Properties

Label 567.2.w.a.424.19
Level $567$
Weight $2$
Character 567.424
Analytic conductor $4.528$
Analytic rank $0$
Dimension $132$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [567,2,Mod(37,567)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(567, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([14, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("567.37");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 567 = 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 567.w (of order \(9\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.52751779461\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{9})\)
Twist minimal: no (minimal twist has level 189)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 424.19
Character \(\chi\) \(=\) 567.424
Dual form 567.2.w.a.226.19

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.42989 + 1.19982i) q^{2} +(0.257724 + 1.46163i) q^{4} +(1.12074 - 0.940415i) q^{5} +(-1.46549 - 2.20281i) q^{7} +(0.481419 - 0.833843i) q^{8} +2.73088 q^{10} +(3.49769 + 2.93491i) q^{11} +(0.925783 + 0.336957i) q^{13} +(0.547488 - 4.90810i) q^{14} +(4.47818 - 1.62992i) q^{16} +1.24047 q^{17} +1.43605 q^{19} +(1.66338 + 1.39574i) q^{20} +(1.47995 + 8.39323i) q^{22} +(0.896333 + 0.326239i) q^{23} +(-0.496556 + 2.81611i) q^{25} +(0.919482 + 1.59259i) q^{26} +(2.84199 - 2.70971i) q^{28} +(-5.18835 + 1.88840i) q^{29} +(-1.16126 - 6.58584i) q^{31} +(6.54939 + 2.38378i) q^{32} +(1.77374 + 1.48834i) q^{34} +(-3.71398 - 1.09061i) q^{35} +(1.44382 - 2.50077i) q^{37} +(2.05340 + 1.72301i) q^{38} +(-0.244611 - 1.38726i) q^{40} +(-11.1576 - 4.06104i) q^{41} +(0.559660 - 3.17399i) q^{43} +(-3.38830 + 5.86872i) q^{44} +(0.890232 + 1.54193i) q^{46} +(-1.96585 + 11.1489i) q^{47} +(-2.70470 + 6.45636i) q^{49} +(-4.08886 + 3.43096i) q^{50} +(-0.253909 + 1.43999i) q^{52} +(-2.32509 + 4.02717i) q^{53} +6.68005 q^{55} +(-2.54231 + 0.161512i) q^{56} +(-9.68454 - 3.52488i) q^{58} +(-5.93016 - 2.15840i) q^{59} +(0.911917 - 5.17174i) q^{61} +(6.24136 - 10.8104i) q^{62} +(1.73924 + 3.01245i) q^{64} +(1.35444 - 0.492978i) q^{65} +(-10.0646 + 8.44521i) q^{67} +(0.319698 + 1.81310i) q^{68} +(-4.00206 - 6.01559i) q^{70} +(5.80593 + 10.0562i) q^{71} +(-4.96509 - 8.59979i) q^{73} +(5.06499 - 1.84351i) q^{74} +(0.370105 + 2.09897i) q^{76} +(1.33922 - 12.0058i) q^{77} +(10.8394 + 9.09537i) q^{79} +(3.48608 - 6.03807i) q^{80} +(-11.0817 - 19.1940i) q^{82} +(7.82112 - 2.84665i) q^{83} +(1.39025 - 1.16656i) q^{85} +(4.60848 - 3.86697i) q^{86} +(4.13111 - 1.50360i) q^{88} +0.614975 q^{89} +(-0.614470 - 2.53313i) q^{91} +(-0.245832 + 1.39418i) q^{92} +(-16.1877 + 13.5831i) q^{94} +(1.60945 - 1.35049i) q^{95} +(-0.991251 + 5.62167i) q^{97} +(-11.6139 + 5.98675i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q + 3 q^{2} - 3 q^{4} + 3 q^{5} - 6 q^{7} + 6 q^{8} - 6 q^{10} - 3 q^{11} - 12 q^{13} - 15 q^{14} - 9 q^{16} + 54 q^{17} - 6 q^{19} + 18 q^{20} - 12 q^{22} - 3 q^{25} - 30 q^{26} - 12 q^{28} + 30 q^{29}+ \cdots - 99 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/567\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{8}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.42989 + 1.19982i 1.01109 + 0.848403i 0.988482 0.151341i \(-0.0483592\pi\)
0.0226062 + 0.999744i \(0.492804\pi\)
\(3\) 0 0
\(4\) 0.257724 + 1.46163i 0.128862 + 0.730813i
\(5\) 1.12074 0.940415i 0.501212 0.420566i −0.356812 0.934176i \(-0.616136\pi\)
0.858024 + 0.513610i \(0.171692\pi\)
\(6\) 0 0
\(7\) −1.46549 2.20281i −0.553902 0.832582i
\(8\) 0.481419 0.833843i 0.170207 0.294808i
\(9\) 0 0
\(10\) 2.73088 0.863579
\(11\) 3.49769 + 2.93491i 1.05459 + 0.884910i 0.993569 0.113227i \(-0.0361186\pi\)
0.0610251 + 0.998136i \(0.480563\pi\)
\(12\) 0 0
\(13\) 0.925783 + 0.336957i 0.256766 + 0.0934552i 0.467196 0.884154i \(-0.345264\pi\)
−0.210430 + 0.977609i \(0.567486\pi\)
\(14\) 0.547488 4.90810i 0.146322 1.31175i
\(15\) 0 0
\(16\) 4.47818 1.62992i 1.11954 0.407481i
\(17\) 1.24047 0.300858 0.150429 0.988621i \(-0.451935\pi\)
0.150429 + 0.988621i \(0.451935\pi\)
\(18\) 0 0
\(19\) 1.43605 0.329453 0.164727 0.986339i \(-0.447326\pi\)
0.164727 + 0.986339i \(0.447326\pi\)
\(20\) 1.66338 + 1.39574i 0.371942 + 0.312097i
\(21\) 0 0
\(22\) 1.47995 + 8.39323i 0.315527 + 1.78944i
\(23\) 0.896333 + 0.326239i 0.186898 + 0.0680254i 0.433774 0.901022i \(-0.357182\pi\)
−0.246876 + 0.969047i \(0.579404\pi\)
\(24\) 0 0
\(25\) −0.496556 + 2.81611i −0.0993113 + 0.563222i
\(26\) 0.919482 + 1.59259i 0.180325 + 0.312333i
\(27\) 0 0
\(28\) 2.84199 2.70971i 0.537085 0.512087i
\(29\) −5.18835 + 1.88840i −0.963452 + 0.350668i −0.775385 0.631488i \(-0.782444\pi\)
−0.188067 + 0.982156i \(0.560222\pi\)
\(30\) 0 0
\(31\) −1.16126 6.58584i −0.208569 1.18285i −0.891724 0.452579i \(-0.850504\pi\)
0.683156 0.730273i \(-0.260607\pi\)
\(32\) 6.54939 + 2.38378i 1.15778 + 0.421397i
\(33\) 0 0
\(34\) 1.77374 + 1.48834i 0.304194 + 0.255249i
\(35\) −3.71398 1.09061i −0.627778 0.184347i
\(36\) 0 0
\(37\) 1.44382 2.50077i 0.237363 0.411124i −0.722594 0.691273i \(-0.757050\pi\)
0.959957 + 0.280149i \(0.0903837\pi\)
\(38\) 2.05340 + 1.72301i 0.333106 + 0.279509i
\(39\) 0 0
\(40\) −0.244611 1.38726i −0.0386764 0.219345i
\(41\) −11.1576 4.06104i −1.74253 0.634227i −0.743135 0.669141i \(-0.766662\pi\)
−0.999390 + 0.0349137i \(0.988884\pi\)
\(42\) 0 0
\(43\) 0.559660 3.17399i 0.0853473 0.484029i −0.911934 0.410337i \(-0.865411\pi\)
0.997281 0.0736913i \(-0.0234780\pi\)
\(44\) −3.38830 + 5.86872i −0.510806 + 0.884742i
\(45\) 0 0
\(46\) 0.890232 + 1.54193i 0.131258 + 0.227345i
\(47\) −1.96585 + 11.1489i −0.286749 + 1.62623i 0.412223 + 0.911083i \(0.364752\pi\)
−0.698972 + 0.715149i \(0.746359\pi\)
\(48\) 0 0
\(49\) −2.70470 + 6.45636i −0.386386 + 0.922337i
\(50\) −4.08886 + 3.43096i −0.578252 + 0.485211i
\(51\) 0 0
\(52\) −0.253909 + 1.43999i −0.0352109 + 0.199691i
\(53\) −2.32509 + 4.02717i −0.319376 + 0.553175i −0.980358 0.197227i \(-0.936806\pi\)
0.660982 + 0.750402i \(0.270140\pi\)
\(54\) 0 0
\(55\) 6.68005 0.900738
\(56\) −2.54231 + 0.161512i −0.339730 + 0.0215829i
\(57\) 0 0
\(58\) −9.68454 3.52488i −1.27164 0.462840i
\(59\) −5.93016 2.15840i −0.772042 0.281000i −0.0741915 0.997244i \(-0.523638\pi\)
−0.697850 + 0.716244i \(0.745860\pi\)
\(60\) 0 0
\(61\) 0.911917 5.17174i 0.116759 0.662173i −0.869105 0.494627i \(-0.835305\pi\)
