Properties

Label 567.2.u.a.550.19
Level $567$
Weight $2$
Character 567.550
Analytic conductor $4.528$
Analytic rank $0$
Dimension $132$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [567,2,Mod(100,567)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(567, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([16, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("567.100");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 567 = 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 567.u (of order \(9\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.52751779461\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{9})\)
Twist minimal: no (minimal twist has level 189)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 550.19
Character \(\chi\) \(=\) 567.550
Dual form 567.2.u.a.100.19

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.324131 + 1.83824i) q^{2} +(-1.39467 + 0.507617i) q^{4} +(-1.37479 + 0.500384i) q^{5} +(-2.42382 + 1.06071i) q^{7} +(0.481419 + 0.833843i) q^{8} +(-1.36544 - 2.36501i) q^{10} +(-4.29056 - 1.56163i) q^{11} +(0.925783 - 0.336957i) q^{13} +(-2.73547 - 4.11174i) q^{14} +(-3.65064 + 3.06325i) q^{16} +(-0.620234 - 1.07428i) q^{17} +(-0.718027 + 1.24366i) q^{19} +(1.66338 - 1.39574i) q^{20} +(1.47995 - 8.39323i) q^{22} +(-0.165636 + 0.939366i) q^{23} +(-2.19055 + 1.83809i) q^{25} +(0.919482 + 1.59259i) q^{26} +(2.84199 - 2.70971i) q^{28} +(-5.18835 - 1.88840i) q^{29} +(6.28413 - 2.28724i) q^{31} +(-5.33911 - 4.48005i) q^{32} +(1.77374 - 1.48834i) q^{34} +(2.80149 - 2.67110i) q^{35} -2.88764 q^{37} +(-2.51887 - 0.916795i) q^{38} +(-1.07909 - 0.905468i) q^{40} +(-11.1576 + 4.06104i) q^{41} +(0.559660 + 3.17399i) q^{43} +6.77661 q^{44} -1.78046 q^{46} +(10.6381 + 3.87197i) q^{47} +(4.74979 - 5.14193i) q^{49} +(-4.08886 - 3.43096i) q^{50} +(-1.12011 + 0.939887i) q^{52} +(-2.32509 + 4.02717i) q^{53} +6.68005 q^{55} +(-2.05134 - 1.51044i) q^{56} +(1.78963 - 10.1495i) q^{58} +(4.83431 + 4.05647i) q^{59} +(-4.93482 - 1.79613i) q^{61} +(6.24136 + 10.8104i) q^{62} +(1.73924 - 3.01245i) q^{64} +(-1.10415 + 0.926495i) q^{65} +(-2.28146 + 12.9388i) q^{67} +(1.41034 + 1.18342i) q^{68} +(5.81816 + 4.28402i) q^{70} +(5.80593 - 10.0562i) q^{71} +9.93018 q^{73} +(-0.935973 - 5.30816i) q^{74} +(0.370105 - 2.09897i) q^{76} +(12.0560 - 0.765911i) q^{77} +(2.45710 + 13.9349i) q^{79} +(3.48608 - 6.03807i) q^{80} +(-11.0817 - 19.1940i) q^{82} +(7.82112 + 2.84665i) q^{83} +(1.39025 + 1.16656i) q^{85} +(-5.65314 + 2.05757i) q^{86} +(-0.763399 - 4.32945i) q^{88} +(-0.307487 + 0.532584i) q^{89} +(-1.88652 + 1.79871i) q^{91} +(-0.245832 - 1.39418i) q^{92} +(-3.66944 + 20.8104i) q^{94} +(0.364832 - 2.06907i) q^{95} +(-0.991251 - 5.62167i) q^{97} +(10.9916 + 7.06459i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q + 3 q^{2} - 3 q^{4} + 3 q^{5} - 6 q^{7} + 6 q^{8} + 3 q^{10} + 15 q^{11} - 12 q^{13} + 30 q^{14} + 9 q^{16} - 27 q^{17} + 3 q^{19} + 18 q^{20} - 12 q^{22} + 36 q^{23} - 3 q^{25} - 30 q^{26} - 12 q^{28}+ \cdots + 36 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/567\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.324131 + 1.83824i 0.229195 + 1.29983i 0.854501 + 0.519450i \(0.173863\pi\)
−0.625306 + 0.780380i \(0.715026\pi\)
\(3\) 0 0
\(4\) −1.39467 + 0.507617i −0.697333 + 0.253809i
\(5\) −1.37479 + 0.500384i −0.614827 + 0.223779i −0.630614 0.776097i \(-0.717197\pi\)
0.0157870 + 0.999875i \(0.494975\pi\)
\(6\) 0 0
\(7\) −2.42382 + 1.06071i −0.916117 + 0.400910i
\(8\) 0.481419 + 0.833843i 0.170207 + 0.294808i
\(9\) 0 0
\(10\) −1.36544 2.36501i −0.431789 0.747881i
\(11\) −4.29056 1.56163i −1.29365 0.470851i −0.398727 0.917069i \(-0.630548\pi\)
−0.894924 + 0.446219i \(0.852770\pi\)
\(12\) 0 0
\(13\) 0.925783 0.336957i 0.256766 0.0934552i −0.210430 0.977609i \(-0.567486\pi\)
0.467196 + 0.884154i \(0.345264\pi\)
\(14\) −2.73547 4.11174i −0.731084 1.09891i
\(15\) 0 0
\(16\) −3.65064 + 3.06325i −0.912661 + 0.765813i
\(17\) −0.620234 1.07428i −0.150429 0.260550i 0.780956 0.624586i \(-0.214732\pi\)
−0.931385 + 0.364035i \(0.881399\pi\)
\(18\) 0 0
\(19\) −0.718027 + 1.24366i −0.164727 + 0.285315i −0.936558 0.350512i \(-0.886008\pi\)
0.771832 + 0.635827i \(0.219341\pi\)
\(20\) 1.66338 1.39574i 0.371942 0.312097i
\(21\) 0 0
\(22\) 1.47995 8.39323i 0.315527 1.78944i
\(23\) −0.165636 + 0.939366i −0.0345374 + 0.195871i −0.997195 0.0748517i \(-0.976152\pi\)
0.962657 + 0.270723i \(0.0872628\pi\)
\(24\) 0 0
\(25\) −2.19055 + 1.83809i −0.438109 + 0.367617i
\(26\) 0.919482 + 1.59259i 0.180325 + 0.312333i
\(27\) 0 0
\(28\) 2.84199 2.70971i 0.537085 0.512087i
\(29\) −5.18835 1.88840i −0.963452 0.350668i −0.188067 0.982156i \(-0.560222\pi\)
−0.775385 + 0.631488i \(0.782444\pi\)
\(30\) 0 0
\(31\) 6.28413 2.28724i 1.12866 0.410800i 0.290857 0.956767i \(-0.406060\pi\)
0.837807 + 0.545967i \(0.183837\pi\)
\(32\) −5.33911 4.48005i −0.943831 0.791968i
\(33\) 0 0
\(34\) 1.77374 1.48834i 0.304194 0.255249i
\(35\) 2.80149 2.67110i 0.473538 0.451498i
\(36\) 0 0
\(37\) −2.88764 −0.474725 −0.237363 0.971421i \(-0.576283\pi\)
−0.237363 + 0.971421i \(0.576283\pi\)
\(38\) −2.51887 0.916795i −0.408615 0.148724i
\(39\) 0 0
\(40\) −1.07909 0.905468i −0.170620 0.143167i
\(41\) −11.1576 + 4.06104i −1.74253 + 0.634227i −0.999390 0.0349137i \(-0.988884\pi\)
−0.743135 + 0.669141i \(0.766662\pi\)
\(42\) 0 0
\(43\) 0.559660 + 3.17399i 0.0853473 + 0.484029i 0.997281 + 0.0736913i \(0.0234780\pi\)
−0.911934 + 0.410337i \(0.865411\pi\)
\(44\) 6.77661 1.02161
\(45\) 0 0
\(46\) −1.78046 −0.262515
\(47\) 10.6381 + 3.87197i 1.55173 + 0.564785i 0.968823 0.247753i \(-0.0796920\pi\)
0.582909 + 0.812537i \(0.301914\pi\)
\(48\) 0 0
\(49\) 4.74979 5.14193i 0.678542 0.734562i
\(50\) −4.08886 3.43096i −0.578252 0.485211i
\(51\) 0 0
\(52\) −1.12011 + 0.939887i −0.155332 + 0.130339i
\(53\) −2.32509 + 4.02717i −0.319376 + 0.553175i −0.980358 0.197227i \(-0.936806\pi\)
0.660982 + 0.750402i \(0.270140\pi\)
\(54\) 0 0
\(55\) 6.68005 0.900738
\(56\) −2.05134 1.51044i −0.274122 0.201841i
\(57\) 0 0
\(58\) 1.78963 10.1495i 0.234990 1.33269i
\(59\) 4.83431 + 4.05647i 0.629374 + 0.528108i 0.900734 0.434370i \(-0.143029\pi\)
−0.271360 + 0.962478i \(0.587473\pi\)
\(60\) 0 0
\(61\) −4.93482 1.79613i −0.631839 0.229970i 0.00619278 0.999981i \(-0.498029\pi\)
