) −19.5579 17.4923i −0.779207 0.696910i
\(631\) −16.5313 −0.658102 −0.329051 0.944312i \(-0.606729\pi\)
−0.329051 + 0.944312i \(0.606729\pi\)
\(632\) 0.881987 0.881987i 0.0350835 0.0350835i
\(633\) 9.47726 + 1.52397i 0.376687 + 0.0605724i
\(634\) 7.07127i 0.280836i
\(635\) −1.98362 5.04570i −0.0787176 0.200233i
\(636\) 3.21311 2.32290i 0.127408 0.0921090i
\(637\) −0.712562 0.712562i −0.0282327 0.0282327i
\(638\) 23.9528 + 23.9528i 0.948300 + 0.948300i
\(639\) −9.51031 + 28.8067i −0.376222 + 1.13958i
\(640\) −0.818117 2.08103i −0.0323389 0.0822599i
\(641\) 16.7295i 0.660775i −0.943845 0.330388i \(-0.892820\pi\)
0.943845 0.330388i \(-0.107180\pi\)
\(642\) −2.73187 + 16.9889i −0.107818 + 0.670499i
\(643\) 21.5217 21.5217i 0.848733 0.848733i −0.141242 0.989975i \(-0.545110\pi\)
0.989975 + 0.141242i \(0.0451095\pi\)
\(644\) 22.3512 0.880761
\(645\) 11.9189 2.60445i 0.469307 0.102550i
\(646\) 6.93661 0.272917
\(647\) −7.41491 + 7.41491i −0.291510 + 0.291510i −0.837677 0.546166i \(-0.816087\pi\)
0.546166 + 0.837677i \(0.316087\pi\)
\(648\) −1.32399 8.90208i −0.0520113 0.349707i
\(649\) 59.8244i 2.34831i
\(650\) −0.444540 + 0.413420i −0.0174363 + 0.0162157i
\(651\) −19.0528 26.3545i −0.746739 1.03291i
\(652\) 2.97919 + 2.97919i 0.116674 + 0.116674i
\(653\) 19.0621 + 19.0621i 0.745959 + 0.745959i 0.973718 0.227758i \(-0.0731396\pi\)
−0.227758 + 0.973718i \(0.573140\pi\)
\(654\) −0.227012 0.314010i −0.00887688 0.0122788i
\(655\) 0.923926 2.12097i 0.0361008 0.0828731i
\(656\) 3.99475i 0.155969i
\(657\) −11.5499 + 5.81651i −0.450604 + 0.226924i
\(658\) −36.6709 + 36.6709i −1.42958 + 1.42958i
\(659\) 43.8126 1.70670 0.853349 0.521341i \(-0.174568\pi\)
0.853349 + 0.521341i \(0.174568\pi\)
\(660\) 14.2762 + 9.15597i 0.555702 + 0.356396i
\(661\) −16.9162 −0.657963 −0.328982 0.944336i \(-0.606705\pi\)
−0.328982 + 0.944336i \(0.606705\pi\)
\(662\) 11.0198 11.0198i 0.428296 0.428296i
\(663\) −0.231593 + 1.44023i −0.00899434 + 0.0559339i
\(664\) 13.1116i 0.508830i
\(665\) 8.13995 3.20007i 0.315654 0.124093i
\(666\) −4.66774 1.54102i −0.180871 0.0597133i
\(667\) −31.2559 31.2559i −1.21023 1.21023i
\(668\) −6.66427 6.66427i −0.257848 0.257848i
\(669\) 18.9190 13.6774i 0.731451 0.528799i
\(670\) 27.7724 + 12.0981i 1.07294 + 0.467390i
\(671\) 57.2299i 2.20933i
\(672\) −6.68899 1.07561i −0.258033 0.0414925i
\(673\) −29.1932 + 29.1932i −1.12532 + 1.12532i −0.134386 + 0.990929i \(0.542906\pi\)
−0.990929 + 0.134386i \(0.957094\pi\)
\(674\) −18.2107 −0.701449
\(675\) 6.95060 + 25.0338i 0.267529 + 0.963550i
\(676\) 12.9853 0.499433
\(677\) −10.7238 + 10.7238i −0.412148 + 0.412148i −0.882486 0.470338i \(-0.844132\pi\)
