Properties

Label 570.2.a
Level $570$
Weight $2$
Character orbit 570.a
Rep. character $\chi_{570}(1,\cdot)$
Character field $\Q$
Dimension $13$
Newform subspaces $13$
Sturm bound $240$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 570 = 2 \cdot 3 \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 570.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 13 \)
Sturm bound: \(240\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(7\), \(11\), \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(570))\).

Total New Old
Modular forms 128 13 115
Cusp forms 113 13 100
Eisenstein series 15 0 15

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(5\)\(19\)FrickeDim.
\(+\)\(+\)\(+\)\(+\)\(+\)\(1\)
\(+\)\(+\)\(+\)\(-\)\(-\)\(1\)
\(+\)\(+\)\(-\)\(-\)\(+\)\(1\)
\(+\)\(-\)\(+\)\(+\)\(-\)\(1\)
\(+\)\(-\)\(-\)\(+\)\(+\)\(1\)
\(+\)\(-\)\(-\)\(-\)\(-\)\(1\)
\(-\)\(+\)\(+\)\(+\)\(-\)\(1\)
\(-\)\(+\)\(-\)\(-\)\(-\)\(2\)
\(-\)\(-\)\(+\)\(-\)\(-\)\(2\)
\(-\)\(-\)\(-\)\(+\)\(-\)\(2\)
Plus space\(+\)\(3\)
Minus space\(-\)\(10\)

Trace form

\( 13q + q^{2} + q^{3} + 13q^{4} + q^{5} + q^{6} + 8q^{7} + q^{8} + 13q^{9} + O(q^{10}) \) \( 13q + q^{2} + q^{3} + 13q^{4} + q^{5} + q^{6} + 8q^{7} + q^{8} + 13q^{9} + q^{10} - 4q^{11} + q^{12} - 2q^{13} + 8q^{14} + q^{15} + 13q^{16} + 2q^{17} + q^{18} + q^{19} + q^{20} + 8q^{21} + 12q^{22} + 8q^{23} + q^{24} + 13q^{25} + 14q^{26} + q^{27} + 8q^{28} + 14q^{29} - 3q^{30} - 24q^{31} + q^{32} - 4q^{33} + 10q^{34} - 8q^{35} + 13q^{36} + 22q^{37} + q^{38} + 6q^{39} + q^{40} - 6q^{41} - 12q^{43} - 4q^{44} + q^{45} - 16q^{47} + q^{48} + 5q^{49} + q^{50} - 30q^{51} - 2q^{52} - 10q^{53} + q^{54} - 12q^{55} + 8q^{56} - 3q^{57} - 2q^{58} - 36q^{59} + q^{60} - 10q^{61} + 16q^{62} + 8q^{63} + 13q^{64} - 2q^{65} - 4q^{66} - 28q^{67} + 2q^{68} - 8q^{69} + 8q^{70} - 24q^{71} + q^{72} - 30q^{73} - 10q^{74} + q^{75} + q^{76} - 16q^{77} - 2q^{78} + 8q^{79} + q^{80} + 13q^{81} - 14q^{82} - 44q^{83} + 8q^{84} - 6q^{85} - 4q^{86} - 2q^{87} + 12q^{88} - 6q^{89} + q^{90} + 8q^{92} + 16q^{93} - 8q^{94} + q^{95} + q^{96} + 34q^{97} - 7q^{98} - 4q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(570))\) into newform subspaces

Label Dim. \(A\) Field CM Traces A-L signs $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\) 2 3 5 19
570.2.a.a \(1\) \(4.551\) \(\Q\) None \(-1\) \(-1\) \(-1\) \(-2\) \(+\) \(+\) \(+\) \(-\) \(q-q^{2}-q^{3}+q^{4}-q^{5}+q^{6}-2q^{7}+\cdots\)
570.2.a.b \(1\) \(4.551\) \(\Q\) None \(-1\) \(-1\) \(-1\) \(2\) \(+\) \(+\) \(+\) \(+\) \(q-q^{2}-q^{3}+q^{4}-q^{5}+q^{6}+2q^{7}+\cdots\)
570.2.a.c \(1\) \(4.551\) \(\Q\) None \(-1\) \(-1\) \(1\) \(-2\) \(+\) \(+\) \(-\) \(-\) \(q-q^{2}-q^{3}+q^{4}+q^{5}+q^{6}-2q^{7}+\cdots\)
570.2.a.d \(1\) \(4.551\) \(\Q\) None \(-1\) \(1\) \(-1\) \(4\) \(+\) \(-\) \(+\) \(+\) \(q-q^{2}+q^{3}+q^{4}-q^{5}-q^{6}+4q^{7}+\cdots\)
570.2.a.e \(1\) \(4.551\) \(\Q\) None \(-1\) \(1\) \(1\) \(-4\) \(+\) \(-\) \(-\) \(+\) \(q-q^{2}+q^{3}+q^{4}+q^{5}-q^{6}-4q^{7}+\cdots\)
570.2.a.f \(1\) \(4.551\) \(\Q\) None \(-1\) \(1\) \(1\) \(2\) \(+\) \(-\) \(-\) \(-\) \(q-q^{2}+q^{3}+q^{4}+q^{5}-q^{6}+2q^{7}+\cdots\)
570.2.a.g \(1\) \(4.551\) \(\Q\) None \(1\) \(-1\) \(-1\) \(0\) \(-\) \(+\) \(+\) \(+\) \(q+q^{2}-q^{3}+q^{4}-q^{5}-q^{6}+q^{8}+\cdots\)
570.2.a.h \(1\) \(4.551\) \(\Q\) None \(1\) \(-1\) \(1\) \(-2\) \(-\) \(+\) \(-\) \(-\) \(q+q^{2}-q^{3}+q^{4}+q^{5}-q^{6}-2q^{7}+\cdots\)
570.2.a.i \(1\) \(4.551\) \(\Q\) None \(1\) \(-1\) \(1\) \(4\) \(-\) \(+\) \(-\) \(-\) \(q+q^{2}-q^{3}+q^{4}+q^{5}-q^{6}+4q^{7}+\cdots\)
570.2.a.j \(1\) \(4.551\) \(\Q\) None \(1\) \(1\) \(-1\) \(2\) \(-\) \(-\) \(+\) \(-\) \(q+q^{2}+q^{3}+q^{4}-q^{5}+q^{6}+2q^{7}+\cdots\)
570.2.a.k \(1\) \(4.551\) \(\Q\) None \(1\) \(1\) \(-1\) \(2\) \(-\) \(-\) \(+\) \(-\) \(q+q^{2}+q^{3}+q^{4}-q^{5}+q^{6}+2q^{7}+\cdots\)
570.2.a.l \(1\) \(4.551\) \(\Q\) None \(1\) \(1\) \(1\) \(-2\) \(-\) \(-\) \(-\) \(+\) \(q+q^{2}+q^{3}+q^{4}+q^{5}+q^{6}-2q^{7}+\cdots\)
570.2.a.m \(1\) \(4.551\) \(\Q\) None \(1\) \(1\) \(1\) \(4\) \(-\) \(-\) \(-\) \(+\) \(q+q^{2}+q^{3}+q^{4}+q^{5}+q^{6}+4q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(570))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(570)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(38))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(57))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(95))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(114))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(190))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(285))\)\(^{\oplus 2}\)