Defining parameters
Level: | \( N \) | \(=\) | \( 57 = 3 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 57.e (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 19 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(13\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(57, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 16 | 8 | 8 |
Cusp forms | 8 | 8 | 0 |
Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(57, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
57.2.e.a | $2$ | $0.455$ | \(\Q(\sqrt{-3}) \) | None | \(-1\) | \(1\) | \(0\) | \(2\) | \(q+(-1+\zeta_{6})q^{2}+(1-\zeta_{6})q^{3}+\zeta_{6}q^{4}+\cdots\) |
57.2.e.b | $6$ | $0.455$ | 6.0.954288.1 | None | \(1\) | \(-3\) | \(-2\) | \(-2\) | \(q+(-\beta _{4}+\beta _{5})q^{2}-\beta _{3}q^{3}+(-2-\beta _{1}+\cdots)q^{4}+\cdots\) |