# Properties

 Label 570.2.bi.a.557.23 Level $570$ Weight $2$ Character 570.557 Analytic conductor $4.551$ Analytic rank $0$ Dimension $480$ CM no Inner twists $8$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$570 = 2 \cdot 3 \cdot 5 \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 570.bi (of order $$36$$, degree $$12$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$4.55147291521$$ Analytic rank: $$0$$ Dimension: $$480$$ Relative dimension: $$40$$ over $$\Q(\zeta_{36})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

## Embedding invariants

 Embedding label 557.23 Character $$\chi$$ $$=$$ 570.557 Dual form 570.2.bi.a.263.23

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(0.0871557 - 0.996195i) q^{2} +(-1.66215 - 0.487090i) q^{3} +(-0.984808 - 0.173648i) q^{4} +(2.04009 - 0.915434i) q^{5} +(-0.630102 + 1.61337i) q^{6} +(-0.956140 + 0.256197i) q^{7} +(-0.258819 + 0.965926i) q^{8} +(2.52549 + 1.61923i) q^{9} +O(q^{10})$$ $$q+(0.0871557 - 0.996195i) q^{2} +(-1.66215 - 0.487090i) q^{3} +(-0.984808 - 0.173648i) q^{4} +(2.04009 - 0.915434i) q^{5} +(-0.630102 + 1.61337i) q^{6} +(-0.956140 + 0.256197i) q^{7} +(-0.258819 + 0.965926i) q^{8} +(2.52549 + 1.61923i) q^{9} +(-0.734145 - 2.11212i) q^{10} +(1.68727 - 0.974147i) q^{11} +(1.55232 + 0.768319i) q^{12} +(2.53459 - 5.43545i) q^{13} +(0.171889 + 0.974830i) q^{14} +(-3.83684 + 0.527881i) q^{15} +(0.939693 + 0.342020i) q^{16} +(0.249112 - 2.84737i) q^{17} +(1.83318 - 2.37475i) q^{18} +(-4.19757 + 1.17490i) q^{19} +(-2.16806 + 0.547268i) q^{20} +(1.71404 + 0.0398880i) q^{21} +(-0.823385 - 1.76575i) q^{22} +(-2.28307 + 1.59862i) q^{23} +(0.900689 - 1.47945i) q^{24} +(3.32396 - 3.73514i) q^{25} +(-5.19386 - 2.99868i) q^{26} +(-3.40903 - 3.92155i) q^{27} +(0.986102 - 0.0862727i) q^{28} +(-0.831703 - 0.697882i) q^{29} +(0.191470 + 3.86825i) q^{30} +(0.207050 - 0.358622i) q^{31} +(0.422618 - 0.906308i) q^{32} +(-3.27900 + 0.797326i) q^{33} +(-2.81482 - 0.496329i) q^{34} +(-1.71608 + 1.39795i) q^{35} +(-2.20594 - 2.03318i) q^{36} +(-6.98105 - 6.98105i) q^{37} +(0.804584 + 4.28400i) q^{38} +(-6.86042 + 7.79996i) q^{39} +(0.356226 + 2.20751i) q^{40} +(0.231277 - 0.635428i) q^{41} +(0.189124 - 1.70404i) q^{42} +(-0.540510 - 0.378469i) q^{43} +(-1.83080 + 0.666356i) q^{44} +(6.63453 + 0.991467i) q^{45} +(1.39356 + 2.41371i) q^{46} +(9.29672 - 0.813358i) q^{47} +(-1.39532 - 1.02620i) q^{48} +(-5.21361 + 3.01008i) q^{49} +(-3.43123 - 3.63685i) q^{50} +(-1.80099 + 4.61141i) q^{51} +(-3.43994 + 4.91274i) q^{52} +(-7.05061 + 4.93689i) q^{53} +(-4.20374 + 3.05427i) q^{54} +(2.55043 - 3.53194i) q^{55} -0.989869i q^{56} +(7.54928 + 0.0917376i) q^{57} +(-0.767714 + 0.767714i) q^{58} +(-0.996800 + 0.836415i) q^{59} +(3.87022 + 0.146399i) q^{60} +(1.19209 - 6.76066i) q^{61} +(-0.339211 - 0.237518i) q^{62} +(-2.82956 - 0.901190i) q^{63} +(-0.866025 - 0.500000i) q^{64} +(0.195008 - 13.4091i) q^{65} +(0.508509 + 3.33601i) q^{66} +(-1.15572 - 13.2100i) q^{67} +(-0.739768 + 2.76085i) q^{68} +(4.57347 - 1.54509i) q^{69} +(1.24306 + 1.83139i) q^{70} +(8.83250 - 1.55741i) q^{71} +(-2.21770 + 2.02035i) q^{72} +(5.75154 - 2.68199i) q^{73} +(-7.56293 + 6.34605i) q^{74} +(-7.34427 + 4.58930i) q^{75} +(4.33782 - 0.428147i) q^{76} +(-1.36369 + 1.36369i) q^{77} +(7.17235 + 7.51413i) q^{78} +(-3.54991 + 9.75331i) q^{79} +(2.23016 - 0.162474i) q^{80} +(3.75617 + 8.17870i) q^{81} +(-0.612853 - 0.285778i) q^{82} +(6.81831 - 1.82696i) q^{83} +(-1.68107 - 0.336922i) q^{84} +(-2.09836 - 6.03694i) q^{85} +(-0.424137 + 0.505467i) q^{86} +(1.04249 + 1.56510i) q^{87} +(0.504256 + 1.88191i) q^{88} +(15.9299 - 5.79801i) q^{89} +(1.56593 - 6.52287i) q^{90} +(-1.03088 + 5.84640i) q^{91} +(2.52598 - 1.17788i) q^{92} +(-0.518830 + 0.495231i) q^{93} -9.33223i q^{94} +(-7.48790 + 6.23950i) q^{95} +(-1.14391 + 1.30057i) q^{96} +(-10.1176 - 0.885172i) q^{97} +(2.54423 + 5.45612i) q^{98} +(5.83856 + 0.271889i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$480q + O(q^{10})$$ $$480q - 36q^{15} - 48q^{18} + 24q^{22} - 24q^{25} + 72q^{33} + 24q^{43} - 36q^{45} + 24q^{51} - 120q^{55} + 108q^{57} - 48q^{60} - 48q^{61} - 36q^{63} - 24q^{66} + 48q^{67} - 48q^{70} - 48q^{78} - 144q^{81} - 48q^{85} - 96q^{87} - 168q^{90} - 144q^{91} - 228q^{93} + 48q^{97} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/570\mathbb{Z}\right)^\times$$.

 $$n$$ $$191$$ $$211$$ $$457$$ $$\chi(n)$$ $$-1$$ $$e\left(\frac{7}{9}\right)$$ $$e\left(\frac{1}{4}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0.0871557 0.996195i 0.0616284 0.704416i
$$3$$ −1.66215 0.487090i −0.959643 0.281221i
$$4$$ −0.984808 0.173648i −0.492404 0.0868241i
$$5$$ 2.04009 0.915434i 0.912357 0.409395i
$$6$$ −0.630102 + 1.61337i −0.257238 + 0.658657i
$$7$$ −0.956140 + 0.256197i −0.361387 + 0.0968333i −0.434944 0.900458i $$-0.643232\pi$$
0.0735567 + 0.997291i $$0.476565\pi$$
$$8$$ −0.258819 + 0.965926i −0.0915064 + 0.341506i
$$9$$ 2.52549 + 1.61923i 0.841829 + 0.539744i
$$10$$ −0.734145 2.11212i −0.232157 0.667910i
$$11$$ 1.68727 0.974147i 0.508732 0.293716i −0.223580 0.974685i $$-0.571775\pi$$
0.732312 + 0.680969i $$0.238441\pi$$
$$12$$ 1.55232 + 0.768319i 0.448115 + 0.221795i
$$13$$ 2.53459 5.43545i 0.702969 1.50752i −0.151743 0.988420i $$-0.548489\pi$$
0.854712 0.519102i $$-0.173734\pi$$
$$14$$ 0.171889 + 0.974830i 0.0459392 + 0.260534i
$$15$$ −3.83684 + 0.527881i −0.990668 + 0.136298i
$$16$$ 0.939693 + 0.342020i 0.234923 + 0.0855050i
$$17$$ 0.249112 2.84737i 0.0604186 0.690588i −0.904230 0.427047i $$-0.859554\pi$$
0.964648 0.263541i $$-0.0848905\pi$$
$$18$$ 1.83318 2.37475i 0.432085 0.559734i
$$19$$ −4.19757 + 1.17490i −0.962989 + 0.269540i
$$20$$ −2.16806 + 0.547268i −0.484794 + 0.122373i
$$21$$ 1.71404 + 0.0398880i 0.374034 + 0.00870427i
$$22$$ −0.823385 1.76575i −0.175546 0.376460i
$$23$$ −2.28307 + 1.59862i −0.476053 + 0.333336i −0.786854 0.617139i $$-0.788292\pi$$
0.310801 + 0.950475i $$0.399403\pi$$
$$24$$ 0.900689 1.47945i 0.183852 0.301991i
$$25$$ 3.32396 3.73514i 0.664792 0.747028i
$$26$$ −5.19386 2.99868i −1.01860 0.588089i
$$27$$ −3.40903 3.92155i −0.656068 0.754702i
$$28$$ 0.986102 0.0862727i 0.186356 0.0163040i
$$29$$ −0.831703 0.697882i −0.154443 0.129593i 0.562292 0.826939i $$-0.309920\pi$$
−0.716735 + 0.697346i $$0.754364\pi$$
$$30$$ 0.191470 + 3.86825i 0.0349574 + 0.706242i
$$31$$ 0.207050 0.358622i 0.0371873 0.0644104i −0.846833 0.531859i $$-0.821494\pi$$
