Properties

Label 570.2.a.m.1.1
Level $570$
Weight $2$
Character 570.1
Self dual yes
Analytic conductor $4.551$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 570 = 2 \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 570.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(4.55147291521\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 570.1

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} +1.00000 q^{5} +1.00000 q^{6} +4.00000 q^{7} +1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} +1.00000 q^{5} +1.00000 q^{6} +4.00000 q^{7} +1.00000 q^{8} +1.00000 q^{9} +1.00000 q^{10} -4.00000 q^{11} +1.00000 q^{12} -2.00000 q^{13} +4.00000 q^{14} +1.00000 q^{15} +1.00000 q^{16} -2.00000 q^{17} +1.00000 q^{18} -1.00000 q^{19} +1.00000 q^{20} +4.00000 q^{21} -4.00000 q^{22} -8.00000 q^{23} +1.00000 q^{24} +1.00000 q^{25} -2.00000 q^{26} +1.00000 q^{27} +4.00000 q^{28} +6.00000 q^{29} +1.00000 q^{30} +4.00000 q^{31} +1.00000 q^{32} -4.00000 q^{33} -2.00000 q^{34} +4.00000 q^{35} +1.00000 q^{36} -10.0000 q^{37} -1.00000 q^{38} -2.00000 q^{39} +1.00000 q^{40} -2.00000 q^{41} +4.00000 q^{42} +12.0000 q^{43} -4.00000 q^{44} +1.00000 q^{45} -8.00000 q^{46} +1.00000 q^{48} +9.00000 q^{49} +1.00000 q^{50} -2.00000 q^{51} -2.00000 q^{52} +6.00000 q^{53} +1.00000 q^{54} -4.00000 q^{55} +4.00000 q^{56} -1.00000 q^{57} +6.00000 q^{58} +1.00000 q^{60} -10.0000 q^{61} +4.00000 q^{62} +4.00000 q^{63} +1.00000 q^{64} -2.00000 q^{65} -4.00000 q^{66} -4.00000 q^{67} -2.00000 q^{68} -8.00000 q^{69} +4.00000 q^{70} -8.00000 q^{71} +1.00000 q^{72} +2.00000 q^{73} -10.0000 q^{74} +1.00000 q^{75} -1.00000 q^{76} -16.0000 q^{77} -2.00000 q^{78} -12.0000 q^{79} +1.00000 q^{80} +1.00000 q^{81} -2.00000 q^{82} -8.00000 q^{83} +4.00000 q^{84} -2.00000 q^{85} +12.0000 q^{86} +6.00000 q^{87} -4.00000 q^{88} +6.00000 q^{89} +1.00000 q^{90} -8.00000 q^{91} -8.00000 q^{92} +4.00000 q^{93} -1.00000 q^{95} +1.00000 q^{96} +18.0000 q^{97} +9.00000 q^{98} -4.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 1.00000 0.577350
\(4\) 1.00000 0.500000
\(5\) 1.00000 0.447214
\(6\) 1.00000 0.408248
\(7\) 4.00000 1.51186 0.755929 0.654654i \(-0.227186\pi\)
0.755929 + 0.654654i \(0.227186\pi\)
\(8\) 1.00000 0.353553
\(9\) 1.00000 0.333333
\(10\) 1.00000 0.316228
\(11\) −4.00000 −1.20605 −0.603023 0.797724i \(-0.706037\pi\)
−0.603023 + 0.797724i \(0.706037\pi\)
\(12\) 1.00000 0.288675
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) 4.00000 1.06904
\(15\) 1.00000 0.258199
\(16\) 1.00000 0.250000
\(17\) −2.00000 −0.485071 −0.242536 0.970143i \(-0.577979\pi\)
−0.242536 + 0.970143i \(0.577979\pi\)
\(18\) 1.00000 0.235702
\(19\) −1.00000 −0.229416
\(20\) 1.00000 0.223607
\(21\) 4.00000 0.872872
\(22\) −4.00000 −0.852803
\(23\) −8.00000 −1.66812 −0.834058 0.551677i \(-0.813988\pi\)
−0.834058 + 0.551677i \(0.813988\pi\)
\(24\) 1.00000 0.204124
\(25\) 1.00000 0.200000
\(26\) −2.00000 −0.392232
\(27\) 1.00000 0.192450
\(28\) 4.00000 0.755929
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) 1.00000 0.182574
\(31\) 4.00000 0.718421 0.359211 0.933257i \(-0.383046\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) 1.00000 0.176777
\(33\) −4.00000 −0.696311
\(34\) −2.00000 −0.342997
\(35\) 4.00000 0.676123
\(36\) 1.00000 0.166667
\(37\) −10.0000 −1.64399 −0.821995 0.569495i \(-0.807139\pi\)
−0.821995 + 0.569495i \(0.807139\pi\)
\(38\) −1.00000 −0.162221
\(39\) −2.00000 −0.320256
\(40\) 1.00000 0.158114
\(41\) −2.00000 −0.312348 −0.156174 0.987730i \(-0.549916\pi\)
−0.156174 + 0.987730i \(0.549916\pi\)
\(42\) 4.00000 0.617213
\(43\) 12.0000 1.82998 0.914991 0.403473i \(-0.132197\pi\)
0.914991 + 0.403473i \(0.132197\pi\)
\(44\) −4.00000 −0.603023
\(45\) 1.00000 0.149071
\(46\) −8.00000 −1.17954
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 1.00000 0.144338
\(49\) 9.00000 1.28571
\(50\) 1.00000 0.141421
\(51\) −2.00000 −0.280056
\(52\) −2.00000 −0.277350
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) 1.00000 0.136083
\(55\) −4.00000 −0.539360
\(56\) 4.00000 0.534522
\(57\) −1.00000 −0.132453
\(58\) 6.00000 0.787839
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 1.00000 0.129099
\(61\) −10.0000 −1.28037 −0.640184 0.768221i \(-0.721142\pi\)
−0.640184 + 0.768221i \(0.721142\pi\)
\(62\) 4.00000 0.508001
\(63\) 4.00000 0.503953
\(64\) 1.00000 0.125000
\(65\) −2.00000 −0.248069
\(66\) −4.00000 −0.492366
\(67\) −4.00000 −0.488678 −0.244339 0.969690i \(-0.578571\pi\)
−0.244339 + 0.969690i \(0.578571\pi\)
\(68\) −2.00000 −0.242536
\(69\) −8.00000 −0.963087
\(70\) 4.00000 0.478091
\(71\) −8.00000 −0.949425 −0.474713 0.880141i \(-0.657448\pi\)
−0.474713 + 0.880141i \(0.657448\pi\)
\(72\) 1.00000 0.117851
\(73\) 2.00000 0.234082 0.117041 0.993127i \(-0.462659\pi\)
0.117041 + 0.993127i \(0.462659\pi\)
\(74\) −10.0000 −1.16248
\(75\) 1.00000 0.115470
\(76\) −1.00000 −0.114708
\(77\) −16.0000 −1.82337
\(78\) −2.00000 −0.226455
