Properties

Label 567.2.i.d.215.2
Level $567$
Weight $2$
Character 567.215
Analytic conductor $4.528$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [567,2,Mod(215,567)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(567, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([5, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("567.215");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 567 = 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 567.i (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.52751779461\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 63)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 215.2
Root \(1.22474 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 567.215
Dual form 567.2.i.d.269.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.41421i q^{2} +(1.22474 + 2.12132i) q^{5} +(-2.00000 + 1.73205i) q^{7} +2.82843i q^{8} +O(q^{10})\) \(q+1.41421i q^{2} +(1.22474 + 2.12132i) q^{5} +(-2.00000 + 1.73205i) q^{7} +2.82843i q^{8} +(-3.00000 + 1.73205i) q^{10} +(-1.22474 - 0.707107i) q^{11} +(-4.50000 - 2.59808i) q^{13} +(-2.44949 - 2.82843i) q^{14} -4.00000 q^{16} +(2.44949 + 4.24264i) q^{17} +(1.50000 + 0.866025i) q^{19} +(1.00000 - 1.73205i) q^{22} +(4.89898 - 2.82843i) q^{23} +(-0.500000 + 0.866025i) q^{25} +(3.67423 - 6.36396i) q^{26} +(-2.44949 + 1.41421i) q^{29} +1.73205i q^{31} +(-6.00000 + 3.46410i) q^{34} +(-6.12372 - 2.12132i) q^{35} +(0.500000 - 0.866025i) q^{37} +(-1.22474 + 2.12132i) q^{38} +(-6.00000 + 3.46410i) q^{40} +(-3.67423 + 6.36396i) q^{41} +(0.500000 + 0.866025i) q^{43} +(4.00000 + 6.92820i) q^{46} +12.2474 q^{47} +(1.00000 - 6.92820i) q^{49} +(-1.22474 - 0.707107i) q^{50} +(-2.44949 + 1.41421i) q^{53} -3.46410i q^{55} +(-4.89898 - 5.65685i) q^{56} +(-2.00000 - 3.46410i) q^{58} -4.89898 q^{59} +3.46410i q^{61} -2.44949 q^{62} -8.00000 q^{64} -12.7279i q^{65} +11.0000 q^{67} +(3.00000 - 8.66025i) q^{70} -7.07107i q^{71} +(1.50000 - 0.866025i) q^{73} +(1.22474 + 0.707107i) q^{74} +(3.67423 - 0.707107i) q^{77} +5.00000 q^{79} +(-4.89898 - 8.48528i) q^{80} +(-9.00000 - 5.19615i) q^{82} +(3.67423 + 6.36396i) q^{83} +(-6.00000 + 10.3923i) q^{85} +(-1.22474 + 0.707107i) q^{86} +(2.00000 - 3.46410i) q^{88} +(-2.44949 + 4.24264i) q^{89} +(13.5000 - 2.59808i) q^{91} +17.3205i q^{94} +4.24264i q^{95} +(9.00000 - 5.19615i) q^{97} +(9.79796 + 1.41421i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 8 q^{7} - 12 q^{10} - 18 q^{13} - 16 q^{16} + 6 q^{19} + 4 q^{22} - 2 q^{25} - 24 q^{34} + 2 q^{37} - 24 q^{40} + 2 q^{43} + 16 q^{46} + 4 q^{49} - 8 q^{58} - 32 q^{64} + 44 q^{67} + 12 q^{70} + 6 q^{73} + 20 q^{79} - 36 q^{82} - 24 q^{85} + 8 q^{88} + 54 q^{91} + 36 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/567\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(3\) 0 0
\(4\) 0 0
\(5\) 1.22474 + 2.12132i 0.547723 + 0.948683i 0.998430 + 0.0560116i \(0.0178384\pi\)
−0.450708 + 0.892672i \(0.648828\pi\)
\(6\) 0 0
\(7\) −2.00000 + 1.73205i −0.755929 + 0.654654i
\(8\) 2.82843i 1.00000i
\(9\) 0 0
\(10\) −3.00000 + 1.73205i −0.948683 + 0.547723i
\(11\) −1.22474 0.707107i −0.369274 0.213201i 0.303867 0.952714i \(-0.401722\pi\)
−0.673141 + 0.739514i \(0.735055\pi\)
\(12\) 0 0
\(13\) −4.50000 2.59808i −1.24808 0.720577i −0.277350 0.960769i \(-0.589456\pi\)
−0.970725 + 0.240192i \(0.922790\pi\)
\(14\) −2.44949 2.82843i −0.654654 0.755929i
\(15\) 0 0
\(16\) −4.00000 −1.00000
\(17\) 2.44949 + 4.24264i 0.594089 + 1.02899i 0.993675 + 0.112296i \(0.0358205\pi\)
−0.399586 + 0.916696i \(0.630846\pi\)
\(18\) 0 0
\(19\) 1.50000 + 0.866025i 0.344124 + 0.198680i 0.662094 0.749421i \(-0.269668\pi\)
−0.317970 + 0.948101i \(0.603001\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 1.00000 1.73205i 0.213201 0.369274i
\(23\) 4.89898 2.82843i 1.02151 0.589768i 0.106967 0.994263i \(-0.465886\pi\)
0.914540 + 0.404495i \(0.132553\pi\)
\(24\) 0 0
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) 3.67423 6.36396i 0.720577 1.24808i
\(27\) 0 0
\(28\) 0 0
\(29\) −2.44949 + 1.41421i −0.454859 + 0.262613i −0.709880 0.704323i \(-0.751251\pi\)
0.255021 + 0.966935i \(0.417918\pi\)
\(30\) 0 0
\(31\) 1.73205i 0.311086i 0.987829 + 0.155543i \(0.0497126\pi\)
−0.987829 + 0.155543i \(0.950287\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) −6.00000 + 3.46410i −1.02899 + 0.594089i
\(35\) −6.12372 2.12132i −1.03510 0.358569i
\(36\) 0 0
\(37\) 0.500000 0.866025i 0.0821995 0.142374i −0.821995 0.569495i \(-0.807139\pi\)
