# Properties

 Label 570.2.k.a.77.16 Level $570$ Weight $2$ Character 570.77 Analytic conductor $4.551$ Analytic rank $0$ Dimension $36$ CM no Inner twists $4$

# Learn more about

## Newspace parameters

 Level: $$N$$ $$=$$ $$570 = 2 \cdot 3 \cdot 5 \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 570.k (of order $$4$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$4.55147291521$$ Analytic rank: $$0$$ Dimension: $$36$$ Relative dimension: $$18$$ over $$\Q(i)$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

## Embedding invariants

 Embedding label 77.16 Character $$\chi$$ $$=$$ 570.77 Dual form 570.2.k.a.533.16

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(0.707107 - 0.707107i) q^{2} +(1.07966 + 1.35438i) q^{3} -1.00000i q^{4} +(-1.25473 - 1.85086i) q^{5} +(1.72112 + 0.194257i) q^{6} +(-3.56316 - 3.56316i) q^{7} +(-0.707107 - 0.707107i) q^{8} +(-0.668679 + 2.92453i) q^{9} +O(q^{10})$$ $$q+(0.707107 - 0.707107i) q^{2} +(1.07966 + 1.35438i) q^{3} -1.00000i q^{4} +(-1.25473 - 1.85086i) q^{5} +(1.72112 + 0.194257i) q^{6} +(-3.56316 - 3.56316i) q^{7} +(-0.707107 - 0.707107i) q^{8} +(-0.668679 + 2.92453i) q^{9} +(-2.19598 - 0.421528i) q^{10} -3.35156i q^{11} +(1.35438 - 1.07966i) q^{12} +(0.759044 - 0.759044i) q^{13} -5.03907 q^{14} +(1.15208 - 3.69766i) q^{15} -1.00000 q^{16} +(-0.534673 + 0.534673i) q^{17} +(1.59513 + 2.54078i) q^{18} +1.00000i q^{19} +(-1.85086 + 1.25473i) q^{20} +(0.978873 - 8.67286i) q^{21} +(-2.36991 - 2.36991i) q^{22} +(-3.95419 - 3.95419i) q^{23} +(0.194257 - 1.72112i) q^{24} +(-1.85133 + 4.64463i) q^{25} -1.07345i q^{26} +(-4.68286 + 2.25184i) q^{27} +(-3.56316 + 3.56316i) q^{28} +3.01104 q^{29} +(-1.80000 - 3.42929i) q^{30} +8.18480 q^{31} +(-0.707107 + 0.707107i) q^{32} +(4.53927 - 3.61853i) q^{33} +0.756142i q^{34} +(-2.12411 + 11.0657i) q^{35} +(2.92453 + 0.668679i) q^{36} +(5.57606 + 5.57606i) q^{37} +(0.707107 + 0.707107i) q^{38} +(1.84754 + 0.208525i) q^{39} +(-0.421528 + 2.19598i) q^{40} -8.43195i q^{41} +(-5.44047 - 6.82480i) q^{42} +(4.29665 - 4.29665i) q^{43} -3.35156 q^{44} +(6.25189 - 2.43185i) q^{45} -5.59207 q^{46} +(8.00851 - 8.00851i) q^{47} +(-1.07966 - 1.35438i) q^{48} +18.3922i q^{49} +(1.97516 + 4.59334i) q^{50} +(-1.30141 - 0.146886i) q^{51} +(-0.759044 - 0.759044i) q^{52} +(-7.04762 - 7.04762i) q^{53} +(-1.71899 + 4.90358i) q^{54} +(-6.20325 + 4.20528i) q^{55} +5.03907i q^{56} +(-1.35438 + 1.07966i) q^{57} +(2.12913 - 2.12913i) q^{58} +4.32394 q^{59} +(-3.69766 - 1.15208i) q^{60} +1.35764 q^{61} +(5.78753 - 5.78753i) q^{62} +(12.8032 - 8.03795i) q^{63} +1.00000i q^{64} +(-2.35727 - 0.452489i) q^{65} +(0.651062 - 5.76844i) q^{66} +(5.23044 + 5.23044i) q^{67} +(0.534673 + 0.534673i) q^{68} +(1.08630 - 9.62464i) q^{69} +(6.32265 + 9.32659i) q^{70} +4.74757i q^{71} +(2.54078 - 1.59513i) q^{72} +(-5.12695 + 5.12695i) q^{73} +7.88574 q^{74} +(-8.28939 + 2.50721i) q^{75} +1.00000 q^{76} +(-11.9421 + 11.9421i) q^{77} +(1.45386 - 1.15896i) q^{78} +0.256451i q^{79} +(1.25473 + 1.85086i) q^{80} +(-8.10574 - 3.91114i) q^{81} +(-5.96229 - 5.96229i) q^{82} +(4.73252 + 4.73252i) q^{83} +(-8.67286 - 0.978873i) q^{84} +(1.66047 + 0.318735i) q^{85} -6.07639i q^{86} +(3.25089 + 4.07809i) q^{87} +(-2.36991 + 2.36991i) q^{88} -15.2064 q^{89} +(2.70117 - 6.14033i) q^{90} -5.40919 q^{91} +(-3.95419 + 3.95419i) q^{92} +(8.83678 + 11.0853i) q^{93} -11.3257i q^{94} +(1.85086 - 1.25473i) q^{95} +(-1.72112 - 0.194257i) q^{96} +(-9.73496 - 9.73496i) q^{97} +(13.0053 + 13.0053i) q^{98} +(9.80172 + 2.24112i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$36q + 4q^{3} + 4q^{6} - 12q^{7} + O(q^{10})$$ $$36q + 4q^{3} + 4q^{6} - 12q^{7} - 4q^{10} - 4q^{12} + 8q^{13} + 4q^{15} - 36q^{16} - 32q^{21} - 4q^{22} + 32q^{25} + 28q^{27} - 12q^{28} - 8q^{30} + 8q^{31} + 36q^{33} + 4q^{36} - 32q^{37} - 8q^{40} + 12q^{42} - 24q^{43} - 28q^{45} - 16q^{46} - 4q^{48} - 40q^{51} - 8q^{52} - 4q^{55} + 4q^{57} - 4q^{58} - 24q^{60} + 200q^{61} + 28q^{63} + 12q^{70} - 68q^{73} - 36q^{75} + 36q^{76} + 24q^{78} - 92q^{81} + 24q^{82} + 24q^{85} + 28q^{87} - 4q^{88} - 68q^{90} + 64q^{91} + 16q^{93} - 4q^{96} - 148q^{97} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/570\mathbb{Z}\right)^\times$$.

 $$n$$ $$191$$ $$211$$ $$457$$ $$\chi(n)$$ $$-1$$ $$1$$ $$e\left(\frac{1}{4}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0.707107 0.707107i 0.500000 0.500000i
$$3$$ 1.07966 + 1.35438i 0.623341 + 0.781950i
$$4$$ 1.00000i 0.500000i
$$5$$ −1.25473 1.85086i −0.561130 0.827728i
$$6$$ 1.72112 + 0.194257i 0.702646 + 0.0793050i
$$7$$ −3.56316 3.56316i −1.34675 1.34675i −0.889169 0.457579i $$-0.848717\pi$$
−0.457579 0.889169i $$-0.651283\pi$$
$$8$$ −0.707107 0.707107i −0.250000 0.250000i
$$9$$ −0.668679 + 2.92453i −0.222893 + 0.974843i
$$10$$ −2.19598 0.421528i −0.694429 0.133299i
$$11$$ 3.35156i 1.01053i −0.862964 0.505266i $$-0.831394\pi$$
0.862964 0.505266i $$-0.168606\pi$$
$$12$$ 1.35438 1.07966i 0.390975 0.311670i
$$13$$ 0.759044 0.759044i 0.210521 0.210521i −0.593968 0.804489i $$-0.702439\pi$$
0.804489 + 0.593968i $$0.202439\pi$$
$$14$$ −5.03907 −1.34675
$$15$$ 1.15208 3.69766i 0.297467 0.954732i
$$16$$ −1.00000 −0.250000
$$17$$ −0.534673 + 0.534673i −0.129677 + 0.129677i −0.768966 0.639289i $$-0.779229\pi$$
0.639289 + 0.768966i $$0.279229\pi$$
$$18$$ 1.59513 + 2.54078i 0.375975 + 0.598868i
$$19$$ 1.00000i 0.229416i
$$20$$ −1.85086 + 1.25473i −0.413864 + 0.280565i
$$21$$ 0.978873 8.67286i 0.213608 1.89257i
$$22$$ −2.36991 2.36991i −0.505266 0.505266i
$$23$$ −3.95419 3.95419i −0.824506 0.824506i 0.162245 0.986751i $$-0.448127\pi$$
−0.986751 + 0.162245i $$0.948127\pi$$
$$24$$ 0.194257 1.72112i 0.0396525 0.351323i
$$25$$ −1.85133 + 4.64463i −0.370266 + 0.928926i
$$26$$ 1.07345i 0.210521i
$$27$$ −4.68286 + 2.25184i −0.901217 + 0.433368i
$$28$$ −3.56316 + 3.56316i −0.673374 + 0.673374i