\(79\) −12.0000 −1.35011 −0.675053 0.737769i \(-0.735879\pi\)
−0.675053 + 0.737769i \(0.735879\pi\)
\(80\) 1.00000 0.111803
\(81\) 1.00000 0.111111
\(82\) −2.00000 −0.220863
\(83\) −8.00000 −0.878114 −0.439057 0.898459i \(-0.644687\pi\)
−0.439057 + 0.898459i \(0.644687\pi\)
\(84\) 4.00000 0.436436
\(85\) −2.00000 −0.216930
\(86\) 12.0000 1.29399
\(87\) 6.00000 0.643268
\(88\) −4.00000 −0.426401
\(89\) 6.00000 0.635999 0.317999 0.948091i \(-0.396989\pi\)
0.317999 + 0.948091i \(0.396989\pi\)
\(90\) 1.00000 0.105409
\(91\) −8.00000 −0.838628
\(92\) −8.00000 −0.834058
\(93\) 4.00000 0.414781
\(94\) 0 0
\(95\) −1.00000 −0.102598
\(96\) 1.00000 0.102062
\(97\) 18.0000 1.82762 0.913812 0.406138i \(-0.133125\pi\)
0.913812 + 0.406138i \(0.133125\pi\)
\(98\) 9.00000 0.909137
\(99\) −4.00000 −0.402015
\(100\) 1.00000 0.100000
\(101\) −10.0000 −0.995037 −0.497519 0.867453i \(-0.665755\pi\)
−0.497519 + 0.867453i \(0.665755\pi\)
\(102\) −2.00000 −0.198030
\(103\) 16.0000 1.57653 0.788263 0.615338i \(-0.210980\pi\)
0.788263 + 0.615338i \(0.210980\pi\)
\(104\) −2.00000 −0.196116
\(105\) 4.00000 0.390360
\(106\) 6.00000 0.582772
\(107\) −12.0000 −1.16008 −0.580042 0.814587i \(-0.696964\pi\)
−0.580042 + 0.814587i \(0.696964\pi\)
\(108\) 1.00000 0.0962250
\(109\) 10.0000 0.957826 0.478913 0.877862i \(-0.341031\pi\)
0.478913 + 0.877862i \(0.341031\pi\)
\(110\) −4.00000 −0.381385
\(111\) −10.0000 −0.949158
\(112\) 4.00000 0.377964
\(113\) −6.00000 −0.564433 −0.282216 0.959351i \(-0.591070\pi\)
−0.282216 + 0.959351i \(0.591070\pi\)
\(114\) −1.00000 −0.0936586
\(115\) −8.00000 −0.746004
\(116\) 6.00000 0.557086
\(117\) −2.00000 −0.184900
\(118\) 0 0
\(119\) −8.00000 −0.733359
\(120\) 1.00000 0.0912871
\(121\) 5.00000 0.454545
\(122\) −10.0000 −0.905357
\(123\) −2.00000 −0.180334
\(124\) 4.00000 0.359211
\(125\) 1.00000 0.0894427
\(126\) 4.00000 0.356348
\(127\) 8.00000 0.709885 0.354943 0.934888i \(-0.384500\pi\)
0.354943 + 0.934888i \(0.384500\pi\)
\(128\) 1.00000 0.0883883
\(129\) 12.0000 1.05654
\(130\) −2.00000 −0.175412
\(131\) −12.0000 −1.04844 −0.524222 0.851581i \(-0.675644\pi\)
−0.524222 + 0.851581i \(0.675644\pi\)
\(132\) −4.00000 −0.348155
\(133\) −4.00000 −0.346844
\(134\) −4.00000 −0.345547
\(135\) 1.00000 0.0860663
\(136\) −2.00000 −0.171499
\(137\) 14.0000 1.19610 0.598050 0.801459i \(-0.295942\pi\)
0.598050 + 0.801459i \(0.295942\pi\)
\(138\) −8.00000 −0.681005
\(139\) −12.0000 −1.01783 −0.508913 0.860818i \(-0.669953\pi\)
−0.508913 + 0.860818i \(0.669953\pi\)
\(140\) 4.00000 0.338062
\(141\) 0 0
\(142\) −8.00000 −0.671345
\(143\) 8.00000 0.668994
\(144\) 1.00000 0.0833333
\(145\) 6.00000 0.498273
\(146\) 2.00000 0.165521
\(147\) 9.00000 0.742307
\(148\) −10.0000 −0.821995
\(149\) 22.0000 1.80231 0.901155 0.433497i \(-0.142720\pi\)
0.901155 + 0.433497i \(0.142720\pi\)
\(150\) 1.00000 0.0816497
\(151\) 4.00000 0.325515 0.162758 0.986666i \(-0.447961\pi\)
0.162758 + 0.986666i \(0.447961\pi\)
\(152\) −1.00000 −0.0811107
\(153\) −2.00000 −0.161690
\(154\) −16.0000 −1.28932
\(155\) 4.00000 0.321288
\(156\) −2.00000 −0.160128
\(157\) −6.00000 −0.478852 −0.239426 0.970915i \(-0.576959\pi\)
−0.239426 + 0.970915i \(0.576959\pi\)
\(158\) −12.0000 −0.954669
\(159\) 6.00000 0.475831
\(160\) 1.00000 0.0790569
\(161\) −32.0000 −2.52195
\(162\) 1.00000 0.0785674
\(163\) −4.00000 −0.313304 −0.156652 0.987654i \(-0.550070\pi\)
−0.156652 + 0.987654i \(0.550070\pi\)
\(164\) −2.00000 −0.156174
\(165\) −4.00000 −0.311400
\(166\) −8.00000 −0.620920
\(167\) −16.0000 −1.23812 −0.619059 0.785345i \(-0.712486\pi\)
−0.619059 + 0.785345i \(0.712486\pi\)
\(168\) 4.00000 0.308607
\(169\) −9.00000 −0.692308
\(170\) −2.00000 −0.153393
\(171\) −1.00000 −0.0764719
\(172\) 12.0000 0.914991
\(173\) 14.0000 1.06440 0.532200 0.846619i \(-0.321365\pi\)
0.532200 + 0.846619i \(0.321365\pi\)
\(174\) 6.00000 0.454859
\(175\) 4.00000 0.302372
\(176\) −4.00000 −0.301511
\(177\) 0 0
\(178\) 6.00000 0.449719
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 1.00000 0.0745356
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) −8.00000 −0.592999
\(183\) −10.0000 −0.739221
\(184\) −8.00000 −0.589768
\(185\) −10.0000 −0.735215
\(186\) 4.00000 0.293294
\(187\) 8.00000 0.585018
\(188\) 0 0
\(189\) 4.00000 0.290957
\(190\) −1.00000 −0.0725476
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 1.00000 0.0721688
\(193\) 18.0000 1.29567 0.647834 0.761781i \(-0.275675\pi\)
0.647834 + 0.761781i \(0.275675\pi\)
\(194\) 18.0000 1.29232
\(195\) −2.00000 −0.143223
\(196\) 9.00000 0.642857
\(197\) −18.0000 −1.28245 −0.641223 0.767354i \(-0.721573\pi\)
−0.641223 + 0.767354i \(0.721573\pi\)
\(198\) −4.00000 −0.284268
\(199\) 16.0000 1.13421 0.567105 0.823646i \(-0.308063\pi\)
0.567105 + 0.823646i \(0.308063\pi\)
\(200\) 1.00000 0.0707107
\(201\) −4.00000 −0.282138
\(202\) −10.0000 −0.703598
\(203\) 24.0000 1.68447
\(204\) −2.00000 −0.140028
\(205\) −2.00000 −0.139686
\(206\) 16.0000 1.11477
