Defining parameters
Level: | \( N \) | \(=\) | \( 57 = 3 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 10 \) |
Character orbit: | \([\chi]\) | \(=\) | 57.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(66\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_0(57))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 62 | 26 | 36 |
Cusp forms | 58 | 26 | 32 |
Eisenstein series | 4 | 0 | 4 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(19\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(7\) |
\(+\) | \(-\) | \(-\) | \(6\) |
\(-\) | \(+\) | \(-\) | \(8\) |
\(-\) | \(-\) | \(+\) | \(5\) |
Plus space | \(+\) | \(12\) | |
Minus space | \(-\) | \(14\) |
Trace form
Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_0(57))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 3 | 19 | |||||||
57.10.a.a | $5$ | $29.357$ | \(\mathbb{Q}[x]/(x^{5} - \cdots)\) | None | \(-15\) | \(405\) | \(-1104\) | \(-11318\) | $-$ | $-$ | \(q+(-3+\beta _{1})q^{2}+3^{4}q^{3}+(157+\beta _{3}+\cdots)q^{4}+\cdots\) | |
57.10.a.b | $6$ | $29.357$ | \(\mathbb{Q}[x]/(x^{6} - \cdots)\) | None | \(33\) | \(-486\) | \(1158\) | \(7890\) | $+$ | $-$ | \(q+(6-\beta _{1})q^{2}-3^{4}q^{3}+(12^{2}-8\beta _{1}+\cdots)q^{4}+\cdots\) | |
57.10.a.c | $7$ | $29.357$ | \(\mathbb{Q}[x]/(x^{7} - \cdots)\) | None | \(1\) | \(-567\) | \(1164\) | \(-9720\) | $+$ | $+$ | \(q+\beta _{1}q^{2}-3^{4}q^{3}+(193-2\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\) | |
57.10.a.d | $8$ | $29.357$ | \(\mathbb{Q}[x]/(x^{8} - \cdots)\) | None | \(17\) | \(648\) | \(3902\) | \(9488\) | $-$ | $+$ | \(q+(2+\beta _{1})q^{2}+3^{4}q^{3}+(354+4\beta _{1}+\cdots)q^{4}+\cdots\) |
Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_0(57))\) into lower level spaces
\( S_{10}^{\mathrm{old}}(\Gamma_0(57)) \simeq \) \(S_{10}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 2}\)