0.904194 + 0.427121i \(0.140472\pi\)
\(38\) −1.22474 + 2.12132i −0.198680 + 0.344124i
\(39\) 0 0
\(40\) −6.00000 + 3.46410i −0.948683 + 0.547723i
\(41\) −3.67423 + 6.36396i −0.573819 + 0.993884i 0.422350 + 0.906433i \(0.361205\pi\)
−0.996169 + 0.0874508i \(0.972128\pi\)
\(42\) 0 0
\(43\) 0.500000 + 0.866025i 0.0762493 + 0.132068i 0.901629 0.432511i \(-0.142372\pi\)
−0.825380 + 0.564578i \(0.809039\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 4.00000 + 6.92820i 0.589768 + 1.02151i
\(47\) 12.2474 1.78647 0.893237 0.449586i \(-0.148429\pi\)
0.893237 + 0.449586i \(0.148429\pi\)
\(48\) 0 0
\(49\) 1.00000 6.92820i 0.142857 0.989743i
\(50\) −1.22474 0.707107i −0.173205 0.100000i
\(51\) 0 0
\(52\) 0 0
\(53\) −2.44949 + 1.41421i −0.336463 + 0.194257i −0.658707 0.752400i \(-0.728896\pi\)
0.322244 + 0.946657i \(0.395563\pi\)
\(54\) 0 0
\(55\) 3.46410i 0.467099i
\(56\) −4.89898 5.65685i −0.654654 0.755929i
\(57\) 0 0
\(58\) −2.00000 3.46410i −0.262613 0.454859i
\(59\) −4.89898 −0.637793 −0.318896 0.947790i \(-0.603312\pi\)
−0.318896 + 0.947790i \(0.603312\pi\)
\(60\) 0 0
\(61\) 3.46410i 0.443533i 0.975100 + 0.221766i \(0.0711822\pi\)
−0.975100 + 0.221766i \(0.928818\pi\)
\(62\) −2.44949 −0.311086
\(63\) 0 0
\(64\) −8.00000 −1.00000
\(65\) 12.7279i 1.57870i
\(66\) 0 0
\(67\) 11.0000 1.34386 0.671932 0.740613i \(-0.265465\pi\)
0.671932 + 0.740613i \(0.265465\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 3.00000 8.66025i 0.358569 1.03510i
\(71\) 7.07107i 0.839181i −0.907713 0.419591i \(-0.862174\pi\)
0.907713 0.419591i \(-0.137826\pi\)
\(72\) 0 0
\(73\) 1.50000 0.866025i 0.175562 0.101361i −0.409644 0.912245i \(-0.634347\pi\)
0.585206 + 0.810885i \(0.301014\pi\)
\(74\) 1.22474 + 0.707107i 0.142374 + 0.0821995i
\(75\) 0 0
\(76\) 0 0
\(77\) 3.67423 0.707107i 0.418718 0.0805823i
\(78\) 0 0
\(79\) 5.00000 0.562544 0.281272 0.959628i \(-0.409244\pi\)
0.281272 + 0.959628i \(0.409244\pi\)
\(80\) −4.89898 8.48528i −0.547723 0.948683i
\(81\) 0 0
\(82\) −9.00000 5.19615i −0.993884 0.573819i
\(83\) 3.67423 + 6.36396i 0.403300 + 0.698535i 0.994122 0.108266i \(-0.0345299\pi\)
−0.590822 + 0.806802i \(0.701197\pi\)
\(84\) 0 0
\(85\) −6.00000 + 10.3923i −0.650791 + 1.12720i
\(86\) −1.22474 + 0.707107i −0.132068 + 0.0762493i
\(87\) 0 0
\(88\) 2.00000 3.46410i 0.213201 0.369274i
\(89\) −2.44949 + 4.24264i −0.259645 + 0.449719i −0.966147 0.257993i \(-0.916939\pi\)
0.706502 + 0.707712i \(0.250272\pi\)
\(90\) 0 0
\(91\) 13.5000 2.59808i 1.41518 0.272352i
\(92\) 0 0
\(93\) 0 0
\(94\) 17.3205i 1.78647i
\(95\) 4.24264i 0.435286i
\(96\) 0 0
\(97\) 9.00000 5.19615i 0.913812 0.527589i 0.0321560 0.999483i \(-0.489763\pi\)
0.881656 + 0.471894i \(0.156429\pi\)
\(98\) 9.79796 + 1.41421i 0.989743 + 0.142857i
\(99\) 0 0
\(100\) 0 0
\(101\) −8.57321 + 14.8492i −0.853067 + 1.47755i 0.0253604 + 0.999678i \(0.491927\pi\)
−0.878427 + 0.477876i \(0.841407\pi\)
\(102\) 0 0
\(103\) 7.50000 4.33013i 0.738997 0.426660i −0.0827075 0.996574i \(-0.526357\pi\)
0.821705 + 0.569914i \(0.193023\pi\)
\(104\) 7.34847 12.7279i 0.720577 1.24808i
\(105\) 0 0
\(106\) −2.00000 3.46410i −0.194257 0.336463i
\(107\) 2.44949 + 1.41421i 0.236801 + 0.136717i 0.613706 0.789535i \(-0.289678\pi\)
−0.376905 + 0.926252i \(0.623012\pi\)
\(108\) 0 0
\(109\) 0.500000 + 0.866025i 0.0478913 + 0.0829502i 0.888977 0.457951i \(-0.151417\pi\)
−0.841086 + 0.540901i \(0.818083\pi\)
\(110\) 4.89898 0.467099
\(111\) 0 0
\(112\) 8.00000 6.92820i 0.755929 0.654654i
\(113\) −1.22474 0.707107i −0.115214 0.0665190i 0.441285 0.897367i \(-0.354523\pi\)
−0.556500 + 0.830848i \(0.687856\pi\)
\(114\) 0 0
\(115\) 12.0000 + 6.92820i 1.11901 + 0.646058i
\(116\) 0 0
\(117\) 0 0
\(118\) 6.92820i 0.637793i
\(119\) −12.2474 4.24264i −1.12272 0.388922i
\(120\) 0 0
\(121\) −4.50000 7.79423i −0.409091 0.708566i
\(122\) −4.89898 −0.443533
\(123\) 0 0
\(124\) 0 0
\(125\) 9.79796 0.876356
\(126\) 0 0
\(127\) 11.0000 0.976092 0.488046 0.872818i \(-0.337710\pi\)
0.488046 + 0.872818i \(0.337710\pi\)
\(128\) 11.3137i 1.00000i
\(129\) 0 0
\(130\) 18.0000 1.57870
\(131\) 1.22474 + 2.12132i 0.107006 + 0.185341i 0.914556 0.404459i \(-0.132540\pi\)
−0.807550 + 0.589799i \(0.799207\pi\)
\(132\) 0 0
\(133\) −4.50000 + 0.866025i −0.390199 + 0.0750939i
\(134\) 15.5563i 1.34386i
\(135\) 0 0
\(136\) −12.0000 + 6.92820i −1.02899 + 0.594089i
\(137\) 9.79796 + 5.65685i 0.837096 + 0.483298i 0.856276 0.516518i \(-0.172772\pi\)
−0.0191800 + 0.999816i \(0.506106\pi\)