$$29$$ 3.01104 0.559137 0.279568 0.960126i $$-0.409809\pi$$
0.279568 + 0.960126i $$0.409809\pi$$
$$30$$ −1.80000 3.42929i −0.328633 0.626099i
$$31$$ 8.18480 1.47003 0.735017 0.678049i $$-0.237174\pi$$
0.735017 + 0.678049i $$0.237174\pi$$
$$32$$ −0.707107 + 0.707107i −0.125000 + 0.125000i
$$33$$ 4.53927 3.61853i 0.790186 0.629906i
$$34$$ 0.756142i 0.129677i
$$35$$ −2.12411 + 11.0657i −0.359040 + 1.87044i
$$36$$ 2.92453 + 0.668679i 0.487421 + 0.111447i
$$37$$ 5.57606 + 5.57606i 0.916699 + 0.916699i 0.996788 0.0800886i $$-0.0255203\pi$$
−0.0800886 + 0.996788i $$0.525520\pi$$
$$38$$ 0.707107 + 0.707107i 0.114708 + 0.114708i
$$39$$ 1.84754 + 0.208525i 0.295843 + 0.0333907i
$$40$$ −0.421528 + 2.19598i −0.0666494 + 0.347214i
$$41$$ 8.43195i 1.31685i −0.752647 0.658425i $$-0.771223\pi$$
0.752647 0.658425i $$-0.228777\pi$$
$$42$$ −5.44047 6.82480i −0.839483 1.05309i
$$43$$ 4.29665 4.29665i 0.655234 0.655234i −0.299015 0.954248i $$-0.596658\pi$$
0.954248 + 0.299015i $$0.0966580\pi$$
$$44$$ −3.35156 −0.505266
$$45$$ 6.25189 2.43185i 0.931976 0.362519i
$$46$$ −5.59207 −0.824506
$$47$$ 8.00851 8.00851i 1.16816 1.16816i 0.185522 0.982640i $$-0.440603\pi$$
0.982640 0.185522i $$-0.0593975\pi$$
$$48$$ −1.07966 1.35438i −0.155835 0.195488i
$$49$$ 18.3922i 2.62746i
$$50$$ 1.97516 + 4.59334i 0.279330 + 0.649596i
$$51$$ −1.30141 0.146886i −0.182234 0.0205681i
$$52$$ −0.759044 0.759044i −0.105260 0.105260i
$$53$$ −7.04762 7.04762i −0.968064 0.968064i 0.0314411 0.999506i $$-0.489990\pi$$
−0.999506 + 0.0314411i $$0.989990\pi$$
$$54$$ −1.71899 + 4.90358i −0.233925 + 0.667292i
$$55$$ −6.20325 + 4.20528i −0.836446 + 0.567040i
$$56$$ 5.03907i 0.673374i
$$57$$ −1.35438 + 1.07966i −0.179392 + 0.143004i
$$58$$ 2.12913 2.12913i 0.279568 0.279568i
$$59$$ 4.32394 0.562928 0.281464 0.959572i $$-0.409180\pi$$
0.281464 + 0.959572i $$0.409180\pi$$
$$60$$ −3.69766 1.15208i −0.477366 0.148733i
$$61$$ 1.35764 0.173828 0.0869138 0.996216i $$-0.472300\pi$$
0.0869138 + 0.996216i $$0.472300\pi$$
$$62$$ 5.78753 5.78753i 0.735017 0.735017i
$$63$$ 12.8032 8.03795i 1.61305 1.01269i
$$64$$ 1.00000i 0.125000i
$$65$$ −2.35727 0.452489i −0.292384 0.0561243i
$$66$$ 0.651062 5.76844i 0.0801402 0.710046i
$$67$$ 5.23044 + 5.23044i 0.639000 + 0.639000i 0.950309 0.311309i $$-0.100767\pi$$
−0.311309 + 0.950309i $$0.600767\pi$$
$$68$$ 0.534673 + 0.534673i 0.0648386 + 0.0648386i
$$69$$ 1.08630 9.62464i 0.130775 1.15867i
$$70$$ 6.32265 + 9.32659i 0.755701 + 1.11474i
$$71$$ 4.74757i 0.563433i 0.959498 + 0.281716i $$0.0909038\pi$$
−0.959498 + 0.281716i $$0.909096\pi$$
$$72$$ 2.54078 1.59513i 0.299434 0.187987i
$$73$$ −5.12695 + 5.12695i −0.600064 + 0.600064i −0.940330 0.340265i $$-0.889483\pi$$
0.340265 + 0.940330i $$0.389483\pi$$
$$74$$ 7.88574 0.916699
$$75$$ −8.28939 + 2.50721i −0.957176 + 0.289507i
$$76$$ 1.00000 0.114708
$$77$$ −11.9421 + 11.9421i −1.36093 + 1.36093i
$$78$$ 1.45386 1.15896i 0.164617 0.131226i
$$79$$ 0.256451i 0.0288529i 0.999896 + 0.0144265i $$0.00459225\pi$$
−0.999896 + 0.0144265i $$0.995408\pi$$
$$80$$ 1.25473 + 1.85086i 0.140283 + 0.206932i
$$81$$ −8.10574 3.91114i −0.900637 0.434572i
$$82$$ −5.96229 5.96229i −0.658425 0.658425i
$$83$$ 4.73252 + 4.73252i 0.519462 + 0.519462i 0.917408 0.397947i $$-0.130277\pi$$
−0.397947 + 0.917408i $$0.630277\pi$$
$$84$$ −8.67286 0.978873i −0.946286 0.106804i
$$85$$ 1.66047 + 0.318735i 0.180103 + 0.0345716i
$$86$$ 6.07639i 0.655234i
$$87$$ 3.25089 + 4.07809i 0.348533 + 0.437217i
$$88$$ −2.36991 + 2.36991i −0.252633 + 0.252633i
$$89$$ −15.2064 −1.61188 −0.805938 0.592000i $$-0.798338\pi$$
−0.805938 + 0.592000i $$0.798338\pi$$
$$90$$ 2.70117 6.14033i 0.284729 0.647248i
$$91$$ −5.40919 −0.567037
$$92$$ −3.95419 + 3.95419i −0.412253 + 0.412253i
$$93$$ 8.83678 + 11.0853i 0.916332 + 1.14949i
$$94$$ 11.3257i 1.16816i
$$95$$ 1.85086 1.25473i 0.189894 0.128732i
$$96$$ −1.72112 0.194257i −0.175661 0.0198262i
$$97$$ −9.73496 9.73496i −0.988435 0.988435i 0.0114985 0.999934i $$-0.496340\pi$$
−0.999934 + 0.0114985i $$0.996340\pi$$
$$98$$ 13.0053 + 13.0053i 1.31373 + 1.31373i
$$99$$ 9.80172 + 2.24112i 0.985110 + 0.225241i
$$100$$ 4.64463 + 1.85133i 0.464463 + 0.185133i
$$101$$ 12.3184i 1.22573i 0.790189 + 0.612863i $$0.209982\pi$$
−0.790189 + 0.612863i $$0.790018\pi$$
$$102$$ −1.02410 + 0.816374i −0.101401 + 0.0808331i
$$103$$ 0.357091 0.357091i 0.0351852 0.0351852i −0.689295 0.724481i $$-0.742080\pi$$
0.724481 + 0.689295i $$0.242080\pi$$
$$104$$ −1.07345 −0.105260
$$105$$ −17.2804 + 9.07030i −1.68640 + 0.885171i
$$106$$ −9.96683 −0.968064
$$107$$ 2.15869 2.15869i 0.208688 0.208688i −0.595022 0.803710i $$-0.702857\pi$$
0.803710 + 0.595022i $$0.202857\pi$$
$$108$$ 2.25184 + 4.68286i 0.216684 + 0.450609i
$$109$$ 2.96084i 0.283597i −0.989896 0.141798i $$-0.954712\pi$$
0.989896 0.141798i $$-0.0452885\pi$$
$$110$$ −1.41277 + 7.35994i −0.134703 + 0.701743i
$$111$$ −1.53186 + 13.5723i −0.145398 + 1.28823i
$$112$$ 3.56316 + 3.56316i 0.336687 + 0.336687i
$$113$$ −0.894915 0.894915i −0.0841865 0.0841865i 0.663760 0.747946i $$-0.268960\pi$$
−0.747946 + 0.663760i $$0.768960\pi$$
$$114$$ −0.194257 + 1.72112i −0.0181938 + 0.161198i
$$115$$ −2.35721 + 12.2801i −0.219811 + 1.14512i
$$116$$ 3.01104i 0.279568i
$$117$$ 1.71229 + 2.72740i 0.158301 + 0.252149i
$$118$$ 3.05748 3.05748i 0.281464 0.281464i
$$119$$ 3.81025 0.349285
$$120$$ −3.42929 + 1.80000i −0.313050 + 0.164316i
$$121$$ −0.232932 −0.0211757
$$122$$ 0.959995 0.959995i 0.0869138 0.0869138i
$$123$$ 11.4200 9.10362i 1.02971 0.820846i
$$124$$ 8.18480i 0.735017i
$$125$$ 10.9194 2.40119i 0.976665 0.214769i
$$126$$ 3.36952 14.7369i 0.300181 1.31287i
$$127$$ −6.70476 6.70476i −0.594951 0.594951i 0.344014 0.938965i $$-0.388213\pi$$
−0.938965 + 0.344014i $$0.888213\pi$$
$$128$$ 0.707107 + 0.707107i 0.0625000 + 0.0625000i
$$129$$ 10.4582 + 1.18038i 0.920794 + 0.103927i
$$130$$ −1.98680 + 1.34689i −0.174254 + 0.118130i
