Properties

Label 567.2.h.i.352.1
Level $567$
Weight $2$
Character 567.352
Analytic conductor $4.528$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [567,2,Mod(298,567)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(567, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("567.298");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 567 = 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 567.h (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.52751779461\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.309123.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 189)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 352.1
Root \(0.500000 + 2.05195i\) of defining polynomial
Character \(\chi\) \(=\) 567.352
Dual form 567.2.h.i.298.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.46050 q^{2} +0.133074 q^{4} +(0.296790 + 0.514055i) q^{5} +(-0.0665372 - 2.64491i) q^{7} +2.72665 q^{8} +(-0.433463 - 0.750780i) q^{10} +(-2.23025 + 3.86291i) q^{11} +(2.25729 - 3.90975i) q^{13} +(0.0971780 + 3.86291i) q^{14} -4.24844 q^{16} +(0.136673 + 0.236725i) q^{17} +(-1.43346 + 2.48283i) q^{19} +(0.0394951 + 0.0684076i) q^{20} +(3.25729 - 5.64180i) q^{22} +(-2.52704 - 4.37697i) q^{23} +(2.32383 - 4.02499i) q^{25} +(-3.29679 + 5.71021i) q^{26} +(-0.00885441 - 0.351971i) q^{28} +(-0.176168 - 0.305132i) q^{29} +2.51459 q^{31} +0.751560 q^{32} +(-0.199612 - 0.345738i) q^{34} +(1.33988 - 0.819187i) q^{35} +(3.32383 - 5.75705i) q^{37} +(2.09358 - 3.62619i) q^{38} +(0.809243 + 1.40165i) q^{40} +(5.44805 - 9.43630i) q^{41} +(-1.69076 - 2.92848i) q^{43} +(-0.296790 + 0.514055i) q^{44} +(3.69076 + 6.39258i) q^{46} +12.4356 q^{47} +(-6.99115 + 0.351971i) q^{49} +(-3.39397 + 5.87852i) q^{50} +(0.300388 - 0.520288i) q^{52} +(-5.66372 - 9.80984i) q^{53} -2.64766 q^{55} +(-0.181424 - 7.21177i) q^{56} +(0.257295 + 0.445647i) q^{58} -8.05408 q^{59} -2.73385 q^{61} -3.67257 q^{62} +7.39922 q^{64} +2.67977 q^{65} +5.86693 q^{67} +(0.0181877 + 0.0315020i) q^{68} +(-1.95691 + 1.19643i) q^{70} +2.60078 q^{71} +(-5.55768 - 9.62619i) q^{73} +(-4.85447 + 8.40819i) q^{74} +(-0.190757 + 0.330401i) q^{76} +(10.3655 + 5.64180i) q^{77} +11.1623 q^{79} +(-1.26089 - 2.18393i) q^{80} +(-7.95691 + 13.7818i) q^{82} +(-8.27188 - 14.3273i) q^{83} +(-0.0811263 + 0.140515i) q^{85} +(2.46936 + 4.27706i) q^{86} +(-6.08113 + 10.5328i) q^{88} +(2.68716 - 4.65430i) q^{89} +(-10.4911 - 5.71021i) q^{91} +(-0.336285 - 0.582462i) q^{92} -18.1623 q^{94} -1.70175 q^{95} +(1.13307 + 1.96254i) q^{97} +(10.2106 - 0.514055i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 4 q^{2} + 8 q^{4} - q^{5} - 4 q^{7} + 18 q^{8} + q^{10} - 7 q^{11} - 2 q^{13} - 13 q^{14} + 20 q^{16} - 5 q^{19} + 13 q^{20} + 4 q^{22} - 6 q^{23} + 2 q^{25} - 17 q^{26} - 30 q^{28} - 13 q^{29}+ \cdots + 49 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/567\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.46050 −1.03273 −0.516366 0.856368i \(-0.672716\pi\)
−0.516366 + 0.856368i \(0.672716\pi\)
\(3\) 0 0
\(4\) 0.133074 0.0665372
\(5\) 0.296790 + 0.514055i 0.132728 + 0.229892i 0.924727 0.380630i \(-0.124293\pi\)
−0.791999 + 0.610522i \(0.790960\pi\)
\(6\) 0 0
\(7\) −0.0665372 2.64491i −0.0251487 0.999684i
\(8\) 2.72665 0.964018
\(9\) 0 0
\(10\) −0.433463 0.750780i −0.137073 0.237417i
\(11\) −2.23025 + 3.86291i −0.672446 + 1.16471i 0.304762 + 0.952429i \(0.401423\pi\)
−0.977208 + 0.212283i \(0.931910\pi\)
\(12\) 0 0
\(13\) 2.25729 3.90975i 0.626061 1.08437i −0.362274 0.932072i \(-0.617999\pi\)
0.988335 0.152298i \(-0.0486672\pi\)
\(14\) 0.0971780 + 3.86291i 0.0259719 + 1.03241i
\(15\) 0 0
\(16\) −4.24844 −1.06211
\(17\) 0.136673 + 0.236725i 0.0331481 + 0.0574142i 0.882124 0.471018i \(-0.156113\pi\)
−0.848975 + 0.528432i \(0.822780\pi\)
\(18\) 0 0
\(19\) −1.43346 + 2.48283i −0.328859 + 0.569600i −0.982286 0.187389i \(-0.939997\pi\)
0.653427 + 0.756990i \(0.273331\pi\)
\(20\) 0.0394951 + 0.0684076i 0.00883138 + 0.0152964i
\(21\) 0 0
\(22\) 3.25729 5.64180i 0.694458 1.20284i
\(23\) −2.52704 4.37697i −0.526925 0.912660i −0.999508 0.0313742i \(-0.990012\pi\)
0.472583 0.881286i \(-0.343322\pi\)
\(24\) 0 0
\(25\) 2.32383 4.02499i 0.464766 0.804999i
\(26\) −3.29679 + 5.71021i −0.646554 + 1.11986i
\(27\) 0 0
\(28\) −0.00885441 0.351971i −0.00167333 0.0665162i
\(29\) −0.176168 0.305132i −0.0327136 0.0566616i 0.849205 0.528063i \(-0.177082\pi\)
−0.881919 + 0.471402i \(0.843748\pi\)
\(30\) 0 0
\(31\) 2.51459 0.451634 0.225817 0.974170i \(-0.427495\pi\)
0.225817 + 0.974170i \(0.427495\pi\)
\(32\) 0.751560 0.132858
\(33\) 0 0
\(34\) −0.199612 0.345738i −0.0342331 0.0592935i
\(35\) 1.33988 0.819187i 0.226482 0.138468i
\(36\) 0 0
\(37\) 3.32383 5.75705i 0.546435 0.946452i −0.452081 0.891977i \(-0.649318\pi\)
0.998515 0.0544753i \(-0.0173486\pi\)
\(38\) 2.09358 3.62619i 0.339623 0.588245i
\(39\) 0 0
\(40\) 0.809243 + 1.40165i 0.127953 + 0.221620i
\(41\) 5.44805 9.43630i 0.850843 1.47370i −0.0296061 0.999562i \(-0.509425\pi\)
0.880449 0.474141i \(-0.157241\pi\)