\(138\) 0 0
\(139\) −4.50000 2.59808i −0.381685 0.220366i 0.296866 0.954919i \(-0.404058\pi\)
−0.678551 + 0.734553i \(0.737392\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 10.0000 0.839181
\(143\) 3.67423 + 6.36396i 0.307255 + 0.532181i
\(144\) 0 0
\(145\) −6.00000 3.46410i −0.498273 0.287678i
\(146\) 1.22474 + 2.12132i 0.101361 + 0.175562i
\(147\) 0 0
\(148\) 0 0
\(149\) 4.89898 2.82843i 0.401340 0.231714i −0.285722 0.958313i \(-0.592233\pi\)
0.687062 + 0.726599i \(0.258900\pi\)
\(150\) 0 0
\(151\) 11.0000 19.0526i 0.895167 1.55048i 0.0615699 0.998103i \(-0.480389\pi\)
0.833597 0.552372i \(-0.186277\pi\)
\(152\) −2.44949 + 4.24264i −0.198680 + 0.344124i
\(153\) 0 0
\(154\) 1.00000 + 5.19615i 0.0805823 + 0.418718i
\(155\) −3.67423 + 2.12132i −0.295122 + 0.170389i
\(156\) 0 0
\(157\) 17.3205i 1.38233i 0.722698 + 0.691164i \(0.242902\pi\)
−0.722698 + 0.691164i \(0.757098\pi\)
\(158\) 7.07107i 0.562544i
\(159\) 0 0
\(160\) 0 0
\(161\) −4.89898 + 14.1421i −0.386094 + 1.11456i
\(162\) 0 0
\(163\) 5.00000 8.66025i 0.391630 0.678323i −0.601035 0.799223i \(-0.705245\pi\)
0.992665 + 0.120900i \(0.0385779\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) −9.00000 + 5.19615i −0.698535 + 0.403300i
\(167\) −3.67423 + 6.36396i −0.284321 + 0.492458i −0.972444 0.233136i \(-0.925101\pi\)
0.688123 + 0.725594i \(0.258435\pi\)
\(168\) 0 0
\(169\) 7.00000 + 12.1244i 0.538462 + 0.932643i
\(170\) −14.6969 8.48528i −1.12720 0.650791i
\(171\) 0 0
\(172\) 0 0
\(173\) −9.79796 −0.744925 −0.372463 0.928047i \(-0.621486\pi\)
−0.372463 + 0.928047i \(0.621486\pi\)
\(174\) 0 0
\(175\) −0.500000 2.59808i −0.0377964 0.196396i
\(176\) 4.89898 + 2.82843i 0.369274 + 0.213201i
\(177\) 0 0
\(178\) −6.00000 3.46410i −0.449719 0.259645i
\(179\) 8.57321 4.94975i 0.640792 0.369961i −0.144127 0.989559i \(-0.546038\pi\)
0.784920 + 0.619598i \(0.212704\pi\)
\(180\) 0 0
\(181\) 15.5885i 1.15868i −0.815086 0.579340i \(-0.803310\pi\)
0.815086 0.579340i \(-0.196690\pi\)
\(182\) 3.67423 + 19.0919i 0.272352 + 1.41518i
\(183\) 0 0
\(184\) 8.00000 + 13.8564i 0.589768 + 1.02151i
\(185\) 2.44949 0.180090
\(186\) 0 0
\(187\) 6.92820i 0.506640i
\(188\) 0 0
\(189\) 0 0
\(190\) −6.00000 −0.435286
\(191\) 1.41421i 0.102329i 0.998690 + 0.0511645i \(0.0162933\pi\)
−0.998690 + 0.0511645i \(0.983707\pi\)
\(192\) 0 0
\(193\) 11.0000 0.791797 0.395899 0.918294i \(-0.370433\pi\)
0.395899 + 0.918294i \(0.370433\pi\)
\(194\) 7.34847 + 12.7279i 0.527589 + 0.913812i
\(195\) 0 0
\(196\) 0 0
\(197\) 19.7990i 1.41062i −0.708899 0.705310i \(-0.750808\pi\)
0.708899 0.705310i \(-0.249192\pi\)
\(198\) 0 0
\(199\) −12.0000 + 6.92820i −0.850657 + 0.491127i −0.860873 0.508821i \(-0.830082\pi\)
0.0102152 + 0.999948i \(0.496748\pi\)
\(200\) −2.44949 1.41421i −0.173205 0.100000i
\(201\) 0 0
\(202\) −21.0000 12.1244i −1.47755 0.853067i
\(203\) 2.44949 7.07107i 0.171920 0.496292i
\(204\) 0 0
\(205\) −18.0000 −1.25717
\(206\) 6.12372 + 10.6066i 0.426660 + 0.738997i
\(207\) 0 0
\(208\) 18.0000 + 10.3923i 1.24808 + 0.720577i
\(209\) −1.22474 2.12132i −0.0847174 0.146735i
\(210\) 0 0
\(211\) 11.0000 19.0526i 0.757271 1.31163i −0.186966 0.982366i \(-0.559865\pi\)
0.944237 0.329266i \(-0.106801\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) −2.00000 + 3.46410i −0.136717 + 0.236801i
\(215\) −1.22474 + 2.12132i −0.0835269 + 0.144673i
\(216\) 0 0
\(217\) −3.00000 3.46410i −0.203653 0.235159i
\(218\) −1.22474 + 0.707107i −0.0829502 + 0.0478913i
\(219\) 0 0
\(220\) 0 0
\(221\) 25.4558i 1.71235i
\(222\) 0 0
\(223\) −18.0000 + 10.3923i −1.20537 + 0.695920i −0.961744 0.273949i \(-0.911670\pi\)
−0.243625 + 0.969870i \(0.578337\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 1.00000 1.73205i 0.0665190 0.115214i
\(227\) 13.4722 23.3345i 0.894181 1.54877i 0.0593658 0.998236i \(-0.481092\pi\)
0.834815 0.550530i \(-0.185575\pi\)
\(228\) 0 0
\(229\) −19.5000 + 11.2583i −1.28860 + 0.743971i −0.978404 0.206702i \(-0.933727\pi\)
−0.310192 + 0.950674i \(0.600393\pi\)
\(230\) −9.79796 + 16.9706i −0.646058 + 1.11901i
\(231\) 0 0
\(232\) −4.00000 6.92820i −0.262613 0.454859i
\(233\) −8.57321 4.94975i −0.561650 0.324269i 0.192158 0.981364i \(-0.438452\pi\)
−0.753807 + 0.657095i \(0.771785\pi\)
\(234\) 0 0
\(235\) 15.0000 + 25.9808i 0.978492 + 1.69480i
\(236\) 0 0
\(237\) 0 0
\(238\) 6.00000 17.3205i 0.388922 1.12272i
\(239\) −23.2702 13.4350i −1.50522 0.869040i −0.999982 0.00606055i \(-0.998071\pi\)
−0.505239 0.862979i \(-0.668596\pi\)
