Properties

Label 57.2.j.b
Level 57
Weight 2
Character orbit 57.j
Analytic conductor 0.455
Analytic rank 0
Dimension 24
CM No

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 57 = 3 \cdot 19 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 57.j (of order \(18\) and degree \(6\))

Newform invariants

Self dual: No
Analytic conductor: \(0.455147291521\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(4\) over \(\Q(\zeta_{18})\)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

$q$-expansion

The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 24q - 9q^{3} - 18q^{4} - 9q^{6} - 6q^{7} + 3q^{9} + O(q^{10}) \)
\(\operatorname{Tr}(f)(q) = \) \( 24q - 9q^{3} - 18q^{4} - 9q^{6} - 6q^{7} + 3q^{9} - 6q^{10} + 9q^{12} + 6q^{13} - 9q^{15} + 30q^{16} - 12q^{19} - 6q^{21} + 24q^{22} - 21q^{24} + 12q^{25} - 27q^{27} - 48q^{28} + 42q^{30} - 18q^{31} + 21q^{33} - 42q^{34} + 63q^{36} + 30q^{40} + 105q^{42} + 54q^{43} + 6q^{45} - 54q^{46} - 33q^{48} + 6q^{49} + 3q^{51} - 48q^{52} - 87q^{54} - 90q^{55} - 6q^{57} + 24q^{58} - 66q^{60} - 6q^{61} - 9q^{63} + 18q^{64} - 57q^{66} - 36q^{69} + 18q^{70} + 24q^{72} + 90q^{73} + 12q^{76} + 9q^{78} + 30q^{79} + 3q^{81} + 126q^{82} + 99q^{84} - 6q^{85} + 15q^{87} + 54q^{88} + 24q^{90} + 66q^{91} + 33q^{93} - 18q^{96} - 78q^{97} + 12q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2.1 −0.448036 + 2.54094i −1.71942 0.208799i −4.37626 1.59283i 0.533860 + 1.46677i 1.30091 4.27539i 1.49687 + 2.59266i 3.42787 5.93724i 2.91281 + 0.718027i −3.96616 + 0.699341i
2.2 −0.336464 + 1.90818i 1.43743 + 0.966337i −1.64856 0.600025i −1.09544 3.00968i −2.32759 + 2.41773i −1.23083 2.13186i −0.237981 + 0.412196i 1.13238 + 2.77808i 6.11159 1.07764i
2.3 0.336464 1.90818i −1.20126 1.24779i −1.64856 0.600025i 1.09544 + 3.00968i −2.78518 + 1.87239i −1.23083 2.13186i 0.237981 0.412196i −0.113935 + 2.99784i 6.11159 1.07764i
2.4 0.448036 2.54094i 0.504201 + 1.65704i −4.37626 1.59283i −0.533860 1.46677i 4.43634 0.538732i 1.49687 + 2.59266i −3.42787 + 5.93724i −2.49156 + 1.67096i −3.96616 + 0.699341i
14.1 −2.08555 + 0.759077i −1.47284 0.911455i 2.24122 1.88060i 1.78018 2.12154i 3.76353 + 0.782886i −1.70913 2.96030i −1.02725 + 1.77924i 1.33850 + 2.68485i −2.10224 + 5.77587i
14.2 −0.886259 + 0.322572i −0.858393 + 1.50438i −0.850687 + 0.713811i −0.485824 + 0.578982i 0.275488 1.61016i 1.38278 + 2.39504i 1.46681 2.54059i −1.52632 2.58270i 0.243802 0.669841i
14.3 0.886259 0.322572i −0.292097 1.70724i −0.850687 + 0.713811i 0.485824 0.578982i −0.809582 1.41884i 1.38278 + 2.39504i −1.46681 + 2.54059i −2.82936 + 0.997362i 0.243802 0.669841i