\(42\) 0 0
\(43\) −1.69076 2.92848i −0.257838 0.446589i 0.707824 0.706388i \(-0.249677\pi\)
−0.965663 + 0.259800i \(0.916343\pi\)
\(44\) −0.296790 + 0.514055i −0.0447427 + 0.0774967i
\(45\) 0 0
\(46\) 3.69076 + 6.39258i 0.544172 + 0.942534i
\(47\) 12.4356 1.81392 0.906959 0.421218i \(-0.138397\pi\)
0.906959 + 0.421218i \(0.138397\pi\)
\(48\) 0 0
\(49\) −6.99115 + 0.351971i −0.998735 + 0.0502815i
\(50\) −3.39397 + 5.87852i −0.479980 + 0.831349i
\(51\) 0 0
\(52\) 0.300388 0.520288i 0.0416564 0.0721509i
\(53\) −5.66372 9.80984i −0.777971 1.34749i −0.933109 0.359593i \(-0.882916\pi\)
0.155138 0.987893i \(-0.450418\pi\)
\(54\) 0 0
\(55\) −2.64766 −0.357011
\(56\) −0.181424 7.21177i −0.0242438 0.963713i
\(57\) 0 0
\(58\) 0.257295 + 0.445647i 0.0337844 + 0.0585163i
\(59\) −8.05408 −1.04855 −0.524276 0.851548i \(-0.675664\pi\)
−0.524276 + 0.851548i \(0.675664\pi\)
\(60\) 0 0
\(61\) −2.73385 −0.350034 −0.175017 0.984565i \(-0.555998\pi\)
−0.175017 + 0.984565i \(0.555998\pi\)
\(62\) −3.67257 −0.466417
\(63\) 0 0
\(64\) 7.39922 0.924903
\(65\) 2.67977 0.332384
\(66\) 0 0
\(67\) 5.86693 0.716759 0.358380 0.933576i \(-0.383329\pi\)
0.358380 + 0.933576i \(0.383329\pi\)
\(68\) 0.0181877 + 0.0315020i 0.00220558 + 0.00382018i
\(69\) 0 0
\(70\) −1.95691 + 1.19643i −0.233895 + 0.143000i
\(71\) 2.60078 0.308655 0.154328 0.988020i \(-0.450679\pi\)
0.154328 + 0.988020i \(0.450679\pi\)
\(72\) 0 0
\(73\) −5.55768 9.62619i −0.650478 1.12666i −0.983007 0.183567i \(-0.941235\pi\)
0.332530 0.943093i \(-0.392098\pi\)
\(74\) −4.85447 + 8.40819i −0.564321 + 0.977433i
\(75\) 0 0
\(76\) −0.190757 + 0.330401i −0.0218814 + 0.0378996i
\(77\) 10.3655 + 5.64180i 1.18125 + 0.642943i
\(78\) 0 0
\(79\) 11.1623 1.25585 0.627926 0.778273i \(-0.283904\pi\)
0.627926 + 0.778273i \(0.283904\pi\)
\(80\) −1.26089 2.18393i −0.140972 0.244171i
\(81\) 0 0
\(82\) −7.95691 + 13.7818i −0.878693 + 1.52194i
\(83\) −8.27188 14.3273i −0.907957 1.57263i −0.816898 0.576783i \(-0.804308\pi\)
−0.0910594 0.995845i \(-0.529025\pi\)
\(84\) 0 0
\(85\) −0.0811263 + 0.140515i −0.00879939 + 0.0152410i
\(86\) 2.46936 + 4.27706i 0.266278 + 0.461207i
\(87\) 0 0
\(88\) −6.08113 + 10.5328i −0.648250 + 1.12280i
\(89\) 2.68716 4.65430i 0.284838 0.493354i −0.687732 0.725965i \(-0.741393\pi\)
0.972570 + 0.232611i \(0.0747268\pi\)
\(90\) 0 0
\(91\) −10.4911 5.71021i −1.09977 0.598592i
\(92\) −0.336285 0.582462i −0.0350601 0.0607259i
\(93\) 0 0
\(94\) −18.1623 −1.87329
\(95\) −1.70175 −0.174596
\(96\) 0 0
\(97\) 1.13307 + 1.96254i 0.115046 + 0.199266i 0.917798 0.397047i \(-0.129965\pi\)
−0.802752 + 0.596313i \(0.796632\pi\)
\(98\) 10.2106 0.514055i 1.03143 0.0519274i
\(99\) 0 0
\(100\) 0.309243 0.535624i 0.0309243 0.0535624i
\(101\) −4.67830 + 8.10306i −0.465509 + 0.806285i −0.999224 0.0393793i \(-0.987462\pi\)
0.533716 + 0.845664i \(0.320795\pi\)
\(102\) 0 0
\(103\) 7.88151 + 13.6512i 0.776589 + 1.34509i 0.933897 + 0.357542i \(0.116385\pi\)
−0.157309 + 0.987550i \(0.550282\pi\)
\(104\) 6.15486 10.6605i 0.603534 1.04535i
\(105\) 0 0
\(106\) 8.27188 + 14.3273i 0.803436 + 1.39159i
\(107\) −0.512453 + 0.887595i −0.0495407 + 0.0858070i −0.889732 0.456483i \(-0.849109\pi\)
0.840192 + 0.542290i \(0.182442\pi\)
\(108\) 0 0
\(109\) −0.647664 1.12179i −0.0620349 0.107448i 0.833340 0.552761i \(-0.186426\pi\)
−0.895375 + 0.445313i \(0.853092\pi\)
\(110\) 3.86693 0.368697
\(111\) 0 0
\(112\) 0.282679 + 11.2368i 0.0267107 + 1.06177i
\(113\) −7.14766 + 12.3801i −0.672396 + 1.16462i 0.304827 + 0.952408i \(0.401401\pi\)
−0.977223 + 0.212216i \(0.931932\pi\)
\(114\) 0 0
\(115\) 1.50000 2.59808i 0.139876 0.242272i
\(116\) −0.0234435 0.0406053i −0.00217667 0.00377011i
\(117\) 0 0
\(118\) 11.7630 1.08287
\(119\) 0.617023 0.377240i 0.0565624 0.0345815i
\(120\) 0 0
\(121\) −4.44805 7.70425i −0.404368 0.700387i
\(122\) 3.99280 0.361491
\(123\) 0 0
\(124\) 0.334628 0.0300504
\(125\) 5.72665 0.512207
\(126\) 0 0
\(127\) 12.3346 1.09452 0.547261 0.836962i \(-0.315671\pi\)
0.547261 + 0.836962i \(0.315671\pi\)
\(128\) −12.3097 −1.08804
\(129\) 0 0
\(130\) −3.91381 −0.343264
\(131\) 1.59718 + 2.76639i 0.139546 + 0.241701i 0.927325 0.374257i \(-0.122102\pi\)
−0.787779 + 0.615958i \(0.788769\pi\)
\(132\) 0 0
\(133\) 6.66225 + 3.62619i 0.577691 + 0.314430i
\(134\) −8.56867 −0.740221
\(135\) 0 0
\(136\) 0.372660 + 0.645466i 0.0319553 + 0.0553483i
\(137\) −5.05408 + 8.75393i −0.431800 + 0.747899i −0.997028 0.0770354i \(-0.975455\pi\)
0.565229 + 0.824934i \(0.308788\pi\)
\(138\) 0 0
\(139\) −9.03803 + 15.6543i −0.766596 + 1.32778i 0.172803 + 0.984956i \(0.444718\pi\)
−0.939399 + 0.342827i \(0.888616\pi\)
\(140\) 0.178304 0.109013i 0.0150695 0.00921327i
\(141\) 0 0
\(142\) −3.79845 −0.318759
\(143\) 10.0687 + 17.4395i 0.841985 + 1.45836i
\(144\) 0 0
\(145\) 0.104570 0.181120i 0.00868405 0.0150412i
\(146\) 8.11702 + 14.0591i 0.671770 + 1.16354i
\(147\) 0 0
\(148\) 0.442317 0.766116i 0.0363582 0.0629743i
\(149\) −7.02704 12.1712i −0.575678 0.997103i −0.995968 0.0897132i \(-0.971405\pi\)