0.884020 + 0.467449i $$0.154827\pi$$
$$32$$ 0.422618 0.906308i 0.0747091 0.160214i
$$33$$ −3.27900 + 0.797326i −0.570800 + 0.138797i
$$34$$ −2.81482 0.496329i −0.482738 0.0851197i
$$35$$ −1.71608 + 1.39795i −0.290071 + 0.236296i
$$36$$ −2.20594 2.03318i −0.367657 0.338863i
$$37$$ −6.98105 6.98105i −1.14768 1.14768i −0.987008 0.160670i $$-0.948634\pi$$
−0.160670 0.987008i $$-0.551366\pi$$
$$38$$ 0.804584 + 4.28400i 0.130521 + 0.694956i
$$39$$ −6.86042 + 7.79996i −1.09855 + 1.24899i
$$40$$ 0.356226 + 2.20751i 0.0563243 + 0.349038i
$$41$$ 0.231277 0.635428i 0.0361194 0.0992372i −0.920322 0.391162i $$-0.872073\pi$$
0.956441 + 0.291924i $$0.0942956\pi$$
$$42$$ 0.189124 1.70404i 0.0291825 0.262939i
$$43$$ −0.540510 0.378469i −0.0824270 0.0577160i 0.531637 0.846973i $$-0.321577\pi$$
−0.614064 + 0.789257i $$0.710466\pi$$
$$44$$ −1.83080 + 0.666356i −0.276003 + 0.100457i
$$45$$ 6.63453 + 0.991467i 0.989017 + 0.147799i
$$46$$ 1.39356 + 2.41371i 0.205469 + 0.355882i
$$47$$ 9.29672 0.813358i 1.35607 0.118640i 0.614180 0.789166i $$-0.289487\pi$$
0.741886 + 0.670526i $$0.233931\pi$$
$$48$$ −1.39532 1.02620i −0.201397 0.148120i
$$49$$ −5.21361 + 3.01008i −0.744802 + 0.430011i
$$50$$ −3.43123 3.63685i −0.485249 0.514328i
$$51$$ −1.80099 + 4.61141i −0.252188 + 0.645727i
$$52$$ −3.43994 + 4.91274i −0.477034 + 0.681275i
$$53$$ −7.05061 + 4.93689i −0.968476 + 0.678134i −0.946865 0.321632i $$-0.895768\pi$$
−0.0216112 + 0.999766i $$0.506880\pi$$
$$54$$ −4.20374 + 3.05427i −0.572057 + 0.415634i
$$55$$ 2.55043 3.53194i 0.343899 0.476246i
$$56$$ 0.989869i 0.132277i
$$57$$ 7.54928 + 0.0917376i 0.999926 + 0.0121509i
$$58$$ −0.767714 + 0.767714i −0.100806 + 0.100806i
$$59$$ −0.996800 + 0.836415i −0.129772 + 0.108892i −0.705364 0.708846i $$-0.749216\pi$$
0.575591 + 0.817737i $$0.304772\pi$$
$$60$$ 3.87022 + 0.146399i 0.499643 + 0.0189000i
$$61$$ 1.19209 6.76066i 0.152631 0.865613i −0.808289 0.588786i $$-0.799606\pi$$
0.960920 0.276827i $$-0.0892829\pi$$
$$62$$ −0.339211 0.237518i −0.0430799 0.0301649i
$$63$$ −2.82956 0.901190i −0.356491 0.113539i
$$64$$ −0.866025 0.500000i −0.108253 0.0625000i
$$65$$ 0.195008 13.4091i 0.0241877 1.66319i
$$66$$ 0.508509 + 3.33601i 0.0625931 + 0.410635i
$$67$$ −1.15572 13.2100i −0.141194 1.61386i −0.654782 0.755818i $$-0.727239\pi$$
0.513588 0.858037i $$-0.328316\pi$$
$$68$$ −0.739768 + 2.76085i −0.0897100 + 0.334802i
$$69$$ 4.57347 1.54509i 0.550582 0.186007i
$$70$$ 1.24306 + 1.83139i 0.148574 + 0.218893i
$$71$$ 8.83250 1.55741i 1.04822 0.184830i 0.377098 0.926173i $$-0.376922\pi$$
0.671126 + 0.741343i $$0.265811\pi$$
$$72$$ −2.21770 + 2.02035i −0.261359 + 0.238100i
$$73$$ 5.75154 2.68199i 0.673167 0.313903i −0.0558096 0.998441i $$-0.517774\pi$$
0.728977 + 0.684538i $$0.239996\pi$$
$$74$$ −7.56293 + 6.34605i −0.879173 + 0.737713i
$$75$$ −7.34427 + 4.58930i −0.848043 + 0.529927i
$$76$$ 4.33782 0.428147i 0.497582 0.0491119i
$$77$$ −1.36369 + 1.36369i −0.155407 + 0.155407i
$$78$$ 7.17235 + 7.51413i 0.812109 + 0.850807i
$$79$$ −3.54991 + 9.75331i −0.399396 + 1.09733i 0.563183 + 0.826332i $$0.309577\pi$$
−0.962579 + 0.271000i $$0.912646\pi$$
$$80$$ 2.23016 0.162474i 0.249339 0.0181651i
$$81$$ 3.75617 + 8.17870i 0.417353 + 0.908745i
$$82$$ −0.612853 0.285778i −0.0676783 0.0315589i
$$83$$ 6.81831 1.82696i 0.748407 0.200535i 0.135596 0.990764i $$-0.456705\pi$$
0.612811 + 0.790229i $$0.290039\pi$$
$$84$$ −1.68107 0.336922i −0.183420 0.0367612i
$$85$$ −2.09836 6.03694i −0.227600 0.654798i
$$86$$ −0.424137 + 0.505467i −0.0457359 + 0.0545059i
$$87$$ 1.04249 + 1.56510i 0.111766 + 0.167796i
$$88$$ 0.504256 + 1.88191i 0.0537538 + 0.200612i
$$89$$ 15.9299 5.79801i 1.68857 0.614588i 0.694123 0.719856i $$-0.255792\pi$$
0.994444 + 0.105268i $$0.0335700\pi$$
$$90$$ 1.56593 6.52287i 0.165064 0.687571i
$$91$$ −1.03088 + 5.84640i −0.108065 + 0.612869i
$$92$$ 2.52598 1.17788i 0.263352 0.122803i
$$93$$ −0.518830 + 0.495231i −0.0538001 + 0.0513531i
$$94$$ 9.33223i 0.962547i
$$95$$ −7.48790 + 6.23950i −0.768242 + 0.640159i
$$96$$ −1.14391 + 1.30057i −0.116750 + 0.132739i
$$97$$ −10.1176 0.885172i −1.02728 0.0898756i −0.438964 0.898505i $$-0.644654\pi$$
−0.588319 + 0.808629i $$0.700210\pi$$
$$98$$ 2.54423 + 5.45612i 0.257006 + 0.551151i
$$99$$ 5.83856 + 0.271889i 0.586797 + 0.0273259i
$$100$$ −3.92206 + 3.10120i −0.392206 + 0.310120i
$$101$$ 5.27281 + 14.4869i 0.524664 + 1.44150i 0.865275 + 0.501298i $$0.167144\pi$$
−0.340611 + 0.940204i $$0.610634\pi$$
$$102$$ 4.43690 + 2.19604i 0.439318 + 0.217441i
$$103$$ 0.0930424 + 0.0249306i 0.00916774 + 0.00245649i 0.263400 0.964687i $$-0.415156\pi$$
−0.254232 + 0.967143i $$0.581823\pi$$
$$104$$ 4.59424 + 3.85502i 0.450502 + 0.378016i
$$105$$ 3.53331 1.48771i 0.344816 0.145186i
$$106$$ 4.30360 + 7.45406i 0.418003 + 0.724002i
$$107$$ −1.51693 5.66126i −0.146647 0.547295i −0.999677 0.0254320i $$-0.991904\pi$$
0.853029 0.521863i $$-0.174763\pi$$
$$108$$ 2.67627 + 4.45394i 0.257524 + 0.428581i
$$109$$ 10.3517 1.82529i 0.991518 0.174831i 0.345718 0.938338i $$-0.387635\pi$$
0.645799 + 0.763507i $$0.276524\pi$$
$$110$$ −3.29621 2.84855i −0.314282 0.271598i
$$111$$ 8.20316 + 15.0040i 0.778610 + 1.42411i
$$112$$ −0.986102 0.0862727i −0.0931779 0.00815201i
$$113$$ 9.80637 + 9.80637i 0.922506 + 0.922506i 0.997206 0.0747004i $$-0.0238000\pi$$
−0.0747004 + 0.997206i $$0.523800\pi$$
$$114$$ 0.749351 7.51255i 0.0701832 0.703615i
$$115$$ −3.19424 + 5.35134i −0.297864 + 0.499015i
$$116$$ 0.697882 + 0.831703i 0.0647967 + 0.0772217i
$$117$$ 15.2023 9.62307i 1.40546 0.889653i
$$118$$ 0.746355 + 1.06591i 0.0687075 + 0.0981245i
$$119$$ 0.491300 + 2.78630i 0.0450374 + 0.255420i
$$120$$ 0.483153 3.84273i 0.0441057 0.350792i
$$121$$ −3.60207 + 6.23898i −0.327461 + 0.567180i
$$122$$ −6.63103 1.77678i −0.600346 0.160862i
$$123$$ −0.693927 + 0.943524i −0.0625693 + 0.0850747i
$$124$$ −0.266179 + 0.317220i −0.0239036 + 0.0284872i
$$125$$ 3.36191 10.6629i 0.300699 0.953719i
$$126$$ −1.14437 + 2.74025i −0.101949 + 0.244121i
$$127$$ 13.0867 + 6.10243i 1.16126 + 0.541503i 0.905128 0.425140i $$-0.139775\pi$$
0.256129 + 0.966643i $$0.417553\pi$$
$$128$$ −0.573576 + 0.819152i −0.0506975 + 0.0724035i
$$129$$ 0.714060 + 0.892349i 0.0628695 + 0.0785670i
$$130$$ −13.3411 1.36294i −1.17009 0.119538i
$$131$$ 1.84166 + 2.19480i 0.160906 + 0.191761i 0.840474 0.541853i $$-0.182277\pi$$
−0.679567 + 0.733613i $$0.737832\pi$$
