Properties

Label 570.2.bf
Level $570$
Weight $2$
Character orbit 570.bf
Rep. character $\chi_{570}(29,\cdot)$
Character field $\Q(\zeta_{18})$
Dimension $240$
Newform subspaces $1$
Sturm bound $240$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 570 = 2 \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 570.bf (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 285 \)
Character field: \(\Q(\zeta_{18})\)
Newform subspaces: \( 1 \)
Sturm bound: \(240\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(570, [\chi])\).

Total New Old
Modular forms 768 240 528
Cusp forms 672 240 432
Eisenstein series 96 0 96

Trace form

\( 240q + O(q^{10}) \) \( 240q - 30q^{15} + 48q^{19} + 12q^{25} - 48q^{39} + 36q^{45} - 72q^{46} + 216q^{49} - 180q^{51} + 36q^{54} + 60q^{55} + 6q^{60} - 72q^{61} + 120q^{64} - 156q^{66} + 48q^{79} - 120q^{81} - 108q^{84} - 48q^{85} - 36q^{90} - 24q^{91} - 216q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(570, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
570.2.bf.a \(240\) \(4.551\) None \(0\) \(0\) \(0\) \(0\)

Decomposition of \(S_{2}^{\mathrm{old}}(570, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(570, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(285, [\chi])\)\(^{\oplus 2}\)