\(240\) 0 0
\(241\) 12.0000 + 6.92820i 0.772988 + 0.446285i 0.833939 0.551856i \(-0.186080\pi\)
−0.0609515 + 0.998141i \(0.519414\pi\)
\(242\) 11.0227 6.36396i 0.708566 0.409091i
\(243\) 0 0
\(244\) 0 0
\(245\) 15.9217 6.36396i 1.01720 0.406579i
\(246\) 0 0
\(247\) −4.50000 7.79423i −0.286328 0.495935i
\(248\) −4.89898 −0.311086
\(249\) 0 0
\(250\) 13.8564i 0.876356i
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) −8.00000 −0.502956
\(254\) 15.5563i 0.976092i
\(255\) 0 0
\(256\) 0 0
\(257\) 1.22474 + 2.12132i 0.0763975 + 0.132324i 0.901693 0.432377i \(-0.142325\pi\)
−0.825296 + 0.564701i \(0.808992\pi\)
\(258\) 0 0
\(259\) 0.500000 + 2.59808i 0.0310685 + 0.161437i
\(260\) 0 0
\(261\) 0 0
\(262\) −3.00000 + 1.73205i −0.185341 + 0.107006i
\(263\) −12.2474 7.07107i −0.755210 0.436021i 0.0723633 0.997378i \(-0.476946\pi\)
−0.827573 + 0.561358i \(0.810279\pi\)
\(264\) 0 0
\(265\) −6.00000 3.46410i −0.368577 0.212798i
\(266\) −1.22474 6.36396i −0.0750939 0.390199i
\(267\) 0 0
\(268\) 0 0
\(269\) −8.57321 14.8492i −0.522718 0.905374i −0.999651 0.0264343i \(-0.991585\pi\)
0.476932 0.878940i \(-0.341749\pi\)
\(270\) 0 0
\(271\) −12.0000 6.92820i −0.728948 0.420858i 0.0890891 0.996024i \(-0.471604\pi\)
−0.818037 + 0.575165i \(0.804938\pi\)
\(272\) −9.79796 16.9706i −0.594089 1.02899i
\(273\) 0 0
\(274\) −8.00000 + 13.8564i −0.483298 + 0.837096i
\(275\) 1.22474 0.707107i 0.0738549 0.0426401i
\(276\) 0 0
\(277\) −11.5000 + 19.9186i −0.690968 + 1.19679i 0.280553 + 0.959839i \(0.409482\pi\)
−0.971521 + 0.236953i \(0.923851\pi\)
\(278\) 3.67423 6.36396i 0.220366 0.381685i
\(279\) 0 0
\(280\) 6.00000 17.3205i 0.358569 1.03510i
\(281\) 19.5959 11.3137i 1.16899 0.674919i 0.215551 0.976492i \(-0.430845\pi\)
0.953443 + 0.301573i \(0.0975118\pi\)
\(282\) 0 0
\(283\) 1.73205i 0.102960i 0.998674 + 0.0514799i \(0.0163938\pi\)
−0.998674 + 0.0514799i \(0.983606\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) −9.00000 + 5.19615i −0.532181 + 0.307255i
\(287\) −3.67423 19.0919i −0.216883 1.12696i
\(288\) 0 0
\(289\) −3.50000 + 6.06218i −0.205882 + 0.356599i
\(290\) 4.89898 8.48528i 0.287678 0.498273i
\(291\) 0 0
\(292\) 0 0
\(293\) 7.34847 12.7279i 0.429302 0.743573i −0.567509 0.823367i \(-0.692093\pi\)
0.996811 + 0.0797939i \(0.0254262\pi\)
\(294\) 0 0
\(295\) −6.00000 10.3923i −0.349334 0.605063i
\(296\) 2.44949 + 1.41421i 0.142374 + 0.0821995i
\(297\) 0 0
\(298\) 4.00000 + 6.92820i 0.231714 + 0.401340i
\(299\) −29.3939 −1.69989
\(300\) 0 0
\(301\) −2.50000 0.866025i −0.144098 0.0499169i
\(302\) 26.9444 + 15.5563i 1.55048 + 0.895167i
\(303\) 0 0
\(304\) −6.00000 3.46410i −0.344124 0.198680i
\(305\) −7.34847 + 4.24264i −0.420772 + 0.242933i
\(306\) 0 0
\(307\) 15.5885i 0.889680i 0.895610 + 0.444840i \(0.146740\pi\)
−0.895610 + 0.444840i \(0.853260\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −3.00000 5.19615i −0.170389 0.295122i
\(311\) 17.1464 0.972285 0.486142 0.873880i \(-0.338404\pi\)
0.486142 + 0.873880i \(0.338404\pi\)
\(312\) 0 0
\(313\) 12.1244i 0.685309i −0.939461 0.342655i \(-0.888674\pi\)
0.939461 0.342655i \(-0.111326\pi\)
\(314\) −24.4949 −1.38233
\(315\) 0 0
\(316\) 0 0
\(317\) 14.1421i 0.794301i 0.917753 + 0.397151i \(0.130001\pi\)
−0.917753 + 0.397151i \(0.869999\pi\)
\(318\) 0 0
\(319\) 4.00000 0.223957
\(320\) −9.79796 16.9706i −0.547723 0.948683i
\(321\) 0 0
\(322\) −20.0000 6.92820i −1.11456 0.386094i
\(323\) 8.48528i 0.472134i
\(324\) 0 0
\(325\) 4.50000 2.59808i 0.249615 0.144115i
\(326\) 12.2474 + 7.07107i 0.678323 + 0.391630i
\(327\) 0 0
\(328\) −18.0000 10.3923i −0.993884 0.573819i
\(329\) −24.4949 + 21.2132i −1.35045 + 1.16952i
\(330\) 0 0
\(331\) −31.0000 −1.70391 −0.851957 0.523612i \(-0.824584\pi\)
−0.851957 + 0.523612i \(0.824584\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) −9.00000 5.19615i −0.492458 0.284321i
\(335\) 13.4722 + 23.3345i 0.736065 + 1.27490i
\(336\) 0 0
\(337\) −11.5000 + 19.9186i −0.626445 + 1.08503i 0.361815 + 0.932250i \(0.382157\pi\)
−0.988260 + 0.152784i \(0.951176\pi\)
\(338\) −17.1464 + 9.89949i −0.932643 + 0.538462i
\(339\) 0 0
\(340\) 0 0
\(341\) 1.22474 2.12132i 0.0663237 0.114876i
\(342\) 0 0
\(343\) 10.0000 + 15.5885i 0.539949 + 0.841698i
\(344\) −2.44949 + 1.41421i −0.132068 + 0.0762493i
\(345\) 0 0
\(346\) 13.8564i 0.744925i
\(347\) 31.1127i 1.67022i 0.550085 + 0.835109i \(0.314595\pi\)
−0.550085 + 0.835109i \(0.685405\pi\)
\(348\) 0 0