$$132$$ 3.36764 0.215821i 0.293115 0.0187848i
$$133$$ 3.71246 2.19877i 0.321911 0.190658i
$$134$$ −13.2604 −1.14553
$$135$$ −10.5447 4.87958i −0.907539 0.419967i
$$136$$ 2.68587 + 0.977577i 0.230312 + 0.0838265i
$$137$$ 6.76863 + 9.66661i 0.578283 + 0.825874i 0.996597 0.0824285i $$-0.0262676\pi$$
−0.418314 + 0.908303i $$0.637379\pi$$
$$138$$ −1.14061 4.69073i −0.0970949 0.399302i
$$139$$ 1.70250 + 4.67758i 0.144404 + 0.396747i 0.990717 0.135939i $$-0.0434050\pi$$
−0.846313 + 0.532686i $$0.821183\pi$$
$$140$$ 1.93276 1.07872i 0.163348 0.0911681i
$$141$$ −15.8487 3.17641i −1.33470 0.267502i
$$142$$ −0.781678 8.93462i −0.0655970 0.749777i
$$143$$ −1.01838 11.6401i −0.0851613 0.973398i
$$144$$ 1.81937 + 2.38535i 0.151614 + 0.198779i
$$145$$ −2.33562 0.662375i −0.193962 0.0550072i
$$146$$ −2.17050 5.96341i −0.179632 0.493535i
$$147$$ 10.1320 2.46371i 0.835672 0.203203i
$$148$$ 5.66275 + 8.08724i 0.465475 + 0.664767i
$$149$$ 8.46674 + 3.08164i 0.693622 + 0.252458i 0.664685 0.747123i $$-0.268566\pi$$
0.0289370 + 0.999581i $$0.490788\pi$$
$$150$$ 3.93174 + 7.71631i 0.321025 + 0.630034i
$$151$$ −18.9891 −1.54531 −0.772656 0.634824i $$-0.781072\pi$$
−0.772656 + 0.634824i $$0.781072\pi$$
$$152$$ −0.0484520 4.35863i −0.00392998 0.353532i
$$153$$ 5.23968 6.78762i 0.423603 0.548747i
$$154$$ 1.23965 + 1.47736i 0.0998940 + 0.119049i
$$155$$ 0.0941075 0.921163i 0.00755889 0.0739896i
$$156$$ 8.11064 6.49016i 0.649371 0.519629i
$$157$$ −6.89192 + 9.84268i −0.550035 + 0.785531i −0.993867 0.110579i $$-0.964730\pi$$
0.443833 + 0.896110i $$0.353619\pi$$
$$158$$ 9.40680 + 4.38646i 0.748365 + 0.348968i
$$159$$ 14.1239 4.77158i 1.12010 0.378411i
$$160$$ 0.0325156 2.23583i 0.00257059 0.176758i
$$161$$ 1.77337 2.11342i 0.139761 0.166561i
$$162$$ 8.47495 3.02906i 0.665855 0.237985i
$$163$$ 4.87656 + 1.30667i 0.381962 + 0.102346i 0.444691 0.895684i $$-0.353314\pi$$
−0.0627289 + 0.998031i $$0.519980\pi$$
$$164$$ −0.338104 + 0.585614i −0.0264015 + 0.0457287i
$$165$$ −5.95956 + 4.62833i −0.463951 + 0.360315i
$$166$$ −1.22575 6.95160i −0.0951370 0.539549i
$$167$$ −9.62203 13.7417i −0.744575 1.06336i −0.995445 0.0953423i $$-0.969605\pi$$
0.250870 0.968021i $$-0.419283\pi$$
$$168$$ −0.482155 + 1.64531i −0.0371990 + 0.126938i
$$169$$ −14.7637 17.5947i −1.13567 1.35344i
$$170$$ −6.19685 + 1.56423i −0.475277 + 0.119971i
$$171$$ −12.5033 3.82966i −0.956155 0.292861i
$$172$$ 0.466578 + 0.466578i 0.0355762 + 0.0355762i
$$173$$ 14.1724 + 1.23993i 1.07751 + 0.0942698i 0.612065 0.790807i $$-0.290339\pi$$
0.465444 + 0.885077i $$0.345895\pi$$
$$174$$ 1.65000 0.902111i 0.125086 0.0683888i
$$175$$ −2.22124 + 4.42291i −0.167910 + 0.334340i
$$176$$ 1.91870 0.338318i 0.144627 0.0255017i
$$177$$ 2.06424 0.904716i 0.155158 0.0680026i
$$178$$ −4.38757 16.3746i −0.328862 1.22733i
$$179$$ −11.9567 20.7095i −0.893682 1.54790i −0.835427 0.549601i $$-0.814780\pi$$
−0.0582551 0.998302i $$-0.518554\pi$$
$$180$$ −6.36157 2.12848i −0.474163 0.158647i
$$181$$ 13.2459 + 11.1147i 0.984563 + 0.826147i 0.984772 0.173853i $$-0.0556219\pi$$
−0.000208366 1.00000i $$0.500066\pi$$
$$182$$ 5.73431 + 1.53650i 0.425055 + 0.113893i
$$183$$ −5.27447 + 10.6566i −0.389900 + 0.787757i
$$184$$ −0.953248 2.61903i −0.0702744 0.193077i
$$185$$ −20.6327 7.85131i −1.51695 0.577240i
$$186$$ 0.448128 + 0.560018i 0.0328583 + 0.0410625i
$$187$$ −2.35343 5.04696i −0.172100 0.369070i
$$188$$ −9.29672 0.813358i −0.678033 0.0593202i
$$189$$ 4.26420 + 2.87616i 0.310175 + 0.209210i
$$190$$ 5.56314 + 8.00321i 0.403593 + 0.580614i
$$191$$ 1.77826i 0.128671i 0.997928 + 0.0643354i $$0.0204927\pi$$
−0.997928 + 0.0643354i $$0.979507\pi$$
$$192$$ 1.19592 + 1.25291i 0.0863081 + 0.0904208i
$$193$$ −6.51188 + 3.03654i −0.468735 + 0.218575i −0.642611 0.766193i $$-0.722149\pi$$
0.173876 + 0.984768i $$0.444371\pi$$
$$194$$ −1.76361 + 10.0019i −0.126620 + 0.718096i
$$195$$ −6.85555 + 22.1929i −0.490936 + 1.58927i
$$196$$ 5.65710 2.05902i 0.404079 0.147073i
$$197$$ −0.610076 2.27684i −0.0434661 0.162218i 0.940781 0.339014i $$-0.110093\pi$$
−0.984248 + 0.176796i $$0.943427\pi$$
$$198$$ 0.779718 5.79264i 0.0554122 0.411665i
$$199$$ −4.03872 + 4.81316i −0.286298 + 0.341196i −0.889956 0.456047i $$-0.849265\pi$$
0.603658 + 0.797243i $$0.293709\pi$$
$$200$$ 2.74757 + 4.17743i 0.194282 + 0.295389i
$$201$$ −4.51346 + 22.5199i −0.318355 + 1.58843i
$$202$$ 14.8914 3.99013i 1.04775 0.280744i
$$203$$ 0.974020 + 0.454193i 0.0683628 + 0.0318781i
$$204$$ 2.57439 4.22862i 0.180243 0.296062i
$$205$$ −0.109866 1.50805i −0.00767338 0.105327i
$$206$$ 0.0329449 0.0905155i 0.00229538 0.00630651i
$$207$$ −8.35440 + 0.340482i −0.580671 + 0.0236651i
$$208$$ 4.24077 4.24077i 0.294044 0.294044i
$$209$$ −5.93793 + 6.07143i −0.410735 + 0.419969i
$$210$$ −1.17410 3.64953i −0.0810209 0.251842i
$$211$$ 11.3522 9.52562i 0.781517 0.655770i −0.162113 0.986772i $$-0.551831\pi$$
0.943630 + 0.331002i $$0.107387\pi$$
$$212$$ 7.80078 3.63756i 0.535760 0.249829i
$$213$$ −15.4395 1.71357i −1.05790 0.117412i
$$214$$ −5.77193 + 1.01775i −0.394561 + 0.0695717i
$$215$$ −1.44915 0.277311i −0.0988315 0.0189125i
$$216$$ 4.67024 2.27790i 0.317770 0.154991i
$$217$$ −0.106091 + 0.395938i −0.00720195 + 0.0268780i
$$218$$ −0.916132 10.4714i −0.0620483 0.709216i
$$219$$ −10.8663 + 1.65635i −0.734276 + 0.111926i
$$220$$ −3.12499 + 3.03540i −0.210687 + 0.204647i
$$221$$ −14.8453 8.57095i −0.998604 0.576544i
$$222$$ 15.6618 6.86427i 1.05115 0.460699i
$$223$$ 14.0901 + 9.86602i 0.943546 + 0.660678i 0.940672 0.339318i $$-0.110196\pi$$
0.00287403 + 0.999996i $$0.499085\pi$$
$$224$$ −0.171889 + 0.974830i −0.0114848 + 0.0651336i
$$225$$ 14.4427 4.05079i 0.962846 0.270053i
$$226$$ 10.6237 8.91437i 0.706680 0.592975i
$$227$$ −17.2331 + 17.2331i −1.14380 + 1.14380i −0.156051 + 0.987749i $$0.549876\pi$$
−0.987749 + 0.156051i $$0.950124\pi$$
$$228$$ −7.41866 1.40126i −0.491313 0.0928008i
$$229$$ 8.52084i 0.563073i −0.959551 0.281536i $$-0.909156\pi$$
0.959551 0.281536i $$-0.0908440\pi$$
$$230$$ 5.05258 + 3.64848i 0.333157 + 0.240574i
$$231$$ 2.93091 1.60242i 0.192840 0.105432i
$$232$$ 0.889363 0.622739i 0.0583895 0.0408848i
$$233$$ −11.4867 + 16.4047i −0.752518 + 1.07471i 0.242013 + 0.970273i $$0.422192\pi$$
−0.994532 + 0.104435i $$0.966697\pi$$
$$234$$ −8.26148 15.9832i −0.540070 1.04485i
$$235$$ 18.2216 10.1699i 1.18865 0.663409i
$$236$$ 1.12690 0.650615i 0.0733548 0.0423514i