\(207\) −8.00000 −0.556038
\(208\) −2.00000 −0.138675
\(209\) 4.00000 0.276686
\(210\) 4.00000 0.276026
\(211\) −12.0000 −0.826114 −0.413057 0.910705i \(-0.635539\pi\)
−0.413057 + 0.910705i \(0.635539\pi\)
\(212\) 6.00000 0.412082
\(213\) −8.00000 −0.548151
\(214\) −12.0000 −0.820303
\(215\) 12.0000 0.818393
\(216\) 1.00000 0.0680414
\(217\) 16.0000 1.08615
\(218\) 10.0000 0.677285
\(219\) 2.00000 0.135147
\(220\) −4.00000 −0.269680
\(221\) 4.00000 0.269069
\(222\) −10.0000 −0.671156
\(223\) 16.0000 1.07144 0.535720 0.844396i \(-0.320040\pi\)
0.535720 + 0.844396i \(0.320040\pi\)
\(224\) 4.00000 0.267261
\(225\) 1.00000 0.0666667
\(226\) −6.00000 −0.399114
\(227\) −12.0000 −0.796468 −0.398234 0.917284i \(-0.630377\pi\)
−0.398234 + 0.917284i \(0.630377\pi\)
\(228\) −1.00000 −0.0662266
\(229\) 22.0000 1.45380 0.726900 0.686743i \(-0.240960\pi\)
0.726900 + 0.686743i \(0.240960\pi\)
\(230\) −8.00000 −0.527504
\(231\) −16.0000 −1.05272
\(232\) 6.00000 0.393919
\(233\) 6.00000 0.393073 0.196537 0.980497i \(-0.437031\pi\)
0.196537 + 0.980497i \(0.437031\pi\)
\(234\) −2.00000 −0.130744
\(235\) 0 0
\(236\) 0 0
\(237\) −12.0000 −0.779484
\(238\) −8.00000 −0.518563
\(239\) −8.00000 −0.517477 −0.258738 0.965947i \(-0.583307\pi\)
−0.258738 + 0.965947i \(0.583307\pi\)
\(240\) 1.00000 0.0645497
\(241\) 2.00000 0.128831 0.0644157 0.997923i \(-0.479482\pi\)
0.0644157 + 0.997923i \(0.479482\pi\)
\(242\) 5.00000 0.321412
\(243\) 1.00000 0.0641500
\(244\) −10.0000 −0.640184
\(245\) 9.00000 0.574989
\(246\) −2.00000 −0.127515
\(247\) 2.00000 0.127257
\(248\) 4.00000 0.254000
\(249\) −8.00000 −0.506979
\(250\) 1.00000 0.0632456
\(251\) −28.0000 −1.76734 −0.883672 0.468106i \(-0.844936\pi\)
−0.883672 + 0.468106i \(0.844936\pi\)
\(252\) 4.00000 0.251976
\(253\) 32.0000 2.01182
\(254\) 8.00000 0.501965
\(255\) −2.00000 −0.125245
\(256\) 1.00000 0.0625000
\(257\) 18.0000 1.12281 0.561405 0.827541i \(-0.310261\pi\)
0.561405 + 0.827541i \(0.310261\pi\)
\(258\) 12.0000 0.747087
\(259\) −40.0000 −2.48548
\(260\) −2.00000 −0.124035
\(261\) 6.00000 0.371391
\(262\) −12.0000 −0.741362
\(263\) 24.0000 1.47990 0.739952 0.672660i \(-0.234848\pi\)
0.739952 + 0.672660i \(0.234848\pi\)
\(264\) −4.00000 −0.246183
\(265\) 6.00000 0.368577
\(266\) −4.00000 −0.245256
\(267\) 6.00000 0.367194
\(268\) −4.00000 −0.244339
\(269\) 6.00000 0.365826 0.182913 0.983129i \(-0.441447\pi\)
0.182913 + 0.983129i \(0.441447\pi\)
\(270\) 1.00000 0.0608581
\(271\) −24.0000 −1.45790 −0.728948 0.684569i \(-0.759990\pi\)
−0.728948 + 0.684569i \(0.759990\pi\)
\(272\) −2.00000 −0.121268
\(273\) −8.00000 −0.484182
\(274\) 14.0000 0.845771
\(275\) −4.00000 −0.241209
\(276\) −8.00000 −0.481543
\(277\) 18.0000 1.08152 0.540758 0.841178i \(-0.318138\pi\)
0.540758 + 0.841178i \(0.318138\pi\)
\(278\) −12.0000 −0.719712
\(279\) 4.00000 0.239474
\(280\) 4.00000 0.239046
\(281\) 30.0000 1.78965 0.894825 0.446417i \(-0.147300\pi\)
0.894825 + 0.446417i \(0.147300\pi\)
\(282\) 0 0
\(283\) −4.00000 −0.237775 −0.118888 0.992908i \(-0.537933\pi\)
−0.118888 + 0.992908i \(0.537933\pi\)
\(284\) −8.00000 −0.474713
\(285\) −1.00000 −0.0592349
\(286\) 8.00000 0.473050
\(287\) −8.00000 −0.472225
\(288\) 1.00000 0.0589256
\(289\) −13.0000 −0.764706
\(290\) 6.00000 0.352332
\(291\) 18.0000 1.05518
\(292\) 2.00000 0.117041
\(293\) −10.0000 −0.584206 −0.292103 0.956387i \(-0.594355\pi\)
−0.292103 + 0.956387i \(0.594355\pi\)
\(294\) 9.00000 0.524891
\(295\) 0 0
\(296\) −10.0000 −0.581238
\(297\) −4.00000 −0.232104
\(298\) 22.0000 1.27443
\(299\) 16.0000 0.925304
\(300\) 1.00000 0.0577350
\(301\) 48.0000 2.76667
\(302\) 4.00000 0.230174
\(303\) −10.0000 −0.574485
\(304\) −1.00000 −0.0573539
\(305\) −10.0000 −0.572598
\(306\) −2.00000 −0.114332
\(307\) 28.0000 1.59804 0.799022 0.601302i \(-0.205351\pi\)
0.799022 + 0.601302i \(0.205351\pi\)
\(308\) −16.0000 −0.911685
\(309\) 16.0000 0.910208
\(310\) 4.00000 0.227185
\(311\) 24.0000 1.36092 0.680458 0.732787i \(-0.261781\pi\)
0.680458 + 0.732787i \(0.261781\pi\)
\(312\) −2.00000 −0.113228
\(313\) −30.0000 −1.69570 −0.847850 0.530236i \(-0.822103\pi\)
−0.847850 + 0.530236i \(0.822103\pi\)
\(314\) −6.00000 −0.338600
\(315\) 4.00000 0.225374
\(316\) −12.0000 −0.675053
\(317\) 30.0000 1.68497 0.842484 0.538721i \(-0.181092\pi\)
0.842484 + 0.538721i \(0.181092\pi\)
\(318\) 6.00000 0.336463
\(319\) −24.0000 −1.34374
\(320\) 1.00000 0.0559017
\(321\) −12.0000 −0.669775
\(322\) −32.0000 −1.78329
\(323\) 2.00000 0.111283
\(324\) 1.00000 0.0555556
\(325\) −2.00000 −0.110940
\(326\) −4.00000 −0.221540
\(327\) 10.0000 0.553001
\(328\) −2.00000 −0.110432
\(329\) 0 0
\(330\) −4.00000 −0.220193
\(331\) −12.0000 −0.659580 −0.329790 0.944054i \(-0.606978\pi\)
−0.329790 + 0.944054i \(0.606978\pi\)
\(332\) −8.00000 −0.439057
\(333\) −10.0000 −0.547997
\(334\) −16.0000 −0.875481
\(335\) −4.00000 −0.218543
\(336\) 4.00000 0.218218
\(337\) 34.0000 1.85210 0.926049 0.377403i \(-0.123183\pi\)
