Properties

Label 57.2.i.b
Level 57
Weight 2
Character orbit 57.i
Analytic conductor 0.455
Analytic rank 0
Dimension 12
CM No
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 57 = 3 \cdot 19 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 57.i (of order \(9\) and degree \(6\))

Newform invariants

Self dual: No
Analytic conductor: \(0.455147291521\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{9})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 3 \)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( 1 - \beta_{1} - \beta_{2} + \beta_{5} - \beta_{9} ) q^{2} -\beta_{6} q^{3} + ( -1 + \beta_{1} + \beta_{2} - 2 \beta_{3} - \beta_{4} + \beta_{6} - \beta_{7} + 2 \beta_{9} ) q^{4} + ( \beta_{3} - 2 \beta_{4} + \beta_{6} - \beta_{8} - \beta_{11} ) q^{5} + ( -\beta_{1} - \beta_{4} + \beta_{6} - \beta_{10} ) q^{6} + ( -2 + \beta_{1} - \beta_{5} + \beta_{6} + \beta_{9} - \beta_{10} ) q^{7} + ( \beta_{1} + 3 \beta_{3} + 3 \beta_{4} - \beta_{5} + \beta_{8} + \beta_{10} ) q^{8} -\beta_{9} q^{9} +O(q^{10})\) \( q + ( 1 - \beta_{1} - \beta_{2} + \beta_{5} - \beta_{9} ) q^{2} -\beta_{6} q^{3} + ( -1 + \beta_{1} + \beta_{2} - 2 \beta_{3} - \beta_{4} + \beta_{6} - \beta_{7} + 2 \beta_{9} ) q^{4} + ( \beta_{3} - 2 \beta_{4} + \beta_{6} - \beta_{8} - \beta_{11} ) q^{5} + ( -\beta_{1} - \beta_{4} + \beta_{6} - \beta_{10} ) q^{6} + ( -2 + \beta_{1} - \beta_{5} + \beta_{6} + \beta_{9} - \beta_{10} ) q^{7} + ( \beta_{1} + 3 \beta_{3} + 3 \beta_{4} - \beta_{5} + \beta_{8} + \beta_{10} ) q^{8} -\beta_{9} q^{9} + ( 1 - 2 \beta_{1} - \beta_{2} + 2 \beta_{4} + \beta_{5} - 3 \beta_{6} + \beta_{7} + \beta_{8} - 2 \beta_{9} + \beta_{10} + \beta_{11} ) q^{10} + ( -1 - \beta_{1} + \beta_{2} - 2 \beta_{3} - \beta_{6} - \beta_{8} + \beta_{9} + \beta_{11} ) q^{11} + ( -1 + 2 \beta_{1} + \beta_{2} - \beta_{3} + \beta_{4} + \beta_{8} + \beta_{9} + \beta_{10} ) q^{12} + ( -1 + \beta_{2} + \beta_{3} - \beta_{5} + \beta_{7} ) q^{13} + ( -2 + 3 \beta_{1} + 2 \beta_{3} + 2 \beta_{4} - \beta_{5} - 2 \beta_{6} + \beta_{7} - 3 \beta_{9} + \beta_{10} ) q^{14} + ( -\beta_{3} + \beta_{4} - \beta_{5} - \beta_{6} + \beta_{7} + \beta_{9} + \beta_{11} ) q^{15} + ( 3 - \beta_{1} - \beta_{2} + \beta_{3} + \beta_{4} - 2 \beta_{6} + \beta_{7} - \beta_{8} - 4 \beta_{9} + \beta_{11} ) q^{16} + ( 4 - 2 \beta_{1} - 2 \beta_{2} - \beta_{3} + 3 \beta_{4} + 2 \beta_{5} + \beta_{7} + \beta_{8} - \beta_{9} ) q^{17} + ( -\beta_{3} - \beta_{4} + \beta_{6} - \beta_{7} + \beta_{9} ) q^{18} + ( -2 + 2 \beta_{1} + \beta_{2} + \beta_{3} - 