$$237$$ 10.6512 14.4823i 0.691871 0.940729i
$$238$$ 2.81852 0.246589i 0.182698 0.0159840i
$$239$$ 8.58302 + 14.8662i 0.555190 + 0.961617i 0.997889 + 0.0649463i $$0.0206876\pi$$
−0.442699 + 0.896670i $$0.645979\pi$$
$$240$$ −3.78600 0.816231i −0.244385 0.0526875i
$$241$$ −3.85394 + 1.40272i −0.248254 + 0.0903571i −0.463150 0.886280i $$-0.653281\pi$$
0.214896 + 0.976637i $$0.431059\pi$$
$$242$$ 5.90129 + 4.13213i 0.379350 + 0.265623i
$$243$$ −2.25957 15.4238i −0.144951 0.989439i
$$244$$ −2.34795 + 6.45094i −0.150312 + 0.412979i
$$245$$ −7.88072 + 10.9136i −0.503481 + 0.697242i
$$246$$ 0.879454 + 0.773520i 0.0560719 + 0.0493178i
$$247$$ −4.25304 + 25.7936i −0.270614 + 1.64121i
$$248$$ 0.292813 + 0.292813i 0.0185937 + 0.0185937i
$$249$$ −12.2230 0.284444i −0.774598 0.0180259i
$$250$$ −10.3293 4.27845i −0.653283 0.270593i
$$251$$ 11.9820 + 2.11275i 0.756297 + 0.133356i 0.538485 0.842635i $$-0.318997\pi$$
0.217812 + 0.975991i $$0.430108\pi$$
$$252$$ 2.63008 + 1.37885i 0.165680 + 0.0868592i
$$253$$ −2.29487 + 4.92135i −0.144277 + 0.309403i
$$254$$ 7.21978 12.5050i 0.453010 0.784636i
$$255$$ 0.547267 + 11.0564i 0.0342712 + 0.692378i
$$256$$ 0.766044 + 0.642788i 0.0478778 + 0.0401742i
$$257$$ −6.04376 + 0.528760i −0.376999 + 0.0329832i −0.274081 0.961707i $$-0.588374\pi$$
−0.102918 + 0.994690i $$0.532818\pi$$
$$258$$ 0.951188 0.633570i 0.0592184 0.0394443i
$$259$$ 8.46339 + 4.88634i 0.525889 + 0.303622i
$$260$$ −2.52051 + 13.1715i −0.156315 + 0.816861i
$$261$$ −0.970424 3.10921i −0.0600677 0.192455i
$$262$$ 2.34696 1.64336i 0.144996 0.101527i
$$263$$ −5.44933 11.6861i −0.336020 0.720598i 0.663602 0.748086i $$-0.269027\pi$$
−0.999622 + 0.0274880i $$0.991249\pi$$
$$264$$ 0.0785089 3.37363i 0.00483189 0.207633i
$$265$$ −9.86450 + 16.5261i −0.605972 + 1.01519i
$$266$$ −1.86684 3.88997i −0.114463 0.238509i
$$267$$ −29.3021 + 1.87788i −1.79326 + 0.114924i
$$268$$ −1.15572 + 13.2100i −0.0705970 + 0.806928i
$$269$$ −3.57049 1.29955i −0.217697 0.0792351i 0.230869 0.972985i $$-0.425843\pi$$
−0.448566 + 0.893750i $$0.648065\pi$$
$$270$$ −5.78004 + 10.0792i −0.351762 + 0.613403i
$$271$$ 0.469395 + 2.66207i 0.0285137 + 0.161709i 0.995740 0.0922072i $$-0.0293922\pi$$
−0.967226 + 0.253917i $$0.918281\pi$$
$$272$$ 1.20795 2.59045i 0.0732425 0.157069i
$$273$$ 4.56120 9.21547i 0.276056 0.557746i
$$274$$ 10.2198 5.90038i 0.617398 0.356455i
$$275$$ 1.96985 9.54023i 0.118786 0.575297i
$$276$$ −4.77230 + 0.727442i −0.287258 + 0.0437869i
$$277$$ 2.13084 7.95241i 0.128030 0.477814i −0.871900 0.489685i $$-0.837112\pi$$
0.999930 + 0.0118706i $$0.00377863\pi$$
$$278$$ 4.80816 1.28834i 0.288374 0.0772697i
$$279$$ 1.10360 0.570432i 0.0660705 0.0341509i
$$280$$ −0.906160 2.01942i −0.0541534 0.120684i
$$281$$ 5.75773 + 1.01524i 0.343477 + 0.0605643i 0.342726 0.939435i $$-0.388650\pi$$
0.000751340 1.00000i $$0.499761\pi$$
$$282$$ −4.54563 + 15.5116i −0.270689 + 0.923701i
$$283$$ −1.30076 + 14.8678i −0.0773224 + 0.883799i 0.854160 + 0.520011i $$0.174072\pi$$
−0.931482 + 0.363788i $$0.881483\pi$$
$$284$$ −8.96875 −0.532198
$$285$$ 15.4852 6.72371i 0.917265 0.398278i
$$286$$ −11.6846 −0.690925
$$287$$ −0.0583383 + 0.666810i −0.00344360 + 0.0393606i
$$288$$ 2.53484 1.60455i 0.149367 0.0945491i
$$289$$ 8.69629 + 1.53339i 0.511546 + 0.0901994i
$$290$$ −0.863417 + 2.26900i −0.0507016 + 0.133240i
$$291$$ 16.3858 + 6.39945i 0.960550 + 0.375142i
$$292$$ −6.12989 + 1.64250i −0.358724 + 0.0961199i
$$293$$ −4.10815 + 15.3318i −0.240001 + 0.895695i 0.735830 + 0.677166i $$0.236792\pi$$
−0.975831 + 0.218528i $$0.929874\pi$$
$$294$$ −1.57127 10.3082i −0.0916386 0.601184i
$$295$$ −1.26788 + 2.61887i −0.0738190 + 0.152476i
$$296$$ 8.55001 4.93635i 0.496959 0.286920i
$$297$$ −9.57212 3.29582i −0.555431 0.191243i
$$298$$ 3.80784 8.16594i 0.220582 0.473040i
$$299$$ 2.90258 + 16.4614i 0.167861 + 0.951985i
$$300$$ 8.02962 3.24426i 0.463590 0.187307i
$$301$$ 0.613765 + 0.223392i 0.0353769 + 0.0128761i
$$302$$ −1.65501 + 18.9169i −0.0952352 + 1.08854i
$$303$$ −1.70777 26.6478i −0.0981089 1.53087i
$$304$$ −4.34627 0.331612i −0.249275 0.0190192i
$$305$$ −3.75697 14.8836i −0.215123 0.852235i
$$306$$ −6.30512 5.81132i −0.360440 0.332211i
$$307$$ 12.6496 + 27.1272i 0.721952 + 1.54823i 0.832293 + 0.554337i $$0.187028\pi$$
−0.110341 + 0.993894i $$0.535194\pi$$
$$308$$ 1.57978 1.10617i 0.0900163 0.0630301i
$$309$$ −0.142507 0.0867584i −0.00810694 0.00493551i
$$310$$ −0.909455 0.174034i −0.0516536 0.00988447i
$$311$$ −20.0600 11.5817i −1.13750 0.656735i −0.191689 0.981456i $$-0.561396\pi$$
−0.945810 + 0.324721i $$0.894730\pi$$
$$312$$ −5.75857 8.64544i −0.326015 0.489451i
$$313$$ −6.29186 + 0.550466i −0.355637 + 0.0311142i −0.263575 0.964639i $$-0.584901\pi$$
−0.0920624 + 0.995753i $$0.529346\pi$$
$$314$$ 9.20455 + 7.72354i 0.519443 + 0.435864i
$$315$$ −6.59755 + 0.751765i −0.371730 + 0.0423571i
$$316$$ 5.18963 8.98870i 0.291939 0.505654i
$$317$$ 1.05257 2.25724i 0.0591181 0.126779i −0.874529 0.484973i $$-0.838829\pi$$
0.933647 + 0.358194i $$0.116607\pi$$
$$318$$ −3.52244 14.4860i −0.197529 0.812335i
$$319$$ −2.08315 0.367316i −0.116634 0.0205657i
$$320$$ −2.22449 0.227257i −0.124353 0.0127041i
$$321$$ −0.236175 + 10.1488i −0.0131820 + 0.566448i
$$322$$ −1.95082 1.95082i −0.108715 0.108715i
$$323$$ 2.29970 + 12.2447i 0.127959 + 0.681314i
$$324$$ −2.27889 8.70670i −0.126605 0.483706i
$$325$$ −11.8773 27.5343i −0.658833 1.52733i
$$326$$ 1.72672 4.74412i 0.0956341 0.262752i
$$327$$ −18.0952 2.00832i −1.00067 0.111060i
$$328$$ 0.553917 + 0.387857i 0.0305850 + 0.0214158i
$$329$$ −8.68059 + 3.15948i −0.478576 + 0.174188i
$$330$$ 4.09130 + 6.34027i 0.225219 + 0.349020i
$$331$$ −15.9880 27.6920i −0.878779 1.52209i −0.852682 0.522430i $$-0.825026\pi$$
−0.0260966 0.999659i $$-0.508308\pi$$
$$332$$ −7.03197 + 0.615218i −0.385930 + 0.0337645i
$$333$$ −6.32662 28.9345i −0.346697 1.58560i
$$334$$ −14.5280 + 8.38775i −0.794937 + 0.458957i
$$335$$ −14.4506 25.8916i −0.789523 1.41461i
$$336$$ 1.59703 + 0.623718i 0.0871250 + 0.0340266i
$$337$$ 4.22875 6.03928i 0.230354 0.328980i −0.687290 0.726383i $$-0.741200\pi$$
0.917644 + 0.397403i $$0.130089\pi$$
$$338$$ −18.8145 + 13.1740i −1.02337 + 0.716574i
$$339$$ −11.5231 21.0762i −0.625848 1.14470i
$$340$$ 1.01818 + 6.30960i 0.0552187 + 0.342186i
$$341$$ 0.806790i 0.0436901i
$$342$$ −4.90482 + 12.1220i −0.265222 + 0.655482i
$$343$$ 9.11337 9.11337i 0.492076 0.492076i
