Properties

Label 57.2.j
Level $57$
Weight $2$
Character orbit 57.j
Rep. character $\chi_{57}(2,\cdot)$
Character field $\Q(\zeta_{18})$
Dimension $30$
Newform subspaces $2$
Sturm bound $13$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 57 = 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 57.j (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 57 \)
Character field: \(\Q(\zeta_{18})\)
Newform subspaces: \( 2 \)
Sturm bound: \(13\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(57, [\chi])\).

Total New Old
Modular forms 54 54 0
Cusp forms 30 30 0
Eisenstein series 24 24 0

Trace form

\( 30 q - 9 q^{3} - 18 q^{4} - 9 q^{6} - 6 q^{7} + 3 q^{9} - 6 q^{10} - 9 q^{12} - 9 q^{13} - 9 q^{15} + 30 q^{16} - 9 q^{19} + 3 q^{21} + 24 q^{22} - 21 q^{24} + 12 q^{25} - 18 q^{28} + 42 q^{30} - 18 q^{31}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(57, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
57.2.j.a 57.j 57.j $6$ $0.455$ \(\Q(\zeta_{18})\) \(\Q(\sqrt{-3}) \) 57.2.j.a \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{18}]$ \(q+(-\zeta_{18}^{2}+2\zeta_{18}^{5})q^{3}+2\zeta_{18}q^{4}+\cdots\)
57.2.j.b 57.j 57.j $24$ $0.455$ None 57.2.j.b \(0\) \(-9\) \(0\) \(-6\) $\mathrm{SU}(2)[C_{18}]$