Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [567,2,Mod(37,567)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(567, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([14, 6]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("567.37");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 567 = 3^{4} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 567.w (of order \(9\), degree \(6\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(4.52751779461\) |
Analytic rank: | \(0\) |
Dimension: | \(132\) |
Relative dimension: | \(22\) over \(\Q(\zeta_{9})\) |
Twist minimal: | no (minimal twist has level 189) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{9}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
37.1 | −0.475852 | − | 2.69869i | 0 | −5.17712 | + | 1.88432i | −0.0114982 | + | 0.0652096i | 0 | 2.53330 | + | 0.763145i | 4.80842 | + | 8.32842i | 0 | 0.181452 | ||||||||
37.2 | −0.442261 | − | 2.50819i | 0 | −4.21603 | + | 1.53451i | 0.331479 | − | 1.87991i | 0 | 0.0136229 | − | 2.64572i | 3.16655 | + | 5.48462i | 0 | −4.86178 | ||||||||
37.3 | −0.379821 | − | 2.15407i | 0 | −2.61637 | + | 0.952279i | 0.347563 | − | 1.97113i | 0 | 0.0877467 | + | 2.64430i | 0.857725 | + | 1.48562i | 0 | −4.37795 | ||||||||
37.4 | −0.351787 | − | 1.99508i | 0 | −1.97722 | + | 0.719650i | −0.155052 | + | 0.879341i | 0 | −1.72949 | + | 2.00222i | 0.105462 | + | 0.182666i | 0 | 1.80890 | ||||||||
37.5 | −0.337831 | − | 1.91594i | 0 | −1.67729 | + | 0.610485i | −0.582582 | + | 3.30399i | 0 | 0.666452 | − | 2.56044i | −0.209199 | − | 0.362343i | 0 | 6.52704 | ||||||||
37.6 | −0.306313 | − | 1.73719i | 0 | −1.04461 | + | 0.380207i | 0.723302 | − | 4.10205i | 0 | −1.55501 | − | 2.14055i | −0.783518 | − | 1.35709i | 0 | −7.34759 | ||||||||
37.7 | −0.278319 | − | 1.57843i | 0 | −0.534587 | + | 0.194574i | −0.620906 | + | 3.52133i | 0 | −2.64260 | + | 0.129178i | −1.14687 | − | 1.98644i | 0 | 5.73098 | ||||||||
37.8 | −0.162199 | − | 0.919879i | 0 | 1.05952 | − | 0.385633i | 0.120368 | − | 0.682641i | 0 | 1.39323 | − | 2.24920i | −1.46066 | − | 2.52993i | 0 | −0.647471 | ||||||||
37.9 | −0.161602 | − | 0.916488i | 0 | 1.06555 | − | 0.387829i | −0.260888 | + | 1.47957i | 0 | 1.80008 | + | 1.93899i | −1.45826 | − | 2.52578i | 0 | 1.39817 | ||||||||
37.10 | −0.0910389 | − | 0.516307i | 0 | 1.62110 | − | 0.590032i | −0.0290567 | + | 0.164789i | 0 | −0.352779 | + | 2.62213i | −0.976493 | − | 1.69134i | 0 | 0.0877269 | ||||||||
37.11 | −0.0119703 | − | 0.0678870i | 0 | 1.87492 | − | 0.682415i | −0.115724 | + | 0.656302i | 0 | −1.45670 | − | 2.20863i | −0.137705 | − | 0.238512i | 0 | 0.0459397 | ||||||||
37.12 | 0.000974390 | 0.00552604i | 0 | 1.87936 | − | 0.684030i | 0.601605 | − | 3.41187i | 0 | 2.41288 | − | 1.08535i | 0.0112225 | + | 0.0194379i | 0 | 0.0194403 | |||||||||
37.13 | 0.0572325 | + | 0.324581i | 0 | 1.77731 | − | 0.646887i | 0.607976 | − | 3.44800i | 0 | −2.50814 | + | 0.842165i | 0.641276 | + | 1.11072i | 0 | 1.15395 | ||||||||
37.14 | 0.162149 | + | 0.919594i | 0 | 1.06003 | − | 0.385818i | −0.575026 | + | 3.26114i | 0 | 1.06445 | + | 2.42218i | 1.46046 | + | 2.52959i | 0 | −3.09216 | ||||||||
37.15 | 0.177652 | + | 1.00751i | 0 | 0.895865 | − | 0.326068i | −0.356801 | + | 2.02352i | 0 | −2.48566 | + | 0.906357i | 1.51072 | + | 2.61665i | 0 | −2.10210 | ||||||||
37.16 | 0.199381 | + | 1.13075i | 0 | 0.640547 | − | 0.233140i | 0.0295570 | − | 0.167626i | 0 | −1.82867 | − | 1.91206i | 1.53953 | + | 2.66654i | 0 | 0.195436 | ||||||||
37.17 | 0.202689 | + | 1.14951i | 0 | 0.599102 | − | 0.218055i | 0.490607 | − | 2.78237i | 0 | 2.49252 | + | 0.887321i | 1.53933 | + | 2.66619i | 0 | 3.29779 | ||||||||
37.18 | 0.303930 | + | 1.72367i | 0 | −0.999292 | + | 0.363713i | −0.0231991 | + | 0.131569i | 0 | 1.74352 | − | 1.99001i | 0.819627 | + | 1.41964i | 0 | −0.233833 | ||||||||
37.19 | 0.345866 | + | 1.96151i | 0 | −1.84850 | + | 0.672798i | −0.424474 | + | 2.40731i | 0 | 2.63001 | + | 0.288173i | 0.0327363 | + | 0.0567010i | 0 | −4.86876 | ||||||||
37.20 | 0.402178 | + | 2.28086i | 0 | −3.16120 | + | 1.15058i | −0.125418 | + | 0.711279i | 0 | −2.42560 | + | 1.05663i | −1.57964 | − | 2.73601i | 0 | −1.67277 | ||||||||
See next 80 embeddings (of 132 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
189.w | even | 9 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 567.2.w.a | 132 | |
3.b | odd | 2 | 1 | 189.2.w.a | yes | 132 | |
7.c | even | 3 | 1 | 567.2.u.a | 132 | ||
21.h | odd | 6 | 1 | 189.2.u.a | ✓ | 132 | |
27.e | even | 9 | 1 | 567.2.u.a | 132 | ||
27.f | odd | 18 | 1 | 189.2.u.a | ✓ | 132 | |
189.w | even | 9 | 1 | inner | 567.2.w.a | 132 | |
189.bf | odd | 18 | 1 | 189.2.w.a | yes | 132 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
189.2.u.a | ✓ | 132 | 21.h | odd | 6 | 1 | |
189.2.u.a | ✓ | 132 | 27.f | odd | 18 | 1 | |
189.2.w.a | yes | 132 | 3.b | odd | 2 | 1 | |
189.2.w.a | yes | 132 | 189.bf | odd | 18 | 1 | |
567.2.u.a | 132 | 7.c | even | 3 | 1 | ||
567.2.u.a | 132 | 27.e | even | 9 | 1 | ||
567.2.w.a | 132 | 1.a | even | 1 | 1 | trivial | |
567.2.w.a | 132 | 189.w | even | 9 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(567, [\chi])\).