Defining parameters
Level: | \( N \) | \(=\) | \( 57 = 3 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 57.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 19 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(20\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(57, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 16 | 6 | 10 |
Cusp forms | 12 | 6 | 6 |
Eisenstein series | 4 | 0 | 4 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(57, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
57.3.c.a | $2$ | $1.553$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(0\) | \(8\) | \(-20\) | \(q-\zeta_{6}q^{2}-\zeta_{6}q^{3}+q^{4}+4q^{5}-3q^{6}+\cdots\) |
57.3.c.b | $4$ | $1.553$ | \(\Q(\sqrt{-3}, \sqrt{-19})\) | None | \(0\) | \(0\) | \(-10\) | \(34\) | \(q+(-\beta _{1}-\beta _{3})q^{2}-\beta _{1}q^{3}+(-2+\beta _{2}+\cdots)q^{4}+\cdots\) |
Decomposition of \(S_{3}^{\mathrm{old}}(57, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(57, [\chi]) \cong \) \(S_{3}^{\mathrm{new}}(19, [\chi])\)\(^{\oplus 2}\)