0.926049 + 0.377403i \(0.123183\pi\)
\(338\) −9.00000 −0.489535
\(339\) −6.00000 −0.325875
\(340\) −2.00000 −0.108465
\(341\) −16.0000 −0.866449
\(342\) −1.00000 −0.0540738
\(343\) 8.00000 0.431959
\(344\) 12.0000 0.646997
\(345\) −8.00000 −0.430706
\(346\) 14.0000 0.752645
\(347\) 24.0000 1.28839 0.644194 0.764862i \(-0.277193\pi\)
0.644194 + 0.764862i \(0.277193\pi\)
\(348\) 6.00000 0.321634
\(349\) −34.0000 −1.81998 −0.909989 0.414632i \(-0.863910\pi\)
−0.909989 + 0.414632i \(0.863910\pi\)
\(350\) 4.00000 0.213809
\(351\) −2.00000 −0.106752
\(352\) −4.00000 −0.213201
\(353\) 6.00000 0.319348 0.159674 0.987170i \(-0.448956\pi\)
0.159674 + 0.987170i \(0.448956\pi\)
\(354\) 0 0
\(355\) −8.00000 −0.424596
\(356\) 6.00000 0.317999
\(357\) −8.00000 −0.423405
\(358\) 0 0
\(359\) 32.0000 1.68890 0.844448 0.535638i \(-0.179929\pi\)
0.844448 + 0.535638i \(0.179929\pi\)
\(360\) 1.00000 0.0527046
\(361\) 1.00000 0.0526316
\(362\) 2.00000 0.105118
\(363\) 5.00000 0.262432
\(364\) −8.00000 −0.419314
\(365\) 2.00000 0.104685
\(366\) −10.0000 −0.522708
\(367\) −12.0000 −0.626395 −0.313197 0.949688i \(-0.601400\pi\)
−0.313197 + 0.949688i \(0.601400\pi\)
\(368\) −8.00000 −0.417029
\(369\) −2.00000 −0.104116
\(370\) −10.0000 −0.519875
\(371\) 24.0000 1.24602
\(372\) 4.00000 0.207390
\(373\) 30.0000 1.55334 0.776671 0.629907i \(-0.216907\pi\)
0.776671 + 0.629907i \(0.216907\pi\)
\(374\) 8.00000 0.413670
\(375\) 1.00000 0.0516398
\(376\) 0 0
\(377\) −12.0000 −0.618031
\(378\) 4.00000 0.205738
\(379\) −20.0000 −1.02733 −0.513665 0.857991i \(-0.671713\pi\)
−0.513665 + 0.857991i \(0.671713\pi\)
\(380\) −1.00000 −0.0512989
\(381\) 8.00000 0.409852
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 1.00000 0.0510310
\(385\) −16.0000 −0.815436
\(386\) 18.0000 0.916176
\(387\) 12.0000 0.609994
\(388\) 18.0000 0.913812
\(389\) 6.00000 0.304212 0.152106 0.988364i \(-0.451394\pi\)
0.152106 + 0.988364i \(0.451394\pi\)
\(390\) −2.00000 −0.101274
\(391\) 16.0000 0.809155
\(392\) 9.00000 0.454569
\(393\) −12.0000 −0.605320
\(394\) −18.0000 −0.906827
\(395\) −12.0000 −0.603786
\(396\) −4.00000 −0.201008
\(397\) 2.00000 0.100377 0.0501886 0.998740i \(-0.484018\pi\)
0.0501886 + 0.998740i \(0.484018\pi\)
\(398\) 16.0000 0.802008
\(399\) −4.00000 −0.200250
\(400\) 1.00000 0.0500000
\(401\) −18.0000 −0.898877 −0.449439 0.893311i \(-0.648376\pi\)
−0.449439 + 0.893311i \(0.648376\pi\)
\(402\) −4.00000 −0.199502
\(403\) −8.00000 −0.398508
\(404\) −10.0000 −0.497519
\(405\) 1.00000 0.0496904
\(406\) 24.0000 1.19110
\(407\) 40.0000 1.98273
\(408\) −2.00000 −0.0990148
\(409\) −6.00000 −0.296681 −0.148340 0.988936i \(-0.547393\pi\)
−0.148340 + 0.988936i \(0.547393\pi\)
\(410\) −2.00000 −0.0987730
\(411\) 14.0000 0.690569
\(412\) 16.0000 0.788263
\(413\) 0 0
\(414\) −8.00000 −0.393179
\(415\) −8.00000 −0.392705
\(416\) −2.00000 −0.0980581
\(417\) −12.0000 −0.587643
\(418\) 4.00000 0.195646
\(419\) 12.0000 0.586238 0.293119 0.956076i \(-0.405307\pi\)
0.293119 + 0.956076i \(0.405307\pi\)
\(420\) 4.00000 0.195180
\(421\) −14.0000 −0.682318 −0.341159 0.940006i \(-0.610819\pi\)
−0.341159 + 0.940006i \(0.610819\pi\)
\(422\) −12.0000 −0.584151
\(423\) 0 0
\(424\) 6.00000 0.291386
\(425\) −2.00000 −0.0970143
\(426\) −8.00000 −0.387601
\(427\) −40.0000 −1.93574
\(428\) −12.0000 −0.580042
\(429\) 8.00000 0.386244
\(430\) 12.0000 0.578691
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 1.00000 0.0481125
\(433\) 2.00000 0.0961139 0.0480569 0.998845i \(-0.484697\pi\)
0.0480569 + 0.998845i \(0.484697\pi\)
\(434\) 16.0000 0.768025
\(435\) 6.00000 0.287678
\(436\) 10.0000 0.478913
\(437\) 8.00000 0.382692
\(438\) 2.00000 0.0955637
\(439\) −4.00000 −0.190910 −0.0954548 0.995434i \(-0.530431\pi\)
−0.0954548 + 0.995434i \(0.530431\pi\)
\(440\) −4.00000 −0.190693
\(441\) 9.00000 0.428571
\(442\) 4.00000 0.190261
\(443\) −24.0000 −1.14027 −0.570137 0.821549i \(-0.693110\pi\)
−0.570137 + 0.821549i \(0.693110\pi\)
\(444\) −10.0000 −0.474579
\(445\) 6.00000 0.284427
\(446\) 16.0000 0.757622
\(447\) 22.0000 1.04056
\(448\) 4.00000 0.188982
\(449\) 6.00000 0.283158 0.141579 0.989927i \(-0.454782\pi\)
0.141579 + 0.989927i \(0.454782\pi\)
\(450\) 1.00000 0.0471405
\(451\) 8.00000 0.376705
\(452\) −6.00000 −0.282216
\(453\) 4.00000 0.187936
\(454\) −12.0000 −0.563188
\(455\) −8.00000 −0.375046
\(456\) −1.00000 −0.0468293
\(457\) −6.00000 −0.280668 −0.140334 0.990104i \(-0.544818\pi\)
−0.140334 + 0.990104i \(0.544818\pi\)
\(458\) 22.0000 1.02799
\(459\) −2.00000 −0.0933520
\(460\) −8.00000 −0.373002
\(461\) 14.0000 0.652045 0.326023 0.945362i \(-0.394291\pi\)
0.326023 + 0.945362i \(0.394291\pi\)
\(462\) −16.0000 −0.744387
\(463\) −36.0000 −1.67306 −0.836531 0.547920i \(-0.815420\pi\)
−0.836531 + 0.547920i \(0.815420\pi\)
\(464\) 6.00000 0.278543
\(465\) 4.00000 0.185496
\(466\) 6.00000 0.277945
\(467\) 8.00000 0.370196 0.185098 0.982720i \(-0.440740\pi\)
0.185098 + 0.982720i \(0.440740\pi\)