$$131$$ 1.53144i 0.133802i −0.997760 0.0669011i $$-0.978689\pi$$
0.997760 0.0669011i $$-0.0213112\pi$$
$$132$$ −3.61853 4.53927i −0.314953 0.395093i
$$133$$ 3.56316 3.56316i 0.308965 0.308965i
$$134$$ 7.39695 0.639000
$$135$$ 10.0435 + 5.84185i 0.864411 + 0.502787i
$$136$$ 0.756142 0.0648386
$$137$$ 4.76164 4.76164i 0.406814 0.406814i −0.473812 0.880626i $$-0.657122\pi$$
0.880626 + 0.473812i $$0.157122\pi$$
$$138$$ −6.03752 7.57378i −0.513948 0.644723i
$$139$$ 9.84417i 0.834971i −0.908684 0.417486i $$-0.862911\pi$$
0.908684 0.417486i $$-0.137089\pi$$
$$140$$ 11.0657 + 2.12411i 0.935221 + 0.179520i
$$141$$ 19.4930 + 2.20010i 1.64161 + 0.185282i
$$142$$ 3.35704 + 3.35704i 0.281716 + 0.281716i
$$143$$ −2.54398 2.54398i −0.212738 0.212738i
$$144$$ 0.668679 2.92453i 0.0557233 0.243711i
$$145$$ −3.77803 5.57300i −0.313748 0.462813i
$$146$$ 7.25060i 0.600064i
$$147$$ −24.9100 + 19.8573i −2.05454 + 1.63780i
$$148$$ 5.57606 5.57606i 0.458350 0.458350i
$$149$$ −1.98019 −0.162224 −0.0811118 0.996705i $$-0.525847\pi$$
−0.0811118 + 0.996705i $$0.525847\pi$$
$$150$$ −4.08862 + 7.63434i −0.333834 + 0.623342i
$$151$$ 20.6241 1.67837 0.839185 0.543847i $$-0.183033\pi$$
0.839185 + 0.543847i $$0.183033\pi$$
$$152$$ 0.707107 0.707107i 0.0573539 0.0573539i
$$153$$ −1.20614 1.92119i −0.0975108 0.155319i
$$154$$ 16.8887i 1.36093i
$$155$$ −10.2697 15.1489i −0.824880 1.21679i
$$156$$ 0.208525 1.84754i 0.0166954 0.147922i
$$157$$ −16.6468 16.6468i −1.32856 1.32856i −0.906624 0.421939i $$-0.861350\pi$$
−0.421939 0.906624i $$-0.638650\pi$$
$$158$$ 0.181338 + 0.181338i 0.0144265 + 0.0144265i
$$159$$ 1.93612 17.1541i 0.153545 1.36041i
$$160$$ 2.19598 + 0.421528i 0.173607 + 0.0333247i
$$161$$ 28.1788i 2.22080i
$$162$$ −8.49722 + 2.96602i −0.667604 + 0.233033i
$$163$$ −10.0274 + 10.0274i −0.785406 + 0.785406i −0.980737 0.195331i $$-0.937422\pi$$
0.195331 + 0.980737i $$0.437422\pi$$
$$164$$ −8.43195 −0.658425
$$165$$ −12.3929 3.86128i −0.964788 0.300600i
$$166$$ 6.69279 0.519462
$$167$$ 6.15920 6.15920i 0.476613 0.476613i −0.427434 0.904047i $$-0.640582\pi$$
0.904047 + 0.427434i $$0.140582\pi$$
$$168$$ −6.82480 + 5.44047i −0.526545 + 0.419741i
$$169$$ 11.8477i 0.911362i
$$170$$ 1.39951 0.948750i 0.107337 0.0727658i
$$171$$ −2.92453 0.668679i −0.223644 0.0511352i
$$172$$ −4.29665 4.29665i −0.327617 0.327617i
$$173$$ −1.69599 1.69599i −0.128944 0.128944i 0.639690 0.768633i $$-0.279063\pi$$
−0.768633 + 0.639690i $$0.779063\pi$$
$$174$$ 5.18237 + 0.584915i 0.392875 + 0.0443423i
$$175$$ 23.1461 9.95297i 1.74968 0.752374i
$$176$$ 3.35156i 0.252633i
$$177$$ 4.66837 + 5.85624i 0.350896 + 0.440182i
$$178$$ −10.7526 + 10.7526i −0.805938 + 0.805938i
$$179$$ 11.4970 0.859323 0.429662 0.902990i $$-0.358633\pi$$
0.429662 + 0.902990i $$0.358633\pi$$
$$180$$ −2.43185 6.25189i −0.181259 0.465988i
$$181$$ 22.3294 1.65973 0.829867 0.557961i $$-0.188416\pi$$
0.829867 + 0.557961i $$0.188416\pi$$
$$182$$ −3.82488 + 3.82488i −0.283519 + 0.283519i
$$183$$ 1.46578 + 1.83875i 0.108354 + 0.135925i
$$184$$ 5.59207i 0.412253i
$$185$$ 3.32406 17.3169i 0.244390 1.27316i
$$186$$ 14.0871 + 1.58995i 1.03291 + 0.116581i
$$187$$ 1.79199 + 1.79199i 0.131043 + 0.131043i
$$188$$ −8.00851 8.00851i −0.584081 0.584081i
$$189$$ 24.7095 + 8.66210i 1.79735 + 0.630075i
$$190$$ 0.421528 2.19598i 0.0305808 0.159313i
$$191$$ 7.92842i 0.573680i −0.957978 0.286840i $$-0.907395\pi$$
0.957978 0.286840i $$-0.0926048\pi$$
$$192$$ −1.35438 + 1.07966i −0.0977438 + 0.0779176i
$$193$$ 4.68979 4.68979i 0.337578 0.337578i −0.517877 0.855455i $$-0.673277\pi$$
0.855455 + 0.517877i $$0.173277\pi$$
$$194$$ −13.7673 −0.988435
$$195$$ −1.93221 3.68117i −0.138368 0.263614i
$$196$$ 18.3922 1.31373
$$197$$ 4.72215 4.72215i 0.336439 0.336439i −0.518586 0.855025i $$-0.673541\pi$$
0.855025 + 0.518586i $$0.173541\pi$$
$$198$$ 8.51557 5.34616i 0.605176 0.379935i
$$199$$ 10.0047i 0.709217i 0.935015 + 0.354609i $$0.115386\pi$$
−0.935015 + 0.354609i $$0.884614\pi$$
$$200$$ 4.59334 1.97516i 0.324798 0.139665i
$$201$$ −1.43691 + 12.7311i −0.101352 + 0.897980i
$$202$$ 8.71043 + 8.71043i 0.612863 + 0.612863i
$$203$$ −10.7288 10.7288i −0.753016 0.753016i
$$204$$ −0.146886 + 1.30141i −0.0102841 + 0.0911171i
$$205$$ −15.6063 + 10.5798i −1.08999 + 0.738924i
$$206$$ 0.505003i 0.0351852i
$$207$$ 14.2082 8.92006i 0.987540 0.619987i
$$208$$ −0.759044 + 0.759044i −0.0526302 + 0.0526302i
$$209$$ 3.35156 0.231832
$$210$$ −5.80543 + 18.6328i −0.400613 + 1.28578i
$$211$$ 0.338632 0.0233124 0.0116562 0.999932i $$-0.496290\pi$$
0.0116562 + 0.999932i $$0.496290\pi$$
$$212$$ −7.04762 + 7.04762i −0.484032 + 0.484032i
$$213$$ −6.43000 + 5.12575i −0.440577 + 0.351211i
$$214$$ 3.05284i 0.208688i
$$215$$ −13.3436 2.56136i −0.910026 0.174684i
$$216$$ 4.90358 + 1.71899i 0.333646 + 0.116962i
$$217$$ −29.1638 29.1638i −1.97977 1.97977i
$$218$$ −2.09363 2.09363i −0.141798 0.141798i
$$219$$ −12.4792 1.40848i −0.843265 0.0951762i
$$220$$ 4.20528 + 6.20325i 0.283520 + 0.418223i
$$221$$ 0.811681i 0.0545996i
$$222$$ 8.51390 + 10.6803i 0.571416 + 0.716813i
$$223$$ −6.58383 + 6.58383i −0.440886 + 0.440886i −0.892310 0.451424i $$-0.850916\pi$$
0.451424 + 0.892310i $$0.350916\pi$$
$$224$$ 5.03907 0.336687
$$225$$ −12.3454 8.52003i −0.823027 0.568002i
$$226$$ −1.26560 −0.0841865
$$227$$ 15.0913 15.0913i 1.00164 1.00164i 0.00164481 0.999999i $$-0.499476\pi$$
0.999999 0.00164481i $$-0.000523559\pi$$
$$228$$ 1.07966 + 1.35438i 0.0715021 + 0.0896959i
$$229$$ 13.2052i 0.872626i 0.899795 + 0.436313i $$0.143716\pi$$
−0.899795 + 0.436313i $$0.856284\pi$$
$$230$$ 7.01651 + 10.3501i 0.462655 + 0.682466i
$$231$$ −29.0676 3.28075i −1.91251 0.215857i
$$232$$ −2.12913 2.12913i −0.139784 0.139784i
$$233$$ 17.7744 + 17.7744i 1.16444 + 1.16444i 0.983494 + 0.180943i $$0.0579149\pi$$
0.180943 + 0.983494i $$0.442085\pi$$
$$234$$ 3.13934 + 0.717794i 0.205225 + 0.0469237i