\(349\) 9.00000 5.19615i 0.481759 0.278144i −0.239390 0.970923i \(-0.576948\pi\)
0.721149 + 0.692780i \(0.243614\pi\)
\(350\) 3.67423 0.707107i 0.196396 0.0377964i
\(351\) 0 0
\(352\) 0 0
\(353\) −8.57321 + 14.8492i −0.456306 + 0.790345i −0.998762 0.0497387i \(-0.984161\pi\)
0.542456 + 0.840084i \(0.317494\pi\)
\(354\) 0 0
\(355\) 15.0000 8.66025i 0.796117 0.459639i
\(356\) 0 0
\(357\) 0 0
\(358\) 7.00000 + 12.1244i 0.369961 + 0.640792i
\(359\) 24.4949 + 14.1421i 1.29279 + 0.746393i 0.979148 0.203148i \(-0.0651171\pi\)
0.313643 + 0.949541i \(0.398450\pi\)
\(360\) 0 0
\(361\) −8.00000 13.8564i −0.421053 0.729285i
\(362\) 22.0454 1.15868
\(363\) 0 0
\(364\) 0 0
\(365\) 3.67423 + 2.12132i 0.192318 + 0.111035i
\(366\) 0 0
\(367\) −1.50000 0.866025i −0.0782994 0.0452062i 0.460339 0.887743i \(-0.347728\pi\)
−0.538639 + 0.842537i \(0.681061\pi\)
\(368\) −19.5959 + 11.3137i −1.02151 + 0.589768i
\(369\) 0 0
\(370\) 3.46410i 0.180090i
\(371\) 2.44949 7.07107i 0.127171 0.367112i
\(372\) 0 0
\(373\) −14.5000 25.1147i −0.750782 1.30039i −0.947444 0.319921i \(-0.896344\pi\)
0.196663 0.980471i \(-0.436990\pi\)
\(374\) 9.79796 0.506640
\(375\) 0 0
\(376\) 34.6410i 1.78647i
\(377\) 14.6969 0.756931
\(378\) 0 0
\(379\) −7.00000 −0.359566 −0.179783 0.983706i \(-0.557540\pi\)
−0.179783 + 0.983706i \(0.557540\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −2.00000 −0.102329
\(383\) −9.79796 16.9706i −0.500652 0.867155i −1.00000 0.000753393i \(-0.999760\pi\)
0.499347 0.866402i \(-0.333573\pi\)
\(384\) 0 0
\(385\) 6.00000 + 6.92820i 0.305788 + 0.353094i
\(386\) 15.5563i 0.791797i
\(387\) 0 0
\(388\) 0 0
\(389\) −23.2702 13.4350i −1.17984 0.681183i −0.223865 0.974620i \(-0.571868\pi\)
−0.955978 + 0.293437i \(0.905201\pi\)
\(390\) 0 0
\(391\) 24.0000 + 13.8564i 1.21373 + 0.700749i
\(392\) 19.5959 + 2.82843i 0.989743 + 0.142857i
\(393\) 0 0
\(394\) 28.0000 1.41062
\(395\) 6.12372 + 10.6066i 0.308118 + 0.533676i
\(396\) 0 0
\(397\) 1.50000 + 0.866025i 0.0752828 + 0.0434646i 0.537169 0.843475i \(-0.319494\pi\)
−0.461886 + 0.886939i \(0.652827\pi\)
\(398\) −9.79796 16.9706i −0.491127 0.850657i
\(399\) 0 0
\(400\) 2.00000 3.46410i 0.100000 0.173205i
\(401\) −17.1464 + 9.89949i −0.856252 + 0.494357i −0.862755 0.505622i \(-0.831263\pi\)
0.00650355 + 0.999979i \(0.497930\pi\)
\(402\) 0 0
\(403\) 4.50000 7.79423i 0.224161 0.388258i
\(404\) 0 0
\(405\) 0 0
\(406\) 10.0000 + 3.46410i 0.496292 + 0.171920i
\(407\) −1.22474 + 0.707107i −0.0607083 + 0.0350500i
\(408\) 0 0
\(409\) 32.9090i 1.62724i 0.581394 + 0.813622i \(0.302507\pi\)
−0.581394 + 0.813622i \(0.697493\pi\)
\(410\) 25.4558i 1.25717i
\(411\) 0 0
\(412\) 0 0
\(413\) 9.79796 8.48528i 0.482126 0.417533i
\(414\) 0 0
\(415\) −9.00000 + 15.5885i −0.441793 + 0.765207i
\(416\) 0 0
\(417\) 0 0
\(418\) 3.00000 1.73205i 0.146735 0.0847174i
\(419\) 18.3712 31.8198i 0.897491 1.55450i 0.0667989 0.997766i \(-0.478721\pi\)
0.830692 0.556733i \(-0.187945\pi\)
\(420\) 0 0
\(421\) 0.500000 + 0.866025i 0.0243685 + 0.0422075i 0.877952 0.478748i \(-0.158909\pi\)
−0.853584 + 0.520955i \(0.825576\pi\)
\(422\) 26.9444 + 15.5563i 1.31163 + 0.757271i
\(423\) 0 0
\(424\) −4.00000 6.92820i −0.194257 0.336463i
\(425\) −4.89898 −0.237635
\(426\) 0 0
\(427\) −6.00000 6.92820i −0.290360 0.335279i
\(428\) 0 0
\(429\) 0 0
\(430\) −3.00000 1.73205i −0.144673 0.0835269i
\(431\) −13.4722 + 7.77817i −0.648933 + 0.374661i −0.788047 0.615615i \(-0.788908\pi\)
0.139114 + 0.990276i \(0.455574\pi\)
\(432\) 0 0
\(433\) 15.5885i 0.749133i −0.927200 0.374567i \(-0.877791\pi\)
0.927200 0.374567i \(-0.122209\pi\)
\(434\) 4.89898 4.24264i 0.235159 0.203653i
\(435\) 0 0
\(436\) 0 0
\(437\) 9.79796 0.468700
\(438\) 0 0
\(439\) 27.7128i 1.32266i −0.750095 0.661330i \(-0.769992\pi\)
0.750095 0.661330i \(-0.230008\pi\)
\(440\) 9.79796 0.467099
\(441\) 0 0
\(442\) 36.0000 1.71235
\(443\) 39.5980i 1.88136i 0.339300 + 0.940678i \(0.389810\pi\)
−0.339300 + 0.940678i \(0.610190\pi\)
\(444\) 0 0
\(445\) −12.0000 −0.568855
\(446\) −14.6969 25.4558i −0.695920 1.20537i
\(447\) 0 0
\(448\) 16.0000 13.8564i 0.755929 0.654654i
\(449\) 7.07107i 0.333704i −0.985982 0.166852i \(-0.946640\pi\)
0.985982 0.166852i \(-0.0533603\pi\)
\(450\) 0 0
\(451\) 9.00000 5.19615i 0.423793 0.244677i
\(452\) 0 0
\(453\) 0 0
\(454\) 33.0000 + 19.0526i 1.54877 + 0.894181i
\(455\) 22.0454 + 25.4558i 1.03350 + 1.19339i
\(456\) 0 0
\(457\) 5.00000 0.233890 0.116945 0.993138i \(-0.462690\pi\)
0.116945 + 0.993138i \(0.462690\pi\)