0.420290 0.907390i \(-0.361928\pi\)
\(150\) 0 0
\(151\) −0.190757 + 0.330401i −0.0155236 + 0.0268877i −0.873683 0.486496i \(-0.838275\pi\)
0.858159 + 0.513384i \(0.171608\pi\)
\(152\) −3.90856 + 6.76982i −0.317026 + 0.549105i
\(153\) 0 0
\(154\) −15.1388 8.23988i −1.21992 0.663988i
\(155\) 0.746304 + 1.29264i 0.0599446 + 0.103827i
\(156\) 0 0
\(157\) −7.51459 −0.599729 −0.299865 0.953982i \(-0.596942\pi\)
−0.299865 + 0.953982i \(0.596942\pi\)
\(158\) −16.3025 −1.29696
\(159\) 0 0
\(160\) 0.223055 + 0.386343i 0.0176341 + 0.0305431i
\(161\) −11.4086 + 6.97504i −0.899120 + 0.549710i
\(162\) 0 0
\(163\) −7.59572 + 13.1562i −0.594942 + 1.03047i 0.398613 + 0.917119i \(0.369492\pi\)
−0.993555 + 0.113351i \(0.963842\pi\)
\(164\) 0.724997 1.25573i 0.0566127 0.0980561i
\(165\) 0 0
\(166\) 12.0811 + 20.9251i 0.937677 + 1.62410i
\(167\) −4.47656 + 7.75362i −0.346406 + 0.599993i −0.985608 0.169046i \(-0.945931\pi\)
0.639202 + 0.769039i \(0.279265\pi\)
\(168\) 0 0
\(169\) −3.69076 6.39258i −0.283904 0.491737i
\(170\) 0.118485 0.205223i 0.00908741 0.0157399i
\(171\) 0 0
\(172\) −0.224997 0.389706i −0.0171558 0.0297148i
\(173\) −10.4605 −0.795297 −0.397649 0.917538i \(-0.630174\pi\)
−0.397649 + 0.917538i \(0.630174\pi\)
\(174\) 0 0
\(175\) −10.8004 5.87852i −0.816433 0.444375i
\(176\) 9.47509 16.4113i 0.714212 1.23705i
\(177\) 0 0
\(178\) −3.92461 + 6.79762i −0.294162 + 0.509503i
\(179\) 4.48395 + 7.76643i 0.335146 + 0.580490i 0.983513 0.180838i \(-0.0578810\pi\)
−0.648367 + 0.761328i \(0.724548\pi\)
\(180\) 0 0
\(181\) 5.04689 0.375132 0.187566 0.982252i \(-0.439940\pi\)
0.187566 + 0.982252i \(0.439940\pi\)
\(182\) 15.3224 + 8.33979i 1.13577 + 0.618186i
\(183\) 0 0
\(184\) −6.89037 11.9345i −0.507965 0.879821i
\(185\) 3.94592 0.290109
\(186\) 0 0
\(187\) −1.21926 −0.0891613
\(188\) 1.65486 0.120693
\(189\) 0 0
\(190\) 2.48541 0.180311
\(191\) 12.1301 0.877707 0.438853 0.898559i \(-0.355385\pi\)
0.438853 + 0.898559i \(0.355385\pi\)
\(192\) 0 0
\(193\) 17.1623 1.23537 0.617683 0.786427i \(-0.288071\pi\)
0.617683 + 0.786427i \(0.288071\pi\)
\(194\) −1.65486 2.86630i −0.118812 0.205789i
\(195\) 0 0
\(196\) −0.930343 + 0.0468383i −0.0664531 + 0.00334559i
\(197\) 0.751560 0.0535464 0.0267732 0.999642i \(-0.491477\pi\)
0.0267732 + 0.999642i \(0.491477\pi\)
\(198\) 0 0
\(199\) −5.14766 8.91601i −0.364908 0.632040i 0.623853 0.781542i \(-0.285566\pi\)
−0.988761 + 0.149502i \(0.952233\pi\)
\(200\) 6.33628 10.9748i 0.448043 0.776033i
\(201\) 0 0
\(202\) 6.83269 11.8346i 0.480746 0.832677i
\(203\) −0.795327 + 0.486253i −0.0558210 + 0.0341282i
\(204\) 0 0
\(205\) 6.46770 0.451724
\(206\) −11.5110 19.9376i −0.802009 1.38912i
\(207\) 0 0
\(208\) −9.58998 + 16.6103i −0.664946 + 1.15172i
\(209\) −6.39397 11.0747i −0.442280 0.766051i
\(210\) 0 0
\(211\) 8.05768 13.9563i 0.554714 0.960792i −0.443212 0.896417i \(-0.646161\pi\)
0.997926 0.0643756i \(-0.0205056\pi\)
\(212\) −0.753696 1.30544i −0.0517640 0.0896580i
\(213\) 0 0
\(214\) 0.748440 1.29634i 0.0511623 0.0886157i
\(215\) 1.00360 1.73828i 0.0684449 0.118550i
\(216\) 0 0
\(217\) −0.167314 6.65087i −0.0113580 0.451491i
\(218\) 0.945916 + 1.63837i 0.0640655 + 0.110965i
\(219\) 0 0
\(220\) −0.352336 −0.0237545
\(221\) 1.23405 0.0830109
\(222\) 0 0
\(223\) 3.47656 + 6.02157i 0.232807 + 0.403234i 0.958633 0.284644i \(-0.0918755\pi\)
−0.725826 + 0.687879i \(0.758542\pi\)
\(224\) −0.0500067 1.98781i −0.00334121 0.132816i
\(225\) 0 0
\(226\) 10.4392 18.0812i 0.694405 1.20274i
\(227\) 2.64553 4.58219i 0.175590 0.304131i −0.764775 0.644297i \(-0.777150\pi\)
0.940365 + 0.340166i \(0.110483\pi\)
\(228\) 0 0
\(229\) −5.86186 10.1530i −0.387363 0.670932i 0.604731 0.796430i \(-0.293281\pi\)
−0.992094 + 0.125498i \(0.959947\pi\)
\(230\) −2.19076 + 3.79450i −0.144454 + 0.250202i
\(231\) 0 0
\(232\) −0.480350 0.831990i −0.0315365 0.0546228i
\(233\) 1.93560 3.35256i 0.126805 0.219633i −0.795632 0.605780i \(-0.792861\pi\)
0.922437 + 0.386147i \(0.126194\pi\)
\(234\) 0 0
\(235\) 3.69076 + 6.39258i 0.240758 + 0.417006i
\(236\) −1.07179 −0.0697678
\(237\) 0 0
\(238\) −0.901165 + 0.550960i −0.0584138 + 0.0357135i
\(239\) 6.19961 10.7380i 0.401020 0.694586i −0.592830 0.805328i \(-0.701989\pi\)
0.993849 + 0.110742i \(0.0353226\pi\)
\(240\) 0 0
\(241\) 8.28074 14.3427i 0.533409 0.923892i −0.465829 0.884875i \(-0.654244\pi\)
0.999239 0.0390173i \(-0.0124227\pi\)
\(242\) 6.49640 + 11.2521i 0.417604 + 0.723312i
\(243\) 0 0
\(244\) −0.363806 −0.0232903
\(245\) −2.25583 3.48937i −0.144120 0.222928i
\(246\) 0 0
\(247\) 6.47150 + 11.2090i 0.411771 + 0.713209i
\(248\) 6.85641 0.435383
\(249\) 0 0
\(250\) −8.36381 −0.528974
\(251\) −1.84922 −0.116722 −0.0583608 0.998296i \(-0.518587\pi\)
−0.0583608 + 0.998296i \(0.518587\pi\)
\(252\) 0 0
\(253\) 22.5438 1.41731
\(254\) −18.0148 −1.13035
\(255\) 0 0
\(256\) 3.17996 0.198748
\(257\) 13.4210 + 23.2459i 0.837180 + 1.45004i 0.892243 + 0.451555i \(0.149130\pi\)
−0.0550638 + 0.998483i \(0.517536\pi\)
\(258\) 0 0
\(259\) −15.4481 8.40819i −0.959895 0.522460i
\(260\) 0.356609 0.0221159