−0.638031 + 0.770010i \(0.720251\pi\)
\(62\) 6.24136 + 10.8104i 0.792654 + 1.37292i
\(63\) 0 0
\(64\) 1.73924 3.01245i 0.217405 0.376557i
\(65\) −1.10415 + 0.926495i −0.136953 + 0.114918i
\(66\) 0 0
\(67\) −2.28146 + 12.9388i −0.278725 + 1.58073i 0.448150 + 0.893958i \(0.352083\pi\)
−0.726875 + 0.686770i \(0.759028\pi\)
\(68\) 1.41034 + 1.18342i 0.171029 + 0.143510i
\(69\) 0 0
\(70\) 5.81816 + 4.28402i 0.695403 + 0.512038i
\(71\) 5.80593 10.0562i 0.689037 1.19345i −0.283113 0.959087i \(-0.591367\pi\)
0.972150 0.234360i \(-0.0752995\pi\)
\(72\) 0 0
\(73\) 9.93018 1.16224 0.581120 0.813818i \(-0.302615\pi\)
0.581120 + 0.813818i \(0.302615\pi\)
\(74\) −0.935973 5.30816i −0.108805 0.617062i
\(75\) 0 0
\(76\) 0.370105 2.09897i 0.0424540 0.240769i
\(77\) 12.0560 0.765911i 1.37391 0.0872837i
\(78\) 0 0
\(79\) 2.45710 + 13.9349i 0.276445 + 1.56780i 0.734333 + 0.678790i \(0.237495\pi\)
−0.457887 + 0.889010i \(0.651394\pi\)
\(80\) 3.48608 6.03807i 0.389756 0.675077i
\(81\) 0 0
\(82\) −11.0817 19.1940i −1.22377 2.11962i
\(83\) 7.82112 + 2.84665i 0.858479 + 0.312461i 0.733493 0.679697i \(-0.237889\pi\)
0.124987 + 0.992158i \(0.460111\pi\)
\(84\) 0 0
\(85\) 1.39025 + 1.16656i 0.150793 + 0.126531i
\(86\) −5.65314 + 2.05757i −0.609594 + 0.221874i
\(87\) 0 0
\(88\) −0.763399 4.32945i −0.0813786 0.461521i
\(89\) −0.307487 + 0.532584i −0.0325936 + 0.0564538i −0.881862 0.471507i \(-0.843710\pi\)
0.849268 + 0.527961i \(0.177043\pi\)
\(90\) 0 0
\(91\) −1.88652 + 1.79871i −0.197761 + 0.188556i
\(92\) −0.245832 1.39418i −0.0256298 0.145354i
\(93\) 0 0
\(94\) −3.66944 + 20.8104i −0.378474 + 2.14643i
\(95\) 0.364832 2.06907i 0.0374310 0.212282i
\(96\) 0 0
\(97\) −0.991251 5.62167i −0.100646 0.570794i −0.992870 0.119200i \(-0.961967\pi\)
0.892224 0.451593i \(-0.149144\pi\)
\(98\) 10.9916 + 7.06459i 1.11032 + 0.713631i
\(99\) 0 0
\(100\) 2.12204 3.67548i 0.212204 0.367548i
\(101\) 2.05653 + 11.6632i 0.204632 + 1.16053i 0.898017 + 0.439960i \(0.145007\pi\)
−0.693385 + 0.720567i \(0.743881\pi\)
\(102\) 0 0
\(103\) −12.0593 + 4.38923i −1.18824 + 0.432484i −0.859105 0.511800i \(-0.828979\pi\)
−0.329134 + 0.944283i \(0.606757\pi\)
\(104\) 0.726659 + 0.609740i 0.0712548 + 0.0597899i
\(105\) 0 0
\(106\) −8.15653 2.96873i −0.792232 0.288349i
\(107\) −5.52411 9.56804i −0.534036 0.924977i −0.999209 0.0397577i \(-0.987341\pi\)
0.465173 0.885220i \(-0.345992\pi\)
\(108\) 0 0
\(109\) −9.52408 + 16.4962i −0.912242 + 1.58005i −0.101352 + 0.994851i \(0.532317\pi\)
−0.810890 + 0.585198i \(0.801017\pi\)
\(110\) 2.16521 + 12.2795i 0.206445 + 1.17081i
\(111\) 0 0
\(112\) 5.59928 11.2970i 0.529082 1.06747i
\(113\) −1.36095 + 7.71833i −0.128027 + 0.726080i 0.851436 + 0.524458i \(0.175732\pi\)
−0.979464 + 0.201621i \(0.935379\pi\)
\(114\) 0 0
\(115\) −0.242329 1.37432i −0.0225973 0.128156i
\(116\) 8.19460 0.760850
\(117\) 0 0
\(118\) −5.88980 + 10.2014i −0.542200 + 0.939119i
\(119\) 2.64283 + 1.94596i 0.242268 + 0.178386i
\(120\) 0 0
\(121\) 7.54368 + 6.32990i 0.685789 + 0.575445i
\(122\) 1.70218 9.65354i 0.154108 0.873990i
\(123\) 0 0
\(124\) −7.60323 + 6.37987i −0.682790 + 0.572929i
\(125\) 5.74937 9.95820i 0.514239 0.890688i
\(126\) 0 0
\(127\) −6.35187 11.0018i −0.563637 0.976249i −0.997175 0.0751132i \(-0.976068\pi\)
0.433538 0.901136i \(-0.357265\pi\)
\(128\) −6.99744 2.54686i −0.618492 0.225113i
\(129\) 0 0
\(130\) −2.06101 1.72939i −0.180762 0.151677i
\(131\) 1.45783 8.26775i 0.127371 0.722357i −0.852500 0.522727i \(-0.824915\pi\)
0.979871 0.199630i \(-0.0639741\pi\)
\(132\) 0 0
\(133\) 0.421207 3.77602i 0.0365233 0.327423i
\(134\) −24.5241 −2.11856
\(135\) 0 0
\(136\) 0.597185 1.03436i 0.0512082 0.0886953i
\(137\) 1.77965 1.49330i 0.152046 0.127581i −0.563592 0.826054i \(-0.690581\pi\)
0.715637 + 0.698472i \(0.246136\pi\)
\(138\) 0 0
\(139\) 16.4618 + 13.8131i 1.39627 + 1.17161i 0.962726 + 0.270480i \(0.0871824\pi\)
0.433546 + 0.901131i \(0.357262\pi\)
\(140\) −2.55125 + 5.14738i −0.215620 + 0.435033i
\(141\) 0 0
\(142\) 20.3675 + 7.41316i 1.70920 + 0.622098i
\(143\) −4.49833 −0.376169
\(144\) 0 0
\(145\) 8.07784 0.670828
\(146\) 3.21868 + 18.2540i 0.266380 + 1.51071i
\(147\) 0 0
\(148\) 4.02730 1.46582i 0.331042 0.120489i
\(149\) −3.36481 2.82341i −0.275656 0.231303i 0.494470 0.869195i \(-0.335362\pi\)
−0.770126 + 0.637892i \(0.779807\pi\)
\(150\) 0 0
\(151\) −13.9287 5.06965i −1.13351 0.412562i −0.293942 0.955823i \(-0.594967\pi\)
−0.839564 + 0.543261i \(0.817189\pi\)
\(152\) −1.38269 −0.112151
\(153\) 0 0
\(154\) 5.31564 + 21.9135i 0.428346 + 1.76584i
\(155\) −7.49490 + 6.28896i −0.602005 + 0.505142i
\(156\) 0 0
\(157\) 0.289738 + 0.243119i 0.0231236 + 0.0194030i 0.654276 0.756256i \(-0.272973\pi\)
−0.631153 + 0.775659i \(0.717418\pi\)
\(158\) −24.8192 + 9.03346i −1.97451 + 0.718664i
\(159\) 0 0
\(160\) 9.58193 + 3.48754i 0.757518 + 0.275714i
\(161\) −0.594923 2.45254i −0.0468865 0.193288i
\(162\) 0 0
\(163\) −2.58086 4.47018i −0.202148 0.350131i 0.747072 0.664743i \(-0.231459\pi\)
−0.949220 + 0.314612i \(0.898126\pi\)
\(164\) 13.4997 11.3276i 1.05415 0.884536i
\(165\) 0 0
\(166\) −2.69776 + 15.2998i −0.209387 + 1.18749i
\(167\) 1.88838 10.7095i 0.146127 0.828727i −0.820329 0.571893i \(-0.806209\pi\)
0.966455 0.256834i \(-0.0826795\pi\)
\(168\) 0 0
\(169\) −9.21504 + 7.73234i −0.708850 + 0.594795i
\(170\) −1.69378 + 2.93372i −0.129907 + 0.225006i
\(171\) 0 0
\(172\) −2.39171 4.14256i −0.182366 0.315868i
\(173\) −9.27634 + 7.78377i −0.705267 + 0.591789i −0.923267 0.384160i \(-0.874491\pi\)
0.218000 + 0.975949i \(0.430047\pi\)
\(174\) 0 0
\(175\) 3.35981 6.77872i 0.253978 0.512423i
\(176\) 20.4470 7.44209i 1.54125 0.560969i
\(177\) 0 0
\(178\) −1.07868 0.392608i −0.0808505 0.0294272i
\(179\) 6.18889 + 10.7195i 0.462579 + 0.801211i 0.999089 0.0426837i \(-0.0135908\pi\)
−0.536510 + 0.843894i \(0.680257\pi\)
\(180\) 0 0
\(181\) −7.93495 13.7437i −0.589800 1.02156i −0.994258 0.107007i \(-0.965873\pi\)
0.404458 0.914557i \(-0.367460\pi\)
\(182\) −3.91793 2.88485i −0.290416 0.213839i
\(183\) 0 0
\(184\) −0.863024 + 0.314115i −0.0636230 + 0.0231569i
\(185\) 3.96991 1.44493i 0.291874 0.106233i
\(186\) 0 0
\(187\) 0.983521 + 5.57783i 0.0719222 + 0.407891i
\(188\) −16.8021 −1.22542
\(189\) 0 0
\(190\) 3.92168 0.284509
\(191\) 2.63991 + 14.9717i 0.191017 + 1.08331i 0.917977 + 0.396633i \(0.129821\pi\)
