Properties

Label 570.2.i.i
Level $570$
Weight $2$
Character orbit 570.i
Analytic conductor $4.551$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 570 = 2 \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 570.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.55147291521\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{7})\)
Defining polynomial: \(x^{4} + 7 x^{2} + 49\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( 1 + \beta_{2} ) q^{2} + ( 1 + \beta_{2} ) q^{3} + \beta_{2} q^{4} + ( 1 + \beta_{2} ) q^{5} + \beta_{2} q^{6} + \beta_{3} q^{7} - q^{8} + \beta_{2} q^{9} +O(q^{10})\) \( q + ( 1 + \beta_{2} ) q^{2} + ( 1 + \beta_{2} ) q^{3} + \beta_{2} q^{4} + ( 1 + \beta_{2} ) q^{5} + \beta_{2} q^{6} + \beta_{3} q^{7} - q^{8} + \beta_{2} q^{9} + \beta_{2} q^{10} + ( -1 + 2 \beta_{3} ) q^{11} - q^{12} -\beta_{1} q^{14} + \beta_{2} q^{15} + ( -1 - \beta_{2} ) q^{16} + ( 3 + \beta_{1} + 3 \beta_{2} ) q^{17} - q^{18} + ( -2 + \beta_{1} + 2 \beta_{2} ) q^{19} - q^{20} -\beta_{1} q^{21} + ( -1 - 2 \beta_{1} - \beta_{2} ) q^{22} + \beta_{2} q^{23} + ( -1 - \beta_{2} ) q^{24} + \beta_{2} q^{25} - q^{27} + ( -\beta_{1} - \beta_{3} ) q^{28} + ( -\beta_{1} - \beta_{2} - \beta_{3} ) q^{29} - q^{30} + ( 2 - 2 \beta_{3} ) q^{31} -\beta_{2} q^{32} + ( -1 - 2 \beta_{1} - \beta_{2} ) q^{33} + ( \beta_{1} + 3 \beta_{2} + \beta_{3} ) q^{34} -\beta_{1} q^{35} + ( -1 - \beta_{2} ) q^{36} + ( 3 - 2 \beta_{3} ) q^{37} + ( -4 + \beta_{1} - 2 \beta_{2} + \beta_{3} ) q^{38} + ( -1 - \beta_{2} ) q^{40} + ( 6 + \beta_{1} + 6 \beta_{2} ) q^{41} + ( -\beta_{1} - \beta_{3} ) q^{42} + ( -6 - 6 \beta_{2} ) q^{43} + ( -2 \beta_{1} - \beta_{2} - 2 \beta_{3} ) q^{44} - q^{45} - q^{46} + ( 4 \beta_{1} + 2 \beta_{2} + 4 \beta_{3} ) q^{47} -\beta_{2} q^{48} - q^{50} + ( \beta_{1} + 3 \beta_{2} + \beta_{3} ) q^{51} + ( -\beta_{1} - 2 \beta_{2} - \beta_{3} ) q^{53} + ( -1 - \beta_{2} ) q^{54} + ( -1 - 2 \beta_{1} - \beta_{2} ) q^{55} -\beta_{3} q^{56} + ( -4 + \beta_{1} - 2 \beta_{2} + \beta_{3} ) q^{57} + ( 1 - \beta_{3} ) q^{58} -2 \beta_{1} q^{59} + ( -1 - \beta_{2} ) q^{60} + ( 3 \beta_{1} - \beta_{2} + 3 \beta_{3} ) q^{61} + ( 2 + 2 \beta_{1} + 2 \beta_{2} ) q^{62} + ( -\beta_{1} - \beta_{3} ) q^{63} + q^{64} + ( -2 \beta_{1} - \beta_{2} - 2 \beta_{3} ) q^{66} + ( -\beta_{1} - 7 \beta_{2} - \beta_{3} ) q^{67} + ( -3 + \beta_{3} ) q^{68} - q^{69} + ( -\beta_{1} - \beta_{3} ) q^{70} + ( 11 + \beta_{1} + 11 \beta_{2} ) q^{71} -\beta_{2} q^{72} + ( -11 - \beta_{1} - 11 \beta_{2} ) q^{73} + ( 3 + 2 \beta_{1} + 3 \beta_{2} ) q^{74} - q^{75} + ( -2 - 4 \beta_{2} + \beta_{3} ) q^{76} + ( 14 - \beta_{3} ) q^{77} -2 \beta_{1} q^{79} -\beta_{2} q^{80} + ( -1 - \beta_{2} ) q^{81} + ( \beta_{1} + 6 \beta_{2} + \beta_{3} ) q^{82} + ( 6 - 4 \beta_{3} ) q^{83} -\beta_{3} q^{84} + ( \beta_{1} + 3 \beta_{2} + \beta_{3} ) q^{85} -6 \beta_{2} q^{86} + ( 1 - \beta_{3} ) q^{87} + ( 1 - 2 \beta_{3} ) q^{88} + ( 5 \beta_{1} + 5 \beta_{3} ) q^{89} + ( -1 - \beta_{2} ) q^{90} + ( -1 - \beta_{2} ) q^{92} + ( 2 + 2 \beta_{1} + 2 \beta_{2} ) q^{93} + ( -2 + 4 \beta_{3} ) q^{94} + ( -4 + \beta_{1} - 2 \beta_{2} + \beta_{3} ) q^{95} + q^{96} + ( -1 + \beta_{1} - \beta_{2} ) q^{97} + ( -2 \beta_{1} - \beta_{2} - 2 \beta_{3} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q + 2q^{2} + 2q^{3} - 2q^{4} + 2q^{5} - 2q^{6} - 4q^{8} - 2q^{9} + O(q^{10}) \) \( 4q + 2q^{2} + 2q^{3} - 2q^{4} + 