# Properties

 Label 567.2.o.c Level $567$ Weight $2$ Character orbit 567.o Analytic conductor $4.528$ Analytic rank $0$ Dimension $4$ CM no Inner twists $4$

# Learn more

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [567,2,Mod(188,567)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(567, base_ring=CyclotomicField(6))

chi = DirichletCharacter(H, H._module([1, 3]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("567.188");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$567 = 3^{4} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 567.o (of order $$6$$, degree $$2$$, not minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$4.52751779461$$ Analytic rank: $$0$$ Dimension: $$4$$ Relative dimension: $$2$$ over $$\Q(\zeta_{6})$$ Coefficient field: $$\Q(\sqrt{-3}, \sqrt{-5})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{4} - 5x^{2} + 25$$ x^4 - 5*x^2 + 25 Coefficient ring: $$\Z[a_1, \ldots, a_{4}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 189) Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\beta_2,\beta_3$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + \beta_1 q^{2} + 3 \beta_{2} q^{4} + (\beta_{3} + \beta_1) q^{5} + ( - 3 \beta_{2} + 1) q^{7} + \beta_{3} q^{8}+O(q^{10})$$ q + b1 * q^2 + 3*b2 * q^4 + (b3 + b1) * q^5 + (-3*b2 + 1) * q^7 + b3 * q^8 $$q + \beta_1 q^{2} + 3 \beta_{2} q^{4} + (\beta_{3} + \beta_1) q^{5} + ( - 3 \beta_{2} + 1) q^{7} + \beta_{3} q^{8} + (10 \beta_{2} - 5) q^{10} + \beta_1 q^{11} + (2 \beta_{2} - 4) q^{13} + ( - 3 \beta_{3} + \beta_1) q^{14} + ( - \beta_{2} + 1) q^{16} + ( - 6 \beta_{2} + 3) q^{19} + (6 \beta_{3} - 3 \beta_1) q^{20} + 5 \beta_{2} q^{22} + (\beta_{3} - \beta_1) q^{23} + (10 \beta_{2} - 10) q^{25} + (2 \beta_{3} - 4 \beta_1) q^{26} + ( - 6 \beta_{2} + 9) q^{28} - 2 \beta_1 q^{29} + ( - \beta_{2} + 2) q^{31} + ( - 3 \beta_{3} + 3 \beta_1) q^{32} + ( - 5 \beta_{3} + 4 \beta_1) q^{35} - q^{37} + ( - 6 \beta_{3} + 3 \beta_1) q^{38} + (5 \beta_{2} - 10) q^{40} + (\beta_{3} + \beta_1) q^{41} + (2 \beta_{2} - 2) q^{43} + 3 \beta_{3} q^{44} - 5 q^{46} + ( - 4 \beta_{3} + 2 \beta_1) q^{47} + (3 \beta_{2} - 8) q^{49} + (10 \beta_{3} - 10 \beta_1) q^{50} + ( - 6 \beta_{2} - 6) q^{52} - 4 \beta_{3} q^{53} + (10 \beta_{2} - 5) q^{55} + ( - 2 \beta_{3} + 3 \beta_1) q^{56} - 10 \beta_{2} q^{58} + ( - 2 \beta_{3} - 2 \beta_1) q^{59} + (4 \beta_{2} + 4) q^{61} + ( - \beta_{3} + 2 \beta_1) q^{62} + 13 q^{64} - 6 \beta_1 q^{65} + 10 \beta_{2} q^{67} + ( - 5 \beta_{2} + 25) q^{70} + 5 \beta_{3} q^{71} + ( - 12 \beta_{2} + 6) q^{73} - \beta_1 q^{74} + ( - 9 \beta_{2} + 18) q^{76} + ( - 3 \beta_{3} + \beta_1) q^{77} + (2 \beta_{2} - 2) q^{79} + ( - \beta_{3} + 2 \beta_1) q^{80} + (10 \beta_{2} - 5) q^{82} + ( - 4 \beta_{3} + 2 \beta_1) q^{83} + (2 \beta_{3} - 2 \beta_1) q^{86} + (5 \beta_{2} - 5) q^{88} + ( - 3 \beta_{3} + 6 \beta_1) q^{89} + (8 \beta_{2} + 2) q^{91} - 3 \beta_1 q^{92} + ( - 10 \beta_{2} + 20) q^{94} + ( - 9 \beta_{3} + 9 \beta_1) q^{95} + ( - 8 \beta_{2} - 8) q^{97} + (3 \beta_{3} - 8 \beta_1) q^{98}+O(q^{100})$$ q + b1 * q^2 + 3*b2 * q^4 + (b3 + b1) * q^5 + (-3*b2 + 1) * q^7 + b3 * q^8 + (10*b2 - 5) * q^10 + b1 * q^11 + (2*b2 - 4) * q^13 + (-3*b3 + b1) * q^14 + (-b2 + 1) * q^16 + (-6*b2 + 3) * q^19 + (6*b3 - 3*b1) * q^20 + 5*b2 * q^22 + (b3 - b1) * q^23 + (10*b2 - 10) * q^25 + (2*b3 - 4*b1) * q^26 + (-6*b2 + 9) * q^28 - 2*b1 * q^29 + (-b2 + 2) * q^31 + (-3*b3 + 3*b1) * q^32 + (-5*b3 + 4*b1) * q^35 - q^37 + (-6*b3 + 3*b1) * q^38 + (5*b2 - 10) * q^40 + (b3 + b1) * q^41 + (2*b2 - 2) * q^43 + 3*b3 * q^44 - 5 * q^46 + (-4*b3 + 2*b1) * q^47 + (3*b2 - 8) * q^49 + (10*b3 - 10*b1) * q^50 + (-6*b2 - 6) * q^52 - 4*b3 * q^53 + (10*b2 - 5) * q^55 + (-2*b3 + 3*b1) * q^56 - 10*b2 * q^58 + (-2*b3 - 2*b1) * q^59 + (4*b2 + 4) * q^61 + (-b3 + 2*b1) * q^62 + 13 * q^64 - 6*b1 * q^65 + 10*b2 * q^67 + (-5*b2 + 25) * q^70 + 5*b3 * q^71 + (-12*b2 + 6) * q^73 - b1 * q^74 + (-9*b2 + 18) * q^76 + (-3*b3 + b1) * q^77 + (2*b2 - 2) * q^79 + (-b3 + 2*b1) * q^80 + (10*b2 - 5) * q^82 + (-4*b3 + 2*b1) * q^83 + (2*b3 - 2*b1) * q^86 + (5*b2 - 5) * q^88 + (-3*b3 + 6*b1) * q^89 + (8*b2 + 2) * q^91 - 3*b1 * q^92 + (-10*b2 + 20) * q^94 + (-9*b3 + 9*b1) * q^95 + (-8*b2 - 8) * q^97 + (3*b3 - 8*b1) * q^98 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4 q + 6 q^{4} - 2 q^{7}+O(q^{10})$$ 4 * q + 6 * q^4 - 2 * q^7 $$4 q + 6 q^{4} - 2 q^{7} - 12 q^{13} + 2 q^{16} + 10 q^{22} - 20 q^{25} + 24 q^{28} + 6 q^{31} - 4 q^{37} - 30 q^{40} - 4 q^{43} - 20 q^{46} - 26 q^{49} - 36 q^{52} - 20 q^{58} + 24 q^{61} + 52 q^{64} + 20 q^{67} + 90 q^{70} + 54 q^{76} - 4 q^{79} - 10 q^{88} + 24 q^{91} + 60 q^{94} - 48 q^{97}+O(q^{100})$$ 4 * q + 6 * q^4 - 2 * q^7 - 12 * q^13 + 2 * q^16 + 10 * q^22 - 20 * q^25 + 24 * q^28 + 6 * q^31 - 4 * q^37 - 30 * q^40 - 4 * q^43 - 20 * q^46 - 26 * q^49 - 36 * q^52 - 20 * q^58 + 24 * q^61 + 52 * q^64 + 20 * q^67 + 90 * q^70 + 54 * q^76 - 4 * q^79 - 10 * q^88 + 24 * q^91 + 60 * q^94 - 48 * q^97