2 \beta_{6} - \beta_{9} - 2 \beta_{11} ) q^{19} + ( -3 + \beta_{2} - 4 \beta_{3} - 5 \beta_{4} - \beta_{5} + 4 \beta_{6} - 2 \beta_{7} - \beta_{8} + 5 \beta_{9} - \beta_{10} ) q^{20} + ( -1 + \beta_{1} + \beta_{4} - \beta_{7} - \beta_{8} + \beta_{9} ) q^{21} + ( -1 - 2 \beta_{1} + \beta_{2} + 2 \beta_{3} - 2 \beta_{4} + 5 \beta_{6} - \beta_{7} + \beta_{8} + 2 \beta_{9} - \beta_{10} - 2 \beta_{11} ) q^{22} + ( 1 + \beta_{1} + \beta_{2} - 2 \beta_{3} - \beta_{4} + \beta_{6} - \beta_{7} + 2 \beta_{8} + 2 \beta_{9} ) q^{23} + ( 2 + 3 \beta_{3} - \beta_{6} - \beta_{8} - \beta_{11} ) q^{24} + ( 1 - 3 \beta_{2} + 2 \beta_{3} - 2 \beta_{4} + 2 \beta_{5} - 3 \beta_{7} + \beta_{10} - \beta_{11} ) q^{25} + ( 2 \beta_{3} - \beta_{4} - \beta_{6} + \beta_{7} - 3 \beta_{9} + \beta_{11} ) q^{26} -\beta_{1} q^{27} + ( 4 - 4 \beta_{1} - 2 \beta_{2} - 3 \beta_{4} + \beta_{5} + \beta_{6} + \beta_{7} - 2 \beta_{8} - \beta_{9} - 2 \beta_{10} + 2 \beta_{11} ) q^{28} + ( -1 + \beta_{2} - \beta_{4} - \beta_{8} + 3 \beta_{9} - \beta_{10} - \beta_{11} ) q^{29} + ( 1 - 2 \beta_{1} - \beta_{2} + \beta_{3} - 3 \beta_{4} + \beta_{5} + 3 \beta_{6} - 3 \beta_{9} - \beta_{10} - \beta_{11} ) q^{30} + ( -\beta_{3} + 3 \beta_{4} - \beta_{6} + 2 \beta_{7} + 2 \beta_{11} ) q^{31} + ( 1 - \beta_{1} - \beta_{2} - 5 \beta_{3} - \beta_{4} + 2 \beta_{5} + \beta_{6} - \beta_{7} - 2 \beta_{10} + \beta_{11} ) q^{32} + ( \beta_{1} - \beta_{3} + \beta_{5} + \beta_{6} + \beta_{7} + \beta_{8} - \beta_{9} + \beta_{10} + \beta_{11} ) q^{33} + ( -1 + 3 \beta_{1} + \beta_{2} - 7 \beta_{3} - 4 \beta_{4} + \beta_{5} - \beta_{6} - 2 \beta_{7} - 3 \beta_{8} + 7 \beta_{9} - \beta_{11} ) q^{34} + ( 3 + \beta_{2} - 3 \beta_{4} + 3 \beta_{6} - 2 \beta_{7} + 2 \beta_{8} - \beta_{9} - \beta_{10} - 3 \beta_{11} ) q^{35} + ( \beta_{1} + \beta_{3} + \beta_{4} + \beta_{8} + \beta_{10} - \beta_{11} ) q^{36} + ( -2 \beta_{2} - \beta_{3} + 2 \beta_{4} + \beta_{6} - \beta_{7} - 2 \beta_{9} + 2 \beta_{10} ) q^{37} + ( -2 \beta_{1} + 3 \beta_{3} - 2 \beta_{4} - 2 \beta_{5} - 4 \beta_{6} - 2 \beta_{8} - 2 \beta_{10} + \beta_{11} ) q^{38} + ( 1 - \beta_{2} + \beta_{10} ) q^{39} + ( -1 + \beta_{1} + 3 \beta_{2} + \beta_{3} + 7 \beta_{4} - 3 \beta_{5} + \beta_{7} + 3 \beta_{8} + 2 \beta_{10} - 2 \beta_{11} ) q^{40} + ( -4 \beta_{1} + 4 \beta_{3} + \beta_{4} - 2 \beta_{6} + \beta_{7} - \beta_{8} - \beta_{9} + \beta_{11} ) q^{41} + ( 1 - 3 \beta_{1} - \beta_{2} + 2 \beta_{3} + 3 \beta_{4} - 2 \beta_{6} + \beta_{7} - \beta_{8} - 2 \beta_{9} ) q^{42} + ( 3 + 2 \beta_{1} + 2 \beta_{5} + 3 \beta_{6} + \beta_{7} + 3 \beta_{8} - 2 \beta_{9} + \beta_{10} + 3 \beta_{11} ) q^{43} + ( -4 + 9 \beta_{1} + 2 \beta_{2} + 7 \beta_{4} - 2 \beta_{5} - 9 \beta_{6} + 2 \beta_{7} + 3 \beta_{10} ) q^{44} + ( -1 + \beta_{1} - \beta_{2} + \beta_{5} - \beta_{6} - \beta_{8} - \beta_{9} ) q^{45} + ( 5 \beta_{1} + 5 \beta_{3} + 3 \beta_{4} - \beta_{5} + \beta_{8} + \beta_{10} - 2 \beta_{11} ) q^{46} + ( -\beta_{1} - \beta_{5} - \beta_{6} - \beta_{7} + \beta_{8} - \beta_{9} + \beta_{10} ) q^{47} + ( 1 - 4 \beta_{1} - \beta_{2} + \beta_{5} - 3 \beta_{6} + \beta_{7} - \beta_{8} - 2 \beta_{9} - \beta_{10} + \beta_{11} ) q^{48} + ( -2 + 2 \beta_{2} - \beta_{4} - \beta_{5} + \beta_{6} - \beta_{8} - \beta_{9} + \beta_{10} ) q^{49} + ( 1 - \beta_{1} + \beta_{2} - 6 \beta_{3} + 8 \beta_{4} - \beta_{5} - 3 \beta_{6} + 2 \beta_{7} + \beta_{8} + 3 \beta_{9} + 2 \beta_{11} ) q^{50} + ( -1 - \beta_{1} - \beta_{2} + 3 \beta_{3} - 3 \beta_{4} + \beta_{6} - \beta_{7} - 2 \beta_{10} - \beta_{11} ) q^{51} + ( -2 - \beta_{1} - 3 \beta_{3} - 4 \beta_{4} + 4 \beta_{6} - \beta_{7} + \beta_{9} - \beta_{10} ) q^{52} + ( -4 + 2 \beta_{1} + 2 \beta_{3} - 2 \beta_{5} + 3 \beta_{6} + 2 \beta_{7} + \beta_{8} - 2 \beta_{9} + 2 \beta_{11} ) q^{53} + ( -1 + \beta_{1} + \beta_{2} - \beta_{3} + \beta_{9} ) q^{54} + ( -2 - \beta_{1} + 2 \beta_{2} - 3 \beta_{3} - \beta_{4} - 2 \beta_{5} - 3 \beta_{8} + 2 \beta_{9} - 3 \beta_{10} + 3 \beta_{11} ) q^{55} + ( -3 - \beta_{2} - 5 \beta_{3} - 4 \beta_{4} + 3 \beta_{5} + 5 \beta_{6} + \beta_{7} + 3 \beta_{8} + 4 \beta_{9} + \beta_{10} ) q^{56} + ( -\beta_{1} + 2 \beta_{3} + 2 \beta_{4} - 2 \beta_{5} + \beta_{8} - 2 \beta_{9} + \beta_{10} ) q^{57} + ( -2 + 5 \beta_{3} + 3 \beta_{4} - 5 \beta_{6} + 3 \beta_{7} - 3 \beta_{9} ) q^{58} + ( -2 - 2 \beta_{1} + \beta_{3} - 3 \beta_{4} - \beta_{7} - \beta_{8} - 3 \beta_{9} ) q^{59} + ( -4 + 5 \beta_{1} + 2 \beta_{2} - 5 \beta_{3} + \beta_{4} + \beta_{6} + 4 \beta_{9} + \beta_{10} + \beta_{11} ) q^{60} + ( 4 - 5 \beta_{1} - \beta_{2} + \beta_{3} + 6 \beta_{4} - \beta_{5} - 5 \beta_{6} + 2 \beta_{7} - \beta_{9} + \beta_{11} ) q^{61} + ( -\beta_{1} - 6 \beta_{4} + 5 \beta_{6} - \beta_{7} - \beta_{8} + \beta_{9} - \beta_{10} - \beta_{11} ) q^{62} + ( \beta_{1} + \beta_{2} + \beta_{3} + 2 \beta_{4} - \beta_{6} + \beta_{7} + \beta_{11} ) q^{63} + ( -4 + 3 \beta_{1} + 3 \beta_{3} - 6 \beta_{4} - \beta_{5} + 6 \beta_{6} - 3 \beta_{7} + 3 \beta_{9} - \beta_{10} - 3 \beta_{11} ) q^{64} + ( 3 \beta_{1} + 3 \beta_{3} + \beta_{4} + \beta_{5} + 2 \beta_{6} - \beta_{8} - 2 \beta_{9} - \beta_{10} ) q^{65} + ( 1 + 2 \beta_{1} + \beta_{2} - 3 \beta_{4} - 2 \beta_{5} + 4 \beta_{6} - 2 \beta_{7} + \beta_{8} + 5 \beta_{9} + \beta_{10} - \beta_{11} ) q^{66} + ( 1 - 6 \beta_{1} + \beta_{2} - 5 \beta_{4} - \beta_{5} - 2 \beta_{6} - \beta_{7} - 2 \beta_{8} + 4 \beta_{9} - 2 \beta_{10} - \beta_{11} ) q^{67} + ( 2 - 5 \beta_{1} - 2 \beta_{2} + 10 \beta_{3} + 3 \beta_{4} + \beta_{5} + 4 \beta_{6} + \beta_{8} - 4 \beta_{9} - \beta_{10} - 3 \beta_{11} ) q^{68} + ( -1 + 2 \beta_{1} + \beta_{2} - \beta_{3} - \beta_{4} - 2 \beta_{7} + \beta_{8} + \beta_{9} + \beta_{10} - 2 \beta_{11} ) q^{69} + ( -1 + 8 \beta_{1} - \beta_{2} + \beta_{3} + 6 \beta_{4} + \beta_{5} - 8 \beta_{6} - \beta_{7} + 3 \beta_{10} ) q^{70} + ( -4 + 2 \beta_{1} - 2 \beta_{3} + \beta_{5} - \beta_{6} - 2 \beta_{7} - \beta_{8} - 2 \beta_{9} - 2 \beta_{10} - \beta_{11} ) q^{71} + ( 2 + \beta_{3} + \beta_{4} - \beta_{5} - 3 \beta_{6} + \beta_{7} - \beta_{9} + \beta_{11} ) q^{72} + ( -3 + 5 \beta_{1} - 5 \beta_{3} + 2 \beta_{6} - 2 \beta_{7} + 2 \beta_{8} + 5 \beta_{9} + 2 \beta_{10} ) q^{73} + ( 4 - 3 \beta_{1} - 6 \beta_{3} - 3 \beta_{7} - 2 \beta_{8} + 3 \beta_{9} + \beta_{10} - \beta_{11} ) q^{74} + ( 3 \beta_{2} - \beta_{3} - \beta_{5} + \beta_{6} + \beta_{7} - \beta_{8} - 3 \beta_{10} ) q^{75} + ( 2 - 6 \beta_{1} - 2 \beta_{2} - 2 \beta_{3} - 3 \beta_{4} + 4 \beta_{5} + 4 \beta_{6} + \beta_{7} + 3 \beta_{8} - 5 \beta_{9} + \beta_{11} ) q^{76} + ( 10 - 2 \beta_{2} + \beta_{3} - 2 \beta_{4} + \beta_{5} - \beta_{6} + \beta_{8} + 2 \beta_{9} + 2 \beta_{10} ) q^{77} + ( 3 - 3 \beta_{1} - \beta_{2} - 2 \beta_{3} + \beta_{5} - \beta_{9} ) q^{78} + ( 4 - 2 \beta_{1} - 5 \beta_{2} + 2 \beta_{3} - \beta_{4} - 3 \beta_{6} - 4 \beta_{9} - \beta_{10} - \beta_{11} ) q^{79} + ( 2 - 2 \beta_{2} + 5 \beta_{3} - \beta_{4} + \beta_{5} - 6 \beta_{6} + \beta_{7} - 5 \beta_{8} - 5 \beta_{9} - \beta_{11} ) q^{80} + ( -\beta_{4} + \beta_{6} ) q^{81} + ( -3 - \beta_{1} + 3 \beta_{2} - 5 \beta_{3} - \beta_{4} + \beta_{5} + \beta_{6} + 3 \beta_{7} - 2 \beta_{10} + 4 \beta_{11} ) q^{82} + ( 2 + \beta_{1} - 5 \beta_{3} + 6 \beta_{4} + 3 \beta_{5} + \beta_{7} + 5 \beta_{9} + 3 \beta_{10} + \beta_{11} ) q^{83} + ( 1 - \beta_{1} - \beta_{2} - 5 \beta_{3} - 2 \beta_{4} + 2 \beta_{5} - \beta_{6} - \beta_{8} + \beta_{9} - 2 \beta_{10} + 2 \beta_{11} ) q^{84} + ( 2 + \beta_{1} + 2 \beta_{2} + \beta_{4} + 4 \beta_{5} - 2 \beta_{6} + 4 \beta_{7} + \beta_{8} - 