0.470338 + 0.882486i \(0.344132\pi\)
\(678\) −11.8576 1.90674i −0.455390 0.0732280i
\(679\) 5.83207i 0.223814i
\(680\) 14.2201 + 6.19449i 0.545316 + 0.237548i
\(681\) 27.3012 19.7373i 1.04618 0.756333i
\(682\) 14.8633 + 14.8633i 0.569146 + 0.569146i
\(683\) 35.6719 + 35.6719i 1.36495 + 1.36495i 0.867488 + 0.497459i \(0.165733\pi\)
0.497459 + 0.867488i \(0.334267\pi\)
\(684\) 2.84877 + 0.940499i 0.108925 + 0.0359609i
\(685\) 11.4929 4.51821i 0.439121 0.172632i
\(686\) 5.08436i 0.194122i
\(687\) −1.78593 + 11.1063i −0.0681373 + 0.423732i
\(688\) 2.22743 2.22743i 0.0849201 0.0849201i
\(689\) −0.277928 −0.0105882
\(690\) −18.6290 11.9476i −0.709195 0.454837i
\(691\) −26.9995 −1.02711 −0.513554 0.858057i \(-0.671671\pi\)
−0.513554 + 0.858057i \(0.671671\pi\)
\(692\) −3.33173 + 3.33173i −0.126653 + 0.126653i
\(693\) 45.8949 23.1126i 1.74340 0.877975i
\(694\) 7.64624i 0.290247i
\(695\) −0.790013 + 1.81356i −0.0299669 + 0.0687921i
\(696\) 7.84975 + 10.8580i 0.297544 + 0.411572i
\(697\) −19.5939 19.5939i −0.742173 0.742173i
\(698\) 3.33026 + 3.33026i 0.126052 + 0.126052i
\(699\) −11.4043 15.7748i −0.431351 0.596658i
\(700\) 19.5447 + 0.708933i 0.738719 + 0.0267951i
\(701\) 43.3103i 1.63581i 0.575354 + 0.817905i \(0.304864\pi\)
−0.575354 + 0.817905i \(0.695136\pi\)
\(702\) −0.290385 + 0.560081i −0.0109599 + 0.0211389i
\(703\) 1.15860 1.15860i 0.0436975 0.0436975i
\(704\) 4.37906 0.165042
\(705\) 50.1661 10.9620i 1.88937 0.412853i
\(706\) 2.58792 0.0973976
\(707\) 3.66066 3.66066i 0.137673 0.137673i
\(708\) −3.75672 + 23.3622i −0.141186 + 0.878007i
\(709\) 5.62201i 0.211139i −0.994412 0.105569i \(-0.966333\pi\)
0.994412 0.105569i \(-0.0336665\pi\)
\(710\) −8.27279 21.0434i −0.310472 0.789743i
\(711\) −1.17310 + 3.55331i −0.0439947 + 0.133260i
\(712\) 3.16547 + 3.16547i 0.118631 + 0.118631i
\(713\) −19.3951 19.3951i −0.726353 0.726353i
\(714\) 38.0848 27.5332i 1.42529 1.03041i
\(715\) −0.434975 1.10644i −0.0162671 0.0413784i
\(716\) 20.3926i 0.762105i
\(717\) 12.8459 + 2.06567i 0.479741 + 0.0771437i
\(718\) −6.51117 + 6.51117i −0.242995 + 0.242995i
\(719\) −36.9146 −1.37668 −0.688340 0.725388i \(-0.741660\pi\)
−0.688340 + 0.725388i \(0.741660\pi\)
\(720\) 5.00011 + 4.47202i 0.186343 + 0.166662i
\(721\) 49.1233 1.82945
\(722\) −0.707107 + 0.707107i −0.0263158 + 0.0263158i
\(723\) 19.1719 + 3.08290i 0.713010 + 0.114654i
\(724\) 19.7998i 0.735855i
\(725\) −26.3399 28.3226i −0.978238 1.05188i
\(726\) −11.4766 + 8.29692i −0.425935 + 0.307928i
\(727\) 23.0361 + 23.0361i 0.854362 + 0.854362i 0.990667 0.136305i \(-0.0435227\pi\)
−0.136305 + 0.990667i \(0.543523\pi\)
\(728\) 0.335812 + 0.335812i 0.0124460 + 0.0124460i