\(261\) 0 0
\(262\) −2.33269 4.04033i −0.144114 0.249612i
\(263\) 10.1424 17.5672i 0.625408 1.08324i −0.363054 0.931768i \(-0.618266\pi\)
0.988462 0.151470i \(-0.0484006\pi\)
\(264\) 0 0
\(265\) 3.36186 5.82292i 0.206518 0.357699i
\(266\) −9.73025 5.29606i −0.596600 0.324722i
\(267\) 0 0
\(268\) 0.780738 0.0476912
\(269\) −4.36333 7.55750i −0.266037 0.460789i 0.701798 0.712376i \(-0.252381\pi\)
−0.967835 + 0.251587i \(0.919048\pi\)
\(270\) 0 0
\(271\) −12.0957 + 20.9504i −0.734762 + 1.27265i 0.220065 + 0.975485i \(0.429373\pi\)
−0.954828 + 0.297161i \(0.903960\pi\)
\(272\) −0.580647 1.00571i −0.0352069 0.0609802i
\(273\) 0 0
\(274\) 7.38151 12.7852i 0.445934 0.772380i
\(275\) 10.3655 + 17.9535i 0.625061 + 1.08264i
\(276\) 0 0
\(277\) 3.55768 6.16209i 0.213760 0.370244i −0.739128 0.673565i \(-0.764762\pi\)
0.952888 + 0.303321i \(0.0980955\pi\)
\(278\) 13.2001 22.8632i 0.791689 1.37125i
\(279\) 0 0
\(280\) 3.65340 2.23364i 0.218332 0.133485i
\(281\) 3.94805 + 6.83823i 0.235521 + 0.407934i 0.959424 0.281967i \(-0.0909870\pi\)
−0.723903 + 0.689902i \(0.757654\pi\)
\(282\) 0 0
\(283\) 2.20914 0.131320 0.0656599 0.997842i \(-0.479085\pi\)
0.0656599 + 0.997842i \(0.479085\pi\)
\(284\) 0.346097 0.0205371
\(285\) 0 0
\(286\) −14.7053 25.4704i −0.869545 1.50610i
\(287\) −25.3207 13.7818i −1.49463 0.813512i
\(288\) 0 0
\(289\) 8.46264 14.6577i 0.497802 0.862219i
\(290\) −0.152725 + 0.264527i −0.00896830 + 0.0155336i
\(291\) 0 0
\(292\) −0.739586 1.28100i −0.0432810 0.0749649i
\(293\) −9.59572 + 16.6203i −0.560588 + 0.970966i 0.436858 + 0.899531i \(0.356091\pi\)
−0.997445 + 0.0714356i \(0.977242\pi\)
\(294\) 0 0
\(295\) −2.39037 4.14024i −0.139173 0.241054i
\(296\) 9.06294 15.6975i 0.526773 0.912397i
\(297\) 0 0
\(298\) 10.2630 + 17.7761i 0.594521 + 1.02974i
\(299\) −22.8171 −1.31955
\(300\) 0 0
\(301\) −7.63307 + 4.66676i −0.439963 + 0.268988i
\(302\) 0.278602 0.482553i 0.0160317 0.0277678i
\(303\) 0 0
\(304\) 6.08998 10.5482i 0.349284 0.604978i
\(305\) −0.811379 1.40535i −0.0464594 0.0804701i
\(306\) 0 0
\(307\) −13.9138 −0.794103 −0.397052 0.917796i \(-0.629967\pi\)
−0.397052 + 0.917796i \(0.629967\pi\)
\(308\) 1.37938 + 0.750780i 0.0785974 + 0.0427796i
\(309\) 0 0
\(310\) −1.08998 1.88790i −0.0619067 0.107226i
\(311\) −10.6549 −0.604182 −0.302091 0.953279i \(-0.597685\pi\)
−0.302091 + 0.953279i \(0.597685\pi\)
\(312\) 0 0
\(313\) −16.5615 −0.936110 −0.468055 0.883699i \(-0.655045\pi\)
−0.468055 + 0.883699i \(0.655045\pi\)
\(314\) 10.9751 0.619360
\(315\) 0 0
\(316\) 1.48541 0.0835609
\(317\) 26.6372 1.49609 0.748046 0.663647i \(-0.230992\pi\)
0.748046 + 0.663647i \(0.230992\pi\)
\(318\) 0 0
\(319\) 1.57160 0.0879926
\(320\) 2.19601 + 3.80361i 0.122761 + 0.212628i
\(321\) 0 0
\(322\) 16.6623 10.1871i 0.928551 0.567704i
\(323\) −0.783663 −0.0436042
\(324\) 0 0
\(325\) −10.4911 18.1712i −0.581944 1.00796i
\(326\) 11.0936 19.2146i 0.614417 1.06420i
\(327\) 0 0
\(328\) 14.8550 25.7295i 0.820227 1.42068i
\(329\) −0.827430 32.8911i −0.0456177 1.81334i
\(330\) 0 0
\(331\) −23.3068 −1.28106 −0.640529 0.767934i \(-0.721285\pi\)
−0.640529 + 0.767934i \(0.721285\pi\)
\(332\) −1.10078 1.90660i −0.0604130 0.104638i
\(333\) 0 0
\(334\) 6.53803 11.3242i 0.357745 0.619633i
\(335\) 1.74124 + 3.01592i 0.0951343 + 0.164777i
\(336\) 0 0
\(337\) 11.6192 20.1250i 0.632936 1.09628i −0.354013 0.935241i \(-0.615183\pi\)
0.986948 0.161036i \(-0.0514837\pi\)
\(338\) 5.39037 + 9.33639i 0.293197 + 0.507833i
\(339\) 0 0
\(340\) −0.0107958 + 0.0186989i −0.000585487 + 0.00101409i
\(341\) −5.60817 + 9.71363i −0.303699 + 0.526023i
\(342\) 0 0
\(343\) 1.39610 + 18.4676i 0.0753825 + 0.997155i
\(344\) −4.61011 7.98494i −0.248560 0.430519i
\(345\) 0 0
\(346\) 15.2776 0.821330
\(347\) 17.1373 0.919981 0.459990 0.887924i \(-0.347853\pi\)
0.459990 + 0.887924i \(0.347853\pi\)
\(348\) 0 0
\(349\) 9.75729 + 16.9001i 0.522296 + 0.904643i 0.999664 + 0.0259395i \(0.00825772\pi\)
−0.477368 + 0.878704i \(0.658409\pi\)
\(350\) 15.7740 + 8.58561i 0.843157 + 0.458920i
\(351\) 0 0
\(352\) −1.67617 + 2.90321i −0.0893401 + 0.154742i
\(353\) −8.03064 + 13.9095i −0.427428 + 0.740327i −0.996644 0.0818613i \(-0.973914\pi\)
0.569216 + 0.822188i \(0.307247\pi\)
\(354\) 0 0
\(355\) 0.771884 + 1.33694i 0.0409673 + 0.0709575i
\(356\) 0.357592 0.619368i 0.0189524 0.0328264i
\(357\) 0 0
\(358\) −6.54883 11.3429i −0.346116 0.599491i
\(359\) −6.93200 + 12.0066i −0.365857 + 0.633683i −0.988913 0.148494i \(-0.952557\pi\)
0.623056 + 0.782177i \(0.285891\pi\)
\(360\) 0 0
\(361\) 5.39037 + 9.33639i 0.283704 + 0.491389i
\(362\) −7.37100 −0.387411
\(363\) 0 0
\(364\) −1.39610 0.759883i −0.0731757 0.0398287i
\(365\) 3.29893 5.71391i 0.172674 0.299080i
\(366\) 0 0
\(367\) −12.6477 + 21.9064i −0.660203 + 1.14350i 0.320360 + 0.947296i \(0.396196\pi\)
−0.980562 + 0.196209i \(0.937137\pi\)
\(368\) 10.7360 + 18.5953i 0.559652 + 0.969346i
\(369\) 0 0
\(370\) −5.76303 −0.299606
\(371\) −25.5693 + 15.6328i −1.32749 + 0.811613i
\(372\) 0 0