0.985864 0.167546i \(-0.0535843\pi\)
\(62\) 6.24136 10.8104i 0.792654 1.37292i
\(63\) 0 0
\(64\) 1.73924 + 3.01245i 0.217405 + 0.376557i
\(65\) 1.35444 0.492978i 0.167998 0.0611463i
\(66\) 0 0
\(67\) −10.0646 + 8.44521i −1.22959 + 1.03175i −0.231323 + 0.972877i \(0.574305\pi\)
−0.998266 + 0.0588702i \(0.981250\pi\)
\(68\) 0.319698 + 1.81310i 0.0387691 + 0.219871i
\(69\) 0 0
\(70\) −4.00206 6.01559i −0.478338 0.719000i
\(71\) 5.80593 + 10.0562i 0.689037 + 1.19345i 0.972150 + 0.234360i \(0.0752995\pi\)
−0.283113 + 0.959087i \(0.591367\pi\)
\(72\) 0 0
\(73\) −4.96509 8.59979i −0.581120 1.00653i −0.995347 0.0963557i \(-0.969281\pi\)
0.414227 0.910174i \(-0.364052\pi\)
\(74\) 5.06499 1.84351i 0.588793 0.214303i
\(75\) 0 0
\(76\) 0.370105 + 2.09897i 0.0424540 + 0.240769i
\(77\) 1.33922 12.0058i 0.152618 1.36819i
\(78\) 0 0
\(79\) 10.8394 + 9.09537i 1.21953 + 1.02331i 0.998849 + 0.0479629i \(0.0152729\pi\)
0.220683 + 0.975346i \(0.429172\pi\)
\(80\) 3.48608 6.03807i 0.389756 0.675077i
\(81\) 0 0
\(82\) −11.0817 19.1940i −1.22377 2.11962i
\(83\) 7.82112 2.84665i 0.858479 0.312461i 0.124987 0.992158i \(-0.460111\pi\)
0.733493 + 0.679697i \(0.237889\pi\)
\(84\) 0 0
\(85\) 1.39025 1.16656i 0.150793 0.126531i
\(86\) 4.60848 3.86697i 0.496945 0.416987i
\(87\) 0 0
\(88\) 4.13111 1.50360i 0.440378 0.160285i
\(89\) 0.614975 0.0651872 0.0325936 0.999469i \(-0.489623\pi\)
0.0325936 + 0.999469i \(0.489623\pi\)
\(90\) 0 0
\(91\) −0.614470 2.53313i −0.0644140 0.265544i
\(92\) −0.245832 + 1.39418i −0.0256298 + 0.145354i
\(93\) 0 0
\(94\) −16.1877 + 13.5831i −1.66963 + 1.40099i
\(95\) 1.60945 1.35049i 0.165126 0.138557i
\(96\) 0 0
\(97\) −0.991251 + 5.62167i −0.100646 + 0.570794i 0.892224 + 0.451593i \(0.149144\pi\)
−0.992870 + 0.119200i \(0.961967\pi\)
\(98\) −11.6139 + 5.98675i −1.17318 + 0.604753i
\(99\) 0 0
\(100\) −4.24407 −0.424407
\(101\) −11.1289 + 4.05057i −1.10736 + 0.403047i −0.830025 0.557726i \(-0.811674\pi\)
−0.277337 + 0.960773i \(0.589452\pi\)
\(102\) 0 0
\(103\) 9.83084 8.24905i 0.968661 0.812803i −0.0136790 0.999906i \(-0.504354\pi\)
0.982340 + 0.187103i \(0.0599099\pi\)
\(104\) 0.726659 0.609740i 0.0712548 0.0597899i
\(105\) 0 0
\(106\) −8.15653 + 2.96873i −0.792232 + 0.288349i
\(107\) −5.52411 9.56804i −0.534036 0.924977i −0.999209 0.0397577i \(-0.987341\pi\)
0.465173 0.885220i \(-0.345992\pi\)
\(108\) 0 0
\(109\) −9.52408 + 16.4962i −0.912242 + 1.58005i −0.101352 + 0.994851i \(0.532317\pi\)
−0.810890 + 0.585198i \(0.801017\pi\)
\(110\) 9.55177 + 8.01488i 0.910725 + 0.764189i
\(111\) 0 0
\(112\) −10.1531 7.47592i −0.959379 0.706408i
\(113\) −1.36095 7.71833i −0.128027 0.726080i −0.979464 0.201621i \(-0.935379\pi\)
0.851436 0.524458i \(-0.175732\pi\)
\(114\) 0 0
\(115\) 1.31136 0.477295i 0.122285 0.0445080i
\(116\) −4.09730 7.09674i −0.380425 0.658915i
\(117\) 0 0
\(118\) −5.88980 10.2014i −0.542200 0.939119i
\(119\) −1.81789 2.73251i −0.166646 0.250489i
\(120\) 0 0
\(121\) 1.71001 + 9.69797i 0.155456 + 0.881633i
\(122\) 7.50912 6.30090i 0.679844 0.570457i
\(123\) 0 0
\(124\) 9.32674 3.39466i 0.837566 0.304849i
\(125\) 5.74937 + 9.95820i 0.514239 + 0.890688i
\(126\) 0 0
\(127\) −6.35187 + 11.0018i −0.563637 + 0.976249i 0.433538 + 0.901136i \(0.357265\pi\)
−0.997175 + 0.0751132i \(0.976068\pi\)
\(128\) 1.29307 7.33339i 0.114293 0.648186i
\(129\) 0 0
\(130\) 2.52820 + 0.920189i 0.221738 + 0.0807059i
\(131\) −7.88900 2.87136i −0.689265 0.250872i −0.0264445 0.999650i \(-0.508419\pi\)
−0.662820 + 0.748778i \(0.730641\pi\)
\(132\) 0 0
\(133\) −2.10452 3.16335i −0.182485 0.274297i
\(134\) −24.5241 −2.11856
\(135\) 0 0
\(136\) 0.597185 1.03436i 0.0512082 0.0886953i
\(137\) 0.403413 2.28787i 0.0344659 0.195466i −0.962713 0.270524i \(-0.912803\pi\)
0.997179 + 0.0750580i \(0.0239142\pi\)
\(138\) 0 0
\(139\) 16.4618 13.8131i 1.39627 1.17161i 0.433546 0.901131i \(-0.357262\pi\)
0.962726 0.270480i \(-0.0871824\pi\)
\(140\) 0.636886 5.70953i 0.0538267 0.482544i
\(141\) 0 0
\(142\) −3.76376 + 21.3453i −0.315848 + 1.79126i
\(143\) 2.24916 + 3.89567i 0.188085 + 0.325772i
\(144\) 0 0
\(145\) −4.03892 + 6.99562i −0.335414 + 0.580954i
\(146\) 3.21868 18.2540i 0.266380 1.51071i
\(147\) 0 0
\(148\) 4.02730 + 1.46582i 0.331042 + 0.120489i
\(149\) −0.762741 4.32572i −0.0624862 0.354377i −0.999980 0.00637396i \(-0.997971\pi\)
0.937494 0.348003i \(-0.113140\pi\)
\(150\) 0 0
\(151\) 11.3548 + 9.52783i 0.924042 + 0.775363i 0.974738 0.223351i \(-0.0716995\pi\)
−0.0506960 + 0.998714i \(0.516144\pi\)
\(152\) 0.691344 1.19744i 0.0560754 0.0971254i
\(153\) 0 0
\(154\) 16.3198 15.5602i 1.31509 1.25388i
\(155\) −7.49490 6.28896i −0.602005 0.505142i
\(156\) 0 0
\(157\) −0.355417 0.129361i −0.0283653 0.0103241i 0.327799 0.944748i \(-0.393693\pi\)
−0.356164 + 0.934424i \(0.615916\pi\)
\(158\) 4.58641 + 26.0108i 0.364875 + 2.06931i
\(159\) 0 0
\(160\) 9.58193 3.48754i 0.757518 0.275714i
\(161\) −0.594923 2.45254i −0.0468865 0.193288i
\(162\) 0 0
\(163\) −2.58086 4.47018i −0.202148 0.350131i 0.747072 0.664743i \(-0.231459\pi\)
−0.949220 + 0.314612i \(0.898126\pi\)
\(164\) 3.06013 17.3549i 0.238956 1.35519i
\(165\) 0 0
\(166\) 14.5989 + 5.31355i 1.13309 + 0.412411i
\(167\) 1.88838 + 10.7095i 0.146127 + 0.828727i 0.966455 + 0.256834i \(0.0826795\pi\)
−0.820329 + 0.571893i \(0.806209\pi\)
\(168\) 0 0
\(169\) −9.21504 7.73234i −0.708850 0.594795i
\(170\) 3.38757 0.259814
\(171\) 0 0
\(172\) 4.78342 0.364732
\(173\) 11.3791 4.14166i 0.865138 0.314884i 0.128941 0.991652i \(-0.458842\pi\)
0.736196 + 0.676768i \(0.236620\pi\)
\(174\) 0 0
\(175\) 6.93104 3.03315i 0.523937 0.229285i
\(176\) 20.4470 + 7.44209i 1.54125 + 0.560969i
\(177\) 0 0
\(178\) 0.879349 + 0.737861i 0.0659100 + 0.0553050i
\(179\) −12.3778 −0.925158 −0.462579 0.886578i \(-0.653076\pi\)
−0.462579 + 0.886578i \(0.653076\pi\)
\(180\) 0 0
\(181\) −7.93495 + 13.7437i −0.589800 + 1.02156i 0.404458 + 0.914557i \(0.367460\pi\)
−0.994258 + 0.107007i \(0.965873\pi\)
\(182\) 2.16068 4.35936i 0.160160 0.323137i
\(183\) 0 0
\(184\) 0.703544 0.590343i 0.0518659 0.0435207i
\(185\) −0.733610 4.16051i −0.0539361 0.305887i
\(186\) 0 0
\(187\) 4.33878 + 3.64067i 0.317283 + 0.266232i
\(188\) −16.8021 −1.22542
\(189\) 0 0
\(190\) 3.92168 0.284509
\(191\) 11.6459 + 9.77207i 0.842667 + 0.707082i 0.958162 0.286226i \(-0.0924009\pi\)