8 \beta_{9} + \beta_{10} - 2 \beta_{11} ) q^{85} + ( 2 + 7 \beta_{1} - \beta_{4} - 2 \beta_{5} + 8 \beta_{6} - 2 \beta_{7} + 3 \beta_{8} + 6 \beta_{9} + 3 \beta_{10} ) q^{86} + ( 3 \beta_{1} + \beta_{4} - \beta_{5} + \beta_{8} + \beta_{10} + \beta_{11} ) q^{87} + ( 7 - 12 \beta_{1} - 5 \beta_{2} + 5 \beta_{3} - 7 \beta_{4} - 2 \beta_{6} - 2 \beta_{7} - 5 \beta_{8} - 7 \beta_{9} - 5 \beta_{10} - 2 \beta_{11} ) q^{88} + ( 2 - 5 \beta_{1} + 2 \beta_{2} - 4 \beta_{3} - \beta_{4} - \beta_{5} + 5 \beta_{6} + 2 \beta_{7} + \beta_{10} + \beta_{11} ) q^{89} + ( -3 \beta_{1} - 2 \beta_{3} - 2 \beta_{4} - \beta_{5} + 2 \beta_{6} - \beta_{7} + 3 \beta_{9} - \beta_{10} ) q^{90} + ( 5 - 2 \beta_{1} - 3 \beta_{3} + 2 \beta_{5} - \beta_{6} - 2 \beta_{7} + 2 \beta_{8} + 3 \beta_{9} - 2 \beta_{11} ) q^{91} + ( 7 - 5 \beta_{1} - \beta_{2} + 5 \beta_{3} + 3 \beta_{4} - 10 \beta_{6} + 3 \beta_{7} - 3 \beta_{8} - 10 \beta_{9} + 3 \beta_{11} ) q^{92} + ( 1 - 2 \beta_{2} + \beta_{3} + 2 \beta_{5} - \beta_{9} ) q^{93} + ( 1 + \beta_{2} - 2 \beta_{3} + 2 \beta_{6} - \beta_{7} - \beta_{10} ) q^{94} + ( -7 + 10 \beta_{1} - 3 \beta_{2} + \beta_{3} + \beta_{4} + 2 \beta_{5} - 3 \beta_{6} + \beta_{9} + 3 \beta_{10} ) q^{95} + ( -3 + \beta_{2} - 2 \beta_{3} - \beta_{4} + \beta_{5} + 2 \beta_{6} - 2 \beta_{7} + \beta_{8} + \beta_{9} - \beta_{10} ) q^{96} + ( -5 + 5 \beta_{1} - \beta_{2} + 5 \beta_{3} + \beta_{5} + \beta_{7} - \beta_{8} - 2 \beta_{10} + 2 \beta_{11} ) q^{97} + ( 2 - 3 \beta_{1} + 3 \beta_{3} + \beta_{6} - \beta_{7} + \beta_{8} - \beta_{9} + \beta_{10} ) q^{98} + ( 1 - \beta_{1} - \beta_{2} - \beta_{3} + \beta_{5} + \beta_{6} + \beta_{8} + \beta_{9} - \beta_{11} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12q - 3q^{2} - 3q^{4} + 6q^{5} - 3q^{6} - 9q^{7} + 3q^{8} + O(q^{10}) \) \( 12q - 3q^{2} - 3q^{4} + 6q^{5} - 3q^{6} - 9q^{7} + 3q^{8} - 18q^{10} - 9q^{11} - 6q^{12} - 3q^{13} - 3q^{14} + 6q^{15} + 33q^{16} + 12q^{17} - 9q^{19} - 18q^{20} - 24q^{22} + 9q^{23} + 30q^{24} - 12q^{25} - 6q^{27} + 30q^{28} - 6q^{30} - 3q^{32} - 9q^{33} + 21q^{34} + 30q^{35} - 3q^{36} - 12q^{37} + 18q^{38} + 6q^{39} - 3q^{40} - 18q^{41} - 3q^{42} + 15q^{43} + 15q^{44} - 9q^{45} + 27q^{46} - 9q^{47} - 12q^{48} - 9q^{49} + 9q^{50} - 15q^{51} - 27q^{52} - 30q^{53} - 3q^{54} + 15q^{55} - 78q^{56} - 3q^{57} - 24q^{58} - 30q^{59} - 15q^{60} + 21q^{61} + 3q^{62} + 9q^{63} - 21q^{64} + 21q^{65} + 30q^{66} + 3q^{67} - 21q^{68} - 6q^{69} + 18q^{70} - 30q^{71} + 30q^{72} - 24q^{73} + 39q^{74} + 30q^{75} - 