\(373\) −1.00000 1.73205i −0.0517780 0.0896822i 0.838975 0.544170i \(-0.183156\pi\)
−0.890753 + 0.454488i \(0.849822\pi\)
\(374\) 1.78074 0.0920798
\(375\) 0 0
\(376\) 33.9076 1.74865
\(377\) −1.59065 −0.0819229
\(378\) 0 0
\(379\) −18.8099 −0.966200 −0.483100 0.875565i \(-0.660489\pi\)
−0.483100 + 0.875565i \(0.660489\pi\)
\(380\) −0.226459 −0.0116171
\(381\) 0 0
\(382\) −17.7161 −0.906437
\(383\) −17.5708 30.4335i −0.897826 1.55508i −0.830267 0.557366i \(-0.811812\pi\)
−0.0675593 0.997715i \(-0.521521\pi\)
\(384\) 0 0
\(385\) 0.176168 + 7.00284i 0.00897836 + 0.356898i
\(386\) −25.0656 −1.27580
\(387\) 0 0
\(388\) 0.150783 + 0.261164i 0.00765486 + 0.0132586i
\(389\) 4.18929 7.25607i 0.212406 0.367897i −0.740061 0.672539i \(-0.765204\pi\)
0.952467 + 0.304642i \(0.0985368\pi\)
\(390\) 0 0
\(391\) 0.690757 1.19643i 0.0349331 0.0605059i
\(392\) −19.0624 + 0.959702i −0.962798 + 0.0484723i
\(393\) 0 0
\(394\) −1.09766 −0.0552992
\(395\) 3.31284 + 5.73801i 0.166687 + 0.288711i
\(396\) 0 0
\(397\) 4.62422 8.00938i 0.232083 0.401979i −0.726338 0.687338i \(-0.758779\pi\)
0.958421 + 0.285358i \(0.0921126\pi\)
\(398\) 7.51819 + 13.0219i 0.376853 + 0.652728i
\(399\) 0 0
\(400\) −9.87266 + 17.0999i −0.493633 + 0.854997i
\(401\) 0.0737345 + 0.127712i 0.00368212 + 0.00637763i 0.867861 0.496808i \(-0.165495\pi\)
−0.864178 + 0.503185i \(0.832161\pi\)
\(402\) 0 0
\(403\) 5.67617 9.83141i 0.282750 0.489738i
\(404\) −0.622563 + 1.07831i −0.0309737 + 0.0536480i
\(405\) 0 0
\(406\) 1.16158 0.710174i 0.0576482 0.0352454i
\(407\) 14.8260 + 25.6793i 0.734896 + 1.27288i
\(408\) 0 0
\(409\) −3.92528 −0.194093 −0.0970463 0.995280i \(-0.530940\pi\)
−0.0970463 + 0.995280i \(0.530940\pi\)
\(410\) −9.44611 −0.466510
\(411\) 0 0
\(412\) 1.04883 + 1.81662i 0.0516721 + 0.0894986i
\(413\) 0.535897 + 21.3024i 0.0263697 + 1.04822i
\(414\) 0 0
\(415\) 4.91002 8.50440i 0.241023 0.417465i
\(416\) 1.69649 2.93841i 0.0831774 0.144067i
\(417\) 0 0
\(418\) 9.33842 + 16.1746i 0.456757 + 0.791126i
\(419\) −10.5000 + 18.1865i −0.512959 + 0.888470i 0.486928 + 0.873442i \(0.338117\pi\)
−0.999887 + 0.0150285i \(0.995216\pi\)
\(420\) 0 0
\(421\) 12.3442 + 21.3807i 0.601617 + 1.04203i 0.992576 + 0.121624i \(0.0388101\pi\)
−0.390959 + 0.920408i \(0.627857\pi\)
\(422\) −11.7683 + 20.3833i −0.572871 + 0.992242i
\(423\) 0 0
\(424\) −15.4430 26.7480i −0.749978 1.29900i
\(425\) 1.27042 0.0616245
\(426\) 0 0
\(427\) 0.181903 + 7.23080i 0.00880290 + 0.349923i
\(428\) −0.0681944 + 0.118116i −0.00329630 + 0.00570936i
\(429\) 0 0
\(430\) −1.46576 + 2.53877i −0.0706853 + 0.122430i
\(431\) 2.73745 + 4.74140i 0.131858 + 0.228385i 0.924393 0.381442i \(-0.124572\pi\)
−0.792535 + 0.609827i \(0.791239\pi\)
\(432\) 0 0
\(433\) 23.6300 1.13558 0.567792 0.823172i \(-0.307798\pi\)
0.567792 + 0.823172i \(0.307798\pi\)
\(434\) 0.244363 + 9.71363i 0.0117298 + 0.466269i
\(435\) 0 0
\(436\) −0.0861875 0.149281i −0.00412763 0.00714927i
\(437\) 14.4897 0.693136
\(438\) 0 0
\(439\) −5.26615 −0.251340 −0.125670 0.992072i \(-0.540108\pi\)
−0.125670 + 0.992072i \(0.540108\pi\)
\(440\) −7.21926 −0.344165
\(441\) 0 0
\(442\) −1.80233 −0.0857281
\(443\) 6.03638 0.286797 0.143398 0.989665i \(-0.454197\pi\)
0.143398 + 0.989665i \(0.454197\pi\)
\(444\) 0 0
\(445\) 3.19008 0.151224
\(446\) −5.07753 8.79454i −0.240428 0.416433i
\(447\) 0 0
\(448\) −0.492324 19.5703i −0.0232601 0.924610i
\(449\) 22.1445 1.04507 0.522533 0.852619i \(-0.324987\pi\)
0.522533 + 0.852619i \(0.324987\pi\)
\(450\) 0 0
\(451\) 24.3011 + 42.0907i 1.14429 + 1.98197i
\(452\) −0.951172 + 1.64748i −0.0447393 + 0.0774908i
\(453\) 0 0
\(454\) −3.86381 + 6.69231i −0.181337 + 0.314086i
\(455\) −0.178304 7.08775i −0.00835903 0.332279i
\(456\) 0 0
\(457\) −5.33463 −0.249543 −0.124772 0.992185i \(-0.539820\pi\)
−0.124772 + 0.992185i \(0.539820\pi\)
\(458\) 8.56128 + 14.8286i 0.400042 + 0.692894i
\(459\) 0 0
\(460\) 0.199612 0.345738i 0.00930694 0.0161201i
\(461\) 14.8473 + 25.7162i 0.691507 + 1.19772i 0.971344 + 0.237677i \(0.0763860\pi\)
−0.279838 + 0.960047i \(0.590281\pi\)
\(462\) 0 0
\(463\) −9.29533 + 16.1000i −0.431990 + 0.748229i −0.997045 0.0768243i \(-0.975522\pi\)
0.565054 + 0.825054i \(0.308855\pi\)
\(464\) 0.748440 + 1.29634i 0.0347455 + 0.0601809i
\(465\) 0 0
\(466\) −2.82695 + 4.89642i −0.130956 + 0.226822i
\(467\) 12.3063 21.3152i 0.569468 0.986348i −0.427150 0.904181i \(-0.640482\pi\)
0.996619 0.0821676i \(-0.0261843\pi\)
\(468\) 0 0
\(469\) −0.390369 15.5175i −0.0180256 0.716532i
\(470\) −5.39037 9.33639i −0.248639 0.430656i
\(471\) 0 0
\(472\) −21.9607 −1.01082
\(473\) 15.0833 0.693529
\(474\) 0 0
\(475\) 6.66225 + 11.5394i 0.305685 + 0.529462i
\(476\) 0.0821100 0.0502010i 0.00376351 0.00230096i
\(477\) 0 0
\(478\) −9.05456 + 15.6830i −0.414146 + 0.717322i
\(479\) −0.178304 + 0.308832i −0.00814693 + 0.0141109i −0.870070 0.492928i \(-0.835927\pi\)
0.861923 + 0.507039i \(0.169260\pi\)
\(480\) 0 0
\(481\) −15.0057 25.9907i −0.684203 1.18507i
\(482\) −12.0941 + 20.9475i −0.550869 + 0.954134i
\(483\) 0 0
\(484\) −0.591922 1.02524i −0.0269056 0.0466018i