−0.115495 + 0.993308i \(0.536845\pi\)
\(192\) 0 0
\(193\) −3.26476 18.5154i −0.235003 1.33277i −0.842608 0.538527i \(-0.818981\pi\)
0.607605 0.794239i \(-0.292130\pi\)
\(194\) −8.16239 + 6.84906i −0.586026 + 0.491734i
\(195\) 0 0
\(196\) −10.1338 2.28930i −0.723846 0.163522i
\(197\) −0.130567 + 0.226149i −0.00930255 + 0.0161125i −0.870639 0.491922i \(-0.836294\pi\)
0.861337 + 0.508035i \(0.169628\pi\)
\(198\) 0 0
\(199\) −1.63757 −0.116084 −0.0580421 0.998314i \(-0.518486\pi\)
−0.0580421 + 0.998314i \(0.518486\pi\)
\(200\) 2.10914 + 1.76978i 0.149139 + 0.125142i
\(201\) 0 0
\(202\) −20.7731 7.56077i −1.46159 0.531974i
\(203\) 11.7632 + 8.66149i 0.825617 + 0.607917i
\(204\) 0 0
\(205\) −16.3239 + 5.94140i −1.14011 + 0.414966i
\(206\) 23.9545 1.66899
\(207\) 0 0
\(208\) 4.69503 0.325542
\(209\) 5.02288 + 4.21469i 0.347440 + 0.291536i
\(210\) 0 0
\(211\) 1.10692 + 6.27765i 0.0762034 + 0.432171i 0.998910 + 0.0466690i \(0.0148606\pi\)
−0.922707 + 0.385502i \(0.874028\pi\)
\(212\) −6.48545 2.36051i −0.445423 0.162121i
\(213\) 0 0
\(214\) 3.58107 20.3092i 0.244797 1.38831i
\(215\) −2.35763 4.08354i −0.160789 0.278495i
\(216\) 0 0
\(217\) −12.8055 + 12.2095i −0.869294 + 0.828834i
\(218\) −33.4110 + 12.1606i −2.26288 + 0.823619i
\(219\) 0 0
\(220\) 1.72161 + 9.76374i 0.116071 + 0.658271i
\(221\) 1.14840 + 0.417985i 0.0772500 + 0.0281167i
\(222\) 0 0
\(223\) 4.42813 + 3.71564i 0.296529 + 0.248818i 0.778898 0.627151i \(-0.215779\pi\)
−0.482369 + 0.875968i \(0.660223\pi\)
\(224\) −4.34703 17.9204i −0.290448 1.19736i
\(225\) 0 0
\(226\) 7.31462 12.6693i 0.486562 0.842749i
\(227\) −9.82241 8.24198i −0.651936 0.547039i 0.255722 0.966750i \(-0.417687\pi\)
−0.907658 + 0.419711i \(0.862131\pi\)
\(228\) 0 0
\(229\) −1.01772 5.77179i −0.0672530 0.381411i −0.999793 0.0203441i \(-0.993524\pi\)
0.932540 0.361067i \(-0.117587\pi\)
\(230\) 2.44777 + 0.890917i 0.161401 + 0.0587453i
\(231\) 0 0
\(232\) −0.923139 + 5.23538i −0.0606070 + 0.343720i
\(233\) 0.485756 0.841355i 0.0318230 0.0551190i −0.849675 0.527306i \(-0.823202\pi\)
0.881498 + 0.472187i \(0.156535\pi\)
\(234\) 0 0
\(235\) 8.28137 + 14.3438i 0.540217 + 0.935683i
\(236\) 1.62643 9.22395i 0.105872 0.600428i
\(237\) 0 0
\(238\) 0.679142 6.08835i 0.0440222 0.394649i
\(239\) 18.1999 15.2715i 1.17726 0.987834i 0.177262 0.984164i \(-0.443276\pi\)
0.999993 0.00367051i \(-0.00116836\pi\)
\(240\) 0 0
\(241\) −0.0497028 + 0.281878i −0.00320164 + 0.0181574i −0.986367 0.164562i \(-0.947379\pi\)
0.983165 + 0.182719i \(0.0584900\pi\)
\(242\) −9.19071 + 15.9188i −0.590801 + 1.02330i
\(243\) 0 0
\(244\) 7.79417 0.498971
\(245\) 3.04038 + 9.77946i 0.194243 + 0.624787i
\(246\) 0 0
\(247\) 1.32947 + 0.483889i 0.0845924 + 0.0307891i
\(248\) −6.05061 2.20224i −0.384214 0.139842i
\(249\) 0 0
\(250\) −3.72709 + 21.1374i −0.235722 + 1.33685i
\(251\) −3.91719 + 6.78477i −0.247251 + 0.428251i −0.962762 0.270350i \(-0.912861\pi\)
0.715511 + 0.698601i \(0.246194\pi\)
\(252\) 0 0
\(253\) 2.17762 + 3.77174i 0.136906 + 0.237127i
\(254\) −22.2827 + 8.11023i −1.39814 + 0.508881i
\(255\) 0 0
\(256\) 15.9771 13.4064i 0.998568 0.837898i
\(257\) 1.67773 + 9.51485i 0.104654 + 0.593520i 0.991358 + 0.131184i \(0.0418777\pi\)
−0.886704 + 0.462337i \(0.847011\pi\)
\(258\) 0 0
\(259\) −7.62461 + 0.484388i −0.473770 + 0.0300984i
\(260\) 1.06962 + 1.85264i 0.0663351 + 0.114896i
\(261\) 0 0
\(262\) −7.83530 13.5711i −0.484067 0.838428i
\(263\) 17.2235 6.26884i 1.06205 0.386553i 0.248849 0.968542i \(-0.419948\pi\)
0.813196 + 0.581989i \(0.197725\pi\)
\(264\) 0 0
\(265\) 1.18139 + 6.69998i 0.0725720 + 0.411576i
\(266\) 0.786222 7.04830i 0.0482064 0.432159i
\(267\) 0 0
\(268\) −14.9376 12.5342i −0.912461 0.765646i
\(269\) −2.28434 + 3.95659i −0.139279 + 0.241238i −0.927224 0.374508i \(-0.877812\pi\)
0.787945 + 0.615745i \(0.211145\pi\)
\(270\) 0 0
\(271\) −6.60709 11.4438i −0.401352 0.695162i 0.592537 0.805543i \(-0.298126\pi\)
−0.993889 + 0.110381i \(0.964793\pi\)
\(272\) 5.55504 2.02187i 0.336824 0.122594i
\(273\) 0 0
\(274\) 3.32188 2.78739i 0.200682 0.168392i
\(275\) −10.0018 + 8.39254i −0.603134 + 0.506089i
\(276\) 0 0
\(277\) 28.5431 10.3888i 1.71499 0.624205i 0.717602 0.696453i \(-0.245240\pi\)
0.997387 + 0.0722480i \(0.0230173\pi\)
\(278\) 40.1119 2.40575
\(279\) 0 0
\(280\) −2.69738 + 2.57184i −0.161200 + 0.153697i
\(281\) −3.38213 + 19.1810i −0.201761 + 1.14424i 0.700695 + 0.713461i \(0.252873\pi\)
−0.902456 + 0.430782i \(0.858238\pi\)
\(282\) 0 0
\(283\) 5.90670 4.95631i 0.351117 0.294622i −0.450122 0.892967i \(-0.648619\pi\)
0.801238 + 0.598345i \(0.204175\pi\)
\(284\) −13.2020 + 11.0778i −0.783395 + 0.657347i
\(285\) 0 0
\(286\) −1.45805 + 8.26899i −0.0862161 + 0.488956i
\(287\) 7.40564 + 30.5294i 0.437141 + 1.80210i
\(288\) 0 0
\(289\) −15.4612 −0.909485
\(290\) −14.1687 + 5.15700i −0.832017 + 0.302829i
\(291\) 0 0
\(292\) 11.2901 9.47348i 0.660700 0.554393i
\(293\) −10.4784 + 8.79240i −0.612153 + 0.513657i −0.895326 0.445411i \(-0.853057\pi\)
0.283173 + 0.959069i \(0.408613\pi\)
\(294\) 0 0
\(295\) −8.67599 + 3.15780i −0.505135 + 0.183854i
\(296\) −1.39017 2.40784i −0.0808017 0.139953i
\(297\) 0 0
\(298\) 4.09946 7.10047i 0.237475 0.411319i
\(299\) 0.719881 + 0.604052i 0.0416318 + 0.0349332i
\(300\) 0 0
\(301\) −7.81185 + 3.41861i −0.450268 + 0.197046i
\(302\) 4.80448 + 27.2476i 0.276467 + 1.56792i
\(303\) 0 0
\(304\) 6.43090 2.34066i 0.368838 0.134246i
\(305\) −3.84156 6.65377i −0.219967 0.380994i
\(306\) 0 0
\(307\) 8.70668 + 15.0804i 0.496916 + 0.860684i 0.999994 0.00355714i \(-0.00113228\pi\)
−0.503077 + 0.864241i \(0.667799\pi\)
\(308\) 17.8932 1.13675i 1.01956 0.0647721i
\(309\) 0 0
\(310\) −3.17126 17.9851i −0.180115 1.02149i
\(311\) −22.8968 + 19.2127i −1.29836 + 1.08945i −0.307935 + 0.951407i \(0.599638\pi\)
−0.990426 + 0.138047i \(0.955918\pi\)
\(312\) 0 0
\(313\) −2.98036 + 1.08476i −0.168460 + 0.0613144i −0.424873 0.905253i \(-0.639681\pi\)
0.256413 + 0.966567i \(0.417459\pi\)
\(314\) −0.352998 0.611410i −0.0199208 0.0345039i
\(315\) 0 0
\(316\) −10.5004 + 18.1873i −0.590696 + 1.02311i
\(317\) 1.15974 6.57721i 0.0651374 0.369413i −0.934763 0.355273i \(-0.884388\pi\)
0.999900 0.0141397i \(-0.00450097\pi\)
\(318\) 0 0
\(319\) −23.6896 8.62229i −1.32636 0.482756i
\(320\) 4.78220 + 1.74058i 0.267333 + 0.0973013i
\(321\) 0 0