14.4 2.08555 0.759077i −1.69575 + 0.352748i 2.24122 1.88060i −1.78018 + 2.12154i −3.26880 + 2.02288i −1.70913 2.96030i 1.02725 1.77924i 2.75114 1.19634i −2.10224 + 5.77587i
29.1 −0.448036 2.54094i −1.71942 + 0.208799i −4.37626 + 1.59283i 0.533860 1.46677i 1.30091 + 4.27539i 1.49687 2.59266i 3.42787 + 5.93724i 2.91281 0.718027i −3.96616 0.699341i
29.2 −0.336464 1.90818i 1.43743 0.966337i −1.64856 + 0.600025i −1.09544 + 3.00968i −2.32759 2.41773i −1.23083 + 2.13186i −0.237981 0.412196i 1.13238 2.77808i 6.11159 + 1.07764i
29.3 0.336464 + 1.90818i −1.20126 + 1.24779i −1.64856 + 0.600025i 1.09544 3.00968i −2.78518 1.87239i −1.23083 + 2.13186i 0.237981 + 0.412196i −0.113935 2.99784i 6.11159 + 1.07764i
29.4 0.448036 + 2.54094i 0.504201 1.65704i −4.37626 + 1.59283i −0.533860 + 1.46677i 4.43634 + 0.538732i 1.49687 2.59266i −3.42787 5.93724i −2.49156 1.67096i −3.96616 0.699341i
32.1 −1.49833 + 1.25725i 1.40671 + 1.01052i 0.317026 1.79794i −0.487091 + 0.0858872i −3.37821 + 0.254491i −0.969730 + 1.67962i −0.170480 0.295279i 0.957685 + 2.84303i 0.621842 0.741083i
32.2 −0.745719 + 0.625733i 0.0227926 1.73190i −0.182741 + 1.03637i 3.79113 0.668479i 1.06671 + 1.30577i −0.469963 + 0.814000i −1.48569 2.57329i −2.99896 0.0789491i −2.40883 + 2.87073i
32.3 0.745719 0.625733i 1.09578 1.34136i −0.182741 + 1.03637i −3.79113 + 0.668479i −0.0221879 1.68595i −0.469963 + 0.814000i 1.48569 + 2.57329i −0.598514 2.93969i −2.40883 + 2.87073i
32.4 1.49833 1.25725i −1.72716 0.130112i 0.317026 1.79794i 0.487091 0.0858872i −2.75144 + 1.97652i −0.969730 + 1.67962i 0.170480 + 0.295279i 2.96614 + 0.449448i 0.621842 0.741083i
41.1 −1.49833 1.25725i 1.40671 1.01052i 0.317026 + 1.79794i −0.487091 0.0858872i −3.37821 0.254491i −0.969730 1.67962i −0.170480 + 0.295279i 0.957685 2.84303i 0.621842 + 0.741083i
41.2 −0.745719 0.625733i 0.0227926 + 1.73190i −0.182741 1.03637i 3.79113 + 0.668479i 1.06671 1.30577i −0.469963 0.814000i −1.48569 + 2.57329i −2.99896 + 0.0789491i −2.40883 2.87073i
41.3 0.745719 + 0.625733i 1.09578 + 1.34136i −0.182741 1.03637i −3.79113 0.668479i −0.0221879 + 1.68595i −0.469963 0.814000i 1.48569 2.57329i −0.598514 + 2.93969i −2.40883 2.87073i
41.4 1.49833 + 1.25725i −1.72716 + 0.130112i 0.317026 + 1.79794i 0.487091 + 0.0858872i −2.75144 1.97652i −0.969730 1.67962i 0.170480 0.295279i 2.96614 0.449448i 0.621842 + 0.741083i
See all 24 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 53.4
Significant digits:
Format:

Inner twists

This newform does not have CM; other inner twists have not been computed.

Hecke kernels

This newform can be constructed as the kernel of the linear operator \(T_{2}^{24} + \cdots\) acting on \(S_{2}^{\mathrm{new}}(57, [\chi])\).