\(458\) −15.9217 27.5772i −0.743971 1.28860i
\(459\) 0 0
\(460\) 0 0
\(461\) −7.34847 12.7279i −0.342252 0.592798i 0.642598 0.766203i \(-0.277856\pi\)
−0.984851 + 0.173405i \(0.944523\pi\)
\(462\) 0 0
\(463\) 6.50000 11.2583i 0.302081 0.523219i −0.674526 0.738251i \(-0.735652\pi\)
0.976607 + 0.215032i \(0.0689855\pi\)
\(464\) 9.79796 5.65685i 0.454859 0.262613i
\(465\) 0 0
\(466\) 7.00000 12.1244i 0.324269 0.561650i
\(467\) −13.4722 + 23.3345i −0.623419 + 1.07979i 0.365426 + 0.930841i \(0.380923\pi\)
−0.988844 + 0.148952i \(0.952410\pi\)
\(468\) 0 0
\(469\) −22.0000 + 19.0526i −1.01587 + 0.879765i
\(470\) −36.7423 + 21.2132i −1.69480 + 0.978492i
\(471\) 0 0
\(472\) 13.8564i 0.637793i
\(473\) 1.41421i 0.0650256i
\(474\) 0 0
\(475\) −1.50000 + 0.866025i −0.0688247 + 0.0397360i
\(476\) 0 0
\(477\) 0 0
\(478\) 19.0000 32.9090i 0.869040 1.50522i
\(479\) 2.44949 4.24264i 0.111920 0.193851i −0.804624 0.593784i \(-0.797633\pi\)
0.916544 + 0.399933i \(0.130967\pi\)
\(480\) 0 0
\(481\) −4.50000 + 2.59808i −0.205182 + 0.118462i
\(482\) −9.79796 + 16.9706i −0.446285 + 0.772988i
\(483\) 0 0
\(484\) 0 0
\(485\) 22.0454 + 12.7279i 1.00103 + 0.577945i
\(486\) 0 0
\(487\) −8.50000 14.7224i −0.385172 0.667137i 0.606621 0.794991i \(-0.292524\pi\)
−0.991793 + 0.127854i \(0.959191\pi\)
\(488\) −9.79796 −0.443533
\(489\) 0 0
\(490\) 9.00000 + 22.5167i 0.406579 + 1.01720i
\(491\) 9.79796 + 5.65685i 0.442176 + 0.255290i 0.704520 0.709684i \(-0.251162\pi\)
−0.262344 + 0.964974i \(0.584496\pi\)
\(492\) 0 0
\(493\) −12.0000 6.92820i −0.540453 0.312031i
\(494\) 11.0227 6.36396i 0.495935 0.286328i
\(495\) 0 0
\(496\) 6.92820i 0.311086i
\(497\) 12.2474 + 14.1421i 0.549373 + 0.634361i
\(498\) 0 0
\(499\) 12.5000 + 21.6506i 0.559577 + 0.969216i 0.997532 + 0.0702185i \(0.0223697\pi\)
−0.437955 + 0.898997i \(0.644297\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −22.0454 −0.982956 −0.491478 0.870890i \(-0.663543\pi\)
−0.491478 + 0.870890i \(0.663543\pi\)
\(504\) 0 0
\(505\) −42.0000 −1.86898
\(506\) 11.3137i 0.502956i
\(507\) 0 0
\(508\) 0 0
\(509\) 1.22474 + 2.12132i 0.0542859 + 0.0940259i 0.891891 0.452250i \(-0.149378\pi\)
−0.837605 + 0.546276i \(0.816045\pi\)
\(510\) 0 0
\(511\) −1.50000 + 4.33013i −0.0663561 + 0.191554i
\(512\) 22.6274i 1.00000i
\(513\) 0 0
\(514\) −3.00000 + 1.73205i −0.132324 + 0.0763975i
\(515\) 18.3712 + 10.6066i 0.809531 + 0.467383i
\(516\) 0 0
\(517\) −15.0000 8.66025i −0.659699 0.380878i
\(518\) −3.67423 + 0.707107i −0.161437 + 0.0310685i
\(519\) 0 0
\(520\) 36.0000 1.57870
\(521\) 2.44949 + 4.24264i 0.107314 + 0.185873i 0.914681 0.404176i \(-0.132442\pi\)
−0.807367 + 0.590049i \(0.799108\pi\)
\(522\) 0 0
\(523\) 1.50000 + 0.866025i 0.0655904 + 0.0378686i 0.532437 0.846470i \(-0.321276\pi\)
−0.466846 + 0.884339i \(0.654610\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 10.0000 17.3205i 0.436021 0.755210i
\(527\) −7.34847 + 4.24264i −0.320104 + 0.184812i
\(528\) 0 0
\(529\) 4.50000 7.79423i 0.195652 0.338880i
\(530\) 4.89898 8.48528i 0.212798 0.368577i
\(531\) 0 0
\(532\) 0 0
\(533\) 33.0681 19.0919i 1.43234 0.826961i
\(534\) 0 0
\(535\) 6.92820i 0.299532i
\(536\) 31.1127i 1.34386i
\(537\) 0 0
\(538\) 21.0000 12.1244i 0.905374 0.522718i
\(539\) −6.12372 + 7.77817i −0.263767 + 0.335030i
\(540\) 0 0
\(541\) −8.50000 + 14.7224i −0.365444 + 0.632967i −0.988847 0.148933i \(-0.952416\pi\)
0.623404 + 0.781900i \(0.285749\pi\)
\(542\) 9.79796 16.9706i 0.420858 0.728948i
\(543\) 0 0
\(544\) 0 0
\(545\) −1.22474 + 2.12132i −0.0524623 + 0.0908674i
\(546\) 0 0
\(547\) 5.00000 + 8.66025i 0.213785 + 0.370286i 0.952896 0.303298i \(-0.0980876\pi\)
−0.739111 + 0.673583i \(0.764754\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 1.00000 + 1.73205i 0.0426401 + 0.0738549i
\(551\) −4.89898 −0.208704
\(552\) 0 0
\(553\) −10.0000 + 8.66025i −0.425243 + 0.368271i
\(554\) −28.1691 16.2635i −1.19679 0.690968i
\(555\) 0 0
\(556\) 0 0
\(557\) −13.4722 + 7.77817i −0.570835 + 0.329572i −0.757483 0.652855i \(-0.773571\pi\)
0.186648 + 0.982427i \(0.440238\pi\)
\(558\) 0 0
\(559\) 5.19615i 0.219774i
\(560\) 24.4949 + 8.48528i 1.03510 + 0.358569i
\(561\) 0 0
\(562\) 16.0000 + 27.7128i 0.674919 + 1.16899i
\(563\) −26.9444 −1.13557 −0.567785 0.823177i \(-0.692200\pi\)
−0.567785 + 0.823177i \(0.692200\pi\)
\(564\) 0 0
\(565\) 3.46410i 0.145736i
\(566\) −2.44949 −0.102960
\(567\) 0 0
\(568\) 20.0000 0.839181
\(569\) 1.41421i 0.0592869i 0.999561 + 0.0296435i \(0.00943719\pi\)
−0.999561 + 0.0296435i \(0.990563\pi\)