\(322\) 2.09194 4.22068i 0.116579 0.235209i
\(323\) 1.78138 0.0991186
\(324\) 0 0
\(325\) −1.40861 + 2.43979i −0.0781358 + 0.135335i
\(326\) 1.67307 9.48845i 0.0926628 0.525517i
\(327\) 0 0
\(328\) −8.75776 + 7.34863i −0.483566 + 0.405760i
\(329\) 27.4398 12.0082i 1.51280 0.662031i
\(330\) 0 0
\(331\) 0.866389 4.91354i 0.0476210 0.270072i −0.951695 0.307044i \(-0.900660\pi\)
0.999316 + 0.0369718i \(0.0117712\pi\)
\(332\) 6.17643 + 10.6979i 0.338976 + 0.587123i
\(333\) 0 0
\(334\) −10.1493 + 17.5792i −0.555348 + 0.961890i
\(335\) −3.33784 + 18.9298i −0.182366 + 1.03425i
\(336\) 0 0
\(337\) 13.6802 + 4.97920i 0.745209 + 0.271234i 0.686588 0.727046i \(-0.259107\pi\)
0.0586210 + 0.998280i \(0.481330\pi\)
\(338\) −3.89909 22.1129i −0.212083 1.20278i
\(339\) 0 0
\(340\) 2.06337 + 1.73137i 0.111902 + 0.0938967i
\(341\) 15.2671 26.4434i 0.826761 1.43199i
\(342\) 0 0
\(343\) 18.1858 3.50377i 0.981941 0.189186i
\(344\) −2.37718 1.99469i −0.128169 0.107546i
\(345\) 0 0
\(346\) 21.2402 + 7.73079i 1.14188 + 0.415610i
\(347\) 1.50977 + 8.56234i 0.0810488 + 0.459650i 0.998139 + 0.0609718i \(0.0194200\pi\)
−0.917091 + 0.398679i \(0.869469\pi\)
\(348\) 0 0
\(349\) −10.4169 + 3.79143i −0.557602 + 0.202950i −0.605421 0.795906i \(-0.706995\pi\)
0.0478190 + 0.998856i \(0.484773\pi\)
\(350\) 13.5499 + 3.97894i 0.724273 + 0.212683i
\(351\) 0 0
\(352\) 15.9116 + 27.5596i 0.848090 + 1.46893i
\(353\) 4.02106 22.8045i 0.214019 1.21376i −0.668581 0.743639i \(-0.733098\pi\)
0.882600 0.470124i \(-0.155791\pi\)
\(354\) 0 0
\(355\) 15.9639 + 5.81039i 0.847277 + 0.308384i
\(356\) 0.158494 + 0.898863i 0.00840015 + 0.0476396i
\(357\) 0 0
\(358\) −17.6989 14.8511i −0.935416 0.784907i
\(359\) 2.07932 0.109742 0.0548710 0.998493i \(-0.482525\pi\)
0.0548710 + 0.998493i \(0.482525\pi\)
\(360\) 0 0
\(361\) −16.9378 −0.891461
\(362\) −27.8362 + 10.1315i −1.46304 + 0.532502i
\(363\) 0 0
\(364\) 3.54412 1.55097i 0.185762 0.0812931i
\(365\) −13.6520 4.96891i −0.714576 0.260085i
\(366\) 0 0
\(367\) −11.7277 9.84075i −0.612184 0.513683i 0.283152 0.959075i \(-0.408620\pi\)
−0.895336 + 0.445392i \(0.853064\pi\)
\(368\) 4.54568 0.236960
\(369\) 0 0
\(370\) 3.94289 6.82929i 0.204981 0.355038i
\(371\) 12.2785 0.780046i 0.637466 0.0404980i
\(372\) 0 0
\(373\) 23.4937 19.7136i 1.21646 1.02073i 0.217456 0.976070i \(-0.430224\pi\)
0.999002 0.0446594i \(-0.0142202\pi\)
\(374\) 1.83583 + 10.4115i 0.0949288 + 0.538368i
\(375\) 0 0
\(376\) 8.35002 + 7.00650i 0.430619 + 0.361333i
\(377\) −5.43960 −0.280153
\(378\) 0 0
\(379\) 33.1265 1.70159 0.850797 0.525495i \(-0.176120\pi\)
0.850797 + 0.525495i \(0.176120\pi\)
\(380\) 2.38870 + 2.00436i 0.122538 + 0.102821i
\(381\) 0 0
\(382\) 4.92764 + 27.9460i 0.252120 + 1.42984i
\(383\) 9.10096 7.63661i 0.465037 0.390213i −0.379943 0.925010i \(-0.624056\pi\)
0.844980 + 0.534797i \(0.179612\pi\)
\(384\) 0 0
\(385\) −9.78952 14.7149i −0.498920 0.749938i
\(386\) 17.5469 30.3922i 0.893115 1.54692i
\(387\) 0 0
\(388\) −8.47224 −0.430113
\(389\) −17.5208 14.7017i −0.888338 0.745404i 0.0795384 0.996832i \(-0.474655\pi\)
−0.967876 + 0.251428i \(0.919100\pi\)
\(390\) 0 0
\(391\) 1.11187 + 0.404689i 0.0562298 + 0.0204660i
\(392\) 4.08149 + 5.36351i 0.206147 + 0.270898i
\(393\) 0 0
\(394\) −0.458037 + 0.166712i −0.0230756 + 0.00839882i
\(395\) 20.7016 1.04161
\(396\) 0 0
\(397\) 22.2946 1.11893 0.559466 0.828853i \(-0.311006\pi\)
0.559466 + 0.828853i \(0.311006\pi\)
\(398\) −2.34155 1.96479i −0.117371 0.0984862i
\(399\) 0 0
\(400\) 2.36638 + 13.4204i 0.118319 + 0.671020i
\(401\) 4.75414 + 1.73036i 0.237410 + 0.0864102i 0.457985 0.888960i \(-0.348571\pi\)
−0.220575 + 0.975370i \(0.570793\pi\)
\(402\) 0 0
\(403\) 1.14407 6.48835i 0.0569903 0.323208i
\(404\) −8.78859 15.2223i −0.437249 0.757337i
\(405\) 0 0
\(406\) 6.42792 + 26.4988i 0.319013 + 1.31511i
\(407\) 12.3896 4.50944i 0.614129 0.223525i
\(408\) 0 0
\(409\) 3.94949 + 22.3987i 0.195290 + 1.10754i 0.912006 + 0.410178i \(0.134533\pi\)
−0.716716 + 0.697365i \(0.754356\pi\)
\(410\) −30.4700 11.0902i −1.50481 0.547705i
\(411\) 0 0
\(412\) 14.5907 + 12.2430i 0.718831 + 0.603171i
\(413\) 3.93603 + 16.2261i 0.193679 + 0.798435i
\(414\) 0 0
\(415\) 6.08843 10.5455i 0.298869 0.517657i
\(416\) 5.26008 + 4.41373i 0.257897 + 0.216401i
\(417\) 0 0
\(418\) 2.12529 + 12.0531i 0.103951 + 0.589538i
\(419\) −28.5404 10.3878i −1.39429 0.507480i −0.467811 0.883829i \(-0.654957\pi\)
−0.926478 + 0.376349i \(0.877179\pi\)
\(420\) 0 0
\(421\) 5.43779 30.8393i 0.265022 1.50301i −0.503951 0.863732i \(-0.668121\pi\)
0.768973 0.639281i \(-0.220768\pi\)
\(422\) −5.94929 + 10.3045i −0.289607 + 0.501614i
\(423\) 0 0
\(424\) 2.23869 + 3.87752i 0.108720 + 0.188309i
\(425\) −0.615963 + 3.49330i −0.0298786 + 0.169450i
\(426\) 0 0
\(427\) −12.7287 + 5.57034i −0.615987 + 0.269567i
\(428\) 12.5612 10.5401i 0.607168 0.509475i
\(429\) 0 0
\(430\) 1.52836 8.66777i 0.0737041 0.417997i
\(431\) 5.25777 9.10673i 0.253258 0.438656i −0.711163 0.703027i \(-0.751831\pi\)
0.964421 + 0.264372i \(0.0851645\pi\)
\(432\) 0 0
\(433\) −6.33812 −0.304591 −0.152295 0.988335i \(-0.548667\pi\)
−0.152295 + 0.988335i \(0.548667\pi\)
\(434\) −32.9597 + 2.09392i −1.58212 + 0.100511i
\(435\) 0 0
\(436\) −26.5658 9.66918i −1.27227 0.463070i
\(437\) 1.28718 + 0.468496i 0.0615743 + 0.0224112i
\(438\) 0 0
\(439\) 3.51431 19.9306i 0.167729 0.951236i −0.778478 0.627672i \(-0.784008\pi\)
0.946206 0.323564i \(-0.104881\pi\)
\(440\) 3.21591 5.57011i 0.153312 0.265545i
\(441\) 0 0
\(442\) 1.14059 + 1.97556i 0.0542523 + 0.0939677i
\(443\) 8.34240 3.03638i 0.396359 0.144263i −0.136148 0.990689i \(-0.543472\pi\)
0.532507 + 0.846426i \(0.321250\pi\)
\(444\) 0 0
\(445\) 0.689229 0.578331i 0.0326726 0.0274155i
\(446\) 1.87364 + 10.6259i 0.0887195 + 0.503153i
\(447\) 0 0
\(448\) 4.08702 8.24592i 0.193093 0.389583i
\(449\) −6.01834 10.4241i −0.284023 0.491943i 0.688349 0.725380i \(-0.258336\pi\)
−0.972372 + 0.233437i \(0.925003\pi\)
\(450\) 0 0
\(451\) −27.1071 46.9509i −1.27642 2.21083i
\(452\) 10.9306 3.97840i 0.514130 0.187128i
\(453\) 0 0
\(454\) −4.15608 23.5703i −0.195055 1.10621i
\(455\) −3.07085 2.26113i −0.143964 0.106003i
\(456\) 0 0
\(457\) −2.46549 2.06879i −0.115331 0.0967738i 0.583299 0.812258i \(-0.301762\pi\)
−0.698629 + 0.715484i \(0.746206\pi\)
\(458\) 5.46990 9.47414i 0.255591 0.442697i
