Properties

Label 570.2.i.a
Level $570$
Weight $2$
Character orbit 570.i
Analytic conductor $4.551$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 570 = 2 \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 570.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.55147291521\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -1 + \zeta_{6} ) q^{2} + ( -1 + \zeta_{6} ) q^{3} -\zeta_{6} q^{4} + ( 1 - \zeta_{6} ) q^{5} -\zeta_{6} q^{6} - q^{7} + q^{8} -\zeta_{6} q^{9} +O(q^{10})\) \( q + ( -1 + \zeta_{6} ) q^{2} + ( -1 + \zeta_{6} ) q^{3} -\zeta_{6} q^{4} + ( 1 - \zeta_{6} ) q^{5} -\zeta_{6} q^{6} - q^{7} + q^{8} -\zeta_{6} q^{9} + \zeta_{6} q^{10} -3 q^{11} + q^{12} -2 \zeta_{6} q^{13} + ( 1 - \zeta_{6} ) q^{14} + \zeta_{6} q^{15} + ( -1 + \zeta_{6} ) q^{16} + ( 6 - 6 \zeta_{6} ) q^{17} + q^{18} + ( -5 + 3 \zeta_{6} ) q^{19} - q^{20} + ( 1 - \zeta_{6} ) q^{21} + ( 3 - 3 \zeta_{6} ) q^{22} -9 \zeta_{6} q^{23} + ( -1 + \zeta_{6} ) q^{24} -\zeta_{6} q^{25} + 2 q^{26} + q^{27} + \zeta_{6} q^{28} - q^{30} -4 q^{31} -\zeta_{6} q^{32} + ( 3 - 3 \zeta_{6} ) q^{33} + 6 \zeta_{6} q^{34} + ( -1 + \zeta_{6} ) q^{35} + ( -1 + \zeta_{6} ) q^{36} + 5 q^{37} + ( 2 - 5 \zeta_{6} ) q^{38} + 2 q^{39} + ( 1 - \zeta_{6} ) q^{40} + ( 3 - 3 \zeta_{6} ) q^{41} + \zeta_{6} q^{42} + ( 10 - 10 \zeta_{6} ) q^{43} + 3 \zeta_{6} q^{44} - q^{45} + 9 q^{46} -\zeta_{6} q^{48} -6 q^{49} + q^{50} + 6 \zeta_{6} q^{51} + ( -2 + 2 \zeta_{6} ) q^{52} -3 \zeta_{6} q^{53} + ( -1 + \zeta_{6} ) q^{54} + ( -3 + 3 \zeta_{6} ) q^{55} - q^{56} + ( 2 - 5 \zeta_{6} ) q^{57} + ( 12 - 12 \zeta_{6} ) q^{59} + ( 1 - \zeta_{6} ) q^{60} + 10 \zeta_{6} q^{61} + ( 4 - 4 \zeta_{6} ) q^{62} + \zeta_{6} q^{63} + q^{64} -2 q^{65} + 3 \zeta_{6} q^{66} + 10 \zeta_{6} q^{67} -6 q^{68} + 9 q^{69} -\zeta_{6} q^{70} -\zeta_{6} q^{72} + ( 4 - 4 \zeta_{6} ) q^{73} + ( -5 + 5 \zeta_{6} ) q^{74} + q^{75} + ( 3 + 2 \zeta_{6} ) q^{76} + 3 q^{77} + ( -2 + 2 \zeta_{6} ) q^{78} + ( -14 + 14 \zeta_{6} ) q^{79} + \zeta_{6} q^{80} + ( -1 + \zeta_{6} ) q^{81} + 3 \zeta_{6} q^{82} -18 q^{83} - q^{84} -6 \zeta_{6} q^{85} + 10 \zeta_{6} q^{86} -3 q^{88} -15 \zeta_{6} q^{89} + ( 1 - \zeta_{6} ) q^{90} + 2 \zeta_{6} q^{91} + ( -9 + 9 \zeta_{6} ) q^{92} + ( 4 - 4 \zeta_{6} ) q^{93} + ( -2 + 5 \zeta_{6} ) q^{95} + q^{96} + ( -8 + 8 \zeta_{6} ) q^{97} + ( 6 - 6 \zeta_{6} ) q^{98} + 3 \zeta_{6} q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - q^{2} - q^{3} - q^{4} + q^{5} - q^{6} - 2q^{7} + 2q^{8} - q^{9} + O(q^{10}) \) \( 2q - q^{2} - q^{3} - q^{4} + q^{5} - q^{6} - 2q^{7} + 