\(468\) −2.00000 −0.0924500
\(469\) −16.0000 −0.738811
\(470\) 0 0
\(471\) −6.00000 −0.276465
\(472\) 0 0
\(473\) −48.0000 −2.20704
\(474\) −12.0000 −0.551178
\(475\) −1.00000 −0.0458831
\(476\) −8.00000 −0.366679
\(477\) 6.00000 0.274721
\(478\) −8.00000 −0.365911
\(479\) −16.0000 −0.731059 −0.365529 0.930800i \(-0.619112\pi\)
−0.365529 + 0.930800i \(0.619112\pi\)
\(480\) 1.00000 0.0456435
\(481\) 20.0000 0.911922
\(482\) 2.00000 0.0910975
\(483\) −32.0000 −1.45605
\(484\) 5.00000 0.227273
\(485\) 18.0000 0.817338
\(486\) 1.00000 0.0453609
\(487\) −32.0000 −1.45006 −0.725029 0.688718i \(-0.758174\pi\)
−0.725029 + 0.688718i \(0.758174\pi\)
\(488\) −10.0000 −0.452679
\(489\) −4.00000 −0.180886
\(490\) 9.00000 0.406579
\(491\) 28.0000 1.26362 0.631811 0.775122i \(-0.282312\pi\)
0.631811 + 0.775122i \(0.282312\pi\)
\(492\) −2.00000 −0.0901670
\(493\) −12.0000 −0.540453
\(494\) 2.00000 0.0899843
\(495\) −4.00000 −0.179787
\(496\) 4.00000 0.179605
\(497\) −32.0000 −1.43540
\(498\) −8.00000 −0.358489
\(499\) −4.00000 −0.179065 −0.0895323 0.995984i \(-0.528537\pi\)
−0.0895323 + 0.995984i \(0.528537\pi\)
\(500\) 1.00000 0.0447214
\(501\) −16.0000 −0.714827
\(502\) −28.0000 −1.24970
\(503\) 32.0000 1.42681 0.713405 0.700752i \(-0.247152\pi\)
0.713405 + 0.700752i \(0.247152\pi\)
\(504\) 4.00000 0.178174
\(505\) −10.0000 −0.444994
\(506\) 32.0000 1.42257
\(507\) −9.00000 −0.399704
\(508\) 8.00000 0.354943
\(509\) −10.0000 −0.443242 −0.221621 0.975133i \(-0.571135\pi\)
−0.221621 + 0.975133i \(0.571135\pi\)
\(510\) −2.00000 −0.0885615
\(511\) 8.00000 0.353899
\(512\) 1.00000 0.0441942
\(513\) −1.00000 −0.0441511
\(514\) 18.0000 0.793946
\(515\) 16.0000 0.705044
\(516\) 12.0000 0.528271
\(517\) 0 0
\(518\) −40.0000 −1.75750
\(519\) 14.0000 0.614532
\(520\) −2.00000 −0.0877058
\(521\) −10.0000 −0.438108 −0.219054 0.975713i \(-0.570297\pi\)
−0.219054 + 0.975713i \(0.570297\pi\)
\(522\) 6.00000 0.262613
\(523\) 4.00000 0.174908 0.0874539 0.996169i \(-0.472127\pi\)
0.0874539 + 0.996169i \(0.472127\pi\)
\(524\) −12.0000 −0.524222
\(525\) 4.00000 0.174574
\(526\) 24.0000 1.04645
\(527\) −8.00000 −0.348485
\(528\) −4.00000 −0.174078
\(529\) 41.0000 1.78261
\(530\) 6.00000 0.260623
\(531\) 0 0
\(532\) −4.00000 −0.173422
\(533\) 4.00000 0.173259
\(534\) 6.00000 0.259645
\(535\) −12.0000 −0.518805
\(536\) −4.00000 −0.172774
\(537\) 0 0
\(538\) 6.00000 0.258678
\(539\) −36.0000 −1.55063
\(540\) 1.00000 0.0430331
\(541\) −18.0000 −0.773880 −0.386940 0.922105i \(-0.626468\pi\)
−0.386940 + 0.922105i \(0.626468\pi\)
\(542\) −24.0000 −1.03089
\(543\) 2.00000 0.0858282
\(544\) −2.00000 −0.0857493
\(545\) 10.0000 0.428353
\(546\) −8.00000 −0.342368
\(547\) −20.0000 −0.855138 −0.427569 0.903983i \(-0.640630\pi\)
−0.427569 + 0.903983i \(0.640630\pi\)
\(548\) 14.0000 0.598050
\(549\) −10.0000 −0.426790
\(550\) −4.00000 −0.170561
\(551\) −6.00000 −0.255609
\(552\) −8.00000 −0.340503
\(553\) −48.0000 −2.04117
\(554\) 18.0000 0.764747
\(555\) −10.0000 −0.424476
\(556\) −12.0000 −0.508913
\(557\) 30.0000 1.27114 0.635570 0.772043i \(-0.280765\pi\)
0.635570 + 0.772043i \(0.280765\pi\)
\(558\) 4.00000 0.169334
\(559\) −24.0000 −1.01509
\(560\) 4.00000 0.169031
\(561\) 8.00000 0.337760
\(562\) 30.0000 1.26547
\(563\) −20.0000 −0.842900 −0.421450 0.906852i \(-0.638479\pi\)
−0.421450 + 0.906852i \(0.638479\pi\)
\(564\) 0 0
\(565\) −6.00000 −0.252422
\(566\) −4.00000 −0.168133
\(567\) 4.00000 0.167984
\(568\) −8.00000 −0.335673
\(569\) −18.0000 −0.754599 −0.377300 0.926091i \(-0.623147\pi\)
−0.377300 + 0.926091i \(0.623147\pi\)
\(570\) −1.00000 −0.0418854
\(571\) −4.00000 −0.167395 −0.0836974 0.996491i \(-0.526673\pi\)
−0.0836974 + 0.996491i \(0.526673\pi\)
\(572\) 8.00000 0.334497
\(573\) 0 0
\(574\) −8.00000 −0.333914
\(575\) −8.00000 −0.333623
\(576\) 1.00000 0.0416667
\(577\) 2.00000 0.0832611 0.0416305 0.999133i \(-0.486745\pi\)
0.0416305 + 0.999133i \(0.486745\pi\)
\(578\) −13.0000 −0.540729
\(579\) 18.0000 0.748054
\(580\) 6.00000 0.249136
\(581\) −32.0000 −1.32758
\(582\) 18.0000 0.746124
\(583\) −24.0000 −0.993978
\(584\) 2.00000 0.0827606
\(585\) −2.00000 −0.0826898
\(586\) −10.0000 −0.413096
\(587\) −40.0000 −1.65098 −0.825488 0.564419i \(-0.809100\pi\)
−0.825488 + 0.564419i \(0.809100\pi\)
\(588\) 9.00000 0.371154
\(589\) −4.00000 −0.164817
\(590\) 0 0
\(591\) −18.0000 −0.740421
\(592\) −10.0000 −0.410997
\(593\) −10.0000 −0.410651 −0.205325 0.978694i \(-0.565825\pi\)
−0.205325 + 0.978694i \(0.565825\pi\)
\(594\) −4.00000 −0.164122
\(595\) −8.00000 −0.327968
\(596\) 22.0000 0.901155
\(597\) 16.0000 0.654836
\(598\) 16.0000 0.654289
\(599\) 32.0000 1.30748 0.653742 0.756717i \(-0.273198\pi\)
0.653742 + 0.756717i \(0.273198\pi\)
\(600\) 1.00000 0.0408248
\(601\) −6.00000 −0.244745 −0.122373 0.992484i \(-0.539050\pi\)
−0.122373 + 0.992484i \(0.539050\pi\)
\(602\) 48.0000 1.95633
\(603\) −4.00000 −0.162893
\(604\) 4.00000 0.162758
\(605\) 5.00000 0.203279