\(459\) 0 0
\(460\) 1.03560 + 1.79370i 0.0482849 + 0.0836319i
\(461\) −32.0957 + 11.6819i −1.49485 + 0.544080i −0.954720 0.297505i \(-0.903846\pi\)
−0.540126 + 0.841584i \(0.681623\pi\)
\(462\) 0 0
\(463\) 8.38189 7.03324i 0.389539 0.326862i −0.426894 0.904302i \(-0.640392\pi\)
0.816434 + 0.577439i \(0.195948\pi\)
\(464\) −20.1564 + 16.9132i −0.935737 + 0.785176i
\(465\) 0 0
\(466\) 1.70406 0.620226i 0.0789389 0.0287314i
\(467\) 41.4064 1.91606 0.958031 0.286666i \(-0.0925469\pi\)
0.958031 + 0.286666i \(0.0925469\pi\)
\(468\) 0 0
\(469\) 33.3527 + 9.79404i 1.54009 + 0.452247i
\(470\) −5.36849 + 30.4462i −0.247630 + 1.40438i
\(471\) 0 0
\(472\) −4.65467 + 3.90573i −0.214248 + 0.179776i
\(473\) 11.2729 9.45909i 0.518329 0.434929i
\(474\) 0 0
\(475\) −0.713082 + 4.04409i −0.0327184 + 0.185555i
\(476\) 3.52539 3.36131i 0.161586 0.154065i
\(477\) 0 0
\(478\) 44.3471 2.02839
\(479\) 7.80215 2.83975i 0.356489 0.129751i −0.157566 0.987508i \(-0.550365\pi\)
0.514055 + 0.857757i \(0.328143\pi\)
\(480\) 0 0
\(481\) 2.17932 1.82866i 0.0993683 0.0833799i
\(482\) −0.409274 + 0.343422i −0.0186419 + 0.0156424i
\(483\) 0 0
\(484\) −13.7341 + 4.99880i −0.624277 + 0.227218i
\(485\) 4.17576 + 7.23263i 0.189612 + 0.328417i
\(486\) 0 0
\(487\) 11.9736 20.7388i 0.542574 0.939766i −0.456181 0.889887i \(-0.650783\pi\)
0.998755 0.0498789i \(-0.0158835\pi\)
\(488\) −3.87340 3.25017i −0.175341 0.147128i
\(489\) 0 0
\(490\) −7.38621 + 17.6315i −0.333675 + 0.796511i
\(491\) −6.82562 38.7100i −0.308036 1.74696i −0.608859 0.793278i \(-0.708373\pi\)
0.300823 0.953680i \(-0.402739\pi\)
\(492\) 0 0
\(493\) −6.43598 + 2.34251i −0.289862 + 0.105501i
\(494\) 1.32043 + 2.28704i 0.0594087 + 0.102899i
\(495\) 0 0
\(496\) −15.9347 27.5998i −0.715491 1.23927i
\(497\) 13.6433 27.5265i 0.611984 1.23473i
\(498\) 0 0
\(499\) −1.08756 6.16784i −0.0486857 0.276111i 0.950740 0.309989i \(-0.100325\pi\)
−0.999426 + 0.0338782i \(0.989214\pi\)
\(500\) −13.0734 + 10.9699i −0.584660 + 0.490588i
\(501\) 0 0
\(502\) −13.7417 + 5.00157i −0.613322 + 0.223231i
\(503\) 1.54894 + 2.68284i 0.0690637 + 0.119622i 0.898489 0.438995i \(-0.144665\pi\)
−0.829426 + 0.558617i \(0.811332\pi\)
\(504\) 0 0
\(505\) −8.66337 + 15.0054i −0.385515 + 0.667731i
\(506\) −1.41166 + 8.00595i −0.0627561 + 0.355908i
\(507\) 0 0
\(508\) −17.7175 6.44864i −0.786087 0.286112i
\(509\) −4.54630 1.65472i −0.201511 0.0733440i 0.239293 0.970947i \(-0.423084\pi\)
−0.440804 + 0.897603i \(0.645307\pi\)
\(510\) 0 0
\(511\) −11.6674 + 23.5400i −0.516135 + 1.04135i
\(512\) 24.0378 1.06233
\(513\) 0 0
\(514\) −9.01718 + 15.6182i −0.397731 + 0.688890i
\(515\) 3.26031 18.4901i 0.143666 0.814773i
\(516\) 0 0
\(517\) −39.5970 + 33.2258i −1.74147 + 1.46127i
\(518\) −11.4836 8.45556i −0.504559 0.371516i
\(519\) 0 0
\(520\) 0.240990 1.36672i 0.0105681 0.0599348i
\(521\) −15.2199 26.3617i −0.666796 1.15493i −0.978795 0.204842i \(-0.934332\pi\)
0.311999 0.950083i \(-0.399002\pi\)
\(522\) 0 0
\(523\) −16.8711 + 29.2216i −0.737723 + 1.27777i 0.215796 + 0.976439i \(0.430765\pi\)
−0.953518 + 0.301335i \(0.902568\pi\)
\(524\) 2.16367 12.2708i 0.0945203 0.536051i
\(525\) 0 0
\(526\) 32.1493 + 11.7014i 1.40177 + 0.510204i
\(527\) −1.44051 8.16952i −0.0627495 0.355870i
\(528\) 0 0
\(529\) −16.9220 14.1993i −0.735741 0.617360i
\(530\) −6.34953 + 10.9977i −0.275806 + 0.477710i
\(531\) 0 0
\(532\) 4.08124 3.89129i 0.176944 0.168709i
\(533\) −8.96113 7.51928i −0.388149 0.325696i
\(534\) 0 0
\(535\) −15.1890 5.52836i −0.656679 0.239012i
\(536\) 2.19668 + 12.4580i 0.0948822 + 0.538104i
\(537\) 0 0
\(538\) −8.01357 + 2.91670i −0.345490 + 0.125748i
\(539\) −28.4091 + 14.6443i −1.22367 + 0.630775i
\(540\) 0 0
\(541\) 7.87553 + 13.6408i 0.338596 + 0.586465i 0.984169 0.177234i \(-0.0567148\pi\)
−0.645573 + 0.763698i \(0.723382\pi\)
\(542\) 4.28312 24.2908i 0.183976 1.04338i
\(543\) 0 0
\(544\) 8.12431 + 2.95701i 0.348327 + 0.126781i
\(545\) 4.83922 + 27.4446i 0.207289 + 1.17560i
\(546\) 0 0
\(547\) −16.6514 13.9722i −0.711963 0.597408i 0.213186 0.977012i \(-0.431616\pi\)
−0.925149 + 0.379603i \(0.876060\pi\)
\(548\) 3.44798 0.147290
\(549\) 0 0
\(550\) −24.3712 −1.03919
\(551\) −7.45075 + 2.71185i −0.317412 + 0.115529i
\(552\) 0 0
\(553\) 4.15028 37.2063i 0.176488 1.58217i
\(554\) 53.2784 + 19.3918i 2.26358 + 0.823877i
\(555\) 0 0
\(556\) 24.4322 + 20.5010i 1.03615 + 0.869437i
\(557\) −24.7941 −1.05056 −0.525280 0.850930i \(-0.676039\pi\)
−0.525280 + 0.850930i \(0.676039\pi\)
\(558\) 0 0
\(559\) 1.58762 2.74984i 0.0671493 0.116306i
\(560\) −18.4095 + 1.16955i −0.777943 + 0.0494224i
\(561\) 0 0
\(562\) −27.8499 + 23.3688i −1.17478 + 0.985755i
\(563\) −3.32030 18.8303i −0.139934 0.793604i −0.971296 0.237873i \(-0.923550\pi\)
0.831362 0.555731i \(-0.187561\pi\)
\(564\) 0 0
\(565\) −8.78371 7.37041i −0.369534 0.310075i
\(566\) 14.3927 0.604968
\(567\) 0 0
\(568\) 11.1803 0.469117
\(569\) 15.4566 + 12.9697i 0.647976 + 0.543717i 0.906456 0.422300i \(-0.138777\pi\)
−0.258480 + 0.966017i \(0.583222\pi\)
\(570\) 0 0
\(571\) 0.234729 + 1.33121i 0.00982309 + 0.0557095i 0.989325 0.145724i \(-0.0465511\pi\)
−0.979502 + 0.201433i \(0.935440\pi\)
\(572\) −5.11434 + 4.29144i −0.213841 + 0.179434i
\(573\) 0 0
\(574\) −26.0406 + 52.5393i −1.08692 + 2.19295i
\(575\) −1.36380 + 2.36218i −0.0568746 + 0.0985096i
\(576\) 0 0
\(577\) 12.1509 0.505848 0.252924 0.967486i \(-0.418608\pi\)
0.252924 + 0.967486i \(0.418608\pi\)
\(578\) −22.1079 18.5508i −0.919569 0.771610i
\(579\) 0 0
\(580\) −11.2659 4.10045i −0.467791 0.170262i
\(581\) −17.7324 13.0567i −0.735663 0.541682i
\(582\) 0 0
\(583\) −19.9519 + 7.26188i −0.826321 + 0.300756i
\(584\) −9.56116 −0.395644
\(585\) 0 0
\(586\) −25.5323 −1.05473
\(587\) 36.1996 + 30.3750i 1.49412 + 1.25371i 0.889282 + 0.457360i \(0.151205\pi\)
0.604834 + 0.796352i \(0.293239\pi\)
\(588\) 0 0
\(589\) −1.66763 9.45762i −0.0687136 0.389694i
\(590\) −16.1945 5.89433i −0.666719 0.242666i
\(591\) 0 0
\(592\) 2.38962 13.5522i 0.0982127 0.556992i
\(593\) −5.30960 9.19649i −0.218039 0.377655i 0.736169 0.676797i \(-0.236633\pi\)
−0.954208 + 0.299143i \(0.903299\pi\)
\(594\) 0 0
\(595\) −4.60708 1.35287i −0.188872 0.0554623i
\(596\) 6.12600 2.22968i 0.250931 0.0913314i
\(597\) 0 0
\(598\) 0.304598 + 1.72746i 0.0124559 + 0.0706411i