\(570\) 0 0
\(571\) 11.0000 0.460336 0.230168 0.973151i \(-0.426072\pi\)
0.230168 + 0.973151i \(0.426072\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 27.0000 5.19615i 1.12696 0.216883i
\(575\) 5.65685i 0.235907i
\(576\) 0 0
\(577\) 1.50000 0.866025i 0.0624458 0.0360531i −0.468452 0.883489i \(-0.655188\pi\)
0.530898 + 0.847436i \(0.321855\pi\)
\(578\) −8.57321 4.94975i −0.356599 0.205882i
\(579\) 0 0
\(580\) 0 0
\(581\) −18.3712 6.36396i −0.762165 0.264022i
\(582\) 0 0
\(583\) 4.00000 0.165663
\(584\) 2.44949 + 4.24264i 0.101361 + 0.175562i
\(585\) 0 0
\(586\) 18.0000 + 10.3923i 0.743573 + 0.429302i
\(587\) −7.34847 12.7279i −0.303304 0.525338i 0.673578 0.739116i \(-0.264756\pi\)
−0.976882 + 0.213778i \(0.931423\pi\)
\(588\) 0 0
\(589\) −1.50000 + 2.59808i −0.0618064 + 0.107052i
\(590\) 14.6969 8.48528i 0.605063 0.349334i
\(591\) 0 0
\(592\) −2.00000 + 3.46410i −0.0821995 + 0.142374i
\(593\) 8.57321 14.8492i 0.352060 0.609785i −0.634550 0.772881i \(-0.718815\pi\)
0.986610 + 0.163096i \(0.0521481\pi\)
\(594\) 0 0
\(595\) −6.00000 31.1769i −0.245976 1.27813i
\(596\) 0 0
\(597\) 0 0
\(598\) 41.5692i 1.69989i
\(599\) 5.65685i 0.231133i 0.993300 + 0.115566i \(0.0368683\pi\)
−0.993300 + 0.115566i \(0.963132\pi\)
\(600\) 0 0
\(601\) 22.5000 12.9904i 0.917794 0.529889i 0.0348635 0.999392i \(-0.488900\pi\)
0.882931 + 0.469503i \(0.155567\pi\)
\(602\) 1.22474 3.53553i 0.0499169 0.144098i
\(603\) 0 0
\(604\) 0 0
\(605\) 11.0227 19.0919i 0.448137 0.776195i
\(606\) 0 0
\(607\) 34.5000 19.9186i 1.40031 0.808470i 0.405887 0.913923i \(-0.366962\pi\)
0.994424 + 0.105453i \(0.0336291\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) −6.00000 10.3923i −0.242933 0.420772i
\(611\) −55.1135 31.8198i −2.22965 1.28729i
\(612\) 0 0
\(613\) −4.00000 6.92820i −0.161558 0.279827i 0.773869 0.633345i \(-0.218319\pi\)
−0.935428 + 0.353518i \(0.884985\pi\)
\(614\) −22.0454 −0.889680
\(615\) 0 0
\(616\) 2.00000 + 10.3923i 0.0805823 + 0.418718i
\(617\) 20.8207 + 12.0208i 0.838208 + 0.483940i 0.856655 0.515890i \(-0.172539\pi\)
−0.0184465 + 0.999830i \(0.505872\pi\)
\(618\) 0 0
\(619\) 25.5000 + 14.7224i 1.02493 + 0.591744i 0.915529 0.402253i \(-0.131773\pi\)
0.109403 + 0.993997i \(0.465106\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 24.2487i 0.972285i
\(623\) −2.44949 12.7279i −0.0981367 0.509933i
\(624\) 0 0
\(625\) 14.5000 + 25.1147i 0.580000 + 1.00459i
\(626\) 17.1464 0.685309
\(627\) 0 0
\(628\) 0 0
\(629\) 4.89898 0.195335
\(630\) 0 0
\(631\) 38.0000 1.51276 0.756378 0.654135i \(-0.226967\pi\)
0.756378 + 0.654135i \(0.226967\pi\)
\(632\) 14.1421i 0.562544i
\(633\) 0 0
\(634\) −20.0000 −0.794301
\(635\) 13.4722 + 23.3345i 0.534628 + 0.926002i
\(636\) 0 0
\(637\) −22.5000 + 28.5788i −0.891482 + 1.13233i
\(638\) 5.65685i 0.223957i
\(639\) 0 0
\(640\) 24.0000 13.8564i 0.948683 0.547723i
\(641\) −12.2474 7.07107i −0.483745 0.279290i 0.238231 0.971209i \(-0.423433\pi\)
−0.721976 + 0.691918i \(0.756766\pi\)
\(642\) 0 0
\(643\) 22.5000 + 12.9904i 0.887313 + 0.512291i 0.873063 0.487608i \(-0.162130\pi\)
0.0142506 + 0.999898i \(0.495464\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −12.0000 −0.472134
\(647\) −8.57321 14.8492i −0.337048 0.583784i 0.646828 0.762636i \(-0.276095\pi\)
−0.983876 + 0.178852i \(0.942762\pi\)
\(648\) 0 0
\(649\) 6.00000 + 3.46410i 0.235521 + 0.135978i
\(650\) 3.67423 + 6.36396i 0.144115 + 0.249615i
\(651\) 0 0
\(652\) 0 0
\(653\) −6.12372 + 3.53553i −0.239640 + 0.138356i −0.615011 0.788518i \(-0.710849\pi\)
0.375371 + 0.926875i \(0.377515\pi\)
\(654\) 0 0
\(655\) −3.00000 + 5.19615i −0.117220 + 0.203030i
\(656\) 14.6969 25.4558i 0.573819 0.993884i
\(657\) 0 0
\(658\) −30.0000 34.6410i −1.16952 1.35045i
\(659\) 19.5959 11.3137i 0.763349 0.440720i −0.0671481 0.997743i \(-0.521390\pi\)
0.830497 + 0.557024i \(0.188057\pi\)
\(660\) 0 0
\(661\) 29.4449i 1.14527i −0.819810 0.572636i \(-0.805921\pi\)
0.819810 0.572636i \(-0.194079\pi\)
\(662\) 43.8406i 1.70391i
\(663\) 0 0
\(664\) −18.0000 + 10.3923i −0.698535 + 0.403300i
\(665\) −7.34847 8.48528i −0.284961 0.329045i
\(666\) 0 0
\(667\) −8.00000 + 13.8564i −0.309761 + 0.536522i
\(668\) 0 0
\(669\) 0 0
\(670\) −33.0000 + 19.0526i −1.27490 + 0.736065i
\(671\) 2.44949 4.24264i 0.0945615 0.163785i
\(672\) 0 0
\(673\) −17.5000 30.3109i −0.674575 1.16840i −0.976593 0.215096i \(-0.930993\pi\)
0.302017 0.953302i \(-0.402340\pi\)
\(674\) −28.1691 16.2635i −1.08503 0.626445i
\(675\) 0 0