\(606\) −10.0000 −0.406222
\(607\) 24.0000 0.974130 0.487065 0.873366i \(-0.338067\pi\)
0.487065 + 0.873366i \(0.338067\pi\)
\(608\) −1.00000 −0.0405554
\(609\) 24.0000 0.972529
\(610\) −10.0000 −0.404888
\(611\) 0 0
\(612\) −2.00000 −0.0808452
\(613\) −6.00000 −0.242338 −0.121169 0.992632i \(-0.538664\pi\)
−0.121169 + 0.992632i \(0.538664\pi\)
\(614\) 28.0000 1.12999
\(615\) −2.00000 −0.0806478
\(616\) −16.0000 −0.644658
\(617\) 30.0000 1.20775 0.603877 0.797077i \(-0.293622\pi\)
0.603877 + 0.797077i \(0.293622\pi\)
\(618\) 16.0000 0.643614
\(619\) −4.00000 −0.160774 −0.0803868 0.996764i \(-0.525616\pi\)
−0.0803868 + 0.996764i \(0.525616\pi\)
\(620\) 4.00000 0.160644
\(621\) −8.00000 −0.321029
\(622\) 24.0000 0.962312
\(623\) 24.0000 0.961540
\(624\) −2.00000 −0.0800641
\(625\) 1.00000 0.0400000
\(626\) −30.0000 −1.19904
\(627\) 4.00000 0.159745
\(628\) −6.00000 −0.239426
\(629\) 20.0000 0.797452
\(630\) 4.00000 0.159364
\(631\) 8.00000 0.318475 0.159237 0.987240i \(-0.449096\pi\)
0.159237 + 0.987240i \(0.449096\pi\)
\(632\) −12.0000 −0.477334
\(633\) −12.0000 −0.476957
\(634\) 30.0000 1.19145
\(635\) 8.00000 0.317470
\(636\) 6.00000 0.237915
\(637\) −18.0000 −0.713186
\(638\) −24.0000 −0.950169
\(639\) −8.00000 −0.316475
\(640\) 1.00000 0.0395285
\(641\) −10.0000 −0.394976 −0.197488 0.980305i \(-0.563278\pi\)
−0.197488 + 0.980305i \(0.563278\pi\)
\(642\) −12.0000 −0.473602
\(643\) −28.0000 −1.10421 −0.552106 0.833774i \(-0.686176\pi\)
−0.552106 + 0.833774i \(0.686176\pi\)
\(644\) −32.0000 −1.26098
\(645\) 12.0000 0.472500
\(646\) 2.00000 0.0786889
\(647\) −32.0000 −1.25805 −0.629025 0.777385i \(-0.716546\pi\)
−0.629025 + 0.777385i \(0.716546\pi\)
\(648\) 1.00000 0.0392837
\(649\) 0 0
\(650\) −2.00000 −0.0784465
\(651\) 16.0000 0.627089
\(652\) −4.00000 −0.156652
\(653\) 14.0000 0.547862 0.273931 0.961749i \(-0.411676\pi\)
0.273931 + 0.961749i \(0.411676\pi\)
\(654\) 10.0000 0.391031
\(655\) −12.0000 −0.468879
\(656\) −2.00000 −0.0780869
\(657\) 2.00000 0.0780274
\(658\) 0 0
\(659\) −16.0000 −0.623272 −0.311636 0.950202i \(-0.600877\pi\)
−0.311636 + 0.950202i \(0.600877\pi\)
\(660\) −4.00000 −0.155700
\(661\) 18.0000 0.700119 0.350059 0.936727i \(-0.386161\pi\)
0.350059 + 0.936727i \(0.386161\pi\)
\(662\) −12.0000 −0.466393
\(663\) 4.00000 0.155347
\(664\) −8.00000 −0.310460
\(665\) −4.00000 −0.155113
\(666\) −10.0000 −0.387492
\(667\) −48.0000 −1.85857
\(668\) −16.0000 −0.619059
\(669\) 16.0000 0.618596
\(670\) −4.00000 −0.154533
\(671\) 40.0000 1.54418
\(672\) 4.00000 0.154303
\(673\) −14.0000 −0.539660 −0.269830 0.962908i \(-0.586968\pi\)
−0.269830 + 0.962908i \(0.586968\pi\)
\(674\) 34.0000 1.30963
\(675\) 1.00000 0.0384900
\(676\) −9.00000 −0.346154
\(677\) 6.00000 0.230599 0.115299 0.993331i \(-0.463217\pi\)
0.115299 + 0.993331i \(0.463217\pi\)
\(678\) −6.00000 −0.230429
\(679\) 72.0000 2.76311
\(680\) −2.00000 −0.0766965
\(681\) −12.0000 −0.459841
\(682\) −16.0000 −0.612672
\(683\) −36.0000 −1.37750 −0.688751 0.724998i \(-0.741841\pi\)
−0.688751 + 0.724998i \(0.741841\pi\)
\(684\) −1.00000 −0.0382360
\(685\) 14.0000 0.534913
\(686\) 8.00000 0.305441
\(687\) 22.0000 0.839352
\(688\) 12.0000 0.457496
\(689\) −12.0000 −0.457164
\(690\) −8.00000 −0.304555
\(691\) −44.0000 −1.67384 −0.836919 0.547326i \(-0.815646\pi\)
−0.836919 + 0.547326i \(0.815646\pi\)
\(692\) 14.0000 0.532200
\(693\) −16.0000 −0.607790
\(694\) 24.0000 0.911028
\(695\) −12.0000 −0.455186
\(696\) 6.00000 0.227429
\(697\) 4.00000 0.151511
\(698\) −34.0000 −1.28692
\(699\) 6.00000 0.226941
\(700\) 4.00000 0.151186
\(701\) −34.0000 −1.28416 −0.642081 0.766637i \(-0.721929\pi\)
−0.642081 + 0.766637i \(0.721929\pi\)
\(702\) −2.00000 −0.0754851
\(703\) 10.0000 0.377157
\(704\) −4.00000 −0.150756
\(705\) 0 0
\(706\) 6.00000 0.225813
\(707\) −40.0000 −1.50435
\(708\) 0 0
\(709\) 22.0000 0.826227 0.413114 0.910679i \(-0.364441\pi\)
0.413114 + 0.910679i \(0.364441\pi\)
\(710\) −8.00000 −0.300235
\(711\) −12.0000 −0.450035
\(712\) 6.00000 0.224860
\(713\) −32.0000 −1.19841
\(714\) −8.00000 −0.299392
\(715\) 8.00000 0.299183
\(716\) 0 0
\(717\) −8.00000 −0.298765
\(718\) 32.0000 1.19423
\(719\) −40.0000 −1.49175 −0.745874 0.666087i \(-0.767968\pi\)
−0.745874 + 0.666087i \(0.767968\pi\)
\(720\) 1.00000 0.0372678
\(721\) 64.0000 2.38348
\(722\) 1.00000 0.0372161
\(723\) 2.00000 0.0743808
\(724\) 2.00000 0.0743294
\(725\) 6.00000 0.222834
\(726\) 5.00000 0.185567
\(727\) 12.0000 0.445055 0.222528 0.974926i \(-0.428569\pi\)
0.222528 + 0.974926i \(0.428569\pi\)
\(728\) −8.00000 −0.296500
\(729\) 1.00000 0.0370370
\(730\) 2.00000 0.0740233
\(731\) −24.0000 −0.887672
\(732\) −10.0000 −0.369611
\(733\) −14.0000 −0.517102 −0.258551 0.965998i \(-0.583245\pi\)
−0.258551 + 0.965998i \(0.583245\pi\)
\(734\) −12.0000 −0.442928
\(735\) 9.00000 0.331970
\(736\) −8.00000 −0.294884
\(737\) 16.0000 0.589368
\(738\) −2.00000 −0.0736210
\(739\) 20.0000 0.735712 0.367856 0.929883i \(-0.380092\pi\)
