Properties

Label 57.10.a
Level $57$
Weight $10$
Character orbit 57.a
Rep. character $\chi_{57}(1,\cdot)$
Character field $\Q$
Dimension $26$
Newform subspaces $4$
Sturm bound $66$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 57 = 3 \cdot 19 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 57.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(66\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_0(57))\).

Total New Old
Modular forms 62 26 36
Cusp forms 58 26 32
Eisenstein series 4 0 4

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)\(19\)FrickeDim
\(+\)\(+\)\(+\)\(7\)
\(+\)\(-\)\(-\)\(6\)
\(-\)\(+\)\(-\)\(8\)
\(-\)\(-\)\(+\)\(5\)
Plus space\(+\)\(12\)
Minus space\(-\)\(14\)

Trace form

\( 26 q + 36 q^{2} + 5804 q^{4} + 5120 q^{5} - 2592 q^{6} - 3660 q^{7} + 43356 q^{8} + 170586 q^{9} + O(q^{10}) \) \( 26 q + 36 q^{2} + 5804 q^{4} + 5120 q^{5} - 2592 q^{6} - 3660 q^{7} + 43356 q^{8} + 170586 q^{9} - 57656 q^{10} - 151532 q^{11} + 115992 q^{12} + 315320 q^{13} - 173084 q^{14} + 38556 q^{15} + 1440548 q^{16} + 77408 q^{17} + 236196 q^{18} - 521284 q^{19} + 1899952 q^{20} - 2796244 q^{22} + 4528456 q^{23} + 1950804 q^{24} + 5749530 q^{25} - 12306736 q^{26} - 8690848 q^{28} + 7965392 q^{29} + 15867576 q^{30} + 14278452 q^{31} + 4844028 q^{32} - 301644 q^{33} + 14844076 q^{34} - 16675932 q^{35} + 38080044 q^{36} - 364872 q^{37} - 14262480 q^{39} - 65183244 q^{40} + 11203352 q^{41} - 10930464 q^{42} + 55210252 q^{43} - 155807344 q^{44} + 33592320 q^{45} + 163567556 q^{46} + 47518380 q^{47} - 51965712 q^{48} - 27210250 q^{49} - 175404256 q^{50} + 26882928 q^{51} + 429419652 q^{52} + 1998088 q^{53} - 17006112 q^{54} - 303436116 q^{55} + 704710320 q^{56} - 21112002 q^{57} - 155803496 q^{58} + 81966328 q^{59} - 213099012 q^{60} - 308714184 q^{61} + 104610160 q^{62} - 24013260 q^{63} + 161096396 q^{64} + 186156840 q^{65} + 1509192 q^{66} - 125028872 q^{67} - 672513176 q^{68} - 86076432 q^{69} + 558128436 q^{70} - 135829512 q^{71} + 284458716 q^{72} + 984080344 q^{73} - 641507624 q^{74} - 39145680 q^{75} - 333621760 q^{76} + 327836860 q^{77} + 439665084 q^{78} - 558969468 q^{79} + 1217924656 q^{80} + 1119214746 q^{81} - 1688998016 q^{82} + 611719496 q^{83} + 856826424 q^{84} - 1672616004 q^{85} - 2803316004 q^{86} - 1113991704 q^{87} + 502846224 q^{88} + 497391944 q^{89} - 378281016 q^{90} - 1193002920 q^{91} - 4352375320 q^{92} - 442877544 q^{93} + 4813257936 q^{94} - 653168852 q^{95} + 807556716 q^{96} - 1343460732 q^{97} - 2362707704 q^{98} - 994201452 q^{99} + O(q^{100}) \)

Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_0(57))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3 19
57.10.a.a 57.a 1.a $5$ $29.357$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 57.10.a.a \(-15\) \(405\) \(-1104\) \(-11318\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-3+\beta _{1})q^{2}+3^{4}q^{3}+(157+\beta _{3}+\cdots)q^{4}+\cdots\)
57.10.a.b 57.a 1.a $6$ $29.357$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 57.10.a.b \(33\) \(-486\) \(1158\) \(7890\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(6-\beta _{1})q^{2}-3^{4}q^{3}+(12^{2}-8\beta _{1}+\cdots)q^{4}+\cdots\)
57.10.a.c 57.a 1.a $7$ $29.357$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 57.10.a.c \(1\) \(-567\) \(1164\) \(-9720\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}-3^{4}q^{3}+(193-2\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\)
57.10.a.d 57.a 1.a $8$ $29.357$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 57.10.a.d \(17\) \(648\) \(3902\) \(9488\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(2+\beta _{1})q^{2}+3^{4}q^{3}+(354+4\beta _{1}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_0(57))\) into lower level spaces

\( S_{10}^{\mathrm{old}}(\Gamma_0(57)) \simeq \) \(S_{10}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 2}\)