\(485\) −0.672570 + 1.16492i −0.0305398 + 0.0528965i
\(486\) 0 0
\(487\) 6.43920 + 11.1530i 0.291788 + 0.505391i 0.974233 0.225546i \(-0.0724165\pi\)
−0.682445 + 0.730937i \(0.739083\pi\)
\(488\) −7.45427 −0.337439
\(489\) 0 0
\(490\) 3.29465 + 5.09624i 0.148837 + 0.230225i
\(491\) 2.77694 4.80981i 0.125322 0.217064i −0.796537 0.604590i \(-0.793337\pi\)
0.921859 + 0.387526i \(0.126670\pi\)
\(492\) 0 0
\(493\) 0.0481549 0.0834068i 0.00216879 0.00375645i
\(494\) −9.45165 16.3707i −0.425250 0.736554i
\(495\) 0 0
\(496\) −10.6831 −0.479685
\(497\) −0.173048 6.87883i −0.00776229 0.308558i
\(498\) 0 0
\(499\) 14.0577 + 24.3486i 0.629308 + 1.08999i 0.987691 + 0.156419i \(0.0499951\pi\)
−0.358382 + 0.933575i \(0.616672\pi\)
\(500\) 0.762071 0.0340809
\(501\) 0 0
\(502\) 2.70079 0.120542
\(503\) −16.9430 −0.755451 −0.377725 0.925918i \(-0.623294\pi\)
−0.377725 + 0.925918i \(0.623294\pi\)
\(504\) 0 0
\(505\) −5.55389 −0.247145
\(506\) −32.9253 −1.46371
\(507\) 0 0
\(508\) 1.64142 0.0728264
\(509\) −11.1513 19.3146i −0.494271 0.856102i 0.505707 0.862705i \(-0.331232\pi\)
−0.999978 + 0.00660269i \(0.997898\pi\)
\(510\) 0 0
\(511\) −25.0907 + 15.3401i −1.10995 + 0.678606i
\(512\) 19.9751 0.882783
\(513\) 0 0
\(514\) −19.6015 33.9507i −0.864583 1.49750i
\(515\) −4.67830 + 8.10306i −0.206151 + 0.357064i
\(516\) 0 0
\(517\) −27.7345 + 48.0376i −1.21976 + 2.11269i
\(518\) 22.5620 + 12.2802i 0.991315 + 0.539561i
\(519\) 0 0
\(520\) 7.30680 0.320424
\(521\) 6.18044 + 10.7048i 0.270770 + 0.468987i 0.969059 0.246828i \(-0.0793884\pi\)
−0.698289 + 0.715816i \(0.746055\pi\)
\(522\) 0 0
\(523\) −3.09572 + 5.36194i −0.135366 + 0.234461i −0.925737 0.378167i \(-0.876554\pi\)
0.790371 + 0.612628i \(0.209888\pi\)
\(524\) 0.212544 + 0.368136i 0.00928501 + 0.0160821i
\(525\) 0 0
\(526\) −14.8130 + 25.6569i −0.645879 + 1.11870i
\(527\) 0.343677 + 0.595265i 0.0149708 + 0.0259302i
\(528\) 0 0
\(529\) −1.27188 + 2.20297i −0.0552993 + 0.0957812i
\(530\) −4.91002 + 8.50440i −0.213278 + 0.369408i
\(531\) 0 0
\(532\) 0.886576 + 0.482553i 0.0384379 + 0.0209213i
\(533\) −24.5957 42.6010i −1.06536 1.84526i
\(534\) 0 0
\(535\) −0.608363 −0.0263018
\(536\) 15.9971 0.690968
\(537\) 0 0
\(538\) 6.37266 + 11.0378i 0.274745 + 0.475872i
\(539\) 14.2324 27.7912i 0.613032 1.19705i
\(540\) 0 0
\(541\) −13.4100 + 23.2268i −0.576542 + 0.998600i 0.419330 + 0.907834i \(0.362265\pi\)
−0.995872 + 0.0907660i \(0.971068\pi\)
\(542\) 17.6659 30.5982i 0.758813 1.31430i
\(543\) 0 0
\(544\) 0.102718 + 0.177913i 0.00440400 + 0.00762795i
\(545\) 0.384440 0.665869i 0.0164676 0.0285227i
\(546\) 0 0
\(547\) 7.32957 + 12.6952i 0.313390 + 0.542807i 0.979094 0.203409i \(-0.0652021\pi\)
−0.665704 + 0.746216i \(0.731869\pi\)
\(548\) −0.672570 + 1.16492i −0.0287307 + 0.0497631i
\(549\) 0 0
\(550\) −15.1388 26.2212i −0.645521 1.11808i
\(551\) 1.01012 0.0430327
\(552\) 0 0
\(553\) −0.742705 29.5232i −0.0315830 1.25545i
\(554\) −5.19601 + 8.99976i −0.220757 + 0.382363i
\(555\) 0 0
\(556\) −1.20273 + 2.08319i −0.0510072 + 0.0883470i
\(557\) −11.8399 20.5073i −0.501672 0.868921i −0.999998 0.00193169i \(-0.999385\pi\)
0.498326 0.866990i \(-0.333948\pi\)
\(558\) 0 0
\(559\) −15.2661 −0.645689
\(560\) −5.69241 + 3.48027i −0.240548 + 0.147068i
\(561\) 0 0
\(562\) −5.76615 9.98726i −0.243230 0.421287i
\(563\) 16.3858 0.690579 0.345289 0.938496i \(-0.387781\pi\)
0.345289 + 0.938496i \(0.387781\pi\)
\(564\) 0 0
\(565\) −8.48541 −0.356984
\(566\) −3.22646 −0.135618
\(567\) 0 0
\(568\) 7.09142 0.297549
\(569\) 15.7879 0.661865 0.330932 0.943654i \(-0.392637\pi\)
0.330932 + 0.943654i \(0.392637\pi\)
\(570\) 0 0
\(571\) 6.38151 0.267058 0.133529 0.991045i \(-0.457369\pi\)
0.133529 + 0.991045i \(0.457369\pi\)
\(572\) 1.33988 + 2.32075i 0.0560233 + 0.0970353i
\(573\) 0 0
\(574\) 36.9810 + 20.1283i 1.54356 + 0.840141i
\(575\) −23.4897 −0.979587
\(576\) 0 0
\(577\) 18.5203 + 32.0781i 0.771011 + 1.33543i 0.937009 + 0.349304i \(0.113582\pi\)
−0.165998 + 0.986126i \(0.553085\pi\)
\(578\) −12.3597 + 21.4077i −0.514097 + 0.890442i
\(579\) 0 0
\(580\) 0.0139156 0.0241025i 0.000577813 0.00100080i
\(581\) −37.3442 + 22.8317i −1.54930 + 0.947220i
\(582\) 0 0
\(583\) 50.5261 2.09258
\(584\) −15.1539 26.2473i −0.627072 1.08612i
\(585\) 0 0
\(586\) 14.0146 24.2740i 0.578937 1.00275i
\(587\) −6.04689 10.4735i −0.249582 0.432288i 0.713828 0.700321i \(-0.246960\pi\)
−0.963410 + 0.268033i \(0.913626\pi\)
\(588\) 0 0
\(589\) −3.60457 + 6.24330i −0.148524 + 0.257251i
\(590\) 3.49115 + 6.04684i 0.143728 + 0.248945i
\(591\) 0 0
\(592\) −14.1211 + 24.4585i −0.580374 + 1.00524i
\(593\) 8.26449 14.3145i 0.339382 0.587827i −0.644935 0.764238i \(-0.723115\pi\)
0.984317 + 0.176411i \(0.0564487\pi\)
\(594\) 0 0
\(595\) 0.377048 + 0.205223i 0.0154575 + 0.00841331i
\(596\) −0.935120 1.61968i −0.0383040 0.0663445i
\(597\) 0 0
\(598\) 33.3245 1.36274
\(599\) 8.74825 0.357444 0.178722 0.983900i \(-0.442804\pi\)
0.178722 + 0.983900i \(0.442804\pi\)
\(600\) 0 0