\(729\) 15.5595 + 22.0658i 0.576279 + 0.817253i
\(730\) 3.84943 8.83677i 0.142474 0.327063i
\(731\) 21.8508i 0.808181i
\(732\) 3.59379 22.3490i 0.132830 0.826044i
\(733\) −32.4240 + 32.4240i −1.19761 + 1.19761i −0.222726 + 0.974881i \(0.571495\pi\)
−0.974881 + 0.222726i \(0.928505\pi\)
\(734\) 19.9298 0.735621
\(735\) 17.3538 27.0585i 0.640103 0.998066i
\(736\) −5.71423 −0.210629
\(737\) −41.9493 + 41.9493i −1.54522 + 1.54522i
\(738\) −5.39030 10.7036i −0.198420 0.394004i
\(739\) 36.8773i 1.35655i 0.734806 + 0.678277i \(0.237273\pi\)
−0.734806 + 0.678277i \(0.762727\pi\)
\(740\) 3.40979 1.34050i 0.125346 0.0492776i
\(741\) −0.123206 0.170423i −0.00452610 0.00626064i
\(742\) 6.33130 + 6.33130i 0.232429 + 0.232429i
\(743\) 25.4177 + 25.4177i 0.932483 + 0.932483i 0.997861 0.0653772i \(-0.0208251\pi\)
−0.0653772 + 0.997861i \(0.520825\pi\)
\(744\) 4.87097 + 6.73768i 0.178579 + 0.247015i
\(745\) 29.5592 + 12.8765i 1.08297 + 0.471757i
\(746\) 9.81579i 0.359382i
\(747\) 17.6922 + 35.1315i 0.647323 + 1.28540i
\(748\) −21.4790 + 21.4790i −0.785349 + 0.785349i
\(749\) −38.8590 −1.41988
\(750\) −15.9109 11.0383i −0.580984 0.403060i
\(751\) 4.92408 0.179682 0.0898412 0.995956i \(-0.471364\pi\)
0.0898412 + 0.995956i \(0.471364\pi\)
\(752\) 9.37516 9.37516i 0.341877 0.341877i
\(753\) 2.95820 18.3964i 0.107803 0.670403i
\(754\) 0.939198i 0.0342036i
\(755\) −25.7361 11.2110i −0.936631 0.408011i
\(756\) 19.3740 6.14378i 0.704624 0.223447i
\(757\) 13.6895 + 13.6895i 0.497555 + 0.497555i 0.910676 0.413121i \(-0.135561\pi\)
−0.413121 + 0.910676i \(0.635561\pi\)
\(758\) 24.6735 + 24.6735i 0.896184 + 0.896184i
\(759\) 35.1236 25.3925i 1.27491 0.921688i
\(760\) −2.08103 + 0.818117i −0.0754869 + 0.0296762i
\(761\) 20.7833i 0.753394i −0.926337 0.376697i \(-0.877060\pi\)
0.926337 0.376697i \(-0.122940\pi\)
\(762\) 4.14630 + 0.666737i 0.150204 + 0.0241533i
\(763\) 0.618745 0.618745i 0.0224001 0.0224001i
\(764\) 16.0949 0.582292
\(765\) −46.4601 + 2.59026i −1.67977 + 0.0936510i
\(766\) 4.24601 0.153415
\(767\) 1.17287 1.17287i 0.0423499 0.0423499i
\(768\) 1.71008 + 0.274986i 0.0617073 + 0.00992271i
\(769\) 41.2077i 1.48599i −0.669297 0.742995i \(-0.733405\pi\)
0.669297 0.742995i \(-0.266595\pi\)
\(770\) −15.2962 + 35.1140i −0.551236 + 1.26542i
\(771\) 5.31397 3.84171i 0.191378 0.138356i
\(772\) 2.75631 + 2.75631i 0.0992018 + 0.0992018i
\(773\) −12.8806 12.8806i −0.463282 0.463282i 0.436448 0.899729i \(-0.356236\pi\)
−0.899729 + 0.436448i \(0.856236\pi\)
\(774\) −2.96263 + 8.97380i −0.106490 + 0.322557i
\(775\) −16.3446 17.5749i −0.587114 0.631310i
\(776\) 1.49100i 0.0535239i
\(777\) 1.76240 10.9600i 0.0632257 0.393188i
\(778\)