$$344$$ 0.505467 0.424137i 0.0272530 0.0228680i
$$345$$ 7.91589 7.33884i 0.426177 0.395110i
$$346$$ 2.47042 14.0104i 0.132810 0.753205i
$$347$$ 21.9095 + 15.3412i 1.17616 + 0.823558i 0.987366 0.158458i $$-0.0506521\pi$$
0.188798 + 0.982016i $$0.439541\pi$$
$$348$$ −0.754871 1.72235i −0.0404653 0.0923275i
$$349$$ 21.7920 + 12.5816i 1.16650 + 0.673480i 0.952853 0.303431i $$-0.0981322\pi$$
0.213648 + 0.976911i $$0.431466\pi$$
$$350$$ 4.21248 + 2.59827i 0.225167 + 0.138883i
$$351$$ −29.9559 + 8.59008i −1.59893 + 0.458505i
$$352$$ −0.169805 1.94088i −0.00905064 0.103449i
$$353$$ −1.58505 + 5.91549i −0.0843638 + 0.314850i −0.995193 0.0979336i $$-0.968777\pi$$
0.910829 + 0.412784i $$0.135443\pi$$
$$354$$ −0.721363 2.13524i −0.0383400 0.113487i
$$355$$ 16.5934 11.2628i 0.880687 0.597769i
$$356$$ −16.6947 + 2.94373i −0.884818 + 0.156017i
$$357$$ 0.540564 4.87056i 0.0286097 0.257777i
$$358$$ −21.6728 + 10.1062i −1.14544 + 0.534129i
$$359$$ 8.35473 7.01045i 0.440946 0.369998i −0.395117 0.918631i $$-0.629296\pi$$
0.836063 + 0.548633i $$0.184852\pi$$
$$360$$ −2.67483 + 6.15185i −0.140976 + 0.324231i
$$361$$ 16.2392 9.86343i 0.854696 0.519128i
$$362$$ 12.2268 12.2268i 0.642628 0.642628i
$$363$$ 9.02613 8.61558i 0.473749 0.452201i
$$364$$ 2.03043 5.57857i 0.106424 0.292397i
$$365$$ 9.27850 10.7367i 0.485659 0.561983i
$$366$$ 10.1563 + 6.18318i 0.530880 + 0.323200i
$$367$$ −24.0552 11.2171i −1.25567 0.585529i −0.323048 0.946383i $$-0.604707\pi$$
−0.932622 + 0.360854i $$0.882485\pi$$
$$368$$ −2.69214 + 0.721358i −0.140338 + 0.0376034i
$$369$$ 1.61299 1.23027i 0.0839690 0.0640455i
$$370$$ −9.61969 + 19.8699i −0.500104 + 1.03299i
$$371$$ 5.47655 6.52670i 0.284328 0.338849i
$$372$$ 0.596944 0.397614i 0.0309501 0.0206153i
$$373$$ 4.92284 + 18.3723i 0.254895 + 0.951281i 0.968149 + 0.250375i $$0.0805540\pi$$
−0.713254 + 0.700906i $$0.752779\pi$$
$$374$$ −5.23287 + 1.90461i −0.270585 + 0.0984849i
$$375$$ −10.7818 + 16.0858i −0.556770 + 0.830667i
$$376$$ −1.62053 + 9.19046i −0.0835722 + 0.473962i
$$377$$ −5.90133 + 2.75183i −0.303934 + 0.141727i
$$378$$ 3.23687 3.99730i 0.166487 0.205599i
$$379$$ 30.1362i 1.54799i −0.633191 0.773995i $$-0.718255\pi$$
0.633191 0.773995i $$-0.281745\pi$$
$$380$$ 8.45762 4.84445i 0.433867 0.248515i
$$381$$ −18.7796 16.5175i −0.962109 0.846219i
$$382$$ 1.77150 + 0.154986i 0.0906377 + 0.00792977i
$$383$$ −1.72926 3.70840i −0.0883609 0.189491i 0.857161 0.515048i $$-0.172226\pi$$
−0.945522 + 0.325557i $$0.894448\pi$$
$$384$$ 1.35237 1.08217i 0.0690129 0.0552243i
$$385$$ −1.53369 + 4.03044i −0.0781642 + 0.205410i
$$386$$ 2.45744 + 6.75175i 0.125080 + 0.343655i
$$387$$ −0.752222 1.83103i −0.0382376 0.0930765i
$$388$$ 9.81015 + 2.62862i 0.498035 + 0.133448i
$$389$$ 6.57884 + 5.52031i 0.333561 + 0.279891i 0.794149 0.607723i $$-0.207917\pi$$
−0.460588 + 0.887614i $$0.652361\pi$$
$$390$$ 21.5110 + 8.76370i 1.08925 + 0.443767i
$$391$$ 3.98312 + 6.89897i 0.201435 + 0.348896i
$$392$$ −1.55813 5.81503i −0.0786976 0.293703i
$$393$$ −1.99205 4.54514i −0.100485 0.229272i
$$394$$ −2.32134 + 0.409315i −0.116948 + 0.0206210i
$$395$$ 1.68636 + 23.1474i 0.0848497 + 1.16467i
$$396$$ −5.70264 1.28161i −0.286569 0.0644035i
$$397$$ 30.0571 + 2.62965i 1.50852 + 0.131978i 0.811195 0.584776i $$-0.198818\pi$$
0.697326 + 0.716754i $$0.254373\pi$$
$$398$$ 4.44285 + 4.44285i 0.222700 + 0.222700i
$$399$$ −7.24167 + 1.84639i −0.362537 + 0.0924350i
$$400$$ 4.40100 2.37302i 0.220050 0.118651i
$$401$$ 14.1302 + 16.8397i 0.705630 + 0.840937i 0.993151 0.116837i $$-0.0372756\pi$$
−0.287521 + 0.957774i $$0.592831\pi$$
$$402$$ 22.0408 + 6.45902i 1.09930 + 0.322147i
$$403$$ −1.42448 2.03437i −0.0709585 0.101339i
$$404$$ −2.67708 15.1824i −0.133189 0.755355i
$$405$$ 15.1500 + 13.2468i 0.752810 + 0.658238i
$$406$$ 0.537356 0.930728i 0.0266685 0.0461912i
$$407$$ −18.5795 4.97837i −0.920952 0.246768i
$$408$$ −3.98815 2.93314i −0.197443 0.145212i
$$409$$ −21.9670 + 26.1793i −1.08620 + 1.29448i −0.133340 + 0.991070i $$0.542570\pi$$
−0.952860 + 0.303412i $$0.901874\pi$$
$$410$$ −1.51189 0.0219873i −0.0746668 0.00108588i
$$411$$ −6.54198 19.3643i −0.322692 0.955170i
$$412$$ −0.0872997 0.0407085i −0.00430095 0.00200556i
$$413$$ 0.738793 1.05511i 0.0363536 0.0519184i
$$414$$ −0.388948 + 8.35228i −0.0191158 + 0.410492i
$$415$$ 12.2375 9.96889i 0.600717 0.489353i
$$416$$ −3.85502 4.59424i −0.189008 0.225251i
$$417$$ −0.551410 8.60411i −0.0270027 0.421345i
$$418$$ 5.53080 + 6.44449i 0.270520 + 0.315210i
$$419$$ 39.1047 1.91039 0.955194 0.295979i $$-0.0956460\pi$$
0.955194 + 0.295979i $$0.0956460\pi$$
$$420$$ −3.73797 + 0.851559i −0.182394 + 0.0415518i
$$421$$ −18.0729 6.57799i −0.880818 0.320592i −0.138278 0.990393i $$-0.544157\pi$$
−0.742540 + 0.669802i $$0.766379\pi$$
$$422$$ −8.49996 12.1392i −0.413772 0.590927i
$$423$$ 24.7958 + 12.9994i 1.20561 + 0.632054i
$$424$$ −2.94384 8.08813i −0.142965 0.392794i
$$425$$ −9.80728 10.3950i −0.475723 0.504232i
$$426$$ −3.05269 + 15.2314i −0.147904 + 0.737965i
$$427$$ 0.592258 + 6.76954i 0.0286614 + 0.327601i
$$428$$ 0.510817 + 5.83867i 0.0246913 + 0.282223i
$$429$$ −3.97709 + 19.8437i −0.192016 + 0.958064i
$$430$$ −0.402558 + 1.41947i −0.0194131 + 0.0684529i
$$431$$ −4.32017 11.8696i −0.208095 0.571737i 0.791107 0.611678i $$-0.209505\pi$$
−0.999202 + 0.0399412i $$0.987283\pi$$
$$432$$ −1.86219 4.85100i −0.0895947 0.233394i
$$433$$ 6.76713 + 9.66447i 0.325208 + 0.464445i 0.948150 0.317823i $$-0.102952\pi$$
−0.622942 + 0.782268i $$0.714063\pi$$
$$434$$ 0.385185 + 0.140196i 0.0184895 + 0.00672962i
$$435$$ 3.55951 + 2.23862i 0.170666 + 0.107334i
$$436$$ −10.5114 −0.503407
$$437$$ 7.70513 9.39270i 0.368586 0.449314i
$$438$$ 0.702989 + 10.9693i 0.0335901 + 0.524134i
$$439$$ 20.9543 + 24.9724i 1.00010 + 1.19187i 0.981386 + 0.192044i $$0.0615115\pi$$
0.0187100 + 0.999825i $$0.494044\pi$$
$$440$$ 2.75149 + 3.37765i 0.131172 + 0.161023i
$$441$$ −18.0409 0.840128i −0.859092 0.0400061i
$$442$$ −9.83219 + 14.0418i −0.467670 + 0.667901i
$$443$$ −4.56049 2.12659i −0.216675 0.101037i 0.311250 0.950328i $$-0.399252\pi$$
−0.527926 + 0.849291i $$0.677030\pi$$
$$444$$ −5.47313 16.2005i −0.259743 0.768841i
$$445$$ 27.1908 26.4113i 1.28897 1.25201i
$$446$$ 11.0565 13.1766i 0.523541 0.623932i
$$447$$ −12.5720 9.24621i −0.594633 0.437331i
$$448$$ 0.956140 + 0.256197i 0.0451734 + 0.0121042i
$$449$$ 15.2377 26.3924i 0.719110 1.24554i −0.242242 0.970216i $$-0.577883\pi$$
