Properties

Label 570.2.i.e
Level $570$
Weight $2$
Character orbit 570.i
Analytic conductor $4.551$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 570 = 2 \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 570.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.55147291521\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \zeta_{6} + 1) q^{2} + ( - \zeta_{6} + 1) q^{3} - \zeta_{6} q^{4} + (\zeta_{6} - 1) q^{5} - \zeta_{6} q^{6} - 5 q^{7} - q^{8} - \zeta_{6} q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + ( - \zeta_{6} + 1) q^{2} + ( - \zeta_{6} + 1) q^{3} - \zeta_{6} q^{4} + (\zeta_{6} - 1) q^{5} - \zeta_{6} q^{6} - 5 q^{7} - q^{8} - \zeta_{6} q^{9} + \zeta_{6} q^{10} + q^{11} - q^{12} - 6 \zeta_{6} q^{13} + (5 \zeta_{6} - 5) q^{14} + \zeta_{6} q^{15} + (\zeta_{6} - 1) q^{16} + (4 \zeta_{6} - 4) q^{17} - q^{18} + (5 \zeta_{6} - 3) q^{19} + q^{20} + (5 \zeta_{6} - 5) q^{21} + ( - \zeta_{6} + 1) q^{22} - 7 \zeta_{6} q^{23} + (\zeta_{6} - 1) q^{24} - \zeta_{6} q^{25} - 6 q^{26} - q^{27} + 5 \zeta_{6} q^{28} - 6 \zeta_{6} q^{29} + q^{30} + \zeta_{6} q^{32} + ( - \zeta_{6} + 1) q^{33} + 4 \zeta_{6} q^{34} + ( - 5 \zeta_{6} + 5) q^{35} + (\zeta_{6} - 1) q^{36} + 7 q^{37} + (3 \zeta_{6} + 2) q^{38} - 6 q^{39} + ( - \zeta_{6} + 1) q^{40} + ( - 5 \zeta_{6} + 5) q^{41} + 5 \zeta_{6} q^{42} + (6 \zeta_{6} - 6) q^{43} - \zeta_{6} q^{44} + q^{45} - 7 q^{46} + 8 \zeta_{6} q^{47} + \zeta_{6} q^{48} + 18 q^{49} - q^{50} + 4 \zeta_{6} q^{51} + (6 \zeta_{6} - 6) q^{52} - 11 \zeta_{6} q^{53} + (\zeta_{6} - 1) q^{54} + (\zeta_{6} - 1) q^{55} + 5 q^{56} + (3 \zeta_{6} + 2) q^{57} - 6 q^{58} + ( - 8 \zeta_{6} + 8) q^{59} + ( - \zeta_{6} + 1) q^{60} + 4 \zeta_{6} q^{61} + 5 \zeta_{6} q^{63} + q^{64} + 6 q^{65} - \zeta_{6} q^{66} - 12 \zeta_{6} q^{67} + 4 q^{68} - 7 q^{69} - 5 \zeta_{6} q^{70} + (2 \zeta_{6} - 2) q^{71} + \zeta_{6} q^{72} + ( - 2 \zeta_{6} + 2) q^{73} + ( - 7 \zeta_{6} + 7) q^{74} - q^{75} + ( - 2 \zeta_{6} + 5) q^{76} - 5 q^{77} + (6 \zeta_{6} - 6) q^{78} + (10 \zeta_{6} - 10) q^{79} - \zeta_{6} q^{80} + (\zeta_{6} - 1) q^{81} - 5 \zeta_{6} q^{82} - 10 q^{83} + 5 q^{84} - 4 \zeta_{6} q^{85} + 6 \zeta_{6} q^{86} - 6 q^{87} - q^{88} - 13 \zeta_{6} q^{89} + ( - \zeta_{6} + 1) q^{90} + 30 \zeta_{6} q^{91} + (7 \zeta_{6} - 7) q^{92} + 8 q^{94} + ( - 3 \zeta_{6} - 2) q^{95} + q^{96} + (2 \zeta_{6} - 2) q^{97} + ( - 18 \zeta_{6} + 18) q^{98} - \zeta_{6} q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} + q^{3} - q^{4} - q^{5} - q^{6} - 10 q^{7} - 2 q^{8} - q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + q^{2} + q^{3} - q^{4} - q^{5} - q^{6} - 10 q^{7} - 2 q^{8} - q^{9} + q^{10} + 2 q^{11} - 2 q^{12} - 6 q^{13} - 5 q^{14} + q^{15} - q^{16} - 4 q^{17} - 2 q^{18} - q^{19} + 2 q^{20} - 5 q^{21} + q^{22} - 7 q^{23} - q^{24} - q^{25} - 12 q^{26} - 2 q^{27} + 5 q^{28} - 6 q^{29} + 2 q^{30} + q^{32} + q^{33} + 4 q^{34} + 5 q^{35} - q^{36} + 14 q^{37} + 7 q^{38} - 12 q^{39} + q^{40} + 5 q^{41} + 5 q^{42} - 6 q^{43} - q^{44} + 2 q^{45} - 