−0.726960 + 0.686680i \(0.759068\pi\)
\(192\) 0 0
\(193\) 17.6672 6.43032i 1.27171 0.462865i 0.384028 0.923321i \(-0.374536\pi\)
0.887682 + 0.460456i \(0.152314\pi\)
\(194\) 10.0127 3.64431i 0.718867 0.261646i
\(195\) 0 0
\(196\) −4.01425 + 9.58236i −0.286732 + 0.684454i
\(197\) −0.130567 0.226149i −0.00930255 0.0161125i 0.861337 0.508035i \(-0.169628\pi\)
−0.870639 + 0.491922i \(0.836294\pi\)
\(198\) 0 0
\(199\) 0.818784 + 1.41818i 0.0580421 + 0.100532i 0.893586 0.448891i \(-0.148181\pi\)
−0.835544 + 0.549423i \(0.814848\pi\)
\(200\) −2.58725 0.941681i −0.182946 0.0665869i
\(201\) 0 0
\(202\) −20.7731 + 7.56077i −1.46159 + 0.531974i
\(203\) 14.5787 0.926177i 1.02322 0.0650049i
\(204\) 0 0
\(205\) 13.3073 11.1662i 0.929425 0.779880i
\(206\) −11.9772 20.7452i −0.834493 1.44538i
\(207\) 0 0
\(208\) −2.34752 + 4.06602i −0.162771 + 0.281928i
\(209\) 5.02288 4.21469i 0.347440 0.291536i
\(210\) 0 0
\(211\) 1.10692 6.27765i 0.0762034 0.432171i −0.922707 0.385502i \(-0.874028\pi\)
0.998910 0.0466690i \(-0.0148606\pi\)
\(212\) 1.19846 6.79682i 0.0823108 0.466808i
\(213\) 0 0
\(214\) 15.7978 13.2559i 1.07991 0.906156i
\(215\) −2.35763 4.08354i −0.160789 0.278495i
\(216\) 0 0
\(217\) −12.8055 + 12.2095i −0.869294 + 0.828834i
\(218\) −33.4110 12.1606i −2.26288 0.823619i
\(219\) 0 0
\(220\) −9.31645 + 3.39091i −0.628115 + 0.228615i
\(221\) −0.936188 0.785555i −0.0629748 0.0528421i
\(222\) 0 0
\(223\) 4.42813 3.71564i 0.296529 0.248818i −0.482369 0.875968i \(-0.660223\pi\)
0.778898 + 0.627151i \(0.215779\pi\)
\(224\) 17.6931 + 5.19558i 1.18217 + 0.347144i
\(225\) 0 0
\(226\) −14.6292 −0.973123
\(227\) 12.0490 + 4.38547i 0.799718 + 0.291074i 0.709370 0.704837i \(-0.248980\pi\)
0.0903484 + 0.995910i \(0.471202\pi\)
\(228\) 0 0
\(229\) −4.48966 3.76727i −0.296685 0.248948i 0.482278 0.876018i \(-0.339810\pi\)
−0.778963 + 0.627070i \(0.784254\pi\)
\(230\) 2.44777 0.890917i 0.161401 0.0587453i
\(231\) 0 0
\(232\) −0.923139 5.23538i −0.0606070 0.343720i
\(233\) −0.971513 −0.0636459 −0.0318230 0.999494i \(-0.510131\pi\)
−0.0318230 + 0.999494i \(0.510131\pi\)
\(234\) 0 0
\(235\) −16.5627 −1.08043
\(236\) −8.80139 3.20345i −0.572922 0.208527i
\(237\) 0 0
\(238\) −2.72052 + 5.48889i −0.176345 + 0.355792i
\(239\) 18.1999 + 15.2715i 1.17726 + 0.987834i 0.999993 + 0.00367051i \(0.00116836\pi\)
0.177262 + 0.984164i \(0.443276\pi\)
\(240\) 0 0
\(241\) −0.219263 + 0.183983i −0.0141239 + 0.0118514i −0.649822 0.760086i \(-0.725157\pi\)
0.635698 + 0.771938i \(0.280712\pi\)
\(242\) −9.19071 + 15.9188i −0.590801 + 1.02330i
\(243\) 0 0
\(244\) 7.79417 0.498971
\(245\) −3.95705 + 9.44582i −0.252807 + 0.603472i
\(246\) 0 0
\(247\) −0.245677 + 1.39330i −0.0156320 + 0.0886537i
\(248\) 4.93250 + 4.13886i 0.313214 + 0.262818i
\(249\) 0 0
\(250\) 20.1691 + 7.34094i 1.27560 + 0.464282i
\(251\) −3.91719 6.78477i −0.247251 0.428251i 0.715511 0.698601i \(-0.246194\pi\)
−0.962762 + 0.270350i \(0.912861\pi\)
\(252\) 0 0
\(253\) 2.17762 3.77174i 0.136906 0.237127i
\(254\) 18.1650 15.2423i 1.13977 0.956384i
\(255\) 0 0
\(256\) 3.62171 20.5397i 0.226357 1.28373i
\(257\) 7.40124 + 6.21038i 0.461677 + 0.387393i 0.843748 0.536740i \(-0.180344\pi\)
−0.382071 + 0.924133i \(0.624789\pi\)
\(258\) 0 0
\(259\) 6.99912 3.06295i 0.434904 0.190322i
\(260\) 1.06962 1.85264i 0.0663351 0.114896i
\(261\) 0 0
\(262\) 15.6706 0.968134
\(263\) −3.18277 18.0504i −0.196258 1.11304i −0.910616 0.413254i \(-0.864392\pi\)
0.714358 0.699781i \(-0.246719\pi\)
\(264\) 0 0
\(265\) 1.18139 6.69998i 0.0725720 0.411576i
\(266\) 7.07774 0.449647i 0.433964 0.0275696i
\(267\) 0 0
\(268\) −3.38609 19.2035i −0.206838 1.17304i
\(269\) −2.28434 + 3.95659i −0.139279 + 0.241238i −0.927224 0.374508i \(-0.877812\pi\)
0.787945 + 0.615745i \(0.211145\pi\)
\(270\) 0 0
\(271\) −6.60709 11.4438i −0.401352 0.695162i 0.592537 0.805543i \(-0.298126\pi\)
−0.993889 + 0.110381i \(0.964793\pi\)
\(272\) 5.55504 + 2.02187i 0.336824 + 0.122594i
\(273\) 0 0
\(274\) 3.32188 + 2.78739i 0.200682 + 0.168392i
\(275\) 12.2691 4.46558i 0.739853 0.269285i
\(276\) 0 0
\(277\) −5.27455 29.9135i −0.316917 1.79733i −0.561262 0.827638i \(-0.689684\pi\)
0.244345 0.969688i \(-0.421427\pi\)
\(278\) −20.0560 + 34.7379i −1.20288 + 2.08344i
\(279\) 0 0
\(280\) 3.57597 + 1.05009i 0.213705 + 0.0627546i
\(281\) −3.38213 19.1810i −0.201761 1.14424i −0.902456 0.430782i \(-0.858238\pi\)
0.700695 0.713461i \(-0.252873\pi\)
\(282\) 0 0
\(283\) 1.33894 7.59351i 0.0795917 0.451387i −0.918801 0.394720i \(-0.870842\pi\)
0.998393 0.0566670i \(-0.0180473\pi\)
\(284\) −2.99265 + 16.9722i −0.177581 + 1.00711i
\(285\) 0 0
\(286\) −1.45805 8.26899i −0.0862161 0.488956i
\(287\) 22.7364 21.6782i 1.34209 1.27962i
\(288\) 0 0
\(289\) 7.73062 13.3898i 0.454742 0.787637i
\(290\) 2.61828 + 14.8490i 0.153750 + 0.871962i
\(291\) 0 0
\(292\) −13.8493 + 5.04073i −0.810469 + 0.294987i
\(293\) −10.4784 8.79240i −0.612153 0.513657i 0.283173 0.959069i \(-0.408613\pi\)
−0.895326 + 0.445411i \(0.853057\pi\)
\(294\) 0 0
\(295\) −8.67599 3.15780i −0.505135 0.183854i
\(296\) −1.39017 2.40784i −0.0808017 0.139953i
\(297\) 0 0
\(298\) 4.09946 7.10047i 0.237475 0.411319i
\(299\) 0.163184 + 0.925461i 0.00943716 + 0.0535208i
\(300\) 0 0
\(301\) −4.72319 7.09954i −0.272240 0.409211i
\(302\) 4.80448 27.2476i 0.276467 1.56792i
\(303\) 0 0
\(304\) −1.18838 6.73965i −0.0681584 0.386546i
\(305\) 7.68311 0.439934
\(306\) 0 0
\(307\) 8.70668 15.0804i 0.496916 0.860684i −0.503077 0.864241i \(-0.667799\pi\)
0.999994 + 0.00355714i \(0.00113228\pi\)
\(308\) −16.4253 + 7.18801i −0.935917 + 0.409575i
\(309\) 0 0
\(310\) −13.9899 11.7389i −0.794575 0.666727i
\(311\) −5.19029 + 29.4356i −0.294315 + 1.66914i 0.375661 + 0.926757i \(0.377416\pi\)
−0.669975 + 0.742383i \(0.733695\pi\)
\(312\) 0 0
\(313\) 2.42961 2.03869i 0.137330 0.115233i −0.571535 0.820578i \(-0.693652\pi\)
0.708865 + 0.705344i \(0.249208\pi\)
\(314\) −0.352998 + 0.611410i −0.0199208 + 0.0345039i
\(315\) 0 0
\(316\) −10.5004 18.1873i −0.590696 1.02311i
\(317\) −6.27590 2.28424i −0.352489 0.128296i 0.159706 0.987165i \(-0.448945\pi\)
−0.512195 + 0.858869i \(0.671168\pi\)
\(318\) 0 0
\(319\) 19.3119 + 16.2046i 1.08126 + 0.907284i
\(320\) −0.883715 + 5.01180i −0.0494012 + 0.280168i
\(321\) 0 0
\(322\) 4.31552 1.88855i 0.240495 0.105245i
\(323\) 1.78138 0.0991186
\(324\) 0 0