$$235$$ −24.8711 4.77412i −1.62241 0.311429i
$$236$$ 4.32394i 0.281464i
$$237$$ −0.347331 + 0.276879i −0.0225616 + 0.0179852i
$$238$$ 2.69425 2.69425i 0.174643 0.174643i
$$239$$ 8.08746 0.523134 0.261567 0.965185i $$-0.415761\pi$$
0.261567 + 0.965185i $$0.415761\pi$$
$$240$$ −1.15208 + 3.69766i −0.0743667 + 0.238683i
$$241$$ 17.4598 1.12468 0.562341 0.826905i $$-0.309901\pi$$
0.562341 + 0.826905i $$0.309901\pi$$
$$242$$ −0.164708 + 0.164708i −0.0105878 + 0.0105878i
$$243$$ −3.45425 15.2009i −0.221590 0.975140i
$$244$$ 1.35764i 0.0869138i
$$245$$ 34.0413 23.0772i 2.17482 1.47435i
$$246$$ 1.63796 14.5124i 0.104433 0.925278i
$$247$$ 0.759044 + 0.759044i 0.0482968 + 0.0482968i
$$248$$ −5.78753 5.78753i −0.367508 0.367508i
$$249$$ −1.30012 + 11.5191i −0.0823918 + 0.729995i
$$250$$ 6.02332 9.41911i 0.380948 0.595717i
$$251$$ 2.20006i 0.138867i 0.997587 + 0.0694333i $$0.0221191\pi$$
−0.997587 + 0.0694333i $$0.977881\pi$$
$$252$$ −8.03795 12.8032i −0.506343 0.806524i
$$253$$ −13.2527 + 13.2527i −0.833190 + 0.833190i
$$254$$ −9.48196 −0.594951
$$255$$ 1.36105 + 2.59303i 0.0852324 + 0.162382i
$$256$$ 1.00000 0.0625000
$$257$$ −18.3829 + 18.3829i −1.14670 + 1.14670i −0.159499 + 0.987198i $$0.550988\pi$$
−0.987198 + 0.159499i $$0.949012\pi$$
$$258$$ 8.22972 6.56042i 0.512360 0.408434i
$$259$$ 39.7368i 2.46913i
$$260$$ −0.452489 + 2.35727i −0.0280622 + 0.146192i
$$261$$ −2.01342 + 8.80588i −0.124628 + 0.545070i
$$262$$ −1.08289 1.08289i −0.0669011 0.0669011i
$$263$$ −17.6465 17.6465i −1.08813 1.08813i −0.995721 0.0924109i $$-0.970543\pi$$
−0.0924109 0.995721i $$-0.529457\pi$$
$$264$$ −5.76844 0.651062i −0.355023 0.0400701i
$$265$$ −4.20130 + 21.8869i −0.258084 + 1.34450i
$$266$$ 5.03907i 0.308965i
$$267$$ −16.4177 20.5952i −1.00475 1.26041i
$$268$$ 5.23044 5.23044i 0.319500 0.319500i
$$269$$ 12.7863 0.779593 0.389796 0.920901i $$-0.372545\pi$$
0.389796 + 0.920901i $$0.372545\pi$$
$$270$$ 11.2327 2.97104i 0.683599 0.180812i
$$271$$ −8.21287 −0.498897 −0.249448 0.968388i $$-0.580249\pi$$
−0.249448 + 0.968388i $$0.580249\pi$$
$$272$$ 0.534673 0.534673i 0.0324193 0.0324193i
$$273$$ −5.84007 7.32609i −0.353457 0.443395i
$$274$$ 6.73398i 0.406814i
$$275$$ 15.5667 + 6.20484i 0.938710 + 0.374166i
$$276$$ −9.62464 1.08630i −0.579335 0.0653874i
$$277$$ 4.32961 + 4.32961i 0.260141 + 0.260141i 0.825111 0.564970i $$-0.191112\pi$$
−0.564970 + 0.825111i $$0.691112\pi$$
$$278$$ −6.96088 6.96088i −0.417486 0.417486i
$$279$$ −5.47301 + 23.9367i −0.327660 + 1.43305i
$$280$$ 9.32659 6.32265i 0.557370 0.377850i
$$281$$ 11.0222i 0.657530i 0.944412 + 0.328765i $$0.106632\pi$$
−0.944412 + 0.328765i $$0.893368\pi$$
$$282$$ 15.3393 12.2279i 0.913445 0.728163i
$$283$$ −12.1343 + 12.1343i −0.721309 + 0.721309i −0.968872 0.247563i $$-0.920370\pi$$
0.247563 + 0.968872i $$0.420370\pi$$
$$284$$ 4.74757 0.281716
$$285$$ 3.69766 + 1.15208i 0.219031 + 0.0682436i
$$286$$ −3.59773 −0.212738
$$287$$ −30.0444 + 30.0444i −1.77346 + 1.77346i
$$288$$ −1.59513 2.54078i −0.0939937 0.149717i
$$289$$ 16.4282i 0.966368i
$$290$$ −6.61218 1.26924i −0.388281 0.0745322i
$$291$$ 2.67439 23.6952i 0.156776 1.38904i
$$292$$ 5.12695 + 5.12695i 0.300032 + 0.300032i
$$293$$ −17.4542 17.4542i −1.01968 1.01968i −0.999802 0.0198825i $$-0.993671\pi$$
−0.0198825 0.999802i $$-0.506329\pi$$
$$294$$ −3.57281 + 31.6553i −0.208371 + 1.84617i
$$295$$ −5.42535 8.00298i −0.315876 0.465951i
$$296$$ 7.88574i 0.458350i
$$297$$ 7.54718 + 15.6949i 0.437932 + 0.910709i
$$298$$ −1.40021 + 1.40021i −0.0811118 + 0.0811118i
$$299$$ −6.00281 −0.347151
$$300$$ 2.50721 + 8.28939i 0.144754 + 0.478588i
$$301$$ −30.6193 −1.76487
$$302$$ 14.5835 14.5835i 0.839185 0.839185i
$$303$$ −16.6838 + 13.2997i −0.958458 + 0.764045i
$$304$$ 1.00000i 0.0573539i
$$305$$ −1.70346 2.51279i −0.0975399 0.143882i
$$306$$ −2.21136 0.505616i −0.126415 0.0289042i
$$307$$ −5.85378 5.85378i −0.334093 0.334093i 0.520046 0.854138i $$-0.325915\pi$$
−0.854138 + 0.520046i $$0.825915\pi$$
$$308$$ 11.9421 + 11.9421i 0.680466 + 0.680466i
$$309$$ 0.869172 + 0.0981002i 0.0494455 + 0.00558073i
$$310$$ −17.9736 3.45012i −1.02083 0.195954i
$$311$$ 14.2142i 0.806015i −0.915197 0.403008i $$-0.867965\pi$$
0.915197 0.403008i $$-0.132035\pi$$
$$312$$ −1.15896 1.45386i −0.0656131 0.0823085i
$$313$$ 23.2992 23.2992i 1.31695 1.31695i 0.400766 0.916180i $$-0.368744\pi$$
0.916180 0.400766i $$-0.131256\pi$$
$$314$$ −23.5422 −1.32856
$$315$$ −30.9416 13.6114i −1.74336 0.766916i
$$316$$ 0.256451 0.0144265
$$317$$ −9.99115 + 9.99115i −0.561159 + 0.561159i −0.929637 0.368478i $$-0.879879\pi$$
0.368478 + 0.929637i $$0.379879\pi$$
$$318$$ −10.7608 13.4989i −0.603434 0.756978i
$$319$$ 10.0917i 0.565026i
$$320$$ 1.85086 1.25473i 0.103466 0.0701413i
$$321$$ 5.25432 + 0.593035i 0.293267 + 0.0331000i
$$322$$ 19.9254 + 19.9254i 1.11040 + 1.11040i
$$323$$ −0.534673 0.534673i −0.0297500 0.0297500i
$$324$$ −3.91114 + 8.10574i −0.217286 + 0.450319i
$$325$$ 2.12024 + 4.93072i 0.117610 + 0.273507i
$$326$$ 14.1809i 0.785406i
$$327$$ 4.01009 3.19669i 0.221759 0.176777i
$$328$$ −5.96229 + 5.96229i −0.329212 + 0.329212i
$$329$$ −57.0712 −3.14644
$$330$$ −11.4935 + 6.03279i −0.632694 + 0.332094i
$$331$$ −8.73786 −0.480276 −0.240138 0.970739i $$-0.577193\pi$$
−0.240138 + 0.970739i $$0.577193\pi$$
$$332$$ 4.73252 4.73252i 0.259731 0.259731i
$$333$$ −20.0360 + 12.5788i −1.09796 + 0.689312i
$$334$$ 8.71042i 0.476613i
$$335$$ 3.11802 16.2435i 0.170356 0.887479i
$$336$$ −0.978873 + 8.67286i −0.0534019 + 0.473143i
$$337$$ 18.7714 + 18.7714i 1.02254 + 1.02254i 0.999740 + 0.0228016i $$0.00725861\pi$$
0.0228016 + 0.999740i $$0.492741\pi$$
$$338$$ 8.37759 + 8.37759i 0.455681 + 0.455681i
$$339$$ 0.245851 2.17825i 0.0133528 0.118307i
$$340$$ 0.318735 1.66047i 0.0172858 0.0900516i
$$341$$ 27.4318i 1.48552i
$$342$$ −2.54078 + 1.59513i −0.137390 + 0.0862546i
$$343$$ 40.5923 40.5923i 2.19178 2.19178i