14 q^{46} + 8 q^{47} + q^{48} + 36 q^{49} - 2 q^{50} + 4 q^{51} - 6 q^{52} - 11 q^{53} - q^{54} - q^{55} + 10 q^{56} + 7 q^{57} - 12 q^{58} + 8 q^{59} + q^{60} + 4 q^{61} + 5 q^{63} + 2 q^{64} + 12 q^{65} - q^{66} - 12 q^{67} + 8 q^{68} - 14 q^{69} - 5 q^{70} - 2 q^{71} + q^{72} + 2 q^{73} + 7 q^{74} - 2 q^{75} + 8 q^{76} - 10 q^{77} - 6 q^{78} - 10 q^{79} - q^{80} - q^{81} - 5 q^{82} - 20 q^{83} + 10 q^{84} - 4 q^{85} + 6 q^{86} - 12 q^{87} - 2 q^{88} - 13 q^{89} + q^{90} + 30 q^{91} - 7 q^{92} + 16 q^{94} - 7 q^{95} + 2 q^{96} - 2 q^{97} + 18 q^{98} - q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/570\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(211\) \(457\)
\(\chi(n)\) \(1\) \(-\zeta_{6}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
121.1
0.500000 0.866025i
0.500000 + 0.866025i
0.500000 + 0.866025i 0.500000 + 0.866025i −0.500000 + 0.866025i −0.500000 0.866025i −0.500000 + 0.866025i −5.00000 −1.00000 −0.500000 + 0.866025i 0.500000 0.866025i
391.1 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i −0.500000 + 0.866025i −0.500000 0.866025i −5.00000 −1.00000 −0.500000 0.866025i 0.500000 + 0.866025i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 570.2.i.e 2
3.b odd 2 1 1710.2.l.c 2
19.c even 3 1 inner 570.2.i.e 2
57.h odd 6 1 1710.2.l.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
570.2.i.e 2 1.a even 1 1 trivial
570.2.i.e 2 19.c even 3 1 inner
1710.2.l.c 2 3.b odd 2 1
1710.2.l.c 2 57.h odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(570, [\chi])\):

\( T_{7} + 5 \) Copy content Toggle raw display
\( T_{11} - 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$3$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$5$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$7$ \( (T + 5)^{2} \) Copy content Toggle raw display
$11$ \( (T - 1)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 6T + 36 \) Copy content Toggle raw display
$17$ \( T^{2} + 4T + 16 \) Copy content Toggle raw display
$19$ \( T^{2} + T + 19 \) Copy content Toggle raw display
$23$ \( T^{2} + 7T + 49 \) Copy content Toggle raw display
$29$ \( T^{2} + 6T + 36 \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( (T - 7)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 5T + 25 \) Copy content Toggle raw display
$43$ \( T^{2} + 6T + 36 \) Copy content Toggle raw display
$47$ \( T^{2} - 8T + 64 \) Copy content Toggle raw display
$53$ \( T^{2} + 11T + 121 \) Copy content Toggle raw display
$59$ \( T^{2} - 8T + 64 \) Copy content Toggle raw display
$61$ \( T^{2} - 4T + 16 \) Copy content Toggle raw display
$67$ \( T^{2} + 12T + 144 \) Copy content Toggle raw display
$71$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$73$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$79$ \( T^{2} + 10T + 100 \) Copy content Toggle raw display
$83$ \( (T + 10)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 13T + 169 \) Copy content Toggle raw display
$97$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
show more
show less