2q^{8} - q^{9} + q^{10} - 6q^{11} + 2q^{12} - 2q^{13} + q^{14} + q^{15} - q^{16} + 6q^{17} + 2q^{18} - 7q^{19} - 2q^{20} + q^{21} + 3q^{22} - 9q^{23} - q^{24} - q^{25} + 4q^{26} + 2q^{27} + q^{28} - 2q^{30} - 8q^{31} - q^{32} + 3q^{33} + 6q^{34} - q^{35} - q^{36} + 10q^{37} - q^{38} + 4q^{39} + q^{40} + 3q^{41} + q^{42} + 10q^{43} + 3q^{44} - 2q^{45} + 18q^{46} - q^{48} - 12q^{49} + 2q^{50} + 6q^{51} - 2q^{52} - 3q^{53} - q^{54} - 3q^{55} - 2q^{56} - q^{57} + 12q^{59} + q^{60} + 10q^{61} + 4q^{62} + q^{63} + 2q^{64} - 4q^{65} + 3q^{66} + 10q^{67} - 12q^{68} + 18q^{69} - q^{70} - q^{72} + 4q^{73} - 5q^{74} + 2q^{75} + 8q^{76} + 6q^{77} - 2q^{78} - 14q^{79} + q^{80} - q^{81} + 3q^{82} - 36q^{83} - 2q^{84} - 6q^{85} + 10q^{86} - 6q^{88} - 15q^{89} + q^{90} + 2q^{91} - 9q^{92} + 4q^{93} + q^{95} + 2q^{96} - 8q^{97} + 6q^{98} + 3q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/570\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(211\) \(457\)
\(\chi(n)\) \(1\) \(-\zeta_{6}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
121.1
0.500000 0.866025i
0.500000 + 0.866025i
−0.500000 0.866025i −0.500000 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i −0.500000 + 0.866025i −1.00000 1.00000 −0.500000 + 0.866025i 0.500000 0.866025i
391.1 −0.500000 + 0.866025i −0.500000 + 0.866025i −0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i −1.00000 1.00000 −0.500000 0.866025i 0.500000 + 0.866025i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 570.2.i.a 2
3.b odd 2 1 1710.2.l.g 2
19.c even 3 1 inner 570.2.i.a 2
57.h odd 6 1 1710.2.l.g 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
570.2.i.a 2 1.a even 1 1 trivial
570.2.i.a 2 19.c even 3 1 inner
1710.2.l.g 2 3.b odd 2 1
1710.2.l.g 2 57.h odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(570, [\chi])\):

\( T_{7} + 1 \)
\( T_{11} + 3 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + T + T^{2} \)
$3$ \( 1 + T + T^{2} \)
$5$ \( 1 - T + T^{2} \)
$7$ \( ( 1 + T )^{2} \)
$11$ \( ( 3 + T )^{2} \)
$13$ \( 4 + 2 T + T^{2} \)
$17$ \( 36 - 6 T + T^{2} \)
$19$ \( 19 + 7 T + T^{2} \)
$23$ \( 81 + 9 T + T^{2} \)
$29$ \( T^{2} \)
$31$ \( ( 4 + T )^{2} \)
$37$ \( ( -5 + T )^{2} \)
$41$ \( 9 - 3 T + T^{2} \)
$43$ \( 100 - 10 T + T^{2} \)
$47$ \( T^{2} \)
$53$ \( 9 + 3 T + T^{2} \)
$59$ \( 144 - 12 T + T^{2} \)
$61$ \( 100 - 10 T + T^{2} \)
$67$ \( 100 - 10 T + T^{2} \)
$71$ \( T^{2} \)
$73$ \( 16 - 4 T + T^{2} \)
$79$ \( 196 + 14 T + T^{2} \)
$83$ \( ( 18 + T )^{2} \)
$89$ \( 225 + 15 T + T^{2} \)
$97$ \( 64 + 8 T + T^{2} \)
show more
show less