$$344$$ −6.07639 −0.327617
$$345$$ −19.1768 + 10.0657i −1.03245 + 0.541919i
$$346$$ −2.39849 −0.128944
$$347$$ 5.40165 5.40165i 0.289976 0.289976i −0.547095 0.837071i $$-0.684266\pi$$
0.837071 + 0.547095i $$0.184266\pi$$
$$348$$ 4.07809 3.25089i 0.218609 0.174266i
$$349$$ 19.1590i 1.02556i −0.858521 0.512778i $$-0.828616\pi$$
0.858521 0.512778i $$-0.171384\pi$$
$$350$$ 9.32898 23.4046i 0.498655 1.25103i
$$351$$ −1.84525 + 5.26375i −0.0984921 + 0.280958i
$$352$$ 2.36991 + 2.36991i 0.126317 + 0.126317i
$$353$$ 0.366441 + 0.366441i 0.0195037 + 0.0195037i 0.716791 0.697288i $$-0.245610\pi$$
−0.697288 + 0.716791i $$0.745610\pi$$
$$354$$ 7.44203 + 0.839954i 0.395539 + 0.0446430i
$$355$$ 8.78707 5.95690i 0.466369 0.316159i
$$356$$ 15.2064i 0.805938i
$$357$$ 4.11377 + 5.16052i 0.217724 + 0.273124i
$$358$$ 8.12958 8.12958i 0.429662 0.429662i
$$359$$ 16.4393 0.867631 0.433815 0.901002i $$-0.357167\pi$$
0.433815 + 0.901002i $$0.357167\pi$$
$$360$$ −6.14033 2.70117i −0.323624 0.142364i
$$361$$ −1.00000 −0.0526316
$$362$$ 15.7893 15.7893i 0.829867 0.829867i
$$363$$ −0.251487 0.315478i −0.0131996 0.0165583i
$$364$$ 5.40919i 0.283519i
$$365$$ 15.9222 + 3.05633i 0.833404 + 0.159976i
$$366$$ 2.33666 + 0.263730i 0.122139 + 0.0137854i
$$367$$ 13.3725 + 13.3725i 0.698039 + 0.698039i 0.963987 0.265948i $$-0.0856851\pi$$
−0.265948 + 0.963987i $$0.585685\pi$$
$$368$$ 3.95419 + 3.95419i 0.206126 + 0.206126i
$$369$$ 24.6595 + 5.63827i 1.28372 + 0.293517i
$$370$$ −9.89444 14.5954i −0.514387 0.758777i
$$371$$ 50.2236i 2.60748i
$$372$$ 11.0853 8.83678i 0.574747 0.458166i
$$373$$ −2.80556 + 2.80556i −0.145266 + 0.145266i −0.776000 0.630733i $$-0.782754\pi$$
0.630733 + 0.776000i $$0.282754\pi$$
$$374$$ 2.53425 0.131043
$$375$$ 15.0414 + 12.1966i 0.776733 + 0.629829i
$$376$$ −11.3257 −0.584081
$$377$$ 2.28551 2.28551i 0.117710 0.117710i
$$378$$ 23.5973 11.3472i 1.21371 0.583637i
$$379$$ 35.0537i 1.80059i −0.435284 0.900293i $$-0.643352\pi$$
0.435284 0.900293i $$-0.356648\pi$$
$$380$$ −1.25473 1.85086i −0.0643660 0.0949469i
$$381$$ 1.84193 16.3196i 0.0943651 0.836079i
$$382$$ −5.60624 5.60624i −0.286840 0.286840i
$$383$$ 0.786561 + 0.786561i 0.0401914 + 0.0401914i 0.726917 0.686725i $$-0.240953\pi$$
−0.686725 + 0.726917i $$0.740953\pi$$
$$384$$ −0.194257 + 1.72112i −0.00991312 + 0.0878307i
$$385$$ 37.0873 + 7.11906i 1.89014 + 0.362821i
$$386$$ 6.63236i 0.337578i
$$387$$ 9.69260 + 15.4388i 0.492703 + 0.784797i
$$388$$ −9.73496 + 9.73496i −0.494218 + 0.494218i
$$389$$ −1.39333 −0.0706444 −0.0353222 0.999376i $$-0.511246\pi$$
−0.0353222 + 0.999376i $$0.511246\pi$$
$$390$$ −3.96926 1.23671i −0.200991 0.0626230i
$$391$$ 4.22840 0.213839
$$392$$ 13.0053 13.0053i 0.656865 0.656865i
$$393$$ 2.07414 1.65343i 0.104627 0.0834043i
$$394$$ 6.67813i 0.336439i
$$395$$ 0.474653 0.321775i 0.0238824 0.0161903i
$$396$$ 2.24112 9.80172i 0.112620 0.492555i
$$397$$ −10.5012 10.5012i −0.527041 0.527041i 0.392648 0.919689i $$-0.371559\pi$$
−0.919689 + 0.392648i $$0.871559\pi$$
$$398$$ 7.07442 + 7.07442i 0.354609 + 0.354609i
$$399$$ 8.67286 + 0.978873i 0.434186 + 0.0490049i
$$400$$ 1.85133 4.64463i 0.0925665 0.232231i
$$401$$ 19.6404i 0.980792i 0.871500 + 0.490396i $$0.163148\pi$$
−0.871500 + 0.490396i $$0.836852\pi$$
$$402$$ 7.98618 + 10.0183i 0.398314 + 0.499666i
$$403$$ 6.21263 6.21263i 0.309473 0.309473i
$$404$$ 12.3184 0.612863
$$405$$ 2.93151 + 19.9100i 0.145668 + 0.989334i
$$406$$ −15.1729 −0.753016
$$407$$ 18.6885 18.6885i 0.926354 0.926354i
$$408$$ 0.816374 + 1.02410i 0.0404165 + 0.0507006i
$$409$$ 8.61457i 0.425963i −0.977056 0.212981i $$-0.931683\pi$$
0.977056 0.212981i $$-0.0683174\pi$$
$$410$$ −3.55430 + 18.5164i −0.175534 + 0.914458i
$$411$$ 11.5900 + 1.30812i 0.571693 + 0.0645248i
$$412$$ −0.357091 0.357091i −0.0175926 0.0175926i
$$413$$ −15.4069 15.4069i −0.758123 0.758123i
$$414$$ 3.73930 16.3542i 0.183777 0.803764i
$$415$$ 2.82120 14.6972i 0.138487 0.721458i
$$416$$ 1.07345i 0.0526302i
$$417$$ 13.3327 10.6283i 0.652906 0.520471i
$$418$$ 2.36991 2.36991i 0.115916 0.115916i
$$419$$ 0.0254108 0.00124140 0.000620699 1.00000i $$-0.499802\pi$$
0.000620699 1.00000i $$0.499802\pi$$
$$420$$ 9.07030 + 17.2804i 0.442585 + 0.843198i
$$421$$ 5.45966 0.266087 0.133044 0.991110i $$-0.457525\pi$$
0.133044 + 0.991110i $$0.457525\pi$$
$$422$$ 0.239449 0.239449i 0.0116562 0.0116562i
$$423$$ 18.0660 + 28.7763i 0.878399 + 1.39915i
$$424$$ 9.96683i 0.484032i
$$425$$ −1.49350 3.47321i −0.0724455 0.168476i
$$426$$ −0.922247 + 8.17115i −0.0446830 + 0.395894i
$$427$$ −4.83748 4.83748i −0.234102 0.234102i
$$428$$ −2.15869 2.15869i −0.104344 0.104344i
$$429$$ 0.698883 6.19214i 0.0337424 0.298959i
$$430$$ −11.2465 + 7.62419i −0.542355 + 0.367671i
$$431$$ 2.80348i 0.135039i −0.997718 0.0675195i $$-0.978491\pi$$
0.997718 0.0675195i $$-0.0215085\pi$$
$$432$$ 4.68286 2.25184i 0.225304 0.108342i
$$433$$ −8.33316 + 8.33316i −0.400466 + 0.400466i −0.878397 0.477931i $$-0.841387\pi$$
0.477931 + 0.878397i $$0.341387\pi$$
$$434$$ −41.2438 −1.97977
$$435$$ 3.46897 11.1338i 0.166325 0.533826i
$$436$$ −2.96084 −0.141798
$$437$$ 3.95419 3.95419i 0.189155 0.189155i
$$438$$ −9.82006 + 7.82817i −0.469221 + 0.374044i
$$439$$ 12.5841i 0.600607i 0.953844 + 0.300304i $$0.0970880\pi$$
−0.953844 + 0.300304i $$0.902912\pi$$
$$440$$ 7.35994 + 1.41277i 0.350871 + 0.0673513i
$$441$$ −53.7886 12.2985i −2.56136 0.585643i
$$442$$ 0.573945 + 0.573945i 0.0272998 + 0.0272998i
$$443$$ 9.22581 + 9.22581i 0.438331 + 0.438331i 0.891450 0.453119i $$-0.149689\pi$$
−0.453119 + 0.891450i $$0.649689\pi$$
$$444$$ 13.5723 + 1.53186i 0.644115 + 0.0726988i
$$445$$ 19.0799 + 28.1448i 0.904472 + 1.33419i
$$446$$ 9.31094i 0.440886i
$$447$$ −2.13793 2.68193i −0.101120 0.126851i
$$448$$ 3.56316 3.56316i 0.168343 0.168343i
$$449$$ −8.74214 −0.412567 −0.206283 0.978492i $$-0.566137\pi$$
−0.206283 + 0.978492i $$0.566137\pi$$
