Properties

Label 567.2.s
Level $567$
Weight $2$
Character orbit 567.s
Rep. character $\chi_{567}(26,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $60$
Newform subspaces $7$
Sturm bound $144$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 567 = 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 567.s (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 63 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 7 \)
Sturm bound: \(144\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(2\), \(11\), \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(567, [\chi])\).

Total New Old
Modular forms 168 68 100
Cusp forms 120 60 60
Eisenstein series 48 8 40

Trace form

\( 60q + 26q^{4} + 7q^{7} + O(q^{10}) \) \( 60q + 26q^{4} + 7q^{7} - 6q^{10} - 15q^{13} - 22q^{16} - 6q^{19} + 8q^{22} + 48q^{25} - 20q^{28} + 66q^{31} + 12q^{34} - 7q^{37} - 16q^{43} + 2q^{46} + 21q^{49} - 64q^{58} - 27q^{61} - 32q^{64} - 3q^{67} - 42q^{70} - 6q^{73} - 36q^{76} - 39q^{79} - 18q^{82} - 18q^{85} + 4q^{88} + 45q^{91} + 6q^{94} - 15q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(567, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
567.2.s.a \(2\) \(4.528\) \(\Q(\sqrt{-3}) \) \(\Q(\sqrt{-3}) \) \(0\) \(0\) \(0\) \(-5\) \(q-2\zeta_{6}q^{4}+(-3+\zeta_{6})q^{7}+(-1-\zeta_{6})q^{13}+\cdots\)
567.2.s.b \(2\) \(4.528\) \(\Q(\sqrt{-3}) \) \(\Q(\sqrt{-3}) \) \(0\) \(0\) \(0\) \(4\) \(q-2\zeta_{6}q^{4}+(3-2\zeta_{6})q^{7}+(-4-4\zeta_{6})q^{13}+\cdots\)
567.2.s.c \(4\) \(4.528\) \(\Q(\sqrt{-2}, \sqrt{-3})\) None \(0\) \(0\) \(0\) \(-8\) \(q+\beta _{1}q^{2}+(2\beta _{1}-\beta _{3})q^{5}+(-1-2\beta _{2}+\cdots)q^{7}+\cdots\)
567.2.s.d \(4\) \(4.528\) \(\Q(\sqrt{-2}, \sqrt{-3})\) None \(0\) \(0\) \(0\) \(10\) \(q+\beta _{1}q^{2}+(-2\beta _{1}+\beta _{3})q^{5}+(3-\beta _{2}+\cdots)q^{7}+\cdots\)
567.2.s.e \(4\) \(4.528\) \(\Q(\sqrt{-3}, \sqrt{-5})\) None \(0\) \(0\) \(0\) \(-2\) \(q+\beta _{1}q^{2}+3\beta _{2}q^{4}+(-2+3\beta _{2})q^{7}+\cdots\)
567.2.s.f \(12\) \(4.528\) \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None \(0\) \(0\) \(0\) \(4\) \(q-\beta _{1}q^{2}+(1-\beta _{3}-\beta _{7}+\beta _{9})q^{4}+\beta _{5}q^{5}+\cdots\)
567.2.s.g \(32\) \(4.528\) None \(0\) \(0\) \(0\) \(4\)

Decomposition of \(S_{2}^{\mathrm{old}}(567, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(567, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(189, [\chi])\)\(^{\oplus 2}\)