0.961353 0.275320i $$-0.0887838\pi$$
$$450$$ −2.77661 14.7408i −0.130891 0.694887i
$$451$$ −0.228773 1.29744i −0.0107725 0.0610940i
$$452$$ −7.95453 11.3602i −0.374150 0.534341i
$$453$$ 31.5628 + 9.24940i 1.48295 + 0.434575i
$$454$$ 15.6655 + 18.6695i 0.735220 + 0.876202i
$$455$$ 3.24891 + 12.8709i 0.152311 + 0.603397i
$$456$$ −2.04251 + 7.26830i −0.0956492 + 0.340369i
$$457$$ −2.25517 2.25517i −0.105492 0.105492i 0.652391 0.757883i $$-0.273766\pi$$
−0.757883 + 0.652391i $$0.773766\pi$$
$$458$$ −8.48841 0.742640i −0.396638 0.0347013i
$$459$$ −12.0153 + 8.72985i −0.560827 + 0.407475i
$$460$$ 4.07496 4.71536i 0.189996 0.219855i
$$461$$ 22.0568 3.88920i 1.02729 0.181138i 0.365484 0.930817i $$-0.380903\pi$$
0.661801 + 0.749679i $$0.269792\pi$$
$$462$$ −1.34088 3.05941i −0.0623834 0.142337i
$$463$$ −3.58939 13.3958i −0.166813 0.622556i −0.997802 0.0662664i $$-0.978891\pi$$
0.830989 0.556289i $$-0.187775\pi$$
$$464$$ −0.542856 0.940254i −0.0252014 0.0436502i
$$465$$ −0.605110 + 1.48527i −0.0280613 + 0.0688779i
$$466$$ 15.3411 + 12.8727i 0.710665 + 0.596318i
$$467$$ 17.6671 + 4.73387i 0.817534 + 0.219057i 0.643268 0.765641i $$-0.277578\pi$$
0.174266 + 0.984699i $$0.444245\pi$$
$$468$$ −16.6424 + 6.83701i −0.769295 + 0.316041i
$$469$$ 4.48939 + 12.3345i 0.207301 + 0.569554i
$$470$$ −8.54305 19.0386i −0.394061 0.878186i
$$471$$ 16.2497 13.0030i 0.748745 0.599148i
$$472$$ −0.549924 1.17931i −0.0253123 0.0542824i
$$473$$ −1.28067 0.112044i −0.0588853 0.00515180i
$$474$$ −13.4989 11.8729i −0.620025 0.545341i
$$475$$ −9.56416 + 19.5838i −0.438834 + 0.898568i
$$476$$ 2.82929i 0.129680i
$$477$$ −25.8002 + 1.05148i −1.18131 + 0.0481440i
$$478$$ 15.5577 7.25468i 0.711594 0.331822i
$$479$$ −0.0425891 + 0.241535i −0.00194594 + 0.0110360i −0.985765 0.168127i $$-0.946228\pi$$
0.983819 + 0.179163i $$0.0573391\pi$$
$$480$$ −1.14310 + 3.70045i −0.0521750 + 0.168902i
$$481$$ −55.6393 + 20.2510i −2.53693 + 0.923368i
$$482$$ 1.06149 + 3.96153i 0.0483495 + 0.180443i
$$483$$ −3.97703 + 2.64903i −0.180961 + 0.120535i
$$484$$ 4.63074 5.51870i 0.210488 0.250850i
$$485$$ −21.4511 + 7.45613i −0.974044 + 0.338565i
$$486$$ −15.5621 + 0.906694i −0.705910 + 0.0411285i
$$487$$ −3.73107 + 0.999737i −0.169071 + 0.0453024i −0.342361 0.939568i $$-0.611227\pi$$
0.173290 + 0.984871i $$0.444560\pi$$
$$488$$ 6.22176 + 2.90125i 0.281646 + 0.131334i
$$489$$ −7.46911 4.54720i −0.337765 0.205632i
$$490$$ 10.1852 + 8.80191i 0.460120 + 0.397630i
$$491$$ 0.935546 2.57039i 0.0422206 0.116000i −0.916791 0.399368i $$-0.869230\pi$$
0.959011 + 0.283368i $$0.0914518\pi$$
$$492$$ 0.847226 0.808691i 0.0381959 0.0364586i
$$493$$ −2.19431 + 2.19431i −0.0988269 + 0.0988269i
$$494$$ 25.3247 + 6.48491i 1.13941 + 0.291770i
$$495$$ 12.1601 4.79013i 0.546556 0.215301i
$$496$$ 0.317220 0.266179i 0.0142436 0.0119518i
$$497$$ −8.04610 + 3.75196i −0.360917 + 0.168298i
$$498$$ −1.34866 + 12.1517i −0.0604350 + 0.544528i
$$499$$ 11.3962 2.00945i 0.510162 0.0899553i 0.0873588 0.996177i $$-0.472157\pi$$
0.422803 + 0.906222i $$0.361046\pi$$
$$500$$ −5.16243 + 9.91712i −0.230871 + 0.443507i
$$501$$ 9.29983 + 27.5275i 0.415486 + 1.22984i
$$502$$ 3.14901 11.7523i 0.140547 0.524529i
$$503$$ −1.17659 13.4484i −0.0524614 0.599637i −0.976237 0.216704i $$-0.930470\pi$$
0.923776 0.382933i $$-0.125086\pi$$
$$504$$ 1.60283 2.49990i 0.0713956 0.111354i
$$505$$ 24.0188 + 24.7278i 1.06882 + 1.10037i
$$506$$ 4.70262 + 2.71506i 0.209057 + 0.120699i
$$507$$ 15.9693 + 36.4363i 0.709222 + 1.61819i
$$508$$ −11.8282 8.28220i −0.524792 0.367463i
$$509$$ 3.19818 18.1378i 0.141757 0.803944i −0.828157 0.560496i $$-0.810610\pi$$
0.969914 0.243448i $$-0.0782784\pi$$
$$510$$ 11.0620 + 0.418444i 0.489834 + 0.0185290i
$$511$$ −4.81216 + 4.03788i −0.212878 + 0.178625i
$$512$$ 0.707107 0.707107i 0.0312500 0.0312500i
$$513$$ 18.9171 + 12.4557i 0.835209 + 0.549933i
$$514$$ 6.06684i 0.267597i
$$515$$ 0.212637 0.0343134i 0.00936993 0.00151203i
$$516$$ −0.548257 1.00279i −0.0241357 0.0441453i
$$517$$ 14.8938 10.4287i 0.655027 0.458655i
$$518$$ 5.60538 8.00531i 0.246286 0.351733i
$$519$$ −22.9527 8.96418i −1.00751 0.393484i
$$520$$ 12.9017 + 3.65889i 0.565777 + 0.160453i
$$521$$ 28.1545 16.2550i 1.23347 0.712144i 0.265718 0.964051i $$-0.414391\pi$$
0.967752 + 0.251907i $$0.0810576\pi$$
$$522$$ −3.18196 + 0.695745i −0.139271 + 0.0304519i
$$523$$ −43.2478 + 3.78369i −1.89109 + 0.165449i −0.972983 0.230876i $$-0.925841\pi$$
−0.918110 + 0.396325i $$0.870285\pi$$
$$524$$ −1.43255 2.48126i −0.0625814 0.108394i
$$525$$ 5.84639 6.26959i 0.255157 0.273627i
$$526$$ −12.1166 + 4.41008i −0.528309 + 0.192289i
$$527$$ −0.969549 0.678886i −0.0422342 0.0295727i
$$528$$ −3.35395 0.372241i −0.145962 0.0161997i
$$529$$ −5.20965 + 14.3134i −0.226507 + 0.622322i
$$530$$ 15.6035 + 11.2673i 0.677771 + 0.489421i
$$531$$ −3.87176 + 0.498304i −0.168020 + 0.0216245i
$$532$$ −4.03787 + 1.52070i −0.175064 + 0.0659309i
$$533$$ −2.86764 2.86764i −0.124211 0.124211i
$$534$$ −0.683112 + 29.3542i −0.0295611 + 1.27028i
$$535$$ −8.27719 10.1609i −0.357854 0.439292i
$$536$$ 13.0590 + 2.30265i 0.564062 + 0.0994593i
$$537$$ 9.78636 + 40.2463i 0.422313 + 1.73676i
$$538$$ −1.60580 + 3.44364i −0.0692308 + 0.148466i
$$539$$ −5.86452 + 10.1576i −0.252603 + 0.437521i
$$540$$ 9.53713 + 6.63651i 0.410413 + 0.285590i
$$541$$ 6.27431 + 5.26477i 0.269754 + 0.226350i 0.767623 0.640902i $$-0.221439\pi$$
−0.497869 + 0.867252i $$0.665884\pi$$
$$542$$ 2.69285 0.235594i 0.115668 0.0101196i
$$543$$ −16.6029 24.9262i −0.712499 1.06969i
$$544$$ −2.47531 1.42912i −0.106128 0.0612731i
$$545$$ 19.4476 13.2001i 0.833044 0.565431i
$$546$$ −8.78287 5.34702i −0.375872 0.228831i
$$547$$ −12.4039 + 8.68530i −0.530352 + 0.371357i −0.807867 0.589365i $$-0.799378\pi$$
0.277515 + 0.960721i $$0.410489\pi$$
$$548$$ −4.98721 10.6951i −0.213043 0.456873i
$$549$$ 13.9577 15.1437i 0.595699 0.646317i
$$550$$ −9.33224 2.79384i −0.397928 0.119130i
$$551$$ 4.31107 + 1.95224i 0.183658 + 0.0831684i
$$552$$ 0.308741 + 4.81754i 0.0131409 + 0.205048i
$$553$$ 0.895446 10.2350i 0.0380783 0.435236i
$$554$$ −7.73643 2.81583i −0.328689 0.119633i
$$555$$ 30.4704 + 23.1000i 1.29339 + 0.980541i
$$556$$ −0.864381 4.90215i −0.0366579 0.207897i
$$557$$ −16.6924 + 35.7970i −0.707280 + 1.51677i 0.142595 + 0.989781i $$0.454455\pi$$
−0.849874 + 0.526985i $$0.823322\pi$$
$$558$$ −0.472077 1.14911i −0.0199846 0.0486458i