\(325\) −1.40861 + 2.43979i −0.0781358 + 0.135335i
\(326\) 7.38070 6.19315i 0.408779 0.343007i
\(327\) 0 0
\(328\) −8.75776 7.34863i −0.483566 0.405760i
\(329\) −29.8920 + 1.89903i −1.64800 + 0.104697i
\(330\) 0 0
\(331\) −4.68844 1.70645i −0.257700 0.0937951i 0.209940 0.977714i \(-0.432673\pi\)
−0.467640 + 0.883919i \(0.654895\pi\)
\(332\) −12.3529 −0.677952
\(333\) 0 0
\(334\) 20.2987 1.11070
\(335\) −3.33784 18.9298i −0.182366 1.03425i
\(336\) 0 0
\(337\) 13.6802 4.97920i 0.745209 0.271234i 0.0586210 0.998280i \(-0.481330\pi\)
0.686588 + 0.727046i \(0.259107\pi\)
\(338\) −17.2007 14.4331i −0.935597 0.785059i
\(339\) 0 0
\(340\) −2.53109 0.921243i −0.137268 0.0499614i
\(341\) −30.5343 −1.65352
\(342\) 0 0
\(343\) −6.05855 + 17.5013i −0.327131 + 0.944979i
\(344\) −2.37718 + 1.99469i −0.128169 + 0.107546i
\(345\) 0 0
\(346\) −17.3152 14.5291i −0.930868 0.781091i
\(347\) −8.17009 + 2.97367i −0.438593 + 0.159635i −0.551873 0.833928i \(-0.686087\pi\)
0.113280 + 0.993563i \(0.463864\pi\)
\(348\) 0 0
\(349\) −10.4169 3.79143i −0.557602 0.202950i 0.0478190 0.998856i \(-0.484773\pi\)
−0.605421 + 0.795906i \(0.706995\pi\)
\(350\) 13.5499 + 3.97894i 0.724273 + 0.212683i
\(351\) 0 0
\(352\) 15.9116 + 27.5596i 0.848090 + 1.46893i
\(353\) 17.7388 14.8846i 0.944140 0.792228i −0.0341608 0.999416i \(-0.510876\pi\)
0.978301 + 0.207189i \(0.0664314\pi\)
\(354\) 0 0
\(355\) −2.95001 + 16.7304i −0.156570 + 0.887955i
\(356\) 0.158494 0.898863i 0.00840015 0.0476396i
\(357\) 0 0
\(358\) −17.6989 + 14.8511i −0.935416 + 0.784907i
\(359\) −1.03966 + 1.80074i −0.0548710 + 0.0950394i −0.892156 0.451727i \(-0.850808\pi\)
0.837285 + 0.546766i \(0.184141\pi\)
\(360\) 0 0
\(361\) 8.46888 + 14.6685i 0.445730 + 0.772027i
\(362\) 22.6923 19.0411i 1.19268 1.00078i
\(363\) 0 0
\(364\) 1.71801 3.46623i 0.0900480 0.181680i
\(365\) −13.6520 + 4.96891i −0.714576 + 0.260085i
\(366\) 0 0
\(367\) 14.3862 + 5.23615i 0.750954 + 0.273325i 0.689007 0.724754i \(-0.258047\pi\)
0.0619470 + 0.998079i \(0.480269\pi\)
\(368\) −2.27284 3.93668i −0.118480 0.205213i
\(369\) 0 0
\(370\) 3.94289 + 6.82929i 0.204981 + 0.355038i
\(371\) 1.36394 12.2274i 0.0708121 0.634814i
\(372\) 0 0
\(373\) −28.8193 + 10.4894i −1.49221 + 0.543119i −0.954029 0.299713i \(-0.903109\pi\)
−0.538177 + 0.842832i \(0.680887\pi\)
\(374\) −9.93457 + 3.61589i −0.513704 + 0.186973i
\(375\) 0 0
\(376\) 1.89280 + 10.7346i 0.0976135 + 0.553594i
\(377\) −5.43960 −0.280153
\(378\) 0 0
\(379\) 33.1265 1.70159 0.850797 0.525495i \(-0.176120\pi\)
0.850797 + 0.525495i \(0.176120\pi\)
\(380\) 0.541474 + 3.07085i 0.0277770 + 0.157531i
\(381\) 0 0
\(382\) −26.6658 + 9.70556i −1.36434 + 0.496580i
\(383\) −11.1640 + 4.06336i −0.570453 + 0.207628i −0.611110 0.791545i \(-0.709277\pi\)
0.0406578 + 0.999173i \(0.487055\pi\)
\(384\) 0 0
\(385\) −16.1912 + 7.08559i −0.825182 + 0.361115i
\(386\) 17.5469 + 30.3922i 0.893115 + 1.54692i
\(387\) 0 0
\(388\) 4.23612 + 7.33718i 0.215056 + 0.372489i
\(389\) 21.4924 + 7.82259i 1.08971 + 0.396621i 0.823512 0.567298i \(-0.192011\pi\)
0.266195 + 0.963919i \(0.414234\pi\)
\(390\) 0 0
\(391\) 1.11187 0.404689i 0.0562298 0.0204660i
\(392\) 6.57421 + 1.48516i 0.332048 + 0.0750117i
\(393\) 0 0
\(394\) 0.373395 0.313316i 0.0188114 0.0157846i
\(395\) −10.3508 17.9281i −0.520806 0.902063i
\(396\) 0 0
\(397\) −11.1473 + 19.3077i −0.559466 + 0.969023i 0.438075 + 0.898938i \(0.355660\pi\)
−0.997541 + 0.0700851i \(0.977673\pi\)
\(398\) −2.34155 + 1.96479i −0.117371 + 0.0984862i
\(399\) 0 0
\(400\) 2.36638 13.4204i 0.118319 0.671020i
\(401\) −0.878529 + 4.98238i −0.0438716 + 0.248808i −0.998854 0.0478529i \(-0.984762\pi\)
0.954983 + 0.296661i \(0.0958732\pi\)
\(402\) 0 0
\(403\) 5.04704 4.23497i 0.251411 0.210959i
\(404\) −8.78859 15.2223i −0.437249 0.757337i
\(405\) 0 0
\(406\) 6.42792 + 26.4988i 0.319013 + 1.31511i
\(407\) 12.3896 + 4.50944i 0.614129 + 0.223525i
\(408\) 0 0
\(409\) −21.3726 + 7.77898i −1.05681 + 0.384646i −0.811227 0.584731i \(-0.801200\pi\)
−0.245578 + 0.969377i \(0.578978\pi\)
\(410\) 24.8394 + 20.8427i 1.22673 + 1.02935i
\(411\) 0 0
\(412\) 14.5907 12.2430i 0.718831 0.603171i
\(413\) −16.0202 4.70435i −0.788304 0.231486i
\(414\) 0 0
\(415\) −12.1769 −0.597738
\(416\) −6.45245 2.34850i −0.316357 0.115145i
\(417\) 0 0
\(418\) 9.37567 + 7.86712i 0.458579 + 0.384793i
\(419\) −28.5404 + 10.3878i −1.39429 + 0.507480i −0.926478 0.376349i \(-0.877179\pi\)
−0.467811 + 0.883829i \(0.654957\pi\)
\(420\) 0 0
\(421\) 5.43779 + 30.8393i 0.265022 + 1.50301i 0.768973 + 0.639281i \(0.220768\pi\)
−0.503951 + 0.863732i \(0.668121\pi\)
\(422\) 11.8986 0.579214
\(423\) 0 0
\(424\) −4.47737 −0.217440
\(425\) 3.33327 + 1.21321i 0.161687 + 0.0588493i
\(426\) 0 0
\(427\) 13.8663 0.880919i 0.671036 0.0426307i
\(428\) 12.5612 + 10.5401i 0.607168 + 0.509475i
\(429\) 0 0
\(430\) 6.74233 5.65748i 0.325144 0.272828i
\(431\) 5.25777 9.10673i 0.253258 0.438656i −0.711163 0.703027i \(-0.751831\pi\)
0.964421 + 0.264372i \(0.0851645\pi\)
\(432\) 0 0
\(433\) −6.33812 −0.304591 −0.152295 0.988335i \(-0.548667\pi\)
−0.152295 + 0.988335i \(0.548667\pi\)
\(434\) −26.5946 19.5821i −1.27658 0.939970i
\(435\) 0 0
\(436\) 4.90917 27.8413i 0.235107 1.33336i
\(437\) −1.04932 0.880484i −0.0501958 0.0421193i
\(438\) 0 0
\(439\) −19.0176 6.92183i −0.907659 0.330361i −0.154341 0.988018i \(-0.549326\pi\)
−0.753318 + 0.657657i \(0.771548\pi\)
\(440\) 3.21591 + 5.57011i 0.153312 + 0.265545i
\(441\) 0 0
\(442\) 1.14059 1.97556i 0.0542523 0.0939677i
\(443\) −6.80079 + 5.70654i −0.323115 + 0.271126i −0.789888 0.613252i \(-0.789861\pi\)
0.466772 + 0.884377i \(0.345417\pi\)
\(444\) 0 0
\(445\) 0.156235 0.886055i 0.00740627 0.0420030i
\(446\) 8.26552 + 6.93559i 0.391384 + 0.328410i
\(447\) 0 0
\(448\) −1.02027 + 9.14647i −0.0482032 + 0.432130i
\(449\) −6.01834 + 10.4241i −0.284023 + 0.491943i −0.972372 0.233437i \(-0.925003\pi\)
0.688349 + 0.725380i \(0.258336\pi\)
\(450\) 0 0
\(451\) 54.2142 2.55285
\(452\) −2.01989 11.4553i −0.0950075 0.538814i
\(453\) 0 0
\(454\) −4.15608 + 23.5703i −0.195055 + 1.10621i
\(455\) 1.69353 3.41684i 0.0793937 0.160184i
\(456\) 0 0
\(457\) −0.558880 3.16957i −0.0261433 0.148266i 0.968942 0.247289i \(-0.0795396\pi\)
−0.995085 + 0.0990224i \(0.968428\pi\)
\(458\) 5.46990 9.47414i 0.255591 0.442697i
\(459\) 0 0