\(601\) 2.96197 + 5.13028i 0.120821 + 0.209268i 0.920092 0.391703i \(-0.128114\pi\)
−0.799271 + 0.600971i \(0.794781\pi\)
\(602\) 11.1481 6.81583i 0.454364 0.277792i
\(603\) 0 0
\(604\) −0.0253849 + 0.0439680i −0.00103290 + 0.00178903i
\(605\) 2.64027 4.57308i 0.107342 0.185922i
\(606\) 0 0
\(607\) 0.370719 + 0.642104i 0.0150470 + 0.0260622i 0.873451 0.486912i \(-0.161877\pi\)
−0.858404 + 0.512974i \(0.828544\pi\)
\(608\) −1.07733 + 1.86600i −0.0436916 + 0.0756761i
\(609\) 0 0
\(610\) 1.18502 + 2.05252i 0.0479802 + 0.0831041i
\(611\) 28.0708 48.6201i 1.13562 1.96696i
\(612\) 0 0
\(613\) −2.25350 3.90318i −0.0910181 0.157648i 0.816922 0.576749i \(-0.195679\pi\)
−0.907940 + 0.419101i \(0.862345\pi\)
\(614\) 20.3212 0.820097
\(615\) 0 0
\(616\) 28.2630 + 15.3832i 1.13875 + 0.619808i
\(617\) −8.60078 + 14.8970i −0.346254 + 0.599730i −0.985581 0.169205i \(-0.945880\pi\)
0.639327 + 0.768935i \(0.279213\pi\)
\(618\) 0 0
\(619\) −2.24271 + 3.88448i −0.0901419 + 0.156130i −0.907571 0.419899i \(-0.862065\pi\)
0.817429 + 0.576030i \(0.195399\pi\)
\(620\) 0.0993140 + 0.172017i 0.00398855 + 0.00690837i
\(621\) 0 0
\(622\) 15.5615 0.623958
\(623\) −12.4890 6.79762i −0.500362 0.272341i
\(624\) 0 0
\(625\) −9.91955 17.1812i −0.396782 0.687246i
\(626\) 24.1881 0.966752
\(627\) 0 0
\(628\) −1.00000 −0.0399043
\(629\) 1.81711 0.0724531
\(630\) 0 0
\(631\) −17.3068 −0.688973 −0.344486 0.938791i \(-0.611947\pi\)
−0.344486 + 0.938791i \(0.611947\pi\)
\(632\) 30.4356 1.21066
\(633\) 0 0
\(634\) −38.9037 −1.54506
\(635\) 3.66079 + 6.34067i 0.145274 + 0.251622i
\(636\) 0 0
\(637\) −14.4050 + 28.1281i −0.570745 + 1.11448i
\(638\) −2.29533 −0.0908729
\(639\) 0 0
\(640\) −3.65340 6.32787i −0.144413 0.250131i
\(641\) 21.6608 37.5176i 0.855550 1.48186i −0.0205843 0.999788i \(-0.506553\pi\)
0.876134 0.482068i \(-0.160114\pi\)
\(642\) 0 0
\(643\) −14.9911 + 25.9654i −0.591193 + 1.02398i 0.402879 + 0.915253i \(0.368010\pi\)
−0.994072 + 0.108723i \(0.965324\pi\)
\(644\) −1.51819 + 0.928200i −0.0598250 + 0.0365762i
\(645\) 0 0
\(646\) 1.14454 0.0450315
\(647\) 7.08472 + 12.2711i 0.278529 + 0.482427i 0.971019 0.239000i \(-0.0768197\pi\)
−0.692490 + 0.721427i \(0.743486\pi\)
\(648\) 0 0
\(649\) 17.9626 31.1122i 0.705095 1.22126i
\(650\) 15.3224 + 26.5391i 0.600993 + 1.04095i
\(651\) 0 0
\(652\) −1.01080 + 1.75075i −0.0395858 + 0.0685647i
\(653\) −14.1981 24.5919i −0.555617 0.962356i −0.997855 0.0654587i \(-0.979149\pi\)
0.442239 0.896897i \(-0.354184\pi\)
\(654\) 0 0
\(655\) −0.948052 + 1.64207i −0.0370435 + 0.0641611i
\(656\) −23.1457 + 40.0896i −0.903689 + 1.56523i
\(657\) 0 0
\(658\) 1.20847 + 48.0376i 0.0471109 + 1.87270i
\(659\) 4.69961 + 8.13997i 0.183071 + 0.317088i 0.942925 0.333006i \(-0.108063\pi\)
−0.759854 + 0.650094i \(0.774730\pi\)
\(660\) 0 0
\(661\) −12.7161 −0.494601 −0.247300 0.968939i \(-0.579543\pi\)
−0.247300 + 0.968939i \(0.579543\pi\)
\(662\) 34.0397 1.32299
\(663\) 0 0
\(664\) −22.5546 39.0656i −0.875287 1.51604i
\(665\) 0.113230 + 4.50098i 0.00439086 + 0.174540i
\(666\) 0 0
\(667\) −0.890369 + 1.54216i −0.0344752 + 0.0597128i
\(668\) −0.595715 + 1.03181i −0.0230489 + 0.0399219i
\(669\) 0 0
\(670\) −2.54309 4.40477i −0.0982483 0.170171i
\(671\) 6.09718 10.5606i 0.235379 0.407688i
\(672\) 0 0
\(673\) −17.8961 30.9970i −0.689844 1.19485i −0.971888 0.235444i \(-0.924346\pi\)
0.282044 0.959401i \(-0.408988\pi\)
\(674\) −16.9698 + 29.3926i −0.653654 + 1.13216i
\(675\) 0 0
\(676\) −0.491146 0.850689i −0.0188902 0.0327188i
\(677\) 10.8918 0.418607 0.209304 0.977851i \(-0.432880\pi\)
0.209304 + 0.977851i \(0.432880\pi\)
\(678\) 0 0
\(679\) 5.11537 3.12747i 0.196310 0.120021i
\(680\) −0.221203 + 0.383136i −0.00848276 + 0.0146926i
\(681\) 0 0
\(682\) 8.19076 14.1868i 0.313640 0.543241i
\(683\) −17.5079 30.3245i −0.669920 1.16034i −0.977926 0.208951i \(-0.932995\pi\)
0.308006 0.951384i \(-0.400338\pi\)
\(684\) 0 0
\(685\) −6.00000 −0.229248
\(686\) −2.03902 26.9720i −0.0778500 1.02979i
\(687\) 0 0
\(688\) 7.18308 + 12.4415i 0.273852 + 0.474326i
\(689\) −51.1387 −1.94823
\(690\) 0 0
\(691\) 8.42082 0.320343 0.160171 0.987089i \(-0.448795\pi\)
0.160171 + 0.987089i \(0.448795\pi\)
\(692\) −1.39203 −0.0529169
\(693\) 0 0
\(694\) −25.0292 −0.950095
\(695\) −10.7296 −0.406996
\(696\) 0 0
\(697\) 2.97841 0.112815
\(698\) −14.2506 24.6827i −0.539392 0.934255i
\(699\) 0 0
\(700\) −1.43726 0.782282i −0.0543232 0.0295675i
\(701\) 42.7453 1.61447 0.807234 0.590231i \(-0.200963\pi\)
0.807234 + 0.590231i \(0.200963\pi\)
\(702\) 0 0
\(703\) 9.52918 + 16.5050i 0.359400 + 0.622499i
\(704\) −16.5021 + 28.5825i −0.621948 + 1.07724i
\(705\) 0 0
\(706\) 11.7288 20.3149i 0.441419 0.764560i
\(707\) 21.7432 + 11.8346i 0.817737 + 0.445084i
\(708\) 0 0
\(709\) −24.0862 −0.904576 −0.452288 0.891872i \(-0.649392\pi\)
−0.452288 + 0.891872i \(0.649392\pi\)
\(710\) −1.12734 1.95261i −0.0423083 0.0732801i
\(711\) 0 0
\(712\) 7.32695 12.6907i 0.274589 0.475602i
\(713\) −6.35447 11.0063i −0.237977 0.412188i
\(714\) 0 0
\(715\) −5.97656 + 10.3517i −0.223511 + 0.387132i