60q^{76} + 96q^{77} + 9q^{78} + 24q^{79} + 42q^{80} - 33q^{82} + 3q^{83} + 3q^{84} + 3q^{85} + 51q^{86} + 15q^{87} + 42q^{88} + 3q^{89} - 9q^{90} + 24q^{91} + 69q^{92} - 6q^{93} + 18q^{94} - 54q^{95} - 42q^{96} - 27q^{97} - 3q^{98} - 9q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{12} - 6 x^{11} + 33 x^{10} - 110 x^{9} + 318 x^{8} - 678 x^{7} + 1225 x^{6} - 1698 x^{5} + 1905 x^{4} - 1584 x^{3} + 936 x^{2} - 342 x + 57\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\((\)\( 6 \nu^{11} - 33 \nu^{10} + 127 \nu^{9} - 324 \nu^{8} + 438 \nu^{7} - 252 \nu^{6} - 1278 \nu^{5} + 3234 \nu^{4} - 5701 \nu^{3} + 5358 \nu^{2} - 3477 \nu + 1060 \)\()/218\)
\(\beta_{2}\)\(=\)\((\)\( 36 \nu^{11} - 89 \nu^{10} + 544 \nu^{9} - 745 \nu^{8} + 2301 \nu^{7} - 1512 \nu^{6} + 3777 \nu^{5} - 2069 \nu^{4} + 5579 \nu^{3} - 6002 \nu^{2} + 5080 \nu - 1706 \)\()/218\)
\(\beta_{3}\)\(=\)\((\)\( -27 \nu^{11} + 94 \nu^{10} - 408 \nu^{9} + 586 \nu^{8} - 445 \nu^{7} - 2572 \nu^{6} + 9021 \nu^{5} - 18150 \nu^{4} + 24401 \nu^{3} - 20623 \nu^{2} + 10469 \nu - 2263 \)\()/218\)
\(\beta_{4}\)\(=\)\((\)\( 26 \nu^{11} - 34 \nu^{10} + 187 \nu^{9} + 449 \nu^{8} - 1590 \nu^{7} + 6865 \nu^{6} - 12623 \nu^{5} + 20118 \nu^{4} - 19981 \nu^{3} + 12972 \nu^{2} - 4712 \nu + 524 \)\()/218\)
\(\beta_{5}\)\(=\)\((\)\( -2 \nu^{11} + 120 \nu^{10} - 551 \nu^{9} + 2615 \nu^{8} - 6686 \nu^{7} + 15780 \nu^{6} - 23990 \nu^{5} + 31404 \nu^{4} - 25822 \nu^{3} + 15545 \nu^{2} - 4618 \nu + 555 \)\()/218\)
\(\beta_{6}\)\(=\)\((\)\( -27 \nu^{11} + 203 \nu^{10} - 953 \nu^{9} + 3311 \nu^{8} - 8075 \nu^{7} + 16285 \nu^{6} - 23134 \nu^{5} + 26758 \nu^{4} - 19635 \nu^{3} + 9570 \nu^{2} - 1957 \nu - 83 \)\()/218\)
\(\beta_{7}\)\(=\)\((\)\( \nu^{10} - 5 \nu^{9} + 25 \nu^{8} - 70 \nu^{7} + 173 \nu^{6} - 295 \nu^{5} + 412 \nu^{4} - 404 \nu^{3} + 279 \nu^{2} - 116 \nu + 26 \)\()/2\)
\(\beta_{8}\)\(=\)\((\)\( 2 \nu^{11} + 98 \nu^{10} - 539 \nu^{9} + 2726 \nu^{8} - 8138 \nu^{7} + 20190 \nu^{6} - 36614 \nu^{5} + 52308 \nu^{4} - 55710 \nu^{3} + 41571 \nu^{2} - 19689 \nu + 4350 \)\()/218\)
\(\beta_{9}\)\(=\)\((\)\( 26 \nu^{11} - 252 \nu^{10} + 1277 \nu^{9} - 4892 \nu^{8} + 13234 \nu^{7} - 28887 \nu^{6} + 47327 \nu^{5} - 60760 \nu^{4} + 56973 \nu^{3} - 36296 \nu^{2} + 13927 \nu - 2201 \)\()/218\)
\(\beta_{10}\)\(=\)\((\)\( 36 \nu^{11} - 307 \nu^{10} + 1634 \nu^{9} - 6086 \nu^{8} + 17125 \nu^{7} - 37373 \nu^{6} + 64054 \nu^{5} - 84255 \nu^{4} + 84604 \nu^{3} - 58431 \nu^{2} + 25899 \nu - 5194 \)\()/218\)