\(460\) 1.03560 + 1.79370i 0.0482849 + 0.0836319i
\(461\) −32.0957 11.6819i −1.49485 0.544080i −0.540126 0.841584i \(-0.681623\pi\)
−0.954720 + 0.297505i \(0.903846\pi\)
\(462\) 0 0
\(463\) 8.38189 + 7.03324i 0.389539 + 0.326862i 0.816434 0.577439i \(-0.195948\pi\)
−0.426894 + 0.904302i \(0.640392\pi\)
\(464\) 24.7255 8.99933i 1.14785 0.417784i
\(465\) 0 0
\(466\) −0.314897 1.78587i −0.0145873 0.0827288i
\(467\) −20.7032 + 35.8590i −0.958031 + 1.65936i −0.230755 + 0.973012i \(0.574120\pi\)
−0.727275 + 0.686346i \(0.759214\pi\)
\(468\) 0 0
\(469\) −8.19447 33.7813i −0.378385 1.55988i
\(470\) −5.36849 30.4462i −0.247630 1.40438i
\(471\) 0 0
\(472\) −1.05513 + 5.98392i −0.0485662 + 0.275432i
\(473\) 2.55536 14.4922i 0.117496 0.666350i
\(474\) 0 0
\(475\) −0.713082 4.04409i −0.0327184 0.185555i
\(476\) −4.67367 1.37243i −0.214217 0.0629051i
\(477\) 0 0
\(478\) −22.1736 + 38.4057i −1.01420 + 1.75664i
\(479\) −1.44178 8.17673i −0.0658765 0.373604i −0.999867 0.0163066i \(-0.994809\pi\)
0.933990 0.357298i \(-0.116302\pi\)
\(480\) 0 0
\(481\) −2.67333 + 0.973012i −0.121893 + 0.0443655i
\(482\) −0.409274 0.343422i −0.0186419 0.0156424i
\(483\) 0 0
\(484\) −13.7341 4.99880i −0.624277 0.227218i
\(485\) 4.17576 + 7.23263i 0.189612 + 0.328417i
\(486\) 0 0
\(487\) 11.9736 20.7388i 0.542574 0.939766i −0.456181 0.889887i \(-0.650783\pi\)
0.998755 0.0498789i \(-0.0158835\pi\)
\(488\) −0.878029 4.97955i −0.0397465 0.225414i
\(489\) 0 0
\(490\) −18.6463 4.21231i −0.842352 0.190293i
\(491\) −6.82562 + 38.7100i −0.308036 + 1.74696i 0.300823 + 0.953680i \(0.402739\pi\)
−0.608859 + 0.793278i \(0.708373\pi\)
\(492\) 0 0
\(493\) 1.18932 + 6.74498i 0.0535643 + 0.303778i
\(494\) −2.64085 −0.118817
\(495\) 0 0
\(496\) −15.9347 + 27.5998i −0.715491 + 1.23927i
\(497\) −3.40586 + 30.5327i −0.152774 + 1.36958i
\(498\) 0 0
\(499\) −4.79773 4.02577i −0.214776 0.180218i 0.529052 0.848589i \(-0.322548\pi\)
−0.743828 + 0.668371i \(0.766992\pi\)
\(500\) −2.96350 + 16.8068i −0.132532 + 0.751625i
\(501\) 0 0
\(502\) 11.2023 9.39988i 0.499985 0.419537i
\(503\) 1.54894 2.68284i 0.0690637 0.119622i −0.829426 0.558617i \(-0.811332\pi\)
0.898489 + 0.438995i \(0.144665\pi\)
\(504\) 0 0
\(505\) −8.66337 15.0054i −0.385515 0.667731i
\(506\) 7.63918 + 2.78044i 0.339603 + 0.123605i
\(507\) 0 0
\(508\) 14.4434 + 12.1195i 0.640824 + 0.537715i
\(509\) 0.840121 4.76457i 0.0372377 0.211186i −0.960512 0.278240i \(-0.910249\pi\)
0.997749 + 0.0670543i \(0.0213601\pi\)
\(510\) 0 0
\(511\) −24.0690 + 10.5330i −1.06475 + 0.465954i
\(512\) 24.0378 1.06233
\(513\) 0 0
\(514\) −9.01718 + 15.6182i −0.397731 + 0.688890i
\(515\) 14.3828 12.0686i 0.633781 0.531805i
\(516\) 0 0
\(517\) −39.5970 33.2258i −1.74147 1.46127i
\(518\) 7.89904 + 11.8732i 0.347064 + 0.521680i
\(519\) 0 0
\(520\) −1.30411 0.474658i −0.0571891 0.0208151i
\(521\) 30.4398 1.33359 0.666796 0.745240i \(-0.267665\pi\)
0.666796 + 0.745240i \(0.267665\pi\)
\(522\) 0 0
\(523\) 33.7422 1.47545 0.737723 0.675104i \(-0.235901\pi\)
0.737723 + 0.675104i \(0.235901\pi\)
\(524\) 2.16367 + 12.2708i 0.0945203 + 0.536051i
\(525\) 0 0
\(526\) 32.1493 11.7014i 1.40177 0.510204i
\(527\) −6.35476 5.33228i −0.276818 0.232278i
\(528\) 0 0
\(529\) 20.7580 + 7.55528i 0.902520 + 0.328490i
\(530\) 12.6991 0.551612
\(531\) 0 0
\(532\) 1.32933 + 5.48010i 0.0576338 + 0.237593i
\(533\) −8.96113 + 7.51928i −0.388149 + 0.325696i
\(534\) 0 0
\(535\) 12.3822 + 10.3899i 0.535330 + 0.449195i
\(536\) −11.8873 + 4.32662i −0.513452 + 0.186881i
\(537\) 0 0
\(538\) −8.01357 2.91670i −0.345490 0.125748i
\(539\) −28.4091 + 14.6443i −1.22367 + 0.630775i
\(540\) 0 0
\(541\) 7.87553 + 13.6408i 0.338596 + 0.586465i 0.984169 0.177234i \(-0.0567148\pi\)
−0.645573 + 0.763698i \(0.723382\pi\)
\(542\) 18.8949 15.8547i 0.811604 0.681017i
\(543\) 0 0
\(544\) −1.50131 + 8.51437i −0.0643683 + 0.365050i
\(545\) 4.83922 27.4446i 0.207289 1.17560i
\(546\) 0 0
\(547\) −16.6514 + 13.9722i −0.711963 + 0.597408i −0.925149 0.379603i \(-0.876060\pi\)
0.213186 + 0.977012i \(0.431616\pi\)
\(548\) −1.72399 + 2.98604i −0.0736452 + 0.127557i
\(549\) 0 0
\(550\) 12.1856 + 21.1060i 0.519595 + 0.899964i
\(551\) 6.07390 5.09661i 0.258757 0.217123i
\(552\) 0 0
\(553\) −20.7364 31.1694i −0.881803 1.32546i
\(554\) 53.2784 19.3918i 2.26358 0.823877i
\(555\) 0 0
\(556\) −29.9705 10.9084i −1.27103 0.462618i
\(557\) 12.3971 + 21.4723i 0.525280 + 0.909811i 0.999567 + 0.0294409i \(0.00937270\pi\)
−0.474287 + 0.880370i \(0.657294\pi\)
\(558\) 0 0
\(559\) 1.58762 + 2.74984i 0.0671493 + 0.116306i
\(560\) −2.04499 + 18.3329i −0.0864168 + 0.774707i
\(561\) 0 0
\(562\) 34.1630 12.4343i 1.44108 0.524509i
\(563\) 17.9677 6.53971i 0.757248 0.275616i 0.0655957 0.997846i \(-0.479105\pi\)
0.691652 + 0.722230i \(0.256883\pi\)
\(564\) 0 0
\(565\) −1.99111 11.2921i −0.0837665 0.475063i
\(566\) 14.3927 0.604968
\(567\) 0 0
\(568\) 11.1803 0.469117
\(569\) 3.50374 + 19.8707i 0.146884 + 0.833022i 0.965835 + 0.259158i \(0.0834451\pi\)
−0.818951 + 0.573864i \(0.805444\pi\)
\(570\) 0 0
\(571\) −1.27023 + 0.462325i −0.0531574 + 0.0193477i −0.368462 0.929643i \(-0.620116\pi\)
0.315305 + 0.948991i \(0.397893\pi\)
\(572\) 6.27367 2.28343i 0.262315 0.0954750i
\(573\) 0 0
\(574\) 47.2192 + 34.7684i 1.97089 + 1.45120i
\(575\) −1.36380 2.36218i −0.0568746 0.0985096i
\(576\) 0 0
\(577\) −6.07544 10.5230i −0.252924 0.438077i 0.711406 0.702782i \(-0.248059\pi\)
−0.964330 + 0.264705i \(0.914726\pi\)
\(578\) 27.1194 + 9.87065i 1.12802 + 0.410565i
\(579\) 0 0
\(580\) −11.2659 + 4.10045i −0.467791 + 0.170262i
\(581\) −21.9764 + 1.39616i −0.911737 + 0.0579223i
\(582\) 0 0
\(583\) 16.2649 13.6479i 0.673623 0.565237i
\(584\) 4.78058 + 8.28021i 0.197822 + 0.342638i
\(585\) 0 0
\(586\) 12.7661 22.1116i 0.527365 0.913422i
\(587\) 36.1996 30.3750i 1.49412 1.25371i 0.604834 0.796352i \(-0.293239\pi\)
0.889282 0.457360i \(-0.151205\pi\)
\(588\) 0 0
\(589\) −1.66763 + 9.45762i −0.0687136 + 0.389694i
\(590\) 2.99263 16.9721i 0.123205 0.698728i
\(591\) 0 0
\(592\) 10.5417 8.84557i 0.433263 0.363551i
\(593\) −5.30960 9.19649i −0.218039 0.377655i 0.736169 0.676797i \(-0.236633\pi\)
−0.954208 + 0.299143i \(0.903299\pi\)
\(594\) 0 0
\(595\) −4.60708 1.35287i −0.188872 0.0554623i
\(596\) 6.12600 + 2.22968i 0.250931 + 0.0913314i
\(597\) 0 0
\(598\) −1.64832 + 0.599941i −0.0674050 + 0.0245334i
