Properties

Label 567.2.w
Level $567$
Weight $2$
Character orbit 567.w
Rep. character $\chi_{567}(37,\cdot)$
Character field $\Q(\zeta_{9})$
Dimension $132$
Newform subspaces $1$
Sturm bound $144$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 567 = 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 567.w (of order \(9\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 189 \)
Character field: \(\Q(\zeta_{9})\)
Newform subspaces: \( 1 \)
Sturm bound: \(144\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(567, [\chi])\).

Total New Old
Modular forms 468 156 312
Cusp forms 396 132 264
Eisenstein series 72 24 48

Trace form

\( 132 q + 3 q^{2} - 3 q^{4} + 3 q^{5} - 6 q^{7} + 6 q^{8} + O(q^{10}) \) \( 132 q + 3 q^{2} - 3 q^{4} + 3 q^{5} - 6 q^{7} + 6 q^{8} - 6 q^{10} - 3 q^{11} - 12 q^{13} - 15 q^{14} - 9 q^{16} + 54 q^{17} - 6 q^{19} + 18 q^{20} - 12 q^{22} - 3 q^{25} - 30 q^{26} - 12 q^{28} + 30 q^{29} - 3 q^{31} - 51 q^{32} - 18 q^{34} + 12 q^{35} + 3 q^{37} + 57 q^{38} - 66 q^{40} - 12 q^{43} - 3 q^{44} + 3 q^{46} + 21 q^{47} + 12 q^{49} + 39 q^{50} + 9 q^{52} - 9 q^{53} - 24 q^{55} - 57 q^{56} - 3 q^{58} + 18 q^{59} + 33 q^{61} - 75 q^{62} - 30 q^{64} - 81 q^{65} - 3 q^{67} - 6 q^{68} - 42 q^{70} + 18 q^{71} + 21 q^{73} + 93 q^{74} - 24 q^{76} - 87 q^{77} + 15 q^{79} - 102 q^{80} - 6 q^{82} + 42 q^{83} - 63 q^{85} - 159 q^{86} + 57 q^{88} + 150 q^{89} + 6 q^{91} + 66 q^{92} + 33 q^{94} + 147 q^{95} - 12 q^{97} - 99 q^{98} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(567, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
567.2.w.a 567.w 189.w $132$ $4.528$ None 189.2.u.a \(3\) \(0\) \(3\) \(-6\) $\mathrm{SU}(2)[C_{9}]$

Decomposition of \(S_{2}^{\mathrm{old}}(567, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(567, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(189, [\chi])\)\(^{\oplus 2}\)