$$450$$ −14.7541 + 2.70494i −0.695515 + 0.127512i
$$451$$ −28.2602 −1.33072
$$452$$ −0.894915 + 0.894915i −0.0420933 + 0.0420933i
$$453$$ 22.2670 + 27.9329i 1.04620 + 1.31240i
$$454$$ 21.3423i 1.00164i
$$455$$ 6.78705 + 10.0116i 0.318182 + 0.469352i
$$456$$ 1.72112 + 0.194257i 0.0805990 + 0.00909690i
$$457$$ 10.4440 + 10.4440i 0.488549 + 0.488549i 0.907848 0.419299i $$-0.137724\pi$$
−0.419299 + 0.907848i $$0.637724\pi$$
$$458$$ 9.33750 + 9.33750i 0.436313 + 0.436313i
$$459$$ 1.29980 3.70780i 0.0606694 0.173065i
$$460$$ 12.2801 + 2.35721i 0.572561 + 0.109906i
$$461$$ 15.6610i 0.729407i 0.931124 + 0.364704i $$0.118830\pi$$
−0.931124 + 0.364704i $$0.881170\pi$$
$$462$$ −22.8737 + 18.2340i −1.06418 + 0.848324i
$$463$$ −3.40622 + 3.40622i −0.158301 + 0.158301i −0.781813 0.623513i $$-0.785705\pi$$
0.623513 + 0.781813i $$0.285705\pi$$
$$464$$ −3.01104 −0.139784
$$465$$ 9.42958 30.2646i 0.437286 1.40349i
$$466$$ 25.1367 1.16444
$$467$$ −26.4385 + 26.4385i −1.22343 + 1.22343i −0.257025 + 0.966405i $$0.582742\pi$$
−0.966405 + 0.257025i $$0.917258\pi$$
$$468$$ 2.72740 1.71229i 0.126074 0.0791506i
$$469$$ 37.2738i 1.72114i
$$470$$ −20.9623 + 14.2107i −0.966920 + 0.655491i
$$471$$ 4.57323 40.5190i 0.210723 1.86702i
$$472$$ −3.05748 3.05748i −0.140732 0.140732i
$$473$$ −14.4005 14.4005i −0.662135 0.662135i
$$474$$ −0.0498172 + 0.441383i −0.00228818 + 0.0202734i
$$475$$ −4.64463 1.85133i −0.213110 0.0849448i
$$476$$ 3.81025i 0.174643i
$$477$$ 25.3236 15.8984i 1.15949 0.727936i
$$478$$ 5.71869 5.71869i 0.261567 0.261567i
$$479$$ −22.6245 −1.03374 −0.516871 0.856063i $$-0.672903\pi$$
−0.516871 + 0.856063i $$0.672903\pi$$
$$480$$ 1.80000 + 3.42929i 0.0821582 + 0.156525i
$$481$$ 8.46495 0.385969
$$482$$ 12.3459 12.3459i 0.562341 0.562341i
$$483$$ −38.1648 + 30.4235i −1.73656 + 1.38432i
$$484$$ 0.232932i 0.0105878i
$$485$$ −5.80330 + 30.2327i −0.263514 + 1.37280i
$$486$$ −13.1912 8.30615i −0.598365 0.376775i
$$487$$ 19.6380 + 19.6380i 0.889884 + 0.889884i 0.994511 0.104627i $$-0.0333650\pi$$
−0.104627 + 0.994511i $$0.533365\pi$$
$$488$$ −0.959995 0.959995i −0.0434569 0.0434569i
$$489$$ −24.4070 2.75473i −1.10372 0.124573i
$$490$$ 7.75283 40.3889i 0.350237 1.82458i
$$491$$ 7.22196i 0.325922i −0.986632 0.162961i $$-0.947895\pi$$
0.986632 0.162961i $$-0.0521045\pi$$
$$492$$ −9.10362 11.4200i −0.410423 0.514856i
$$493$$ −1.60992 + 1.60992i −0.0725073 + 0.0725073i
$$494$$ 1.07345 0.0482968
$$495$$ −8.15049 20.9536i −0.366337 0.941792i
$$496$$ −8.18480 −0.367508
$$497$$ 16.9164 16.9164i 0.758802 0.758802i
$$498$$ 7.22593 + 9.06457i 0.323801 + 0.406193i
$$499$$ 29.0605i 1.30093i 0.759538 + 0.650463i $$0.225425\pi$$
−0.759538 + 0.650463i $$0.774575\pi$$
$$500$$ −2.40119 10.9194i −0.107384 0.488332i
$$501$$ 14.9917 + 1.69206i 0.669780 + 0.0755956i
$$502$$ 1.55568 + 1.55568i 0.0694333 + 0.0694333i
$$503$$ −23.3678 23.3678i −1.04192 1.04192i −0.999082 0.0428359i $$-0.986361\pi$$
−0.0428359 0.999082i $$-0.513639\pi$$
$$504$$ −14.7369 3.36952i −0.656434 0.150090i
$$505$$ 22.7996 15.4562i 1.01457 0.687792i
$$506$$ 18.7421i 0.833190i
$$507$$ −16.0463 + 12.7915i −0.712640 + 0.568089i
$$508$$ −6.70476 + 6.70476i −0.297475 + 0.297475i
$$509$$ −15.9405 −0.706550 −0.353275 0.935520i $$-0.614932\pi$$
−0.353275 + 0.935520i $$0.614932\pi$$
$$510$$ 2.79596 + 0.871139i 0.123807 + 0.0385747i
$$511$$ 36.5363 1.61627
$$512$$ 0.707107 0.707107i 0.0312500 0.0312500i
$$513$$ −2.25184 4.68286i −0.0994214 0.206753i
$$514$$ 25.9974i 1.14670i
$$515$$ −1.10897 0.212873i −0.0488673 0.00938029i
$$516$$ 1.18038 10.4582i 0.0519633 0.460397i
$$517$$ −26.8410 26.8410i −1.18047 1.18047i
$$518$$ −28.0982 28.0982i −1.23456 1.23456i
$$519$$ 0.465923 4.12810i 0.0204517 0.181203i
$$520$$ 1.34689 + 1.98680i 0.0590648 + 0.0871270i
$$521$$ 39.2764i 1.72073i 0.509679 + 0.860365i $$0.329764\pi$$
−0.509679 + 0.860365i $$0.670236\pi$$
$$522$$ 4.80299 + 7.65040i 0.210221 + 0.334849i
$$523$$ −7.29624 + 7.29624i −0.319042 + 0.319042i −0.848399 0.529357i $$-0.822433\pi$$
0.529357 + 0.848399i $$0.322433\pi$$
$$524$$ −1.53144 −0.0669011
$$525$$ 38.4700 + 20.6028i 1.67897 + 0.899181i
$$526$$ −24.9560 −1.08813
$$527$$ −4.37619 + 4.37619i −0.190630 + 0.190630i
$$528$$ −4.53927 + 3.61853i −0.197547 + 0.157476i
$$529$$ 8.27125i 0.359620i
$$530$$ 12.5056 + 18.4472i 0.543210 + 0.801294i
$$531$$ −2.89133 + 12.6455i −0.125473 + 0.548767i
$$532$$ −3.56316 3.56316i −0.154483 0.154483i
$$533$$ −6.40022 6.40022i −0.277224 0.277224i
$$534$$ −26.1721 2.95395i −1.13258 0.127830i
$$535$$ −6.70397 1.28686i −0.289838 0.0556357i
$$536$$ 7.39695i 0.319500i
$$537$$ 12.4128 + 15.5712i 0.535651 + 0.671948i
$$538$$ 9.04126 9.04126i 0.389796 0.389796i
$$539$$ 61.6426 2.65513
$$540$$ 5.84185 10.0435i 0.251393 0.432205i
$$541$$ −18.2326 −0.783881 −0.391940 0.919991i $$-0.628196\pi$$
−0.391940 + 0.919991i $$0.628196\pi$$
$$542$$ −5.80738 + 5.80738i −0.249448 + 0.249448i
$$543$$ 24.1081 + 30.2425i 1.03458 + 1.29783i
$$544$$ 0.756142i 0.0324193i
$$545$$ −5.48008 + 3.71504i −0.234741 + 0.159135i
$$546$$ −9.30988 1.05077i −0.398426 0.0449689i
$$547$$ 15.9706 + 15.9706i 0.682854 + 0.682854i 0.960642 0.277788i $$-0.0896013\pi$$
−0.277788 + 0.960642i $$0.589601\pi$$
$$548$$ −4.76164 4.76164i −0.203407 0.203407i
$$549$$ −0.907824 + 3.97045i −0.0387450 + 0.169455i
$$550$$ 15.3948 6.61986i 0.656438 0.282272i
$$551$$ 3.01104i 0.128275i
$$552$$ −7.57378 + 6.03752i −0.322361 + 0.256974i
$$553$$ 0.913774 0.913774i 0.0388576 0.0388576i
$$554$$ 6.12299 0.260141
$$555$$ 27.0425 14.1943i 1.14789 0.602515i
$$556$$ −9.84417 −0.417486
$$557$$ −12.9276 + 12.9276i −0.547758 + 0.547758i −0.925792 0.378034i $$-0.876600\pi$$
0.378034 + 0.925792i $$0.376600\pi$$
$$558$$ 13.0558 + 20.7958i 0.552696 + 0.880356i
$$559$$ 6.52270i 0.275881i
$$560$$ 2.12411 11.0657i 0.0897599 0.467610i
$$561$$ −0.492296 + 4.36176i −0.0207847 + 0.184154i
$$562$$ 7.79389 + 7.79389i 0.328765 + 0.328765i