0.367856 + 0.929883i \(0.380092\pi\)
\(740\) −10.0000 −0.367607
\(741\) 2.00000 0.0734718
\(742\) 24.0000 0.881068
\(743\) 48.0000 1.76095 0.880475 0.474093i \(-0.157224\pi\)
0.880475 + 0.474093i \(0.157224\pi\)
\(744\) 4.00000 0.146647
\(745\) 22.0000 0.806018
\(746\) 30.0000 1.09838
\(747\) −8.00000 −0.292705
\(748\) 8.00000 0.292509
\(749\) −48.0000 −1.75388
\(750\) 1.00000 0.0365148
\(751\) 52.0000 1.89751 0.948753 0.316017i \(-0.102346\pi\)
0.948753 + 0.316017i \(0.102346\pi\)
\(752\) 0 0
\(753\) −28.0000 −1.02038
\(754\) −12.0000 −0.437014
\(755\) 4.00000 0.145575
\(756\) 4.00000 0.145479
\(757\) −38.0000 −1.38113 −0.690567 0.723269i \(-0.742639\pi\)
−0.690567 + 0.723269i \(0.742639\pi\)
\(758\) −20.0000 −0.726433
\(759\) 32.0000 1.16153
\(760\) −1.00000 −0.0362738
\(761\) −30.0000 −1.08750 −0.543750 0.839248i \(-0.682996\pi\)
−0.543750 + 0.839248i \(0.682996\pi\)
\(762\) 8.00000 0.289809
\(763\) 40.0000 1.44810
\(764\) 0 0
\(765\) −2.00000 −0.0723102
\(766\) 0 0
\(767\) 0 0
\(768\) 1.00000 0.0360844
\(769\) 2.00000 0.0721218 0.0360609 0.999350i \(-0.488519\pi\)
0.0360609 + 0.999350i \(0.488519\pi\)
\(770\) −16.0000 −0.576600
\(771\) 18.0000 0.648254
\(772\) 18.0000 0.647834
\(773\) −26.0000 −0.935155 −0.467578 0.883952i \(-0.654873\pi\)
−0.467578 + 0.883952i \(0.654873\pi\)
\(774\) 12.0000 0.431331
\(775\) 4.00000 0.143684
\(776\) 18.0000 0.646162
\(777\) −40.0000 −1.43499
\(778\) 6.00000 0.215110
\(779\) 2.00000 0.0716574
\(780\) −2.00000 −0.0716115
\(781\) 32.0000 1.14505
\(782\) 16.0000 0.572159
\(783\) 6.00000 0.214423
\(784\) 9.00000 0.321429
\(785\) −6.00000 −0.214149
\(786\) −12.0000 −0.428026
\(787\) 52.0000 1.85360 0.926800 0.375555i \(-0.122548\pi\)
0.926800 + 0.375555i \(0.122548\pi\)
\(788\) −18.0000 −0.641223
\(789\) 24.0000 0.854423
\(790\) −12.0000 −0.426941
\(791\) −24.0000 −0.853342
\(792\) −4.00000 −0.142134
\(793\) 20.0000 0.710221
\(794\) 2.00000 0.0709773
\(795\) 6.00000 0.212798
\(796\) 16.0000 0.567105
\(797\) −2.00000 −0.0708436 −0.0354218 0.999372i \(-0.511277\pi\)
−0.0354218 + 0.999372i \(0.511277\pi\)
\(798\) −4.00000 −0.141598
\(799\) 0 0
\(800\) 1.00000 0.0353553
\(801\) 6.00000 0.212000
\(802\) −18.0000 −0.635602
\(803\) −8.00000 −0.282314
\(804\) −4.00000 −0.141069
\(805\) −32.0000 −1.12785
\(806\) −8.00000 −0.281788
\(807\) 6.00000 0.211210
\(808\) −10.0000 −0.351799
\(809\) 18.0000 0.632846 0.316423 0.948618i \(-0.397518\pi\)
0.316423 + 0.948618i \(0.397518\pi\)
\(810\) 1.00000 0.0351364
\(811\) 12.0000 0.421377 0.210688 0.977553i \(-0.432429\pi\)
0.210688 + 0.977553i \(0.432429\pi\)
\(812\) 24.0000 0.842235
\(813\) −24.0000 −0.841717
\(814\) 40.0000 1.40200
\(815\) −4.00000 −0.140114
\(816\) −2.00000 −0.0700140
\(817\) −12.0000 −0.419827
\(818\) −6.00000 −0.209785
\(819\) −8.00000 −0.279543
\(820\) −2.00000 −0.0698430
\(821\) 22.0000 0.767805 0.383903 0.923374i \(-0.374580\pi\)
0.383903 + 0.923374i \(0.374580\pi\)
\(822\) 14.0000 0.488306
\(823\) 52.0000 1.81261 0.906303 0.422628i \(-0.138892\pi\)
0.906303 + 0.422628i \(0.138892\pi\)
\(824\) 16.0000 0.557386
\(825\) −4.00000 −0.139262
\(826\) 0 0
\(827\) 52.0000 1.80822 0.904109 0.427303i \(-0.140536\pi\)
0.904109 + 0.427303i \(0.140536\pi\)
\(828\) −8.00000 −0.278019
\(829\) 10.0000 0.347314 0.173657 0.984806i \(-0.444442\pi\)
0.173657 + 0.984806i \(0.444442\pi\)
\(830\) −8.00000 −0.277684
\(831\) 18.0000 0.624413
\(832\) −2.00000 −0.0693375
\(833\) −18.0000 −0.623663
\(834\) −12.0000 −0.415526
\(835\) −16.0000 −0.553703
\(836\) 4.00000 0.138343
\(837\) 4.00000 0.138260
\(838\) 12.0000 0.414533
\(839\) −40.0000 −1.38095 −0.690477 0.723355i \(-0.742599\pi\)
−0.690477 + 0.723355i \(0.742599\pi\)
\(840\) 4.00000 0.138013
\(841\) 7.00000 0.241379
\(842\) −14.0000 −0.482472
\(843\) 30.0000 1.03325
\(844\) −12.0000 −0.413057
\(845\) −9.00000 −0.309609
\(846\) 0 0
\(847\) 20.0000 0.687208
\(848\) 6.00000 0.206041
\(849\) −4.00000 −0.137280
\(850\) −2.00000 −0.0685994
\(851\) 80.0000 2.74236
\(852\) −8.00000 −0.274075
\(853\) −46.0000 −1.57501 −0.787505 0.616308i \(-0.788628\pi\)
−0.787505 + 0.616308i \(0.788628\pi\)
\(854\) −40.0000 −1.36877
\(855\) −1.00000 −0.0341993
\(856\) −12.0000 −0.410152
\(857\) 42.0000 1.43469 0.717346 0.696717i \(-0.245357\pi\)
0.717346 + 0.696717i \(0.245357\pi\)
\(858\) 8.00000 0.273115
\(859\) −4.00000 −0.136478 −0.0682391 0.997669i \(-0.521738\pi\)
−0.0682391 + 0.997669i \(0.521738\pi\)
\(860\) 12.0000 0.409197
\(861\) −8.00000 −0.272639
\(862\) 0 0
\(863\) 32.0000 1.08929 0.544646 0.838666i \(-0.316664\pi\)
0.544646 + 0.838666i \(0.316664\pi\)
\(864\) 1.00000 0.0340207
\(865\) 14.0000 0.476014
\(866\) 2.00000 0.0679628
\(867\) −13.0000 −0.441503
\(868\) 16.0000 0.543075
\(869\) 48.0000 1.62829
\(870\) 6.00000 0.203419
\(871\) 8.00000 0.271070
\(872\) 10.0000 0.338643
\(873\) 18.0000 0.609208
\(874\) 8.00000 0.270604
\(875\) 4.00000 0.135225
\(876\) 2.00000 0.0675737