\(\beta_{11}\)\(=\)\((\)\( 91 \nu^{11} - 664 \nu^{10} + 3325 \nu^{9} - 11563 \nu^{8} + 30405 \nu^{7} - 62791 \nu^{6} + 99754 \nu^{5} - 123498 \nu^{4} + 112914 \nu^{3} - 71337 \nu^{2} + 28743 \nu - 5469 \)\()/218\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(2 \beta_{11} - \beta_{10} - \beta_{9} + \beta_{8} + \beta_{7} + 2 \beta_{6} - \beta_{5} + \beta_{4} + 2 \beta_{3} - \beta_{2} - \beta_{1} + 2\)\()/3\)
\(\nu^{2}\)\(=\)\((\)\(2 \beta_{11} - \beta_{10} - \beta_{9} + \beta_{8} + 4 \beta_{7} - \beta_{6} - \beta_{5} + \beta_{4} + 5 \beta_{3} - \beta_{2} - \beta_{1} - 7\)\()/3\)
\(\nu^{3}\)\(=\)\((\)\(-7 \beta_{11} + 2 \beta_{10} + 5 \beta_{9} - 5 \beta_{8} + \beta_{7} - 13 \beta_{6} + 5 \beta_{5} - 2 \beta_{4} - 4 \beta_{3} + 2 \beta_{2} - 4 \beta_{1} - 10\)\()/3\)
\(\nu^{4}\)\(=\)\((\)\(-16 \beta_{11} + 11 \beta_{10} + 8 \beta_{9} - 8 \beta_{8} - 20 \beta_{7} - 7 \beta_{6} + 14 \beta_{5} - 2 \beta_{4} - 31 \beta_{3} - \beta_{2} - 7 \beta_{1} + 32\)\()/3\)
\(\nu^{5}\)\(=\)\((\)\(23 \beta_{11} + 14 \beta_{10} - 34 \beta_{9} + 25 \beta_{8} - 26 \beta_{7} + 65 \beta_{6} - 10 \beta_{5} + 4 \beta_{4} - 10 \beta_{3} - 16 \beta_{2} + 29 \beta_{1} + 77\)\()/3\)
\(\nu^{6}\)\(=\)\((\)\(110 \beta_{11} - 49 \beta_{10} - 88 \beta_{9} + 67 \beta_{8} + 85 \beta_{7} + 101 \beta_{6} - 94 \beta_{5} - 17 \beta_{4} + 161 \beta_{3} + 17 \beta_{2} + 104 \beta_{1} - 121\)\()/3\)
\(\nu^{7}\)\(=\)\((\)\(-25 \beta_{11} - 187 \beta_{10} + 158 \beta_{9} - 101 \beta_{8} + 229 \beta_{7} - 271 \beta_{6} - 46 \beta_{5} - 56 \beta_{4} + 212 \beta_{3} + 149 \beta_{2} - 82 \beta_{1} - 535\)\()/3\)
\(\nu^{8}\)\(=\)\((\)\(-652 \beta_{11} + 41 \beta_{10} + 761 \beta_{9} - 509 \beta_{8} - 263 \beta_{7} - 826 \beta_{6} + 515 \beta_{5} + 151 \beta_{4} - 724 \beta_{3} - 19 \beta_{2} - 829 \beta_{1} + 257\)\()/3\)
\(\nu^{9}\)\(=\)\((\)\(-478 \beta_{11} + 1304 \beta_{10} - 268 \beta_{9} + 160 \beta_{8} - 1571 \beta_{7} + 821 \beta_{6} + 812 \beta_{5} + 640 \beta_{4} - 1951 \beta_{3} - 1108 \beta_{2} - 406 \beta_{1} + 3359\)\()/3\)
\(\nu^{10}\)\(=\)\((\)\(3353 \beta_{11} + 1451 \beta_{10} - 5224 \beta_{9} + 3352 \beta_{8} + 25 \beta_{7} + 5630 \beta_{6} - 2308 \beta_{5} - 521 \beta_{4} + 2375 \beta_{3} - 913 \beta_{2} + 4949 \beta_{1} + 1451\)\()/3\)
\(\nu^{11}\)\(=\)\((\)\(6041 \beta_{11} - 6547 \beta_{10} - 3685 \beta_{9} + 2323 \beta_{8} + 9241 \beta_{7} + 326 \beta_{6} - 7273 \beta_{5} - 5168 \beta_{4} + 14021 \beta_{3} + 6587 \beta_{2} + 7973 \beta_{1} - 18736\)\()/3\)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/57\mathbb{Z}\right)^\times\).