\(599\) 9.63714 + 3.50763i 0.393763 + 0.143318i 0.531311 0.847177i \(-0.321700\pi\)
−0.137548 + 0.990495i \(0.543922\pi\)
\(600\) 0 0
\(601\) −19.1642 16.0807i −0.781724 0.655945i 0.161958 0.986798i \(-0.448219\pi\)
−0.943682 + 0.330853i \(0.892664\pi\)
\(602\) −15.2719 4.48459i −0.622434 0.182778i
\(603\) 0 0
\(604\) −10.9997 + 19.0520i −0.447572 + 0.775217i
\(605\) 11.0366 + 9.26081i 0.448702 + 0.376505i
\(606\) 0 0
\(607\) 0.114124 + 0.647228i 0.00463214 + 0.0262702i 0.987036 0.160498i \(-0.0513099\pi\)
−0.982404 + 0.186768i \(0.940199\pi\)
\(608\) 9.40528 + 3.42324i 0.381434 + 0.138831i
\(609\) 0 0
\(610\) 2.49033 14.1234i 0.100831 0.571839i
\(611\) −5.57665 + 9.65904i −0.225607 + 0.390763i
\(612\) 0 0
\(613\) 13.8724 + 24.0277i 0.560301 + 0.970470i 0.997470 + 0.0710902i \(0.0226478\pi\)
−0.437169 + 0.899379i \(0.644019\pi\)
\(614\) −5.64420 + 32.0099i −0.227781 + 1.29181i
\(615\) 0 0
\(616\) −9.36623 6.89653i −0.377376 0.277869i
\(617\) −12.7820 + 10.7253i −0.514582 + 0.431786i −0.862738 0.505651i \(-0.831252\pi\)
0.348156 + 0.937437i \(0.386808\pi\)
\(618\) 0 0
\(619\) −1.65125 + 9.36470i −0.0663693 + 0.376399i 0.933473 + 0.358647i \(0.116762\pi\)
−0.999842 + 0.0177517i \(0.994349\pi\)
\(620\) 7.26050 12.5755i 0.291589 0.505046i
\(621\) 0 0
\(622\) −55.7920 −2.23705
\(623\) −0.901237 1.35467i −0.0361073 0.0542737i
\(624\) 0 0
\(625\) 2.37289 + 0.863661i 0.0949156 + 0.0345464i
\(626\) −5.56312 2.02481i −0.222347 0.0809277i
\(627\) 0 0
\(628\) 0.0974780 0.552825i 0.00388980 0.0220601i
\(629\) 1.79101 3.10213i 0.0714124 0.123690i
\(630\) 0 0
\(631\) −22.9465 39.7445i −0.913486 1.58220i −0.809103 0.587667i \(-0.800047\pi\)
−0.104383 0.994537i \(-0.533287\pi\)
\(632\) 12.8024 4.65970i 0.509253 0.185353i
\(633\) 0 0
\(634\) 9.54979 8.01323i 0.379271 0.318246i
\(635\) 3.22741 + 18.3035i 0.128076 + 0.726354i
\(636\) 0 0
\(637\) −4.67949 + 5.06582i −0.185408 + 0.200715i
\(638\) −23.5283 40.7523i −0.931495 1.61340i
\(639\) 0 0
\(640\) −5.44723 9.43487i −0.215321 0.372946i
\(641\) −26.9575 + 9.81173i −1.06476 + 0.387540i −0.814214 0.580565i \(-0.802832\pi\)
−0.250544 + 0.968105i \(0.580609\pi\)
\(642\) 0 0
\(643\) 0.172431 + 0.977906i 0.00680002 + 0.0385648i 0.988019 0.154332i \(-0.0493227\pi\)
−0.981219 + 0.192897i \(0.938212\pi\)
\(644\) 3.43138 1.50163i 0.135215 0.0591727i
\(645\) 0 0
\(646\) 2.54718 + 2.13734i 0.100218 + 0.0840925i
\(647\) −8.87356 + 15.3695i −0.348856 + 0.604236i −0.986046 0.166470i \(-0.946763\pi\)
0.637191 + 0.770706i \(0.280096\pi\)
\(648\) 0 0
\(649\) −14.4072 24.9540i −0.565531 0.979528i
\(650\) −4.94148 + 1.79855i −0.193821 + 0.0705451i
\(651\) 0 0
\(652\) 5.86857 4.92432i 0.229831 0.192851i
\(653\) 13.9574 11.7117i 0.546196 0.458313i −0.327455 0.944867i \(-0.606191\pi\)
0.873650 + 0.486554i \(0.161746\pi\)
\(654\) 0 0
\(655\) −11.5418 + 4.20088i −0.450976 + 0.164142i
\(656\) −56.5849 −2.20927
\(657\) 0 0
\(658\) 53.6436 + 15.7525i 2.09125 + 0.614095i
\(659\) 0.516836 2.93112i 0.0201331 0.114180i −0.973085 0.230446i \(-0.925981\pi\)
0.993218 + 0.116266i \(0.0370925\pi\)
\(660\) 0 0
\(661\) 18.7503 15.7334i 0.729303 0.611958i −0.200639 0.979665i \(-0.564302\pi\)
0.929941 + 0.367708i \(0.119857\pi\)
\(662\) 7.13422 5.98632i 0.277279 0.232665i
\(663\) 0 0
\(664\) 1.39158 7.89202i 0.0540036 0.306270i
\(665\) −5.33348 1.56618i −0.206824 0.0607338i
\(666\) 0 0
\(667\) −5.26656 −0.203922
\(668\) −15.1666 + 5.52020i −0.586814 + 0.213583i
\(669\) 0 0
\(670\) −27.4852 + 23.0628i −1.06185 + 0.890995i
\(671\) 18.3682 15.4128i 0.709097 0.595003i
\(672\) 0 0
\(673\) 23.3965 8.51562i 0.901868 0.328253i 0.150867 0.988554i \(-0.451794\pi\)
0.751001 + 0.660301i \(0.229571\pi\)
\(674\) 13.5871 + 23.5336i 0.523356 + 0.906480i
\(675\) 0 0
\(676\) 8.92685 15.4618i 0.343340 0.594683i
\(677\) −6.77852 5.68785i −0.260520 0.218602i 0.503167 0.864189i \(-0.332168\pi\)
−0.763686 + 0.645587i \(0.776613\pi\)
\(678\) 0 0
\(679\) 13.8361 6.05494i 0.530981 0.232367i
\(680\) −0.303432 1.72085i −0.0116361 0.0659916i
\(681\) 0 0
\(682\) 53.5578 19.4935i 2.05084 0.746443i
\(683\) 3.14016 + 5.43892i 0.120155 + 0.208114i 0.919829 0.392320i \(-0.128328\pi\)
−0.799674 + 0.600435i \(0.794994\pi\)
\(684\) 0 0
\(685\) −1.69943 2.94349i −0.0649317 0.112465i
\(686\) 30.2077 + 16.8097i 1.15333 + 0.641799i
\(687\) 0 0
\(688\) −2.66710 15.1259i −0.101682 0.576669i
\(689\) −3.50951 + 2.94483i −0.133702 + 0.112189i
\(690\) 0 0
\(691\) 10.5686 3.84667i 0.402050 0.146334i −0.133077 0.991106i \(-0.542486\pi\)
0.535127 + 0.844771i \(0.320264\pi\)
\(692\) 8.98622 + 15.5646i 0.341605 + 0.591677i
\(693\) 0 0
\(694\) −8.11448 + 14.0547i −0.308022 + 0.533509i
\(695\) 5.45941 30.9619i 0.207087 1.17445i
\(696\) 0 0
\(697\) −13.8407 5.03759i −0.524252 0.190812i
\(698\) −19.4441 7.07706i −0.735968 0.267871i
\(699\) 0 0
\(700\) 6.21963 + 9.34887i 0.235080 + 0.353354i
\(701\) −11.0400 −0.416976 −0.208488 0.978025i \(-0.566854\pi\)
−0.208488 + 0.978025i \(0.566854\pi\)
\(702\) 0 0
\(703\) 2.07340 3.59124i 0.0781999 0.135446i
\(704\) −2.75796 + 15.6412i −0.103945 + 0.589499i
\(705\) 0 0
\(706\) 33.1111 27.7835i 1.24615 1.04565i
\(707\) 25.2318 + 18.5786i 0.948940 + 0.698722i
\(708\) 0 0
\(709\) −3.29290 + 18.6750i −0.123668 + 0.701353i 0.858423 + 0.512943i \(0.171445\pi\)
−0.982090 + 0.188411i \(0.939666\pi\)
\(710\) 15.8553 + 27.4621i 0.595038 + 1.03064i
\(711\) 0 0
\(712\) 0.296061 0.512792i 0.0110953 0.0192177i
\(713\) 1.10768 6.28195i 0.0414828 0.235261i
\(714\) 0 0
\(715\) 6.18428 + 2.25089i 0.231279 + 0.0841786i
\(716\) −3.19005 18.0917i −0.119218 0.676117i
\(717\) 0 0
\(718\) 2.97320 + 2.49481i 0.110959 + 0.0931055i
\(719\) 1.77058 3.06674i 0.0660316 0.114370i −0.831120 0.556094i \(-0.812300\pi\)
0.897151 + 0.441724i \(0.145633\pi\)
\(720\) 0 0
\(721\) −32.5780 9.56655i −1.21327 0.356277i
\(722\) −24.2192 20.3223i −0.901345 0.756318i
\(723\) 0 0
\(724\) −22.1332 8.05584i −0.822575 0.299393i
\(725\) −2.74165 15.5487i −0.101822 0.577463i
\(726\) 0 0
\(727\) 34.1662 12.4355i 1.26715 0.461206i 0.380990 0.924579i \(-0.375583\pi\)
0.886163 + 0.463373i \(0.153361\pi\)
\(728\) −2.40805 0.707124i −0.0892481 0.0262078i
\(729\) 0 0
\(730\) −13.5590 23.4850i −0.501843 0.869217i
\(731\) 0.694240 3.93723i 0.0256774 0.145624i
\(732\) 0 0
\(733\) 20.2090 + 7.35546i 0.746435 + 0.271680i 0.687105 0.726558i \(-0.258881\pi\)