2q^{5} - 2q^{6} - 4q^{8} - 2q^{9} - 2q^{10} - 4q^{11} - 4q^{12} - 2q^{15} - 2q^{16} + 6q^{17} - 4q^{18} - 12q^{19} - 4q^{20} - 2q^{22} - 2q^{23} - 2q^{24} - 2q^{25} - 4q^{27} + 2q^{29} - 4q^{30} + 8q^{31} + 2q^{32} - 2q^{33} - 6q^{34} - 2q^{36} + 12q^{37} - 12q^{38} - 2q^{40} + 12q^{41} - 12q^{43} + 2q^{44} - 4q^{45} - 4q^{46} - 4q^{47} + 2q^{48} - 4q^{50} - 6q^{51} + 4q^{53} - 2q^{54} - 2q^{55} - 12q^{57} + 4q^{58} - 2q^{60} + 2q^{61} + 4q^{62} + 4q^{64} + 2q^{66} + 14q^{67} - 12q^{68} - 4q^{69} + 22q^{71} + 2q^{72} - 22q^{73} + 6q^{74} - 4q^{75} + 56q^{77} + 2q^{80} - 2q^{81} - 12q^{82} + 24q^{83} - 6q^{85} + 12q^{86} + 4q^{87} + 4q^{88} - 2q^{90} - 2q^{92} + 4q^{93} - 8q^{94} - 12q^{95} + 4q^{96} - 2q^{97} + 2q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{4} + 7 x^{2} + 49\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\( \nu^{2} \)\(/7\)
\(\beta_{3}\)\(=\)\( \nu^{3} \)\(/7\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(7 \beta_{2}\)
\(\nu^{3}\)\(=\)\(7 \beta_{3}\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/570\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(211\) \(457\)
\(\chi(n)\) \(1\) \(\beta_{2}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
121.1
1.32288 + 2.29129i
−1.32288 2.29129i
1.32288 2.29129i
−1.32288 + 2.29129i
0.500000 + 0.866025i 0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i −0.500000 + 0.866025i −2.64575 −1.00000 −0.500000 + 0.866025i −0.500000 + 0.866025i
121.2 0.500000 + 0.866025i 0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i −0.500000 + 0.866025i 2.64575 −1.00000 −0.500000 + 0.866025i −0.500000 + 0.866025i
391.1 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i −2.64575 −1.00000 −0.500000 0.866025i −0.500000 0.866025i
391.2 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 2.64575 −1.00000 −0.500000 0.866025i −0.500000 0.866025i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 570.2.i.i 4
3.b odd 2 1 1710.2.l.j 4
19.c even 3 1 inner 570.2.i.i 4
57.h odd 6 1 1710.2.l.j 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
570.2.i.i 4 1.a even 1 1 trivial
570.2.i.i 4 19.c even 3 1 inner
1710.2.l.j 4 3.b odd 2 1
1710.2.l.j 4 57.h odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(570, [\chi])\):

\( T_{7}^{2} - 7 \)
\( T_{11}^{2} + 2 T_{11} - 27 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( ( 1 - T + T^{2} )^{2} \)
$3$ \( ( 1 - T + T^{2} )^{2} \)
$5$ \( ( 1 - T + T^{2} )^{2} \)
$7$ \( ( -7 + T^{2} )^{2} \)
$11$ \( ( -27 + 2 T + T^{2} )^{2} \)
$13$ \( T^{4} \)
$17$ \( 4 - 12 T + 34 T^{2} - 6 T^{3} + T^{4} \)
$19$ \( 361 + 228 T + 67 T^{2} + 12 T^{3} + T^{4} \)
$23$ \( ( 1 + T + T^{2} )^{2} \)
$29$ \( 36 + 12 T + 10 T^{2} - 2 T^{3} + T^{4} \)
$31$ \( ( -24 - 4 T + T^{2} )^{2} \)
$37$ \( ( -19 - 6 T + T^{2} )^{2} \)
$41$ \( 841 - 348 T + 115 T^{2} - 12 T^{3} + T^{4} \)
$43$ \( ( 36 + 6 T + T^{2} )^{2} \)
$47$ \( 11664 - 432 T + 124 T^{2} + 4 T^{3} + T^{4} \)
$53$ \( 9 + 12 T + 19 T^{2} - 4 T^{3} + T^{4} \)
$59$ \( 784 + 28 T^{2} + T^{4} \)
$61$ \( 3844 + 124 T + 66 T^{2} - 2 T^{3} + T^{4} \)
$67$ \( 1764 - 588 T + 154 T^{2} - 14 T^{3} + T^{4} \)
$71$ \( 12996 - 2508 T + 370 T^{2} - 22 T^{3} + T^{4} \)
$73$ \( 12996 + 2508 T + 370 T^{2} + 22 T^{3} + T^{4} \)
$79$ \( 784 + 28 T^{2} + T^{4} \)
$83$ \( ( -76 - 12 T + T^{2} )^{2} \)
$89$ \( 30625 + 175 T^{2} + T^{4} \)
$97$ \( 36 - 12 T + 10 T^{2} + 2 T^{3} + T^{4} \)
show more
show less