$$563$$ 26.9809 + 26.9809i 1.13711 + 1.13711i 0.988966 + 0.148145i $$0.0473302\pi$$
0.148145 + 0.988966i $$0.452670\pi$$
$$564$$ 2.20010 19.4930i 0.0926410 0.820804i
$$565$$ −0.533486 + 2.77923i −0.0224439 + 0.116923i
$$566$$ 17.1605i 0.721309i
$$567$$ 14.9460 + 42.8181i 0.627673 + 1.79819i
$$568$$ 3.35704 3.35704i 0.140858 0.140858i
$$569$$ 30.1015 1.26192 0.630961 0.775814i $$-0.282661\pi$$
0.630961 + 0.775814i $$0.282661\pi$$
$$570$$ 3.42929 1.80000i 0.143637 0.0753935i
$$571$$ −2.85189 −0.119348 −0.0596740 0.998218i $$-0.519006\pi$$
−0.0596740 + 0.998218i $$0.519006\pi$$
$$572$$ −2.54398 + 2.54398i −0.106369 + 0.106369i
$$573$$ 10.7381 8.55997i 0.448589 0.357598i
$$574$$ 42.4892i 1.77346i
$$575$$ 25.6863 11.0452i 1.07119 0.460618i
$$576$$ −2.92453 0.668679i −0.121855 0.0278616i
$$577$$ −2.60285 2.60285i −0.108358 0.108358i 0.650849 0.759207i $$-0.274413\pi$$
−0.759207 + 0.650849i $$0.774413\pi$$
$$578$$ 11.6165 + 11.6165i 0.483184 + 0.483184i
$$579$$ 11.4151 + 1.28838i 0.474396 + 0.0535433i
$$580$$ −5.57300 + 3.77803i −0.231406 + 0.156874i
$$581$$ 33.7255i 1.39917i
$$582$$ −14.8640 18.6461i −0.616132 0.772908i
$$583$$ −23.6205 + 23.6205i −0.978260 + 0.978260i
$$584$$ 7.25060 0.300032
$$585$$ 2.89958 6.59134i 0.119883 0.272518i
$$586$$ −24.6840 −1.01968
$$587$$ −9.92177 + 9.92177i −0.409515 + 0.409515i −0.881569 0.472054i $$-0.843513\pi$$
0.472054 + 0.881569i $$0.343513\pi$$
$$588$$ 19.8573 + 24.9100i 0.818901 + 1.02727i
$$589$$ 8.18480i 0.337249i
$$590$$ −9.49526 1.82266i −0.390914 0.0750377i
$$591$$ 11.4939 + 1.29727i 0.472795 + 0.0533626i
$$592$$ −5.57606 5.57606i −0.229175 0.229175i
$$593$$ 0.851881 + 0.851881i 0.0349826 + 0.0349826i 0.724382 0.689399i $$-0.242125\pi$$
−0.689399 + 0.724382i $$0.742125\pi$$
$$594$$ 16.4346 + 5.76129i 0.674321 + 0.236389i
$$595$$ −4.78082 7.05222i −0.195994 0.289113i
$$596$$ 1.98019i 0.0811118i
$$597$$ −13.5502 + 10.8017i −0.554573 + 0.442084i
$$598$$ −4.24463 + 4.24463i −0.173576 + 0.173576i
$$599$$ 3.99004 0.163028 0.0815142 0.996672i $$-0.474024\pi$$
0.0815142 + 0.996672i $$0.474024\pi$$
$$600$$ 7.63434 + 4.08862i 0.311671 + 0.166917i
$$601$$ 6.42813 0.262209 0.131104 0.991369i $$-0.458148\pi$$
0.131104 + 0.991369i $$0.458148\pi$$
$$602$$ −21.6511 + 21.6511i −0.882435 + 0.882435i
$$603$$ −18.7940 + 11.7991i −0.765353 + 0.480496i
$$604$$ 20.6241i 0.839185i
$$605$$ 0.292266 + 0.431124i 0.0118823 + 0.0175277i
$$606$$ −2.39293 + 21.2015i −0.0972062 + 0.861252i
$$607$$ 18.0117 + 18.0117i 0.731071 + 0.731071i 0.970832 0.239761i $$-0.0770690\pi$$
−0.239761 + 0.970832i $$0.577069\pi$$
$$608$$ −0.707107 0.707107i −0.0286770 0.0286770i
$$609$$ 2.94743 26.1143i 0.119436 1.05821i
$$610$$ −2.98134 0.572282i −0.120711 0.0231710i
$$611$$ 12.1576i 0.491845i
$$612$$ −1.92119 + 1.20614i −0.0776596 + 0.0487554i
$$613$$ −24.1414 + 24.1414i −0.975063 + 0.975063i −0.999697 0.0246339i $$-0.992158\pi$$
0.0246339 + 0.999697i $$0.492158\pi$$
$$614$$ −8.27850 −0.334093
$$615$$ −31.1785 9.71432i −1.25724 0.391719i
$$616$$ 16.8887 0.680466
$$617$$ 27.8433 27.8433i 1.12093 1.12093i 0.129329 0.991602i $$-0.458718\pi$$
0.991602 0.129329i $$-0.0412824\pi$$
$$618$$ 0.683965 0.545230i 0.0275131 0.0219324i
$$619$$ 26.3475i 1.05899i −0.848312 0.529497i $$-0.822381\pi$$
0.848312 0.529497i $$-0.177619\pi$$
$$620$$ −15.1489 + 10.2697i −0.608394 + 0.412440i
$$621$$ 27.4212 + 9.61271i 1.10037 + 0.385745i
$$622$$ −10.0510 10.0510i −0.403008 0.403008i
$$623$$ 54.1828 + 54.1828i 2.17079 + 2.17079i
$$624$$ −1.84754 0.208525i −0.0739608 0.00834768i
$$625$$ −18.1452 17.1975i −0.725806 0.687899i
$$626$$ 32.9500i 1.31695i
$$627$$ 3.61853 + 4.53927i 0.144510 + 0.181281i
$$628$$ −16.6468 + 16.6468i −0.664282 + 0.664282i
$$629$$ −5.96274 −0.237750
$$630$$ −31.5037 + 12.2543i −1.25514 + 0.488222i
$$631$$ 34.9462 1.39119 0.695593 0.718436i $$-0.255142\pi$$
0.695593 + 0.718436i $$0.255142\pi$$
$$632$$ 0.181338 0.181338i 0.00721324 0.00721324i
$$633$$ 0.365606 + 0.458636i 0.0145316 + 0.0182291i
$$634$$ 14.1296i 0.561159i
$$635$$ −3.99691 + 20.8222i −0.158612 + 0.826302i
$$636$$ −17.1541 1.93612i −0.680206 0.0767723i
$$637$$ 13.9605 + 13.9605i 0.553135 + 0.553135i
$$638$$ −7.13590 7.13590i −0.282513 0.282513i
$$639$$ −13.8844 3.17460i −0.549259 0.125585i
$$640$$ 0.421528 2.19598i 0.0166623 0.0868036i
$$641$$ 46.8388i 1.85002i 0.379943 + 0.925010i $$0.375944\pi$$
−0.379943 + 0.925010i $$0.624056\pi$$
$$642$$ 4.13470 3.29602i 0.163184 0.130084i
$$643$$ 22.8114 22.8114i 0.899592 0.899592i −0.0958078 0.995400i $$-0.530543\pi$$
0.995400 + 0.0958078i $$0.0305434\pi$$
$$644$$ 28.1788 1.11040
$$645$$ −10.9375 20.8377i −0.430662 0.820483i
$$646$$ −0.756142 −0.0297500
$$647$$ −10.8816 + 10.8816i −0.427801 + 0.427801i −0.887879 0.460078i $$-0.847821\pi$$
0.460078 + 0.887879i $$0.347821\pi$$
$$648$$ 2.96602 + 8.49722i 0.116516 + 0.333802i
$$649$$ 14.4919i 0.568857i
$$650$$ 4.98578 + 1.98731i 0.195558 + 0.0779487i
$$651$$ 8.01188 70.9856i 0.314010 2.78215i
$$652$$ 10.0274 + 10.0274i 0.392703 + 0.392703i
$$653$$ −0.0974665 0.0974665i −0.00381416 0.00381416i 0.705197 0.709011i $$-0.250858\pi$$
−0.709011 + 0.705197i $$0.750858\pi$$
$$654$$ 0.575163 5.09597i 0.0224906 0.199268i
$$655$$ −2.83447 + 1.92153i −0.110752 + 0.0750804i
$$656$$ 8.43195i 0.329212i
$$657$$ −11.5656 18.4222i −0.451218 0.718719i
$$658$$ −40.3555 + 40.3555i −1.57322 + 1.57322i
$$659$$ −4.39566 −0.171231 −0.0856153 0.996328i $$-0.527286\pi$$
−0.0856153 + 0.996328i $$0.527286\pi$$
$$660$$ −3.86128 + 12.3929i −0.150300 + 0.482394i
$$661$$ −36.4313 −1.41701 −0.708507 0.705704i $$-0.750631\pi$$
−0.708507 + 0.705704i $$0.750631\pi$$
$$662$$ −6.17860 + 6.17860i −0.240138 + 0.240138i
$$663$$ −1.09932 + 0.876337i −0.0426941 + 0.0340341i
$$664$$ 6.69279i 0.259731i
$$665$$ −11.0657 2.12411i −0.429109 0.0823693i
$$666$$ −5.27303 + 23.0621i −0.204326 + 0.893638i