0.0593303 + 0.998238i \(0.481103\pi\)
\(734\) −4.96227 28.1425i −0.183161 1.03876i
\(735\) 0 0
\(736\) 5.09275 + 4.27333i 0.187721 + 0.157517i
\(737\) −59.9889 −2.20972
\(738\) 0 0
\(739\) 7.19530 0.264683 0.132342 0.991204i \(-0.457750\pi\)
0.132342 + 0.991204i \(0.457750\pi\)
\(740\) 5.89204 2.14453i 0.216596 0.0788344i
\(741\) 0 0
\(742\) 18.4928 + 13.6166i 0.678893 + 0.499881i
\(743\) 5.28136 + 1.92226i 0.193754 + 0.0705207i 0.437075 0.899425i \(-0.356015\pi\)
−0.243321 + 0.969946i \(0.578237\pi\)
\(744\) 0 0
\(745\) −4.92281 4.13073i −0.180358 0.151338i
\(746\) 57.2463 2.09594
\(747\) 0 0
\(748\) −4.20308 + 7.27996i −0.153680 + 0.266182i
\(749\) −12.9810 + 26.1904i −0.474316 + 0.956975i
\(750\) 0 0
\(751\) 32.8983 27.6050i 1.20048 1.00732i 0.200861 0.979620i \(-0.435626\pi\)
0.999616 0.0276999i \(-0.00881827\pi\)
\(752\) 9.36841 + 53.1309i 0.341631 + 1.93748i
\(753\) 0 0
\(754\) −7.77805 6.52656i −0.283260 0.237683i
\(755\) 21.6859 0.789232
\(756\) 0 0
\(757\) −18.7190 −0.680354 −0.340177 0.940361i \(-0.610487\pi\)
−0.340177 + 0.940361i \(0.610487\pi\)
\(758\) 47.3674 + 39.7460i 1.72046 + 1.44364i
\(759\) 0 0
\(760\) −0.351274 1.99218i −0.0127421 0.0722638i
\(761\) 9.59380 8.05016i 0.347775 0.291818i −0.452121 0.891957i \(-0.649332\pi\)
0.799896 + 0.600139i \(0.204888\pi\)
\(762\) 0 0
\(763\) 50.2953 3.19524i 1.82081 0.115676i
\(764\) −11.2817 + 19.5404i −0.408157 + 0.706948i
\(765\) 0 0
\(766\) 22.1760 0.801251
\(767\) −4.76275 3.99643i −0.171973 0.144303i
\(768\) 0 0
\(769\) 18.4388 + 6.71117i 0.664920 + 0.242011i 0.652359 0.757910i \(-0.273779\pi\)
0.0125608 + 0.999921i \(0.496002\pi\)
\(770\) 3.65725 32.7864i 0.131798 1.18154i
\(771\) 0 0
\(772\) 26.2211 9.54372i 0.943720 0.343486i
\(773\) −10.7971 −0.388343 −0.194171 0.980968i \(-0.562202\pi\)
−0.194171 + 0.980968i \(0.562202\pi\)
\(774\) 0 0
\(775\) 19.1231 0.686921
\(776\) 4.21038 + 3.53293i 0.151144 + 0.126825i
\(777\) 0 0
\(778\) −7.41343 42.0436i −0.265784 1.50734i
\(779\) −16.0229 5.83187i −0.574081 0.208948i
\(780\) 0 0
\(781\) −9.20661 + 52.2133i −0.329438 + 1.86834i
\(782\) 1.10431 + 1.91271i 0.0394899 + 0.0683985i
\(783\) 0 0
\(784\) −1.58876 + 33.3212i −0.0567415 + 1.19004i
\(785\) −0.519984 + 0.189259i −0.0185590 + 0.00675493i
\(786\) 0 0
\(787\) 7.28184 + 41.2973i 0.259569 + 1.47209i 0.784065 + 0.620678i \(0.213143\pi\)
−0.524496 + 0.851413i \(0.675746\pi\)
\(788\) −0.364196 0.132557i −0.0129740 0.00472213i
\(789\) 0 0
\(790\) 29.6012 + 24.8383i 1.05316 + 0.883708i
\(791\) −15.0075 + 14.3090i −0.533606 + 0.508770i
\(792\) 0 0
\(793\) 2.58689 4.48063i 0.0918633 0.159112i
\(794\) 31.8789 + 26.7495i 1.13134 + 0.949306i
\(795\) 0 0
\(796\) −0.422041 2.39351i −0.0149588 0.0848358i
\(797\) 12.2053 + 4.44238i 0.432335 + 0.157357i 0.549015 0.835812i \(-0.315003\pi\)
−0.116680 + 0.993170i \(0.537225\pi\)
\(798\) 0 0
\(799\) −2.43857 + 13.8298i −0.0862705 + 0.489265i
\(800\) −9.96514 + 17.2601i −0.352321 + 0.610238i
\(801\) 0 0
\(802\) 4.72178 + 8.17836i 0.166732 + 0.288788i
\(803\) 7.87327 44.6515i 0.277842 1.57572i
\(804\) 0 0
\(805\) −2.97317 2.18920i −0.104790 0.0771591i
\(806\) 9.42078 7.90497i 0.331833 0.278441i
\(807\) 0 0
\(808\) −1.98011 + 11.2297i −0.0696599 + 0.395061i
\(809\) 14.8787 25.7707i 0.523109 0.906051i −0.476529 0.879159i \(-0.658105\pi\)
0.999638 0.0268927i \(-0.00856125\pi\)
\(810\) 0 0
\(811\) 38.9051 1.36614 0.683072 0.730351i \(-0.260643\pi\)
0.683072 + 0.730351i \(0.260643\pi\)
\(812\) −9.62819 + 19.4257i −0.337883 + 0.681709i
\(813\) 0 0
\(814\) 23.1263 + 8.41729i 0.810577 + 0.295026i
\(815\) −7.09630 2.58284i −0.248572 0.0904730i
\(816\) 0 0
\(817\) 0.803702 4.55802i 0.0281180 0.159465i
\(818\) −21.2271 + 36.7664i −0.742188 + 1.28551i
\(819\) 0 0
\(820\) −12.8912 22.3281i −0.450179 0.779733i
\(821\) 37.3616 13.5985i 1.30393 0.474591i 0.405654 0.914027i \(-0.367044\pi\)
0.898274 + 0.439436i \(0.144822\pi\)
\(822\) 0 0
\(823\) −29.8699 + 25.0638i −1.04120 + 0.873669i −0.992141 0.125127i \(-0.960066\pi\)
−0.0490570 + 0.998796i \(0.515622\pi\)
\(824\) −2.14566 12.1686i −0.0747475 0.423914i
\(825\) 0 0
\(826\) −13.8404 + 27.9242i −0.481568 + 0.971606i
\(827\) −15.3937 26.6626i −0.535290 0.927150i −0.999149 0.0412408i \(-0.986869\pi\)
0.463859 0.885909i \(-0.346464\pi\)
\(828\) 0 0
\(829\) 12.7647 + 22.1090i 0.443335 + 0.767878i 0.997935 0.0642389i \(-0.0204620\pi\)
−0.554600 + 0.832117i \(0.687129\pi\)
\(830\) 21.3585 7.77386i 0.741365 0.269835i
\(831\) 0 0
\(832\) 0.595091 + 3.37493i 0.0206311 + 0.117005i
\(833\) −3.35510 + 8.00891i −0.116247 + 0.277492i
\(834\) 0 0
\(835\) 12.1878 + 10.2268i 0.421775 + 0.353911i
\(836\) −4.86579 + 8.42779i −0.168287 + 0.291481i
\(837\) 0 0
\(838\) −28.3461 49.0969i −0.979201 1.69603i
\(839\) 15.4625 5.62791i 0.533826 0.194297i −0.0610197 0.998137i \(-0.519435\pi\)
0.594846 + 0.803840i \(0.297213\pi\)
\(840\) 0 0
\(841\) 1.13760 0.954559i 0.0392275 0.0329158i
\(842\) 44.7771 37.5725i 1.54312 1.29483i
\(843\) 0 0
\(844\) −8.89029 + 3.23580i −0.306016 + 0.111381i
\(845\) −17.5993 −0.605435
\(846\) 0 0
\(847\) 18.8567 17.9791i 0.647925 0.617768i
\(848\) −3.84818 + 21.8241i −0.132147 + 0.749443i
\(849\) 0 0
\(850\) −5.07210 + 4.25600i −0.173972 + 0.145980i
\(851\) 2.10999 1.77049i 0.0723295 0.0606917i
\(852\) 0 0
\(853\) −1.40699 + 7.97942i −0.0481743 + 0.273210i −0.999374 0.0353643i \(-0.988741\pi\)
0.951200 + 0.308575i \(0.0998519\pi\)
\(854\) −24.8842 7.30725i −0.851519 0.250049i
\(855\) 0 0
\(856\) −10.6377 −0.363588
\(857\) −6.41442 + 2.33466i −0.219112 + 0.0797504i −0.449244 0.893409i \(-0.648307\pi\)
0.230132 + 0.973160i \(0.426084\pi\)
\(858\) 0 0
\(859\) −34.9781 + 29.3501i −1.19344 + 1.00141i −0.193643 + 0.981072i \(0.562030\pi\)
−0.999793 + 0.0203395i \(0.993525\pi\)
\(860\) 5.36099 4.49840i 0.182808 0.153394i
\(861\) 0 0
\(862\) 18.4445 6.71326i 0.628223 0.228655i
\(863\) −0.791478 1.37088i −0.0269422 0.0466653i 0.852240 0.523151i \(-0.175244\pi\)
−0.879182 + 0.476486i \(0.841910\pi\)
\(864\) 0 0
\(865\) 8.85818 15.3428i 0.301187 0.521672i
\(866\) −9.06285 7.60463i −0.307968 0.258416i
\(867\) 0 0
\(868\) −21.1460 15.5702i −0.717741 0.528486i
\(869\) 11.2189 + 63.6256i 0.380575 + 2.15835i
\(870\) 0 0
\(871\) −12.1633 + 4.42709i −0.412139 + 0.150006i
\(872\) 9.17016 + 15.8832i 0.310541 + 0.537872i
\(873\) 0 0