\(n\) \(20\) \(40\)
\(\chi(n)\) \(1\) \(-\beta_{3} + \beta_{9}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
4.1
0.500000 1.80139i
0.500000 0.168222i
0.500000 + 1.74095i
0.500000 2.42499i
0.500000 1.74095i
0.500000 + 2.42499i
0.500000 0.677980i
0.500000 + 1.96356i
0.500000 + 1.80139i
0.500000 + 0.168222i
0.500000 + 0.677980i
0.500000 1.96356i
−2.23121 0.812094i 0.173648 + 0.984808i 2.78672 + 2.33833i 2.16379 1.81563i 0.412311 2.33833i 1.05756 1.83175i −1.94440 3.36780i −0.939693 + 0.342020i −6.30233 + 2.29386i
4.2 0.791518 + 0.288089i 0.173648 + 0.984808i −0.988583 0.829520i 1.30800 1.09754i −0.146267 + 0.829520i −1.96517 + 3.40377i −1.38582 2.40031i −0.939693 + 0.342020i 1.35149 0.491903i
16.1 −0.958464 0.804247i −0.939693 + 0.342020i −0.0754558 0.427931i 0.755623 4.28535i 1.17573 + 0.427931i 0.898157 + 1.55565i −1.52303 + 2.63796i 0.766044 0.642788i −4.17072 + 3.49965i
16.2 1.22451 + 1.02748i −0.939693 + 0.342020i 0.0964003 + 0.546713i −0.174371 + 0.988909i −1.50208 0.546713i −1.28482 2.22537i 1.15479 2.00015i 0.766044 0.642788i −1.22961 + 1.03176i
25.1 −0.958464 + 0.804247i −0.939693 0.342020i −0.0754558 + 0.427931i 0.755623 + 4.28535i 1.17573 0.427931i 0.898157 1.55565i −1.52303 2.63796i 0.766044 + 0.642788i −4.17072 3.49965i
25.2 1.22451 1.02748i −0.939693 0.342020i 0.0964003 0.546713i −0.174371 0.988909i −1.50208 + 0.546713i −1.28482 + 2.22537i 1.15479 + 2.00015i 0.766044 + 0.642788i −1.22961 1.03176i
28.1 −0.458021 2.59757i 0.766044 0.642788i −4.65819 + 1.69544i 1.91800 + 0.698096i −2.02055 1.69544i −1.30802 + 2.26556i 3.89993 + 6.75488i 0.173648 0.984808i 0.934866 5.30189i
28.2 0.131669 + 0.746734i 0.766044 0.642788i 1.33911 0.487396i −2.97104 1.08137i 0.580856 + 0.487396i −1.89771 + 3.28694i 1.29853 + 2.24912i 0.173648 0.984808i 0.416301 2.36096i
43.1 −2.23121 + 0.812094i 0.173648 0.984808i 2.78672 2.33833i 2.16379 + 1.81563i 0.412311 + 2.33833i 1.05756 + 1.83175i −1.94440 + 3.36780i −0.939693 0.342020i −6.30233 2.29386i
43.2 0.791518 0.288089i 0.173648 0.984808i −0.988583 + 0.829520i 1.30800 + 1.09754i −0.146267 0.829520i −1.96517 3.40377i −1.38582 + 2.40031i −0.939693 0.342020i 1.35149 + 0.491903i
55.1 −0.458021 + 2.59757i 0.766044 + 0.642788i −4.65819 1.69544i 1.91800 0.698096i −2.02055 + 1.69544i −1.30802 2.26556i 3.89993 6.75488i 0.173648 + 0.984808i 0.934866 + 5.30189i
55.2 0.131669 0.746734i 0.766044 + 0.642788i 1.33911 + 0.487396i −2.97104 + 1.08137i 0.580856 0.487396i −1.89771 3.28694i 1.29853 2.24912i 0.173648 + 0.984808i 0.416301 + 2.36096i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 55.2
Significant digits:
Format:

Inner twists

Char. orbit Parity Mult. Self Twist Proved
1.a Even 1 trivial yes
19.e Even 1 yes

Hecke kernels

This newform can be constructed as the kernel of the linear operator \(T_{2}^{12} + \cdots\) acting on \(S_{2}^{\mathrm{new}}(57, [\chi])\).