\(599\) −7.85627 6.59219i −0.320999 0.269350i 0.468022 0.883717i \(-0.344967\pi\)
−0.789020 + 0.614367i \(0.789411\pi\)
\(600\) 0 0
\(601\) −19.1642 + 16.0807i −0.781724 + 0.655945i −0.943682 0.330853i \(-0.892664\pi\)
0.161958 + 0.986798i \(0.448219\pi\)
\(602\) 11.5197 10.9835i 0.469508 0.447655i
\(603\) 0 0
\(604\) 21.9994 0.895143
\(605\) −13.5384 4.92757i −0.550414 0.200334i
\(606\) 0 0
\(607\) 0.503454 + 0.422448i 0.0204346 + 0.0171466i 0.652948 0.757403i \(-0.273532\pi\)
−0.632513 + 0.774550i \(0.717977\pi\)
\(608\) 9.40528 3.42324i 0.381434 0.138831i
\(609\) 0 0
\(610\) 2.49033 + 14.1234i 0.100831 + 0.571839i
\(611\) 11.1533 0.451214
\(612\) 0 0
\(613\) −27.7448 −1.12060 −0.560301 0.828289i \(-0.689314\pi\)
−0.560301 + 0.828289i \(0.689314\pi\)
\(614\) 30.5435 + 11.1169i 1.23263 + 0.448642i
\(615\) 0 0
\(616\) 6.44263 + 9.68406i 0.259581 + 0.390182i
\(617\) −12.7820 10.7253i −0.514582 0.431786i 0.348156 0.937437i \(-0.386808\pi\)
−0.862738 + 0.505651i \(0.831252\pi\)
\(618\) 0 0
\(619\) −7.28444 + 6.11237i −0.292787 + 0.245677i −0.777334 0.629088i \(-0.783429\pi\)
0.484548 + 0.874765i \(0.338984\pi\)
\(620\) 7.26050 12.5755i 0.291589 0.505046i
\(621\) 0 0
\(622\) −55.7920 −2.23705
\(623\) 0.180377 1.61704i 0.00722667 0.0647854i
\(624\) 0 0
\(625\) −0.438492 + 2.48681i −0.0175397 + 0.0994725i
\(626\) 4.53510 + 3.80540i 0.181259 + 0.152094i
\(627\) 0 0
\(628\) −0.527500 0.191994i −0.0210495 0.00766141i
\(629\) 1.79101 + 3.10213i 0.0714124 + 0.123690i
\(630\) 0 0
\(631\) −22.9465 + 39.7445i −0.913486 + 1.58220i −0.104383 + 0.994537i \(0.533287\pi\)
−0.809103 + 0.587667i \(0.800047\pi\)
\(632\) −10.4366 + 8.75737i −0.415147 + 0.348349i
\(633\) 0 0
\(634\) 2.16476 12.2770i 0.0859737 0.487581i
\(635\) 14.2376 + 11.9468i 0.565003 + 0.474094i
\(636\) 0 0
\(637\) 2.66467 6.36079i 0.105578 0.252024i
\(638\) −23.5283 + 40.7523i −0.931495 + 1.61340i
\(639\) 0 0
\(640\) 10.8945 0.430641
\(641\) 4.98155 + 28.2518i 0.196759 + 1.11588i 0.909891 + 0.414847i \(0.136165\pi\)
−0.713132 + 0.701030i \(0.752724\pi\)
\(642\) 0 0
\(643\) 0.172431 0.977906i 0.00680002 0.0385648i −0.981219 0.192897i \(-0.938212\pi\)
0.988019 + 0.154332i \(0.0493227\pi\)
\(644\) 2.07467 + 3.11849i 0.0817536 + 0.122886i
\(645\) 0 0
\(646\) 0.577400 + 3.27460i 0.0227175 + 0.128837i
\(647\) −8.87356 + 15.3695i −0.348856 + 0.604236i −0.986046 0.166470i \(-0.946763\pi\)
0.637191 + 0.770706i \(0.280096\pi\)
\(648\) 0 0
\(649\) −14.4072 24.9540i −0.565531 0.979528i
\(650\) −4.94148 1.79855i −0.193821 0.0705451i
\(651\) 0 0
\(652\) 5.86857 + 4.92432i 0.229831 + 0.192851i
\(653\) −17.1213 + 6.23165i −0.670008 + 0.243863i −0.654552 0.756017i \(-0.727143\pi\)
−0.0154569 + 0.999881i \(0.504920\pi\)
\(654\) 0 0
\(655\) 2.13284 + 12.0959i 0.0833370 + 0.472627i
\(656\) 28.2925 49.0040i 1.10463 1.91328i
\(657\) 0 0
\(658\) −13.1798 54.3330i −0.513800 2.11812i
\(659\) 0.516836 + 2.93112i 0.0201331 + 0.114180i 0.993218 0.116266i \(-0.0370925\pi\)
−0.973085 + 0.230446i \(0.925981\pi\)
\(660\) 0 0
\(661\) 4.25035 24.1049i 0.165320 0.937574i −0.783415 0.621499i \(-0.786524\pi\)
0.948734 0.316075i \(-0.102365\pi\)
\(662\) 1.61720 9.17158i 0.0628541 0.356463i
\(663\) 0 0
\(664\) 1.39158 + 7.89202i 0.0540036 + 0.306270i
\(665\) 1.31039 + 5.40202i 0.0508147 + 0.209481i
\(666\) 0 0
\(667\) 2.63328 4.56097i 0.101961 0.176602i
\(668\) 2.80268 + 15.8948i 0.108439 + 0.614987i
\(669\) 0 0
\(670\) 33.7156 12.2715i 1.30255 0.474089i
\(671\) 18.3682 + 15.4128i 0.709097 + 0.595003i
\(672\) 0 0
\(673\) 23.3965 + 8.51562i 0.901868 + 0.328253i 0.751001 0.660301i \(-0.229571\pi\)
0.150867 + 0.988554i \(0.451794\pi\)
\(674\) 13.5871 + 23.5336i 0.523356 + 0.906480i
\(675\) 0 0
\(676\) 8.92685 15.4618i 0.343340 0.594683i
\(677\) −1.53657 8.71430i −0.0590550 0.334918i 0.940938 0.338578i \(-0.109946\pi\)
−0.999993 + 0.00366049i \(0.998835\pi\)
\(678\) 0 0
\(679\) 8.36556 + 12.5745i 0.321041 + 0.482564i
\(680\) −0.303432 + 1.72085i −0.0116361 + 0.0659916i
\(681\) 0 0
\(682\) −9.89709 56.1292i −0.378979 2.14930i
\(683\) −6.28032 −0.240310 −0.120155 0.992755i \(-0.538339\pi\)
−0.120155 + 0.992755i \(0.538339\pi\)
\(684\) 0 0
\(685\) −1.69943 + 2.94349i −0.0649317 + 0.112465i
\(686\) −34.1352 5.46435i −1.30329 0.208630i
\(687\) 0 0
\(688\) −11.7658 9.87272i −0.448569 0.376394i
\(689\) −0.795542 + 4.51174i −0.0303077 + 0.171884i
\(690\) 0 0
\(691\) −8.61563 + 7.22938i −0.327754 + 0.275018i −0.791784 0.610801i \(-0.790847\pi\)
0.464030 + 0.885820i \(0.346403\pi\)
\(692\) 8.98622 15.5646i 0.341605 0.591677i
\(693\) 0 0
\(694\) −8.11448 14.0547i −0.308022 0.533509i
\(695\) −29.5435 10.7529i −1.12065 0.407882i
\(696\) 0 0
\(697\) 11.2830 + 9.46757i 0.427374 + 0.358610i
\(698\) 3.59312 20.3776i 0.136001 0.771302i
\(699\) 0 0
\(700\) −1.24482 + 11.1596i −0.0470499 + 0.421791i
\(701\) −11.0400 −0.416976 −0.208488 0.978025i \(-0.566854\pi\)
−0.208488 + 0.978025i \(0.566854\pi\)
\(702\) 0 0
\(703\) 2.07340 3.59124i 0.0781999 0.135446i
\(704\) −12.1667 + 10.2090i −0.458549 + 0.384768i
\(705\) 0 0
\(706\) 33.1111 + 27.7835i 1.24615 + 1.04565i
\(707\) −17.3559 26.0880i −0.652735 0.981140i
\(708\) 0 0
\(709\) 17.8195 + 6.48575i 0.669224 + 0.243577i 0.654214 0.756310i \(-0.273000\pi\)
0.0150100 + 0.999887i \(0.495222\pi\)
\(710\) −31.7105 −1.19008
\(711\) 0 0
\(712\) −0.592121 −0.0221907
\(713\) 1.10768 + 6.28195i 0.0414828 + 0.235261i
\(714\) 0 0
\(715\) 6.18428 2.25089i 0.231279 0.0841786i
\(716\) −14.0728 11.8085i −0.525926 0.441304i
\(717\) 0 0
\(718\) −3.64717 1.32746i −0.136111 0.0495404i
\(719\) −3.54116 −0.132063 −0.0660316 0.997818i \(-0.521034\pi\)
−0.0660316 + 0.997818i \(0.521034\pi\)
\(720\) 0 0
\(721\) 24.5739 23.4301i 0.915179 0.872583i
\(722\) −24.2192 + 20.3223i −0.901345 + 0.756318i
\(723\) 0 0
\(724\) 18.0432 + 15.1400i 0.670569 + 0.562674i
\(725\) 14.8364 5.40000i 0.551009 0.200551i
\(726\) 0 0
\(727\) 34.1662 + 12.4355i 1.26715 + 0.461206i 0.886163 0.463373i \(-0.153361\pi\)
0.380990 + 0.924579i \(0.375583\pi\)
\(728\) −2.40805 0.707124i −0.0892481 0.0262078i
\(729\) 0 0
\(730\) −13.5590 23.4850i −0.501843 0.869217i
\(731\) 3.06262 2.56985i 0.113275 0.0950492i
\(732\) 0 0
\(733\) −3.73447 + 21.1792i −0.137936 + 0.782272i 0.834835 + 0.550501i \(0.185563\pi\)
−0.972770 + 0.231771i \(0.925548\pi\)