\(874\) 1.27842 + 2.21429i 0.0432433 + 0.0748995i
\(875\) 13.5103 27.2583i 0.456733 0.921500i
\(876\) 0 0
\(877\) 3.85909 + 21.8860i 0.130312 + 0.739037i 0.978010 + 0.208558i \(0.0668769\pi\)
−0.847698 + 0.530479i \(0.822012\pi\)
\(878\) 28.9383 24.2821i 0.976621 0.819482i
\(879\) 0 0
\(880\) 29.9145 10.8880i 1.00842 0.367033i
\(881\) −12.8210 22.2065i −0.431949 0.748158i 0.565092 0.825028i \(-0.308841\pi\)
−0.997041 + 0.0768702i \(0.975507\pi\)
\(882\) 0 0
\(883\) −17.2315 + 29.8458i −0.579886 + 1.00439i 0.415606 + 0.909545i \(0.363569\pi\)
−0.995492 + 0.0948467i \(0.969764\pi\)
\(884\) −0.314966 + 1.78626i −0.0105935 + 0.0600785i
\(885\) 0 0
\(886\) 15.5719 + 5.66770i 0.523147 + 0.190410i
\(887\) 11.7083 + 4.26148i 0.393127 + 0.143086i 0.531017 0.847361i \(-0.321810\pi\)
−0.137890 + 0.990447i \(0.544032\pi\)
\(888\) 0 0
\(889\) 33.5433 2.13099i 1.12501 0.0714713i
\(890\) 1.67942 0.0562943
\(891\) 0 0
\(892\) −4.28964 + 7.42988i −0.143628 + 0.248771i
\(893\) −2.82307 + 16.0104i −0.0944703 + 0.535768i
\(894\) 0 0
\(895\) −13.8723 + 11.6402i −0.463700 + 0.389090i
\(896\) −18.0490 + 7.89859i −0.602975 + 0.263873i
\(897\) 0 0
\(898\) 3.90146 22.1263i 0.130193 0.738364i
\(899\) 18.4618 + 31.9767i 0.615734 + 1.06648i
\(900\) 0 0
\(901\) −2.88420 + 4.99558i −0.0960866 + 0.166427i
\(902\) 17.5725 99.6585i 0.585100 3.31827i
\(903\) 0 0
\(904\) −7.09106 2.58094i −0.235845 0.0858407i
\(905\) 4.03178 + 22.8653i 0.134021 + 0.760070i
\(906\) 0 0
\(907\) 15.5305 + 13.0316i 0.515682 + 0.432708i 0.863123 0.504993i \(-0.168505\pi\)
−0.347442 + 0.937702i \(0.612950\pi\)
\(908\) 9.51522 16.4808i 0.315774 0.546936i
\(909\) 0 0
\(910\) −1.67804 6.91765i −0.0556266 0.229318i
\(911\) 16.6560 + 13.9761i 0.551838 + 0.463047i 0.875563 0.483104i \(-0.160491\pi\)
−0.323725 + 0.946151i \(0.604935\pi\)
\(912\) 0 0
\(913\) 35.7106 + 12.9976i 1.18185 + 0.430157i
\(914\) −1.04320 5.91630i −0.0345061 0.195694i
\(915\) 0 0
\(916\) 8.17391 2.97506i 0.270073 0.0982987i
\(917\) 5.23617 + 21.5859i 0.172913 + 0.712828i
\(918\) 0 0
\(919\) −8.04117 13.9277i −0.265254 0.459433i 0.702376 0.711806i \(-0.252122\pi\)
−0.967630 + 0.252373i \(0.918789\pi\)
\(920\) 0.233324 1.32325i 0.00769246 0.0436261i
\(921\) 0 0
\(922\) −59.9097 21.8053i −1.97302 0.718120i
\(923\) 1.98653 + 11.2662i 0.0653874 + 0.370831i
\(924\) 0 0
\(925\) 6.32551 + 5.30773i 0.207981 + 0.174517i
\(926\) 20.4239 0.671170
\(927\) 0 0
\(928\) −38.4821 −1.26324
\(929\) −42.7404 + 15.5562i −1.40227 + 0.510383i −0.928850 0.370456i \(-0.879201\pi\)
−0.473416 + 0.880839i \(0.656979\pi\)
\(930\) 0 0
\(931\) −3.88410 + 9.27168i −0.127296 + 0.303867i
\(932\) 1.35494 + 0.493157i 0.0443824 + 0.0161539i
\(933\) 0 0
\(934\) 59.2068 + 49.6804i 1.93731 + 1.62559i
\(935\) 8.28639 0.270994
\(936\) 0 0
\(937\) 19.6409 34.0190i 0.641639 1.11135i −0.343428 0.939179i \(-0.611588\pi\)
0.985067 0.172172i \(-0.0550784\pi\)
\(938\) 35.9397 + 54.0218i 1.17347 + 1.76387i
\(939\) 0 0
\(940\) −18.8309 + 15.8010i −0.614196 + 0.515371i
\(941\) 6.32310 + 35.8601i 0.206127 + 1.16900i 0.895656 + 0.444747i \(0.146706\pi\)
−0.689529 + 0.724258i \(0.742182\pi\)
\(942\) 0 0
\(943\) −8.67606 7.28008i −0.282532 0.237072i
\(944\) −30.0744 −0.978837
\(945\) 0 0
\(946\) 27.4683 0.893071
\(947\) −12.9431 10.8605i −0.420594 0.352920i 0.407795 0.913074i \(-0.366298\pi\)
−0.828389 + 0.560153i \(0.810742\pi\)
\(948\) 0 0
\(949\) −1.69883 9.63456i −0.0551465 0.312751i
\(950\) −5.87182 + 4.92704i −0.190507 + 0.159854i
\(951\) 0 0
\(952\) −3.15365 + 0.200350i −0.102210 + 0.00649339i
\(953\) 10.9661 18.9938i 0.355226 0.615270i −0.631930 0.775025i \(-0.717737\pi\)
0.987157 + 0.159755i \(0.0510705\pi\)
\(954\) 0 0
\(955\) 22.2419 0.719730
\(956\) 27.0118 + 22.6656i 0.873625 + 0.733059i
\(957\) 0 0
\(958\) 14.5634 + 5.30066i 0.470523 + 0.171257i
\(959\) −5.63093 + 2.46420i −0.181832 + 0.0795732i
\(960\) 0 0
\(961\) −12.8943 + 4.69313i −0.415944 + 0.151391i
\(962\) 5.31027 0.171210
\(963\) 0 0
\(964\) −0.424810 −0.0136822
\(965\) −21.0711 17.6808i −0.678303 0.569164i
\(966\) 0 0
\(967\) 2.64027 + 14.9737i 0.0849053 + 0.481522i 0.997377 + 0.0723820i \(0.0230601\pi\)
−0.912472 + 0.409140i \(0.865829\pi\)
\(968\) 8.90981 + 3.24291i 0.286372 + 0.104231i
\(969\) 0 0
\(970\) −2.70698 + 15.3521i −0.0869160 + 0.492925i
\(971\) 12.0551 + 20.8800i 0.386866 + 0.670072i 0.992026 0.126032i \(-0.0402241\pi\)
−0.605160 + 0.796104i \(0.706891\pi\)
\(972\) 0 0
\(973\) −54.5521 16.0193i −1.74886 0.513554i
\(974\) 42.0039 15.2882i 1.34589 0.489864i
\(975\) 0 0
\(976\) −4.34581 24.6463i −0.139106 0.788910i
\(977\) 27.0184 + 9.83390i 0.864396 + 0.314614i 0.735896 0.677095i \(-0.236761\pi\)
0.128500 + 0.991709i \(0.458984\pi\)
\(978\) 0 0
\(979\) 2.15099 + 1.80490i 0.0687460 + 0.0576848i
\(980\) −13.5103 + 6.96430i −0.431572 + 0.222467i
\(981\) 0 0
\(982\) 36.6853 63.5407i 1.17067 2.02767i
\(983\) −3.68325 3.09061i −0.117477 0.0985752i 0.582157 0.813077i \(-0.302209\pi\)
−0.699634 + 0.714502i \(0.746654\pi\)
\(984\) 0 0
\(985\) 0.0663418 + 0.376243i 0.00211383 + 0.0119881i
\(986\) −12.0134 4.37251i −0.382583 0.139249i
\(987\) 0 0
\(988\) −0.364627 + 2.06790i −0.0116003 + 0.0657887i
\(989\) 1.53712 2.66237i 0.0488775 0.0846584i
\(990\) 0 0
\(991\) −26.3768 45.6860i −0.837888 1.45126i −0.891657 0.452711i \(-0.850457\pi\)
0.0537691 0.998553i \(-0.482877\pi\)
\(992\) 8.09366 45.9014i 0.256974 1.45737i
\(993\) 0 0
\(994\) 52.5353 22.9905i 1.66632 0.729213i
\(995\) −1.83529 + 1.53999i −0.0581827 + 0.0488211i
\(996\) 0 0
\(997\) 8.91880 50.5810i 0.282461 1.60192i −0.431754 0.901992i \(-0.642105\pi\)
0.714215 0.699926i \(-0.246784\pi\)
\(998\) 5.84523 10.1242i 0.185028 0.320477i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 567.2.w.a.424.19 132
3.2 odd 2 189.2.w.a.88.4 yes 132
7.2 even 3 567.2.u.a.100.19 132
21.2 odd 6 189.2.u.a.142.4 yes 132
27.4 even 9 567.2.u.a.550.19 132
27.23 odd 18 189.2.u.a.4.4 132
189.23 odd 18 189.2.w.a.58.4 yes 132
189.58 even 9 inner 567.2.w.a.226.19 132
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
189.2.u.a.4.4 132 27.23 odd 18
189.2.u.a.142.4 yes 132 21.2 odd 6
189.2.w.a.58.4 yes 132 189.23 odd 18
189.2.w.a.88.4 yes 132 3.2 odd 2
567.2.u.a.100.19 132 7.2 even 3
567.2.u.a.550.19 132 27.4 even 9
567.2.w.a.226.19 132 189.58 even 9 inner
567.2.w.a.424.19 132 1.1 even 1 trivial