$$559$$ −3.42712 + 1.97865i −0.144952 + 0.0836879i
$$560$$ −2.09072 + 0.726707i −0.0883489 + 0.0307090i
$$561$$ 1.45344 + 9.53513i 0.0613644 + 0.402574i
$$562$$ 1.51320 5.64734i 0.0638305 0.238219i
$$563$$ 37.0977 9.94029i 1.56348 0.418933i 0.629717 0.776824i $$-0.283171\pi$$
0.933763 + 0.357891i $$0.116504\pi$$
$$564$$ 15.0564 + 5.88026i 0.633988 + 0.247604i
$$565$$ 28.9830 + 11.0288i 1.21932 + 0.463986i
$$566$$ 14.6979 + 2.59163i 0.617797 + 0.108934i
$$567$$ −5.68679 6.85766i −0.238823 0.287995i
$$568$$ −0.781678 + 8.93462i −0.0327985 + 0.374888i
$$569$$ −34.6147 −1.45112 −0.725561 0.688158i $$-0.758420\pi$$
−0.725561 + 0.688158i $$0.758420\pi$$
$$570$$ −5.34850 16.0123i −0.224024 0.670681i
$$571$$ −17.4318 −0.729498 −0.364749 0.931106i $$-0.618845\pi$$
−0.364749 + 0.931106i $$0.618845\pi$$
$$572$$ −1.01838 + 11.6401i −0.0425806 + 0.486699i
$$573$$ 0.866174 2.95574i 0.0361849 0.123478i
$$574$$ 0.659188 + 0.116233i 0.0275140 + 0.00485146i
$$575$$ −1.61775 + 13.8413i −0.0674649 + 0.577224i
$$576$$ −1.37752 2.66504i −0.0573967 0.111043i
$$577$$ 35.4567 9.50061i 1.47608 0.395515i 0.571071 0.820901i $$-0.306528\pi$$
0.905012 + 0.425385i $$0.139861\pi$$
$$578$$ 2.28549 8.52955i 0.0950637 0.354783i
$$579$$ 12.3028 1.87532i 0.511286 0.0779355i
$$580$$ 2.18511 + 1.05789i 0.0907319 + 0.0439264i
$$581$$ −6.05120 + 3.49366i −0.251046 + 0.144941i
$$582$$ 7.80321 15.7657i 0.323453 0.653507i
$$583$$ −7.08704 + 15.1982i −0.293515 + 0.629446i
$$584$$ 1.10199 + 6.24971i 0.0456008 + 0.258615i
$$585$$ 22.2049 33.5487i 0.918059 1.38707i
$$586$$ 14.9154 + 5.42877i 0.616151 + 0.224261i
$$587$$ 1.58604 18.1285i 0.0654629 0.748245i −0.890543 0.454899i $$-0.849676\pi$$
0.956006 0.293346i $$-0.0947689\pi$$
$$588$$ −10.4059 + 0.666880i −0.429131 + 0.0275017i
$$589$$ −0.447765 + 1.74860i −0.0184498 + 0.0720500i
$$590$$ 2.49840 + 1.49131i 0.102857 + 0.0613962i
$$591$$ −0.0949843 + 4.08160i −0.00390713 + 0.167895i
$$592$$ −4.17238 8.94771i −0.171484 0.367748i
$$593$$ 21.2939 14.9102i 0.874436 0.612287i −0.0478241 0.998856i $$-0.515229\pi$$
0.922261 + 0.386569i $$0.126340\pi$$
$$594$$ −4.11754 + 9.24845i −0.168945 + 0.379468i
$$595$$ 3.55298 + 5.23456i 0.145658 + 0.214596i
$$596$$ −7.80299 4.50506i −0.319623 0.184534i
$$597$$ 9.05741 6.03298i 0.370695 0.246914i
$$598$$ 16.6517 1.45683i 0.680938 0.0595744i
$$599$$ 20.3376 + 17.0653i 0.830973 + 0.697270i 0.955514 0.294945i $$-0.0953013\pi$$
−0.124541 + 0.992214i $$0.539746\pi$$
$$600$$ −2.53209 8.28182i −0.103372 0.338104i
$$601$$ 10.2267 17.7131i 0.417155 0.722534i −0.578497 0.815685i $$-0.696360\pi$$
0.995652 + 0.0931506i $$0.0296938\pi$$
$$602$$ 0.276035 0.591960i 0.0112504 0.0241265i
$$603$$ 18.4713 35.2330i 0.752207 1.43480i
$$604$$ 18.7006 + 3.29743i 0.760918 + 0.134170i
$$605$$ −1.63720 + 16.0256i −0.0665615 + 0.651531i
$$606$$ −26.6952 0.621233i −1.08442 0.0252359i
$$607$$ −7.03076 7.03076i −0.285370 0.285370i 0.549876 0.835246i $$-0.314675\pi$$
−0.835246 + 0.549876i $$0.814675\pi$$
$$608$$ −0.709152 + 4.30083i −0.0287599 + 0.174422i
$$609$$ −1.39773 1.22937i −0.0566391 0.0498167i
$$610$$ −15.1545 + 2.44548i −0.613586 + 0.0990145i
$$611$$ 19.1424 52.5934i 0.774420 2.12770i
$$612$$ −6.33873 + 5.77464i −0.256228 + 0.233426i
$$613$$ −23.7076 16.6002i −0.957540 0.670476i −0.0133611 0.999911i $$-0.504253\pi$$
−0.944179 + 0.329434i $$0.893142\pi$$
$$614$$ 28.1264 10.2372i 1.13509 0.413139i
$$615$$ −0.551942 + 2.56012i −0.0222564 + 0.103234i
$$616$$ −0.964278 1.67018i −0.0388519 0.0672934i
$$617$$ −47.2470 + 4.13357i −1.90209 + 0.166411i −0.976987 0.213301i $$-0.931579\pi$$
−0.925105 + 0.379712i $$0.876023\pi$$
$$618$$ −0.0988486 + 0.134403i −0.00397627 + 0.00540649i
$$619$$ −0.691678 + 0.399341i −0.0278009 + 0.0160509i −0.513836 0.857888i $$-0.671776\pi$$
0.486035 + 0.873939i $$0.338443\pi$$
$$620$$ −0.252636 + 0.890827i −0.0101461 + 0.0357765i
$$621$$ 14.0521 + 3.50341i 0.563892 + 0.140587i
$$622$$ −13.2859 + 18.9743i −0.532717 + 0.760799i
$$623$$ −13.7458 + 9.62490i −0.550713 + 0.385614i
$$624$$ −9.11443 + 4.98316i −0.364869 + 0.199486i
$$625$$ −2.90257 24.8309i −0.116103 0.993237i
$$626$$ 6.31589i 0.252434i
$$627$$ 12.8271 7.19932i 0.512263 0.287513i
$$628$$ 8.49638 8.49638i 0.339042 0.339042i
$$629$$ −21.6167 + 18.1386i −0.861914 + 0.723232i
$$630$$ 0.173890 + 6.63796i 0.00692794 + 0.264463i
$$631$$ 0.491998 2.79026i 0.0195861 0.111078i −0.973447 0.228911i $$-0.926484\pi$$
0.993033 + 0.117833i $$0.0375946\pi$$
$$632$$ −8.50218 5.95329i −0.338199 0.236809i
$$633$$ −23.5089 + 10.3035i −0.934394 + 0.409526i
$$634$$ −2.15691 1.24529i −0.0856619 0.0494569i
$$635$$ 32.2844 + 0.469512i 1.28117 + 0.0186320i
$$636$$ −14.7379 + 2.24650i −0.584395 + 0.0890795i
$$637$$ 3.14676 + 35.9676i 0.124679 + 1.42509i
$$638$$ −0.547476 + 2.04321i −0.0216748 + 0.0808914i
$$639$$ 24.8282 + 10.3686i 0.982187 + 0.410177i
$$640$$ −0.420270 + 2.19622i −0.0166126 + 0.0868131i
$$641$$ 7.30973 1.28890i 0.288717 0.0509086i −0.0274140 0.999624i $$-0.508727\pi$$
0.316131 + 0.948716i $$0.397616\pi$$
$$642$$ 10.0895 + 1.11980i 0.398203 + 0.0441949i
$$643$$ 11.1232 5.18684i 0.438657 0.204549i −0.190728 0.981643i $$-0.561085\pi$$
0.629385 + 0.777094i $$0.283307\pi$$
$$644$$ −2.11342 + 1.77337i −0.0832804 + 0.0698806i
$$645$$ 2.27364 + 1.16680i 0.0895243 + 0.0459427i
$$646$$ 12.3985 1.22375i 0.487814 0.0481478i
$$647$$ −31.8896 + 31.8896i −1.25371 + 1.25371i −0.299666 + 0.954044i $$0.596875\pi$$
−0.954044 + 0.299666i $$0.903125\pi$$
$$648$$ −8.87219 + 1.51138i −0.348532 + 0.0593727i
$$649$$ −0.867082 + 2.38229i −0.0340360 + 0.0935130i
$$650$$ −28.4647 + 9.43232i −1.11648 + 0.369966i
$$651$$ 0.369197 0.606433i 0.0144700 0.0237680i
$$652$$ −4.57557 2.13362i −0.179193 0.0835592i
$$653$$ −34.4800 + 9.23889i −1.34931 + 0.361546i −0.859879 0.510498i $$-0.829461\pi$$
−0.489428 + 0.872044i $$0.662794\pi$$
$$654$$ −3.57778 + 17.8513i −0.139902 + 0.698043i
$$655$$ 5.76635 + 2.79168i 0.225310 + 0.109080i
$$656$$ 0.434658 0.518006i 0.0169706 0.0202247i
$$657$$ 18.8682 + 2.53975i 0.736119 + 0.0990853i
$$658$$ 2.39089 + 8.92292i 0.0932066 + 0.347852i
$$659$$ −1.90152 + 0.692096i −0.0740726 + 0.0269602i −0.378791 0.925482i $$-0.623660\pi$$
0.304718 + 0.952443i $$0.401438\pi$$
$$660$$ 6.67272 3.52314i 0.259735 0.137138i
$$661$$ −6.69202 + 37.9523i −0.260289 + 1.47617i 0.521832 + 0.853048i $$0.325249\pi$$
−0.782122 + 0.623126i $$0.785862\pi$$
