Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [567,2,Mod(100,567)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(567, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([16, 6]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("567.100");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 567 = 3^{4} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 567.u (of order \(9\), degree \(6\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(4.52751779461\) |
Analytic rank: | \(0\) |
Dimension: | \(132\) |
Relative dimension: | \(22\) over \(\Q(\zeta_{9})\) |
Twist minimal: | no (minimal twist has level 189) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{9}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
100.1 | −0.456041 | + | 2.58633i | 0 | −4.60177 | − | 1.67491i | −2.97048 | − | 1.08117i | 0 | −2.55032 | + | 0.704184i | 3.80423 | − | 6.58912i | 0 | 4.15092 | − | 7.18961i | ||||||
100.2 | −0.427861 | + | 2.42652i | 0 | −3.82554 | − | 1.39238i | 2.97164 | + | 1.08159i | 0 | 0.768747 | − | 2.53161i | 2.55149 | − | 4.41931i | 0 | −3.89594 | + | 6.74796i | ||||||
100.3 | −0.373934 | + | 2.12069i | 0 | −2.47810 | − | 0.901956i | 1.18205 | + | 0.430229i | 0 | −2.62839 | + | 0.302569i | 0.686013 | − | 1.18821i | 0 | −1.35439 | + | 2.34587i | ||||||
100.4 | −0.371090 | + | 2.10456i | 0 | −2.41207 | − | 0.877922i | −2.18602 | − | 0.795646i | 0 | 1.27150 | + | 2.32019i | 0.605711 | − | 1.04912i | 0 | 2.48569 | − | 4.30535i | ||||||
100.5 | −0.340870 | + | 1.93317i | 0 | −1.74157 | − | 0.633879i | −1.35943 | − | 0.494793i | 0 | −0.147009 | − | 2.64166i | −0.143948 | + | 0.249325i | 0 | 1.41991 | − | 2.45935i | ||||||
100.6 | −0.246187 | + | 1.39619i | 0 | −0.00936568 | − | 0.00340883i | −3.04103 | − | 1.10685i | 0 | 1.78778 | − | 1.95034i | −1.41067 | + | 2.44335i | 0 | 2.29403 | − | 3.97338i | ||||||
100.7 | −0.241593 | + | 1.37014i | 0 | 0.0604707 | + | 0.0220095i | 1.40760 | + | 0.512324i | 0 | 1.17416 | + | 2.37094i | −1.43604 | + | 2.48730i | 0 | −1.04202 | + | 1.80483i | ||||||
100.8 | −0.101938 | + | 0.578121i | 0 | 1.55555 | + | 0.566175i | 3.06658 | + | 1.11614i | 0 | −1.48906 | − | 2.18694i | −1.07293 | + | 1.85836i | 0 | −0.957867 | + | 1.65908i | ||||||
100.9 | −0.0954712 | + | 0.541444i | 0 | 1.59534 | + | 0.580656i | 0.969531 | + | 0.352880i | 0 | 2.17686 | + | 1.50376i | −1.01650 | + | 1.76063i | 0 | −0.283627 | + | 0.491257i | ||||||
100.10 | −0.0570934 | + | 0.323793i | 0 | 1.77780 | + | 0.647067i | −1.85642 | − | 0.675680i | 0 | −2.33644 | + | 1.24140i | −0.639805 | + | 1.10817i | 0 | 0.324770 | − | 0.562517i | ||||||
100.11 | −0.0290601 | + | 0.164808i | 0 | 1.85307 | + | 0.674462i | 0.999212 | + | 0.363683i | 0 | 1.97858 | − | 1.75648i | −0.332357 | + | 0.575660i | 0 | −0.0889751 | + | 0.154109i | ||||||
100.12 | 0.0305699 | − | 0.173370i | 0 | 1.85026 | + | 0.673440i | −2.52551 | − | 0.919210i | 0 | −1.78991 | + | 1.94839i | 0.349362 | − | 0.605113i | 0 | −0.236568 | + | 0.409748i | ||||||
100.13 | 0.134854 | − | 0.764795i | 0 | 1.31266 | + | 0.477769i | −1.10529 | − | 0.402293i | 0 | −0.975813 | − | 2.45923i | 1.31901 | − | 2.28459i | 0 | −0.456725 | + | 0.791071i | ||||||
100.14 | 0.165988 | − | 0.941364i | 0 | 1.02077 | + | 0.371530i | 2.75749 | + | 1.00364i | 0 | 0.0940141 | + | 2.64408i | 1.47507 | − | 2.55489i | 0 | 1.40250 | − | 2.42921i | ||||||
100.15 | 0.203963 | − | 1.15673i | 0 | 0.582964 | + | 0.212181i | 3.41115 | + | 1.24156i | 0 | −1.99948 | − | 1.73265i | 1.53891 | − | 2.66548i | 0 | 2.13189 | − | 3.69255i | ||||||
100.16 | 0.266701 | − | 1.51254i | 0 | −0.337258 | − | 0.122752i | −3.71318 | − | 1.35149i | 0 | 2.56740 | − | 0.639091i | 1.26026 | − | 2.18283i | 0 | −3.03449 | + | 5.25589i | ||||||
100.17 | 0.279530 | − | 1.58529i | 0 | −0.555633 | − | 0.202234i | −0.230811 | − | 0.0840085i | 0 | −1.31413 | + | 2.29631i | 1.13383 | − | 1.96386i | 0 | −0.197697 | + | 0.342421i | ||||||
100.18 | 0.310937 | − | 1.76341i | 0 | −1.13356 | − | 0.412582i | 0.00172074 | 0.000626297i | 0 | 2.59651 | − | 0.508047i | 0.710598 | − | 1.23079i | 0 | 0.00163946 | − | 0.00283963i | |||||||
100.19 | 0.324131 | − | 1.83824i | 0 | −1.39467 | − | 0.507617i | −1.37479 | − | 0.500384i | 0 | −2.42382 | − | 1.06071i | 0.481419 | − | 0.833843i | 0 | −1.36544 | + | 2.36501i | ||||||
100.20 | 0.422628 | − | 2.39684i | 0 | −3.68685 | − | 1.34190i | 2.38847 | + | 0.869333i | 0 | 2.35689 | + | 1.20212i | −2.34068 | + | 4.05418i | 0 | 3.09309 | − | 5.35738i | ||||||
See next 80 embeddings (of 132 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
189.u | even | 9 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 567.2.u.a | 132 | |
3.b | odd | 2 | 1 | 189.2.u.a | ✓ | 132 | |
7.c | even | 3 | 1 | 567.2.w.a | 132 | ||
21.h | odd | 6 | 1 | 189.2.w.a | yes | 132 | |
27.e | even | 9 | 1 | 567.2.w.a | 132 | ||
27.f | odd | 18 | 1 | 189.2.w.a | yes | 132 | |
189.u | even | 9 | 1 | inner | 567.2.u.a | 132 | |
189.bc | odd | 18 | 1 | 189.2.u.a | ✓ | 132 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
189.2.u.a | ✓ | 132 | 3.b | odd | 2 | 1 | |
189.2.u.a | ✓ | 132 | 189.bc | odd | 18 | 1 | |
189.2.w.a | yes | 132 | 21.h | odd | 6 | 1 | |
189.2.w.a | yes | 132 | 27.f | odd | 18 | 1 | |
567.2.u.a | 132 | 1.a | even | 1 | 1 | trivial | |
567.2.u.a | 132 | 189.u | even | 9 | 1 | inner | |
567.2.w.a | 132 | 7.c | even | 3 | 1 | ||
567.2.w.a | 132 | 27.e | even | 9 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(567, [\chi])\).