\(734\) −4.96227 + 28.1425i −0.183161 + 1.03876i
\(735\) 0 0
\(736\) 5.09275 4.27333i 0.187721 0.157517i
\(737\) 29.9945 51.9519i 1.10486 1.91367i
\(738\) 0 0
\(739\) −3.59765 6.23131i −0.132342 0.229223i 0.792237 0.610213i \(-0.208916\pi\)
−0.924579 + 0.380991i \(0.875583\pi\)
\(740\) −4.80323 + 4.03039i −0.176570 + 0.148160i
\(741\) 0 0
\(742\) 22.9189 1.45603i 0.841380 0.0534525i
\(743\) 5.28136 1.92226i 0.193754 0.0705207i −0.243321 0.969946i \(-0.578237\pi\)
0.437075 + 0.899425i \(0.356015\pi\)
\(744\) 0 0
\(745\) 6.03872 + 2.19791i 0.221242 + 0.0805253i
\(746\) −28.6232 49.5768i −1.04797 1.81513i
\(747\) 0 0
\(748\) −4.20308 7.27996i −0.153680 0.266182i
\(749\) 23.5383 + 17.3317i 0.860072 + 0.633287i
\(750\) 0 0
\(751\) −40.3558 + 14.6883i −1.47260 + 0.535984i −0.948806 0.315860i \(-0.897707\pi\)
−0.523797 + 0.851843i \(0.675485\pi\)
\(752\) −50.6969 + 18.4522i −1.84873 + 0.672881i
\(753\) 0 0
\(754\) −1.76314 9.99926i −0.0642098 0.364152i
\(755\) 21.6859 0.789232
\(756\) 0 0
\(757\) −18.7190 −0.680354 −0.340177 0.940361i \(-0.610487\pi\)
−0.340177 + 0.940361i \(0.610487\pi\)
\(758\) 10.7373 + 60.8943i 0.389997 + 2.21178i
\(759\) 0 0
\(760\) 1.90091 0.691876i 0.0689533 0.0250970i
\(761\) −11.7685 + 4.28340i −0.426609 + 0.155273i −0.546397 0.837526i \(-0.684001\pi\)
0.119787 + 0.992800i \(0.461779\pi\)
\(762\) 0 0
\(763\) 5.58699 50.0861i 0.202263 1.81324i
\(764\) −11.2817 19.5404i −0.408157 0.706948i
\(765\) 0 0
\(766\) −11.0880 19.2050i −0.400626 0.693904i
\(767\) 5.84238 + 2.12645i 0.210956 + 0.0767818i
\(768\) 0 0
\(769\) 18.4388 6.71117i 0.664920 0.242011i 0.0125608 0.999921i \(-0.496002\pi\)
0.652359 + 0.757910i \(0.273779\pi\)
\(770\) −18.2731 27.4667i −0.658516 0.989830i
\(771\) 0 0
\(772\) −21.3757 + 17.9363i −0.769327 + 0.645542i
\(773\) 5.39853 + 9.35052i 0.194171 + 0.336315i 0.946629 0.322326i \(-0.104465\pi\)
−0.752457 + 0.658641i \(0.771132\pi\)
\(774\) 0 0
\(775\) −9.56154 + 16.5611i −0.343461 + 0.594891i
\(776\) 4.21038 3.53293i 0.151144 0.126825i
\(777\) 0 0
\(778\) −7.41343 + 42.0436i −0.265784 + 1.50734i
\(779\) 2.96092 16.7922i 0.106086 0.601643i
\(780\) 0 0
\(781\) −40.6147 + 34.0798i −1.45331 + 1.21947i
\(782\) 1.10431 + 1.91271i 0.0394899 + 0.0683985i
\(783\) 0 0
\(784\) −1.58876 + 33.3212i −0.0567415 + 1.19004i
\(785\) −0.519984 0.189259i −0.0185590 0.00675493i
\(786\) 0 0
\(787\) −39.4055 + 14.3424i −1.40465 + 0.511252i −0.929556 0.368681i \(-0.879809\pi\)
−0.475097 + 0.879933i \(0.657587\pi\)
\(788\) 0.296895 + 0.249125i 0.0105765 + 0.00887471i
\(789\) 0 0
\(790\) 29.6012 24.8383i 1.05316 0.883708i
\(791\) −4.88821 20.1514i −0.173805 0.716502i
\(792\) 0 0
\(793\) −5.17379 −0.183727
\(794\) −39.1052 14.2331i −1.38779 0.505115i
\(795\) 0 0
\(796\) −1.86182 1.56225i −0.0659905 0.0553726i
\(797\) 12.2053 4.44238i 0.432335 0.157357i −0.116680 0.993170i \(-0.537225\pi\)
0.549015 + 0.835812i \(0.315003\pi\)
\(798\) 0 0
\(799\) −2.43857 13.8298i −0.0862705 0.489265i
\(800\) 19.9303 0.704642
\(801\) 0 0
\(802\) −9.44356 −0.333464
\(803\) −42.6060 15.5073i −1.50353 0.547241i
\(804\) 0 0
\(805\) 2.04511 + 3.07406i 0.0720808 + 0.108346i
\(806\) 9.42078 + 7.90497i 0.331833 + 0.278441i
\(807\) 0 0
\(808\) −8.73519 + 7.32969i −0.307303 + 0.257858i
\(809\) 14.8787 25.7707i 0.523109 0.906051i −0.476529 0.879159i \(-0.658105\pi\)
0.999638 0.0268927i \(-0.00856125\pi\)
\(810\) 0 0
\(811\) 38.9051 1.36614 0.683072 0.730351i \(-0.260643\pi\)
0.683072 + 0.730351i \(0.260643\pi\)
\(812\) −19.8622 + 8.69209i −0.697028 + 0.305033i
\(813\) 0 0
\(814\) −4.27357 + 24.2366i −0.149789 + 0.849493i
\(815\) 5.78496 + 4.85415i 0.202638 + 0.170034i
\(816\) 0 0
\(817\) −4.34921 1.58298i −0.152160 0.0553816i
\(818\) −21.2271 36.7664i −0.742188 1.28551i
\(819\) 0 0
\(820\) −12.8912 + 22.3281i −0.450179 + 0.779733i
\(821\) −30.4574 + 25.5568i −1.06297 + 0.891939i −0.994397 0.105707i \(-0.966290\pi\)
−0.0685747 + 0.997646i \(0.521845\pi\)
\(822\) 0 0
\(823\) −6.77095 + 38.3999i −0.236020 + 1.33854i 0.604434 + 0.796655i \(0.293399\pi\)
−0.840454 + 0.541883i \(0.817712\pi\)
\(824\) −9.46551 7.94251i −0.329747 0.276690i
\(825\) 0 0
\(826\) 3.45506 30.9738i 0.120217 1.07772i
\(827\) −15.3937 + 26.6626i −0.535290 + 0.927150i 0.463859 + 0.885909i \(0.346464\pi\)
−0.999149 + 0.0412408i \(0.986869\pi\)
\(828\) 0 0
\(829\) −25.5293 −0.886669 −0.443335 0.896356i \(-0.646205\pi\)
−0.443335 + 0.896356i \(0.646205\pi\)
\(830\) −3.94689 22.3839i −0.136999 0.776958i
\(831\) 0 0
\(832\) 0.595091 3.37493i 0.0206311 0.117005i
\(833\) −8.46984 1.91339i −0.293463 0.0662951i
\(834\) 0 0
\(835\) 2.76274 + 15.6683i 0.0956087 + 0.542224i
\(836\) −4.86579 + 8.42779i −0.168287 + 0.291481i
\(837\) 0 0
\(838\) −28.3461 49.0969i −0.979201 1.69603i
\(839\) 15.4625 + 5.62791i 0.533826 + 0.194297i 0.594846 0.803840i \(-0.297213\pi\)
−0.0610197 + 0.998137i \(0.519435\pi\)
\(840\) 0 0
\(841\) 1.13760 + 0.954559i 0.0392275 + 0.0329158i
\(842\) −54.9273 + 19.9919i −1.89292 + 0.688966i
\(843\) 0 0
\(844\) 1.64286 + 9.31712i 0.0565495 + 0.320708i
\(845\) 8.79965 15.2414i 0.302717 0.524322i
\(846\) 0 0
\(847\) −24.9987 7.34088i −0.858965 0.252236i
\(848\) −3.84818 21.8241i −0.132147 0.749443i
\(849\) 0 0
\(850\) −1.14975 + 6.52057i −0.0394362 + 0.223654i
\(851\) 0.478296 2.71255i 0.0163958 0.0929851i
\(852\) 0 0
\(853\) −1.40699 7.97942i −0.0481743 0.273210i 0.951200 0.308575i \(-0.0998519\pi\)
−0.999374 + 0.0353643i \(0.988741\pi\)
\(854\) 6.11382 + 25.2039i 0.209211 + 0.862461i
\(855\) 0 0
\(856\) 5.31883 9.21248i 0.181794 0.314876i
\(857\) 1.18534 + 6.72238i 0.0404903 + 0.229632i 0.998337 0.0576480i \(-0.0183601\pi\)
−0.957847 + 0.287280i \(0.907249\pi\)
\(858\) 0 0
\(859\) 42.9069 15.6168i 1.46397 0.532840i 0.517511 0.855677i \(-0.326859\pi\)
0.946455 + 0.322837i \(0.104636\pi\)
\(860\) 5.36099 + 4.49840i 0.182808 + 0.153394i
\(861\) 0 0
\(862\) 18.4445 + 6.71326i 0.628223 + 0.228655i
\(863\) −0.791478 1.37088i −0.0269422 0.0466653i 0.852240 0.523151i \(-0.175244\pi\)
−0.879182 + 0.476486i \(0.841910\pi\)
\(864\) 0 0
\(865\) 8.85818 15.3428i 0.301187 0.521672i
\(866\) −2.05438 11.6510i −0.0698107 0.395916i
\(867\) 0 0
\(868\) 11.6617 23.5285i 0.395823 0.798608i
\(869\) 11.2189 63.6256i 0.380575 2.15835i
\(870\) 0 0
\(871\) 2.24769 + 12.7473i 0.0761601 + 0.431926i
\(872\) −18.3403 −0.621081
\(873\) 0 0