$$662$$ −28.9801 + 13.5136i −1.12634 + 0.525222i
$$663$$ 20.5003 + 21.4772i 0.796167 + 0.834106i
$$664$$ 7.05884i 0.273936i
$$665$$ 5.56094 7.88421i 0.215644 0.305737i
$$666$$ −29.3758 + 3.78073i −1.13829 + 0.146500i
$$667$$ 3.01448 + 0.263733i 0.116721 + 0.0102118i
$$668$$ 7.08963 + 15.2038i 0.274306 + 0.588251i
$$669$$ −18.6143 23.2620i −0.719670 0.899360i
$$670$$ −27.0525 + 12.1391i −1.04513 + 0.468973i
$$671$$ −4.57450 12.5683i −0.176597 0.485195i
$$672$$ 0.760535 1.53659i 0.0293383 0.0592752i
$$673$$ −19.9158 5.33641i −0.767696 0.205704i −0.146343 0.989234i $$-0.546750\pi$$
−0.621353 + 0.783530i $$0.713417\pi$$
$$674$$ −5.64773 4.73901i −0.217543 0.182540i
$$675$$ −25.9790 0.301858i −0.999933 0.0116185i
$$676$$ 11.4841 + 19.8911i 0.441697 + 0.765042i
$$677$$ −0.515270 1.92301i −0.0198034 0.0739074i 0.955317 0.295583i $$-0.0955140\pi$$
−0.975120 + 0.221676i $$0.928847\pi$$
$$678$$ −22.0003 + 9.64232i −0.844918 + 0.370311i
$$679$$ 9.90058 1.74574i 0.379950 0.0669954i
$$680$$ 6.37433 0.464389i 0.244445 0.0178085i
$$681$$ 37.0380 20.2499i 1.41930 0.775979i
$$682$$ −0.803720 0.0703164i −0.0307760 0.00269255i
$$683$$ 25.4468 + 25.4468i 0.973695 + 0.973695i 0.999663 0.0259681i $$-0.00826683\pi$$
−0.0259681 + 0.999663i $$0.508267\pi$$
$$684$$ 11.6484 + 5.94266i 0.445387 + 0.227223i
$$685$$ 22.6578 + 13.5245i 0.865710 + 0.516746i
$$686$$ −8.28441 9.87297i −0.316300 0.376952i
$$687$$ −4.15041 + 14.1629i −0.158348 + 0.540349i
$$688$$ −0.378469 0.540510i −0.0144290 0.0206067i
$$689$$ 8.96380 + 50.8362i 0.341493 + 1.93671i
$$690$$ −6.62100 8.52539i −0.252057 0.324556i
$$691$$ 0.00818857 0.0141830i 0.000311508 0.000539548i −0.865870 0.500270i $$-0.833234\pi$$
0.866181 + 0.499730i $$0.166568\pi$$
$$692$$ −13.7418 3.68210i −0.522385 0.139973i
$$693$$ −5.65213 + 1.23586i −0.214707 + 0.0469463i
$$694$$ 17.1924 20.4891i 0.652613 0.777754i
$$695$$ 7.75527 + 7.98417i 0.294174 + 0.302857i
$$696$$ −1.78158 + 0.601886i −0.0675308 + 0.0228144i
$$697$$ −1.75168 0.816823i −0.0663497 0.0309394i
$$698$$ 14.4331 20.6126i 0.546300 0.780197i
$$699$$ 27.0832 21.6720i 1.02438 0.819711i
$$700$$ 2.95552 3.97000i 0.111708 0.150052i
$$701$$ −6.87555 8.19396i −0.259686 0.309482i 0.620410 0.784278i $$-0.286966\pi$$
−0.880096 + 0.474796i $$0.842522\pi$$
$$702$$ 5.94657 + 30.5905i 0.224439 + 1.15457i
$$703$$ 37.5055 + 21.1015i 1.41455 + 0.795857i
$$704$$ −1.94829 −0.0734291
$$705$$ −35.2407 + 8.02829i −1.32724 + 0.302363i
$$706$$ 5.75484 + 2.09459i 0.216586 + 0.0788309i
$$707$$ −8.75305 12.5006i −0.329192 0.470135i
$$708$$ −2.18998 + 0.532520i −0.0823046 + 0.0200133i
$$709$$ −14.5263 39.9106i −0.545545 1.49887i −0.839665 0.543104i $$-0.817249\pi$$
0.294121 0.955768i $$-0.404973\pi$$
$$710$$ −9.77376 17.5119i −0.366803 0.657210i
$$711$$ −24.7581 + 18.8837i −0.928502 + 0.708195i
$$712$$ 1.47749 + 16.8877i 0.0553711 + 0.632895i
$$713$$ 0.100590 + 1.14975i 0.00376714 + 0.0430586i
$$714$$ −4.80491 0.963004i −0.179819 0.0360395i
$$715$$ −12.7334 22.8147i −0.476201 0.853222i
$$716$$ 8.17883 + 22.4712i 0.305657 + 0.839787i
$$717$$ −7.02509 28.8906i −0.262357 1.07894i
$$718$$ −6.25561 8.93394i −0.233457 0.333412i
$$719$$ 42.2585 + 15.3808i 1.57598 + 0.573608i 0.974324 0.225150i $$-0.0722871\pi$$
0.601652 + 0.798758i $$0.294509\pi$$
$$720$$ 5.89532 + 3.20082i 0.219706 + 0.119287i
$$721$$ −0.0953487 −0.00355097
$$722$$ −8.41056 17.0371i −0.313009 0.634055i
$$723$$ 7.08908 0.454317i 0.263646 0.0168962i
$$724$$ −11.1147 13.2459i −0.413073 0.492282i
$$725$$ −5.37124 + 0.786798i −0.199483 + 0.0292209i
$$726$$ −7.79612 9.74268i −0.289341 0.361585i
$$727$$ −6.08564 + 8.69119i −0.225704 + 0.322339i −0.915992 0.401196i $$-0.868595\pi$$
0.690288 + 0.723534i $$0.257484\pi$$
$$728$$ −5.38038 2.50891i −0.199410 0.0929865i
$$729$$ −3.75704 + 26.7373i −0.139150 + 0.990271i
$$730$$ −9.88713 10.1790i −0.365939 0.376740i
$$731$$ −1.21229 + 1.44475i −0.0448381 + 0.0534360i
$$732$$ 7.04484 9.57878i 0.260385 0.354042i
$$733$$ −51.1849 13.7149i −1.89056 0.506573i −0.998506 0.0546376i $$-0.982600\pi$$
−0.892051 0.451936i $$-0.850734\pi$$
$$734$$ −13.2710 + 22.9860i −0.489841 + 0.848429i
$$735$$ 18.4148 14.3014i 0.679241 0.527514i
$$736$$ 0.483977 + 2.74477i 0.0178396 + 0.101174i
$$737$$ −14.8185 21.1630i −0.545846 0.779548i
$$738$$ −1.08501 1.71408i −0.0399398 0.0630961i
$$739$$ −30.1451 35.9256i −1.10891 1.32154i −0.942016 0.335567i $$-0.891072\pi$$
−0.166890 0.985976i $$-0.553372\pi$$
$$740$$ 18.9559 + 11.3149i 0.696832 + 0.415942i
$$741$$ 19.6330 40.8012i 0.721235 1.49887i
$$742$$ −6.02455 6.02455i −0.221168 0.221168i
$$743$$ −28.8612 2.52503i −1.05881 0.0926342i −0.455577 0.890196i $$-0.650567\pi$$
−0.603237 + 0.797562i $$0.706123\pi$$
$$744$$ −0.344074 0.629326i −0.0126144 0.0230722i
$$745$$ 20.0940 1.46391i 0.736187 0.0536334i
$$746$$ 18.7314 3.30286i 0.685806 0.120926i
$$747$$ 20.1778 + 6.42646i 0.738268 + 0.235132i
$$748$$ 1.44129 + 5.37895i 0.0526986 + 0.196674i
$$749$$ 2.90080 + 5.02433i 0.105993 + 0.183585i
$$750$$ 15.0849 + 12.1427i 0.550822 + 0.443390i
$$751$$ −6.27400 5.26451i −0.228942 0.192105i 0.521100 0.853496i $$-0.325522\pi$$
−0.750041 + 0.661391i $$0.769966\pi$$
$$752$$ 9.01425 + 2.41536i 0.328716 + 0.0880791i
$$753$$ −18.8868 9.34802i −0.688273 0.340661i
$$754$$ 2.22703 + 6.11871i 0.0811036 + 0.222830i
$$755$$ −38.7396 + 17.3833i −1.40988 + 0.632643i
$$756$$ −3.69997 3.57294i −0.134567 0.129946i
$$757$$ 0.483510 + 1.03689i 0.0175735 + 0.0376864i 0.914899 0.403684i $$-0.132270\pi$$
−0.897325 + 0.441370i $$0.854493\pi$$
$$758$$ −30.0215 2.62654i −1.09043 0.0954002i
$$759$$ 6.21155 7.06223i 0.225465 0.256343i
$$760$$ −4.08888 8.84766i −0.148319 0.320938i
$$761$$ 2.12300i 0.0769588i −0.999259 0.0384794i $$-0.987749\pi$$
0.999259 0.0384794i $$-0.0122514\pi$$
$$762$$ −18.0914 + 17.2686i −0.655384 + 0.625574i
$$763$$ −9.43008 + 4.39732i −0.341392 + 0.159194i
$$764$$ 0.308792 1.75125i 0.0111717 0.0633580i
$$765$$ 4.47581 18.6440i 0.161823 0.674074i
$$766$$ −3.84501 + 1.39947i −0.138926 + 0.0505648i
$$767$$ 2.01981 + 7.53802i 0.0729310 + 0.272182i
$$768$$ −0.960186 1.44154i −0.0346477 0.0520172i
$$769$$ 17.0304 20.2961i 0.614133 0.731895i −0.365917 0.930648i $$-0.619244\pi$$
0.980050 + 0.198752i $$0.0636889\pi$$
$$770$$ 3.88143 + 1.87913i 0.139877 + 0.0677192i
$$771$$ 10.3032 + 2.06497i 0.371060 + 0.0743682i
$$772$$ 6.94024 1.85963i 0.249785 0.0669296i
$$773$$ −45.2698 21.1096i −1.62824