$$667$$ −11.9062 11.9062i −0.461011 0.461011i
$$668$$ −6.15920 6.15920i −0.238307 0.238307i
$$669$$ −16.0253 1.80871i −0.619573 0.0699289i
$$670$$ −9.28114 13.6907i −0.358562 0.528918i
$$671$$ 4.55020i 0.175658i
$$672$$ 5.44047 + 6.82480i 0.209871 + 0.263273i
$$673$$ 12.9562 12.9562i 0.499425 0.499425i −0.411834 0.911259i $$-0.635112\pi$$
0.911259 + 0.411834i $$0.135112\pi$$
$$674$$ 26.5467 1.02254
$$675$$ −1.78946 25.9191i −0.0688764 0.997625i
$$676$$ 11.8477 0.455681
$$677$$ 21.1304 21.1304i 0.812109 0.812109i −0.172841 0.984950i $$-0.555295\pi$$
0.984950 + 0.172841i $$0.0552947\pi$$
$$678$$ −1.36642 1.71410i −0.0524769 0.0658297i
$$679$$ 69.3744i 2.66235i
$$680$$ −0.948750 1.39951i −0.0363829 0.0536687i
$$681$$ 36.7327 + 4.14588i 1.40760 + 0.158871i
$$682$$ −19.3972 19.3972i −0.742758 0.742758i
$$683$$ 9.66304 + 9.66304i 0.369746 + 0.369746i 0.867385 0.497638i $$-0.165799\pi$$
−0.497638 + 0.867385i $$0.665799\pi$$
$$684$$ −0.668679 + 2.92453i −0.0255676 + 0.111822i
$$685$$ −14.7877 2.83856i −0.565007 0.108456i
$$686$$ 57.4062i 2.19178i
$$687$$ −17.8849 + 14.2571i −0.682350 + 0.543943i
$$688$$ −4.29665 + 4.29665i −0.163808 + 0.163808i
$$689$$ −10.6989 −0.407596
$$690$$ −6.44254 + 20.6776i −0.245263 + 0.787182i
$$691$$ −5.64130 −0.214605 −0.107303 0.994226i $$-0.534221\pi$$
−0.107303 + 0.994226i $$0.534221\pi$$
$$692$$ −1.69599 + 1.69599i −0.0644718 + 0.0644718i
$$693$$ −26.9397 42.9106i −1.02335 1.63004i
$$694$$ 7.63909i 0.289976i
$$695$$ −18.2201 + 12.3517i −0.691129 + 0.468527i
$$696$$ 0.584915 5.18237i 0.0221712 0.196437i
$$697$$ 4.50834 + 4.50834i 0.170765 + 0.170765i
$$698$$ −13.5474 13.5474i −0.512778 0.512778i
$$699$$ −4.88298 + 43.2634i −0.184691 + 1.63637i
$$700$$ −9.95297 23.1461i −0.376187 0.874842i
$$701$$ 5.68210i 0.214610i 0.994226 + 0.107305i $$0.0342221\pi$$
−0.994226 + 0.107305i $$0.965778\pi$$
$$702$$ 2.41724 + 5.02682i 0.0912330 + 0.189725i
$$703$$ −5.57606 + 5.57606i −0.210305 + 0.210305i
$$704$$ 3.35156 0.126317
$$705$$ −20.3863 38.8393i −0.767792 1.46277i
$$706$$ 0.518226 0.0195037
$$707$$ 43.8924 43.8924i 1.65075 1.65075i
$$708$$ 5.85624 4.66837i 0.220091 0.175448i
$$709$$ 29.4977i 1.10781i 0.832580 + 0.553906i $$0.186863\pi$$
−0.832580 + 0.553906i $$0.813137\pi$$
$$710$$ 2.00123 10.4256i 0.0751049 0.391264i
$$711$$ −0.749997 0.171483i −0.0281271 0.00643112i
$$712$$ 10.7526 + 10.7526i 0.402969 + 0.402969i
$$713$$ −32.3643 32.3643i −1.21205 1.21205i
$$714$$ 6.55791 + 0.740167i 0.245424 + 0.0277000i
$$715$$ −1.51654 + 7.90053i −0.0567155 + 0.295463i
$$716$$ 11.4970i 0.429662i
$$717$$ 8.73168 + 10.9535i 0.326091 + 0.409065i
$$718$$ 11.6243 11.6243i 0.433815 0.433815i
$$719$$ −38.3623 −1.43067 −0.715337 0.698780i $$-0.753727\pi$$
−0.715337 + 0.698780i $$0.753727\pi$$
$$720$$ −6.25189 + 2.43185i −0.232994 + 0.0906297i
$$721$$ −2.54474 −0.0947712
$$722$$ −0.707107 + 0.707107i −0.0263158 + 0.0263158i
$$723$$ 18.8506 + 23.6471i 0.701060 + 0.879446i
$$724$$ 22.3294i 0.829867i
$$725$$ −5.57443 + 13.9852i −0.207029 + 0.519396i
$$726$$ −0.400905 0.0452486i −0.0148790 0.00167933i
$$727$$ −12.1887 12.1887i −0.452054 0.452054i 0.443982 0.896036i $$-0.353565\pi$$
−0.896036 + 0.443982i $$0.853565\pi$$
$$728$$ 3.82488 + 3.82488i 0.141759 + 0.141759i
$$729$$ 16.8584 21.0902i 0.624385 0.781117i
$$730$$ 13.4198 9.09752i 0.496690 0.336714i
$$731$$ 4.59461i 0.169938i
$$732$$ 1.83875 1.46578i 0.0679623 0.0541769i
$$733$$ 21.4518 21.4518i 0.792340 0.792340i −0.189534 0.981874i $$-0.560698\pi$$
0.981874 + 0.189534i $$0.0606977\pi$$
$$734$$ 18.9116 0.698039
$$735$$ 68.0082 + 21.1894i 2.50852 + 0.781582i
$$736$$ 5.59207 0.206126
$$737$$ 17.5301 17.5301i 0.645730 0.645730i
$$738$$ 21.4237 13.4500i 0.788619 0.495102i
$$739$$ 1.62124i 0.0596381i 0.999555 + 0.0298191i $$0.00949311\pi$$
−0.999555 + 0.0298191i $$0.990507\pi$$
$$740$$ −17.3169 3.32406i −0.636582 0.122195i
$$741$$ −0.208525 + 1.84754i −0.00766036 + 0.0678711i
$$742$$ 35.5134 + 35.5134i 1.30374 + 1.30374i
$$743$$ 4.47847 + 4.47847i 0.164299 + 0.164299i 0.784468 0.620169i $$-0.212936\pi$$
−0.620169 + 0.784468i $$0.712936\pi$$
$$744$$ 1.58995 14.0871i 0.0582905 0.516456i
$$745$$ 2.48459 + 3.66505i 0.0910285 + 0.134277i
$$746$$ 3.96766i 0.145266i
$$747$$ −17.0049 + 10.6759i −0.622178 + 0.390609i
$$748$$ 1.79199 1.79199i 0.0655215 0.0655215i
$$749$$ −15.3835 −0.562100
$$750$$ 19.2602 2.01157i 0.703281 0.0734520i
$$751$$ −21.5949 −0.788010 −0.394005 0.919108i $$-0.628911\pi$$
−0.394005 + 0.919108i $$0.628911\pi$$
$$752$$ −8.00851 + 8.00851i −0.292040 + 0.292040i
$$753$$ −2.97971 + 2.37531i −0.108587 + 0.0865612i
$$754$$ 3.23220i 0.117710i
$$755$$ −25.8776 38.1723i −0.941784 1.38923i
$$756$$ 8.66210 24.7095i 0.315038 0.898675i
$$757$$ −11.6792 11.6792i −0.424488 0.424488i 0.462258 0.886746i $$-0.347040\pi$$
−0.886746 + 0.462258i $$0.847040\pi$$
$$758$$ −24.7867 24.7867i −0.900293 0.900293i
$$759$$ −32.2575 3.64079i −1.17087 0.132152i
$$760$$ −2.19598 0.421528i −0.0796565 0.0152904i
$$761$$ 21.6915i 0.786317i 0.919471 + 0.393159i $$0.128618\pi$$
−0.919471 + 0.393159i $$0.871382\pi$$
$$762$$ −10.2373 12.8422i −0.370857 0.465222i
$$763$$ −10.5499 + 10.5499i −0.381933 + 0.381933i
$$764$$ −7.92842 −0.286840
$$765$$ −2.04247 + 4.64296i −0.0738457 + 0.167867i
$$766$$ 1.11237 0.0401914
$$767$$ 3.28206 3.28206i 0.118508 0.118508i
$$768$$ 1.07966 + 1.35438i 0.0389588 + 0.0488719i
$$769$$ 24.6155i 0.887659i 0.896111 + 0.443830i $$0.146380\pi$$
−0.896111 + 0.443830i $$0.853620\pi$$
$$770$$ 31.2586 21.1907i 1.12648 0.763660i
$$771$$ −44.7447 5.05017i −1.61144 0.181878i
$$772$$ −4.68979 4.68979i −0.168789 0.168789i
$$773$$ −3.36652 3.36652i −0.121085 0.121085i 0.643968 0.765053i $$-0.277287\pi$$
−0.765053 + 0.643968i $$0.777287\pi$$
$$774$$ 17.7706 + 4.06315i 0.638750 + 0.146047i
$$775$$ −15.1528 + 38.0154i −0.544303 + 1.36555i
$$776$$ 13.7673i 0.494218i
$$777$$ 53.8187 42.9021i 1.93073 1.53911i