\(874\) 1.27842 2.21429i 0.0432433 0.0748995i
\(875\) −3.37268 + 30.2353i −0.114017 + 1.02214i
\(876\) 0 0
\(877\) 17.0243 + 14.2851i 0.574869 + 0.482372i 0.883257 0.468888i \(-0.155345\pi\)
−0.308389 + 0.951260i \(0.599790\pi\)
\(878\) 6.55978 37.2024i 0.221382 1.25552i
\(879\) 0 0
\(880\) −24.3865 + 20.4627i −0.822068 + 0.689797i
\(881\) −12.8210 + 22.2065i −0.431949 + 0.748158i −0.997041 0.0768702i \(-0.975507\pi\)
0.565092 + 0.825028i \(0.308841\pi\)
\(882\) 0 0
\(883\) −17.2315 29.8458i −0.579886 1.00439i −0.995492 0.0948467i \(-0.969764\pi\)
0.415606 0.909545i \(-0.363569\pi\)
\(884\) 1.70443 + 0.620362i 0.0573262 + 0.0208650i
\(885\) 0 0
\(886\) −12.6943 10.6518i −0.426474 0.357854i
\(887\) −2.16361 + 12.2704i −0.0726469 + 0.412001i 0.926698 + 0.375807i \(0.122634\pi\)
−0.999345 + 0.0361938i \(0.988477\pi\)
\(888\) 0 0
\(889\) 27.0655 + 19.9288i 0.907746 + 0.668390i
\(890\) 1.67942 0.0562943
\(891\) 0 0
\(892\) −4.28964 + 7.42988i −0.143628 + 0.248771i
\(893\) −12.4539 + 10.4500i −0.416753 + 0.349697i
\(894\) 0 0
\(895\) −13.8723 11.6402i −0.463700 0.389090i
\(896\) 19.6620 1.24912i 0.656861 0.0417302i
\(897\) 0 0
\(898\) −21.1127 7.68438i −0.704538 0.256431i
\(899\) −36.9235 −1.23147
\(900\) 0 0
\(901\) 5.76840 0.192173
\(902\) 17.5725 + 99.6585i 0.585100 + 3.31827i
\(903\) 0 0
\(904\) −7.09106 + 2.58094i −0.235845 + 0.0858407i
\(905\) 17.7861 + 14.9243i 0.591229 + 0.496100i
\(906\) 0 0
\(907\) −19.0510 6.93399i −0.632577 0.230239i 0.00577554 0.999983i \(-0.498162\pi\)
−0.638353 + 0.769744i \(0.720384\pi\)
\(908\) −19.0304 −0.631547
\(909\) 0 0
\(910\) 6.82988 + 2.00560i 0.226408 + 0.0664850i
\(911\) 16.6560 13.9761i 0.551838 0.463047i −0.323725 0.946151i \(-0.604935\pi\)
0.875563 + 0.483104i \(0.160491\pi\)
\(912\) 0 0
\(913\) −29.1115 24.4275i −0.963451 0.808431i
\(914\) 5.64526 2.05471i 0.186729 0.0679637i
\(915\) 0 0
\(916\) 8.17391 + 2.97506i 0.270073 + 0.0982987i
\(917\) 5.23617 + 21.5859i 0.172913 + 0.712828i
\(918\) 0 0
\(919\) −8.04117 13.9277i −0.265254 0.459433i 0.702376 0.711806i \(-0.252122\pi\)
−0.967630 + 0.252373i \(0.918789\pi\)
\(920\) 1.02930 0.863688i 0.0339351 0.0284749i
\(921\) 0 0
\(922\) 11.0709 62.7860i 0.364599 2.06775i
\(923\) 1.98653 11.2662i 0.0653874 0.370831i
\(924\) 0 0
\(925\) 6.32551 5.30773i 0.207981 0.174517i
\(926\) −10.2119 + 17.6876i −0.335585 + 0.581250i
\(927\) 0 0
\(928\) 19.2410 + 33.3265i 0.631618 + 1.09399i
\(929\) 34.8423 29.2361i 1.14314 0.959206i 0.143601 0.989636i \(-0.454132\pi\)
0.999537 + 0.0304292i \(0.00968743\pi\)
\(930\) 0 0
\(931\) 2.98433 + 9.59917i 0.0978075 + 0.314600i
\(932\) 1.35494 0.493157i 0.0443824 0.0161539i
\(933\) 0 0
\(934\) −72.6279 26.4344i −2.37646 0.864960i
\(935\) −4.14320 7.17623i −0.135497 0.234688i
\(936\) 0 0
\(937\) 19.6409 + 34.0190i 0.641639 + 1.11135i 0.985067 + 0.172172i \(0.0550784\pi\)
−0.343428 + 0.939179i \(0.611588\pi\)
\(938\) 59.4420 26.0129i 1.94085 0.849352i
\(939\) 0 0
\(940\) 23.0995 8.40753i 0.753423 0.274223i
\(941\) −34.2173 + 12.4541i −1.11545 + 0.405991i −0.832990 0.553288i \(-0.813373\pi\)
−0.282461 + 0.959279i \(0.591151\pi\)
\(942\) 0 0
\(943\) −1.96670 11.1537i −0.0640447 0.363216i
\(944\) −30.0744 −0.978837
\(945\) 0 0
\(946\) 27.4683 0.893071
\(947\) −2.93396 16.6393i −0.0953410 0.540705i −0.994642 0.103376i \(-0.967035\pi\)
0.899301 0.437329i \(-0.144076\pi\)
\(948\) 0 0
\(949\) 9.19319 3.34605i 0.298424 0.108617i
\(950\) 7.20286 2.62163i 0.233691 0.0850567i
\(951\) 0 0
\(952\) −0.350319 + 3.14053i −0.0113539 + 0.101785i
\(953\) 10.9661 + 18.9938i 0.355226 + 0.615270i 0.987157 0.159755i \(-0.0510705\pi\)
−0.631930 + 0.775025i \(0.717737\pi\)
\(954\) 0 0
\(955\) −11.1209 19.2620i −0.359865 0.623304i
\(956\) −33.1349 12.0601i −1.07166 0.390052i
\(957\) 0 0
\(958\) 14.5634 5.30066i 0.470523 0.171257i
\(959\) −2.72958 + 5.50718i −0.0881429 + 0.177836i
\(960\) 0 0
\(961\) 10.5115 8.82019i 0.339081 0.284522i
\(962\) −2.65513 4.59883i −0.0856049 0.148272i
\(963\) 0 0
\(964\) 0.212405 0.367897i 0.00684111 0.0118492i
\(965\) −21.0711 + 17.6808i −0.678303 + 0.569164i
\(966\) 0 0
\(967\) 2.64027 14.9737i 0.0849053 0.481522i −0.912472 0.409140i \(-0.865829\pi\)
0.997377 0.0723820i \(-0.0230601\pi\)
\(968\) −1.64647 + 9.33758i −0.0529195 + 0.300121i
\(969\) 0 0
\(970\) −11.9418 + 10.0204i −0.383428 + 0.321734i
\(971\) 12.0551 + 20.8800i 0.386866 + 0.670072i 0.992026 0.126032i \(-0.0402241\pi\)
−0.605160 + 0.796104i \(0.706891\pi\)
\(972\) 0 0
\(973\) −54.5521 16.0193i −1.74886 0.513554i
\(974\) 42.0039 + 15.2882i 1.34589 + 0.489864i
\(975\) 0 0
\(976\) 23.5172 8.55958i 0.752769 0.273985i
\(977\) −22.0256 18.4817i −0.704662 0.591282i 0.218434 0.975852i \(-0.429905\pi\)
−0.923096 + 0.384570i \(0.874350\pi\)
\(978\) 0 0
\(979\) 2.15099 1.80490i 0.0687460 0.0576848i
\(980\) 0.723903 15.1824i 0.0231242 0.484985i
\(981\) 0 0
\(982\) −73.3705 −2.34135
\(983\) 4.51817 + 1.64448i 0.144107 + 0.0524508i 0.413067 0.910701i \(-0.364458\pi\)
−0.268960 + 0.963151i \(0.586680\pi\)
\(984\) 0 0
\(985\) 0.292665 + 0.245575i 0.00932509 + 0.00782468i
\(986\) −12.0134 + 4.37251i −0.382583 + 0.139249i
\(987\) 0 0
\(988\) −0.364627 2.06790i −0.0116003 0.0657887i
\(989\) −3.07424 −0.0977551
\(990\) 0 0
\(991\) 52.7537 1.67578 0.837888 0.545842i \(-0.183790\pi\)
0.837888 + 0.545842i \(0.183790\pi\)
\(992\) −43.7986 15.9414i −1.39061 0.506140i
\(993\) 0 0
\(994\) −57.2303 + 3.63582i −1.81523 + 0.115321i
\(995\) −1.83529 1.53999i −0.0581827 0.0488211i
\(996\) 0 0
\(997\) 39.3451 33.0144i 1.24607 1.04558i 0.249046 0.968492i \(-0.419883\pi\)
0.997024 0.0770861i \(-0.0245616\pi\)
\(998\) 5.84523 10.1242i 0.185028 0.320477i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 567.2.u.a.550.19 132
3.2 odd 2 189.2.u.a.4.4 132
7.2 even 3 567.2.w.a.226.19 132
21.2 odd 6 189.2.w.a.58.4 yes 132
27.7 even 9 567.2.w.a.424.19 132
27.20 odd 18 189.2.w.a.88.4 yes 132
189.128 odd 18 189.2.u.a.142.4 yes 132
189.142 even 9 inner 567.2.u.a.100.19 132
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
189.2.u.a.4.4 132 3.2 odd 2
189.2.u.a.142.4 yes 132 189.128 odd 18
189.2.w.a.58.4 yes 132 21.2 odd 6
189.2.w.a.88.4 yes 132 27.20 odd 18
567.2.u.a.100.19 132 189.142 even 9 inner
567.2.u.a.550.19 132 1.1 even 1 trivial
567.2.w.a.226.19 132 7.2 even 3
567.2.w.a.424.19 132 27.7 even 9