Properties

Label 57.3.c
Level $57$
Weight $3$
Character orbit 57.c
Rep. character $\chi_{57}(37,\cdot)$
Character field $\Q$
Dimension $6$
Newform subspaces $2$
Sturm bound $20$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 57 = 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 57.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 19 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(20\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(57, [\chi])\).

Total New Old
Modular forms 16 6 10
Cusp forms 12 6 6
Eisenstein series 4 0 4

Trace form

\( 6 q - 4 q^{4} - 2 q^{5} - 12 q^{6} + 14 q^{7} - 18 q^{9} + O(q^{10}) \) \( 6 q - 4 q^{4} - 2 q^{5} - 12 q^{6} + 14 q^{7} - 18 q^{9} + 6 q^{11} - 44 q^{16} + 14 q^{17} + 38 q^{19} + 80 q^{20} + 12 q^{23} + 12 q^{24} - 36 q^{25} + 16 q^{26} - 128 q^{28} + 48 q^{30} - 222 q^{35} + 12 q^{36} + 152 q^{38} + 24 q^{39} - 48 q^{42} + 14 q^{43} - 16 q^{44} + 6 q^{45} - 74 q^{47} + 252 q^{49} + 36 q^{54} + 58 q^{55} + 256 q^{58} - 90 q^{61} - 256 q^{62} - 42 q^{63} - 44 q^{64} - 96 q^{66} - 256 q^{68} + 70 q^{73} + 336 q^{74} - 76 q^{76} - 262 q^{77} + 24 q^{80} + 54 q^{81} - 16 q^{82} + 204 q^{83} - 190 q^{85} + 240 q^{87} - 232 q^{92} - 72 q^{93} + 38 q^{95} + 204 q^{96} - 18 q^{99} + O(q^{100}) \)

Decomposition of \(S_{3}^{\mathrm{new}}(57, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
57.3.c.a 57.c 19.b $2$ $1.553$ \(\Q(\sqrt{-3}) \) None \(0\) \(0\) \(8\) \(-20\) $\mathrm{SU}(2)[C_{2}]$ \(q-\zeta_{6}q^{2}-\zeta_{6}q^{3}+q^{4}+4q^{5}-3q^{6}+\cdots\)
57.3.c.b 57.c 19.b $4$ $1.553$ \(\Q(\sqrt{-3}, \sqrt{-19})\) None \(0\) \(0\) \(-10\) \(34\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-\beta _{1}-\beta _{3})q^{2}-\beta _{1}q^{3}+(-2+\beta _{2}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{3}^{\mathrm{old}}(57, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(57, [\chi]) \cong \) \(S_{3}^{\mathrm{new}}(19, [\chi])\)\(^{\oplus 2}\)