\(676\) 0 0
\(677\) −9.79796 −0.376566 −0.188283 0.982115i \(-0.560292\pi\)
−0.188283 + 0.982115i \(0.560292\pi\)
\(678\) 0 0
\(679\) −9.00000 + 25.9808i −0.345388 + 0.997050i
\(680\) −29.3939 16.9706i −1.12720 0.650791i
\(681\) 0 0
\(682\) 3.00000 + 1.73205i 0.114876 + 0.0663237i
\(683\) 41.6413 24.0416i 1.59336 0.919927i 0.600636 0.799522i \(-0.294914\pi\)
0.992725 0.120405i \(-0.0384193\pi\)
\(684\) 0 0
\(685\) 27.7128i 1.05885i
\(686\) −22.0454 + 14.1421i −0.841698 + 0.539949i
\(687\) 0 0
\(688\) −2.00000 3.46410i −0.0762493 0.132068i
\(689\) 14.6969 0.559909
\(690\) 0 0
\(691\) 43.3013i 1.64726i −0.567129 0.823629i \(-0.691946\pi\)
0.567129 0.823629i \(-0.308054\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) −44.0000 −1.67022
\(695\) 12.7279i 0.482798i
\(696\) 0 0
\(697\) −36.0000 −1.36360
\(698\) 7.34847 + 12.7279i 0.278144 + 0.481759i
\(699\) 0 0
\(700\) 0 0
\(701\) 5.65685i 0.213656i 0.994277 + 0.106828i \(0.0340695\pi\)
−0.994277 + 0.106828i \(0.965931\pi\)
\(702\) 0 0
\(703\) 1.50000 0.866025i 0.0565736 0.0326628i
\(704\) 9.79796 + 5.65685i 0.369274 + 0.213201i
\(705\) 0 0
\(706\) −21.0000 12.1244i −0.790345 0.456306i
\(707\) −8.57321 44.5477i −0.322429 1.67539i
\(708\) 0 0
\(709\) −40.0000 −1.50223 −0.751116 0.660171i \(-0.770484\pi\)
−0.751116 + 0.660171i \(0.770484\pi\)
\(710\) 12.2474 + 21.2132i 0.459639 + 0.796117i
\(711\) 0 0
\(712\) −12.0000 6.92820i −0.449719 0.259645i
\(713\) 4.89898 + 8.48528i 0.183468 + 0.317776i
\(714\) 0 0
\(715\) −9.00000 + 15.5885i −0.336581 + 0.582975i
\(716\) 0 0
\(717\) 0 0
\(718\) −20.0000 + 34.6410i −0.746393 + 1.29279i
\(719\) −13.4722 + 23.3345i −0.502428 + 0.870231i 0.497568 + 0.867425i \(0.334226\pi\)
−0.999996 + 0.00280593i \(0.999107\pi\)
\(720\) 0 0
\(721\) −7.50000 + 21.6506i −0.279315 + 0.806312i
\(722\) 19.5959 11.3137i 0.729285 0.421053i
\(723\) 0 0
\(724\) 0 0
\(725\) 2.82843i 0.105045i
\(726\) 0 0
\(727\) 22.5000 12.9904i 0.834479 0.481787i −0.0209049 0.999781i \(-0.506655\pi\)
0.855384 + 0.517995i \(0.173321\pi\)
\(728\) 7.34847 + 38.1838i 0.272352 + 1.41518i
\(729\) 0 0
\(730\) −3.00000 + 5.19615i −0.111035 + 0.192318i
\(731\) −2.44949 + 4.24264i −0.0905977 + 0.156920i
\(732\) 0 0
\(733\) 34.5000 19.9186i 1.27429 0.735710i 0.298495 0.954411i \(-0.403515\pi\)
0.975792 + 0.218702i \(0.0701821\pi\)
\(734\) 1.22474 2.12132i 0.0452062 0.0782994i
\(735\) 0 0
\(736\) 0 0
\(737\) −13.4722 7.77817i −0.496255 0.286513i
\(738\) 0 0
\(739\) 0.500000 + 0.866025i 0.0183928 + 0.0318573i 0.875075 0.483987i \(-0.160812\pi\)
−0.856683 + 0.515844i \(0.827478\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 10.0000 + 3.46410i 0.367112 + 0.127171i
\(743\) 20.8207 + 12.0208i 0.763836 + 0.441001i 0.830671 0.556763i \(-0.187957\pi\)
−0.0668353 + 0.997764i \(0.521290\pi\)
\(744\) 0 0
\(745\) 12.0000 + 6.92820i 0.439646 + 0.253830i
\(746\) 35.5176 20.5061i 1.30039 0.750782i
\(747\) 0 0
\(748\) 0 0
\(749\) −7.34847 + 1.41421i −0.268507 + 0.0516742i
\(750\) 0 0
\(751\) −14.5000 25.1147i −0.529113 0.916450i −0.999424 0.0339490i \(-0.989192\pi\)
0.470311 0.882501i \(-0.344142\pi\)
\(752\) −48.9898 −1.78647
\(753\) 0 0
\(754\) 20.7846i 0.756931i
\(755\) 53.8888 1.96121
\(756\) 0 0
\(757\) 2.00000 0.0726912 0.0363456 0.999339i \(-0.488428\pi\)
0.0363456 + 0.999339i \(0.488428\pi\)
\(758\) 9.89949i 0.359566i
\(759\) 0 0
\(760\) −12.0000 −0.435286
\(761\) 12.2474 + 21.2132i 0.443970 + 0.768978i 0.997980 0.0635319i \(-0.0202365\pi\)
−0.554010 + 0.832510i \(0.686903\pi\)
\(762\) 0 0
\(763\) −2.50000 0.866025i −0.0905061 0.0313522i
\(764\) 0 0
\(765\) 0 0
\(766\) 24.0000 13.8564i 0.867155 0.500652i
\(767\) 22.0454 + 12.7279i 0.796014 + 0.459579i
\(768\) 0 0
\(769\) 22.5000 + 12.9904i 0.811371 + 0.468445i 0.847432 0.530904i \(-0.178148\pi\)
−0.0360609 + 0.999350i \(0.511481\pi\)
\(770\) −9.79796 + 8.48528i −0.353094 + 0.305788i
\(771\) 0 0
\(772\) 0 0
\(773\) 13.4722 + 23.3345i 0.484561 + 0.839284i 0.999843 0.0177365i \(-0.00564599\pi\)
−0.515282 + 0.857021i \(0.672313\pi\)
\(774\) 0 0
\(775\) −1.50000 0.866025i −0.0538816 0.0311086i
\(776\) 14.6969 + 25.4558i 0.527589 + 0.913812i
\(777\) 0 0
\(778\) 19.0000 32.9090i 0.681183 1.17984i
\(779\) −11.0227 + 6.36396i −0.394929 + 0.228013i
\(780\) 0 0
\(781\) −5.00000 + 8.66025i −0.178914 + 0.309888i
\(782\) −19.5959 + 33.9411i −0.700749 + 1.21373i
\(783\) 0 0
\(784\) −4.00000 + 27.7128i −0.142857 + 0.989743i
\(785\) −36.7423 + 21.2132i −1.31139 + 0.757132i
\(786\) 0