\(877\) 6.00000 0.202606 0.101303 0.994856i \(-0.467699\pi\)
0.101303 + 0.994856i \(0.467699\pi\)
\(878\) −4.00000 −0.134993
\(879\) −10.0000 −0.337292
\(880\) −4.00000 −0.134840
\(881\) −30.0000 −1.01073 −0.505363 0.862907i \(-0.668641\pi\)
−0.505363 + 0.862907i \(0.668641\pi\)
\(882\) 9.00000 0.303046
\(883\) 4.00000 0.134611 0.0673054 0.997732i \(-0.478560\pi\)
0.0673054 + 0.997732i \(0.478560\pi\)
\(884\) 4.00000 0.134535
\(885\) 0 0
\(886\) −24.0000 −0.806296
\(887\) 48.0000 1.61168 0.805841 0.592132i \(-0.201714\pi\)
0.805841 + 0.592132i \(0.201714\pi\)
\(888\) −10.0000 −0.335578
\(889\) 32.0000 1.07325
\(890\) 6.00000 0.201120
\(891\) −4.00000 −0.134005
\(892\) 16.0000 0.535720
\(893\) 0 0
\(894\) 22.0000 0.735790
\(895\) 0 0
\(896\) 4.00000 0.133631
\(897\) 16.0000 0.534224
\(898\) 6.00000 0.200223
\(899\) 24.0000 0.800445
\(900\) 1.00000 0.0333333
\(901\) −12.0000 −0.399778
\(902\) 8.00000 0.266371
\(903\) 48.0000 1.59734
\(904\) −6.00000 −0.199557
\(905\) 2.00000 0.0664822
\(906\) 4.00000 0.132891
\(907\) −20.0000 −0.664089 −0.332045 0.943264i \(-0.607738\pi\)
−0.332045 + 0.943264i \(0.607738\pi\)
\(908\) −12.0000 −0.398234
\(909\) −10.0000 −0.331679
\(910\) −8.00000 −0.265197
\(911\) 8.00000 0.265052 0.132526 0.991180i \(-0.457691\pi\)
0.132526 + 0.991180i \(0.457691\pi\)
\(912\) −1.00000 −0.0331133
\(913\) 32.0000 1.05905
\(914\) −6.00000 −0.198462
\(915\) −10.0000 −0.330590
\(916\) 22.0000 0.726900
\(917\) −48.0000 −1.58510
\(918\) −2.00000 −0.0660098
\(919\) −24.0000 −0.791687 −0.395843 0.918318i \(-0.629548\pi\)
−0.395843 + 0.918318i \(0.629548\pi\)
\(920\) −8.00000 −0.263752
\(921\) 28.0000 0.922631
\(922\) 14.0000 0.461065
\(923\) 16.0000 0.526646
\(924\) −16.0000 −0.526361
\(925\) −10.0000 −0.328798
\(926\) −36.0000 −1.18303
\(927\) 16.0000 0.525509
\(928\) 6.00000 0.196960
\(929\) 18.0000 0.590561 0.295280 0.955411i \(-0.404587\pi\)
0.295280 + 0.955411i \(0.404587\pi\)
\(930\) 4.00000 0.131165
\(931\) −9.00000 −0.294963
\(932\) 6.00000 0.196537
\(933\) 24.0000 0.785725
\(934\) 8.00000 0.261768
\(935\) 8.00000 0.261628
\(936\) −2.00000 −0.0653720
\(937\) −38.0000 −1.24141 −0.620703 0.784046i \(-0.713153\pi\)
−0.620703 + 0.784046i \(0.713153\pi\)
\(938\) −16.0000 −0.522419
\(939\) −30.0000 −0.979013
\(940\) 0 0
\(941\) −50.0000 −1.62995 −0.814977 0.579494i \(-0.803250\pi\)
−0.814977 + 0.579494i \(0.803250\pi\)
\(942\) −6.00000 −0.195491
\(943\) 16.0000 0.521032
\(944\) 0 0
\(945\) 4.00000 0.130120
\(946\) −48.0000 −1.56061
\(947\) −40.0000 −1.29983 −0.649913 0.760009i \(-0.725195\pi\)
−0.649913 + 0.760009i \(0.725195\pi\)
\(948\) −12.0000 −0.389742
\(949\) −4.00000 −0.129845
\(950\) −1.00000 −0.0324443
\(951\) 30.0000 0.972817
\(952\) −8.00000 −0.259281
\(953\) 10.0000 0.323932 0.161966 0.986796i \(-0.448217\pi\)
0.161966 + 0.986796i \(0.448217\pi\)
\(954\) 6.00000 0.194257
\(955\) 0 0
\(956\) −8.00000 −0.258738
\(957\) −24.0000 −0.775810
\(958\) −16.0000 −0.516937
\(959\) 56.0000 1.80833
\(960\) 1.00000 0.0322749
\(961\) −15.0000 −0.483871
\(962\) 20.0000 0.644826
\(963\) −12.0000 −0.386695
\(964\) 2.00000 0.0644157
\(965\) 18.0000 0.579441
\(966\) −32.0000 −1.02958
\(967\) 52.0000 1.67221 0.836104 0.548572i \(-0.184828\pi\)
0.836104 + 0.548572i \(0.184828\pi\)
\(968\) 5.00000 0.160706
\(969\) 2.00000 0.0642493
\(970\) 18.0000 0.577945
\(971\) −24.0000 −0.770197 −0.385098 0.922876i \(-0.625832\pi\)
−0.385098 + 0.922876i \(0.625832\pi\)
\(972\) 1.00000 0.0320750
\(973\) −48.0000 −1.53881
\(974\) −32.0000 −1.02535
\(975\) −2.00000 −0.0640513
\(976\) −10.0000 −0.320092
\(977\) 50.0000 1.59964 0.799821 0.600239i \(-0.204928\pi\)
0.799821 + 0.600239i \(0.204928\pi\)
\(978\) −4.00000 −0.127906
\(979\) −24.0000 −0.767043
\(980\) 9.00000 0.287494
\(981\) 10.0000 0.319275
\(982\) 28.0000 0.893516
\(983\) 48.0000 1.53096 0.765481 0.643458i \(-0.222501\pi\)
0.765481 + 0.643458i \(0.222501\pi\)
\(984\) −2.00000 −0.0637577
\(985\) −18.0000 −0.573528
\(986\) −12.0000 −0.382158
\(987\) 0 0
\(988\) 2.00000 0.0636285
\(989\) −96.0000 −3.05262
\(990\) −4.00000 −0.127128
\(991\) −20.0000 −0.635321 −0.317660 0.948205i \(-0.602897\pi\)
−0.317660 + 0.948205i \(0.602897\pi\)
\(992\) 4.00000 0.127000
\(993\) −12.0000 −0.380808
\(994\) −32.0000 −1.01498
\(995\) 16.0000 0.507234
\(996\) −8.00000 −0.253490
\(997\) −14.0000 −0.443384 −0.221692 0.975117i \(-0.571158\pi\)
−0.221692 + 0.975117i \(0.571158\pi\)
\(998\) −4.00000 −0.126618
\(999\) −10.0000 −0.316386
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 570.2.a.m.1.1 1
3.2 odd 2 1710.2.a.f.1.1 1
4.3 odd 2 4560.2.a.k.1.1 1
5.2 odd 4 2850.2.d.k.799.2 2
5.3 odd 4 2850.2.d.k.799.1 2
5.4 even 2 2850.2.a.a.1.1 1
15.14 odd 2 8550.2.a.t.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
570.2.a.m.1.1 1 1.1 even 1 trivial
1710.2.a.f.1.1 1 3.2 odd 2
2850.2.a.a.1.1 1 5.4 even 2
2850.2.d.k.799.1 2 5.3 odd 4
2850.2.d.k.799.2 2 5.2 odd 4
4560.2.a.k.1.1 1 4.3 odd 2
8550.2.a.t.1.1 1 15.14 odd 2