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{4} - 5x^{2} + 25$$ :

 $$\beta_{1}$$ $$=$$ $$\nu$$ v $$\beta_{2}$$ $$=$$ $$( \nu^{2} ) / 5$$ (v^2) / 5 $$\beta_{3}$$ $$=$$ $$( \nu^{3} ) / 5$$ (v^3) / 5
 $$\nu$$ $$=$$ $$\beta_1$$ b1 $$\nu^{2}$$ $$=$$ $$5\beta_{2}$$ 5*b2 $$\nu^{3}$$ $$=$$ $$5\beta_{3}$$ 5*b3

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/567\mathbb{Z}\right)^\times$$.

 $$n$$ $$325$$ $$407$$ $$\chi(n)$$ $$-1$$ $$\beta_{2}$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
188.1
 −1.93649 − 1.11803i 1.93649 + 1.11803i −1.93649 + 1.11803i 1.93649 − 1.11803i
−1.93649 1.11803i 0 1.50000 + 2.59808i −1.93649 3.35410i 0 −0.500000 2.59808i 2.23607i 0 8.66025i
188.2 1.93649 + 1.11803i 0 1.50000 + 2.59808i 1.93649 + 3.35410i 0 −0.500000 2.59808i 2.23607i 0 8.66025i
377.1 −1.93649 + 1.11803i 0 1.50000 2.59808i −1.93649 + 3.35410i 0 −0.500000 + 2.59808i 2.23607i 0 8.66025i
377.2 1.93649 1.11803i 0 1.50000 2.59808i 1.93649 3.35410i 0 −0.500000 + 2.59808i 2.23607i 0 8.66025i
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
63.l odd 6 1 inner
63.o even 6 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 567.2.o.c 4
3.b odd 2 1 inner 567.2.o.c 4
7.b odd 2 1 567.2.o.d 4
9.c even 3 1 189.2.c.b 4
9.c even 3 1 567.2.o.d 4
9.d odd 6 1 189.2.c.b 4
9.d odd 6 1 567.2.o.d 4
21.c even 2 1 567.2.o.d 4
36.f odd 6 1 3024.2.k.i 4
36.h even 6 1 3024.2.k.i 4
63.l odd 6 1 189.2.c.b 4
63.l odd 6 1 inner 567.2.o.c 4
63.o even 6 1 189.2.c.b 4
63.o even 6 1 inner 567.2.o.c 4
252.s odd 6 1 3024.2.k.i 4
252.bi even 6 1 3024.2.k.i 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
189.2.c.b 4 9.c even 3 1
189.2.c.b 4 9.d odd 6 1
189.2.c.b 4 63.l odd 6 1
189.2.c.b 4 63.o even 6 1
567.2.o.c 4 1.a even 1 1 trivial
567.2.o.c 4 3.b odd 2 1 inner
567.2.o.c 4 63.l odd 6 1 inner
567.2.o.c 4 63.o even 6 1 inner
567.2.o.d 4 7.b odd 2 1
567.2.o.d 4 9.c even 3 1
567.2.o.d 4 9.d odd 6 1
567.2.o.d 4 21.c even 2 1
3024.2.k.i 4 36.f odd 6 1
3024.2.k.i 4 36.h even 6 1
3024.2.k.i 4 252.s odd 6 1
3024.2.k.i 4 252.bi even 6 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(567, [\chi])$$:

 $$T_{2}^{4} - 5T_{2}^{2} + 25$$ T2^4 - 5*T2^2 + 25 $$T_{13}^{2} + 6T_{13} + 12$$ T13^2 + 6*T13 + 12

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{4} - 5T^{2} + 25$$
$3$ $$T^{4}$$
$5$ $$T^{4} + 15T^{2} + 225$$
$7$ $$(T^{2} + T + 7)^{2}$$
$11$ $$T^{4} - 5T^{2} + 25$$
$13$ $$(T^{2} + 6 T + 12)^{2}$$
$17$ $$T^{4}$$
$19$ $$(T^{2} + 27)^{2}$$
$23$ $$T^{4} - 5T^{2} + 25$$
$29$ $$T^{4} - 20T^{2} + 400$$
$31$ $$(T^{2} - 3 T + 3)^{2}$$
$37$ $$(T + 1)^{4}$$
$41$ $$T^{4} + 15T^{2} + 225$$
$43$ $$(T^{2} + 2 T + 4)^{2}$$
$47$ $$T^{4} + 60T^{2} + 3600$$
$53$ $$(T^{2} + 80)^{2}$$
$59$ $$T^{4} + 60T^{2} + 3600$$
$61$ $$(T^{2} - 12 T + 48)^{2}$$
$67$ $$(T^{2} - 10 T + 100)^{2}$$
$71$ $$(T^{2} + 125)^{2}$$
$73$ $$(T^{2} + 108)^{2}$$
$79$ $$(T^{2} + 2 T + 4)^{2}$$
$83$ $$T^{4} + 60T^{2} + 3600$$
$89$ $$(T^{2} - 135)^{2}$$
$97$ $$(T^{2} + 24 T + 192)^{2}$$
show more
show less