\(716\) 0.596699 + 1.03351i 0.0222997 + 0.0386242i
\(717\) 0 0
\(718\) 10.1242 17.5357i 0.377833 0.654425i
\(719\) −21.0512 + 36.4617i −0.785076 + 1.35979i 0.143878 + 0.989595i \(0.454043\pi\)
−0.928954 + 0.370196i \(0.879291\pi\)
\(720\) 0 0
\(721\) 35.5818 21.7542i 1.32514 0.810170i
\(722\) −7.87266 13.6358i −0.292990 0.507474i
\(723\) 0 0
\(724\) 0.671612 0.0249603
\(725\) −1.63754 −0.0608168
\(726\) 0 0
\(727\) −18.0349 31.2374i −0.668878 1.15853i −0.978218 0.207579i \(-0.933442\pi\)
0.309340 0.950951i \(-0.399892\pi\)
\(728\) −28.6057 15.5698i −1.06020 0.577054i
\(729\) 0 0
\(730\) −4.81810 + 8.34519i −0.178326 + 0.308869i
\(731\) 0.462162 0.800488i 0.0170937 0.0296071i
\(732\) 0 0
\(733\) −17.0665 29.5601i −0.630367 1.09183i −0.987477 0.157765i \(-0.949571\pi\)
0.357110 0.934062i \(-0.383762\pi\)
\(734\) 18.4720 31.9944i 0.681813 1.18093i
\(735\) 0 0
\(736\) −1.89922 3.28955i −0.0700063 0.121254i
\(737\) −13.0847 + 22.6634i −0.481982 + 0.834817i
\(738\) 0 0
\(739\) −10.9481 18.9626i −0.402731 0.697550i 0.591324 0.806434i \(-0.298606\pi\)
−0.994054 + 0.108884i \(0.965272\pi\)
\(740\) 0.525101 0.0193031
\(741\) 0 0
\(742\) 37.3442 22.8317i 1.37095 0.838179i
\(743\) 14.1426 24.4957i 0.518842 0.898660i −0.480919 0.876765i \(-0.659697\pi\)
0.999760 0.0218950i \(-0.00696995\pi\)
\(744\) 0 0
\(745\) 4.17111 7.22457i 0.152818 0.264688i
\(746\) 1.46050 + 2.52967i 0.0534729 + 0.0926177i
\(747\) 0 0
\(748\) −0.162253 −0.00593254
\(749\) 2.38171 + 1.29634i 0.0870258 + 0.0473671i
\(750\) 0 0
\(751\) 7.24844 + 12.5547i 0.264499 + 0.458126i 0.967432 0.253130i \(-0.0814600\pi\)
−0.702933 + 0.711256i \(0.748127\pi\)
\(752\) −52.8319 −1.92658
\(753\) 0 0
\(754\) 2.32316 0.0846044
\(755\) −0.226459 −0.00824169
\(756\) 0 0
\(757\) −38.9646 −1.41619 −0.708096 0.706116i \(-0.750446\pi\)
−0.708096 + 0.706116i \(0.750446\pi\)
\(758\) 27.4720 0.997827
\(759\) 0 0
\(760\) −4.64008 −0.168313
\(761\) −0.627819 1.08741i −0.0227584 0.0394187i 0.854422 0.519580i \(-0.173912\pi\)
−0.877180 + 0.480161i \(0.840578\pi\)
\(762\) 0 0
\(763\) −2.92393 + 1.78766i −0.105854 + 0.0647175i
\(764\) 1.61421 0.0584002
\(765\) 0 0
\(766\) 25.6623 + 44.4483i 0.927215 + 1.60598i
\(767\) −18.1804 + 31.4894i −0.656458 + 1.13702i
\(768\) 0 0
\(769\) 13.8442 23.9788i 0.499233 0.864697i −0.500767 0.865582i \(-0.666949\pi\)
1.00000 0.000885409i \(0.000281834\pi\)
\(770\) −0.257295 10.2277i −0.00927225 0.368580i
\(771\) 0 0
\(772\) 2.28386 0.0821978
\(773\) 3.95544 + 6.85103i 0.142267 + 0.246414i 0.928350 0.371707i \(-0.121227\pi\)
−0.786083 + 0.618121i \(0.787894\pi\)
\(774\) 0 0
\(775\) 5.84348 10.1212i 0.209904 0.363565i
\(776\) 3.08950 + 5.35117i 0.110907 + 0.192096i
\(777\) 0 0
\(778\) −6.11849 + 10.5975i −0.219358 + 0.379940i
\(779\) 15.6192 + 27.0532i 0.559614 + 0.969281i
\(780\) 0 0
\(781\) −5.80039 + 10.0466i −0.207554 + 0.359494i
\(782\) −1.00885 + 1.74739i −0.0360766 + 0.0624864i
\(783\) 0 0
\(784\) 29.7015 1.49533i 1.06077 0.0534045i
\(785\) −2.23025 3.86291i −0.0796011 0.137873i
\(786\) 0 0
\(787\) 31.6693 1.12889 0.564444 0.825472i \(-0.309091\pi\)
0.564444 + 0.825472i \(0.309091\pi\)
\(788\) 0.100013 0.00356283
\(789\) 0 0
\(790\) −4.83842 8.38039i −0.172143 0.298161i
\(791\) 33.2199 + 18.0812i 1.18116 + 0.642894i
\(792\) 0 0
\(793\) −6.17111 + 10.6887i −0.219142 + 0.379566i
\(794\) −6.75370 + 11.6977i −0.239680 + 0.415137i
\(795\) 0 0
\(796\) −0.685023 1.18649i −0.0242800 0.0420542i
\(797\) 16.8961 29.2649i 0.598491 1.03662i −0.394553 0.918873i \(-0.629101\pi\)
0.993044 0.117743i \(-0.0375660\pi\)
\(798\) 0 0
\(799\) 1.69961 + 2.94381i 0.0601279 + 0.104145i
\(800\) 1.74650 3.02502i 0.0617481 0.106951i
\(801\) 0 0
\(802\) −0.107690 0.186524i −0.00380265 0.00658638i
\(803\) 49.5801 1.74965
\(804\) 0 0
\(805\) −6.97150 3.79450i −0.245713 0.133739i
\(806\) −8.29007 + 14.3588i −0.292005 + 0.505768i
\(807\) 0 0
\(808\) −12.7561 + 22.0942i −0.448759 + 0.777273i
\(809\) 18.3801 + 31.8352i 0.646208 + 1.11927i 0.984021 + 0.178052i \(0.0569796\pi\)
−0.337813 + 0.941213i \(0.609687\pi\)
\(810\) 0 0
\(811\) 3.54377 0.124438 0.0622192 0.998063i \(-0.480182\pi\)
0.0622192 + 0.998063i \(0.480182\pi\)
\(812\) −0.105838 + 0.0647078i −0.00371418 + 0.00227080i
\(813\) 0 0
\(814\) −21.6534 37.5048i −0.758951 1.31454i
\(815\) −9.01732 −0.315863
\(816\) 0 0
\(817\) 9.69455 0.339169
\(818\) 5.73289 0.200446
\(819\) 0 0
\(820\) 0.860686 0.0300565
\(821\) −20.8636 −0.728145 −0.364073 0.931371i \(-0.618614\pi\)
−0.364073 + 0.931371i \(0.618614\pi\)
\(822\) 0 0
\(823\) 45.4006 1.58256 0.791282 0.611451i \(-0.209414\pi\)
0.791282 + 0.611451i \(0.209414\pi\)
\(824\) 21.4902 + 37.2221i 0.748645 + 1.29669i
\(825\) 0 0
\(826\) −0.782679 31.1122i −0.0272329 1.08253i
\(827\) 5.34221 0.185767 0.0928835 0.995677i \(-0.470392\pi\)
0.0928835 + 0.995677i \(0.470392\pi\)
\(828\) 0 0
\(829\) −8.45185 14.6390i −0.293545 0.508434i 0.681101 0.732190i \(-0.261502\pi\)
−0.974645 + 0.223755i \(0.928168\pi\)
\(830\) −7.17111 + 12.4207i −0.248913 + 0.431130i
\(831\) 0 0
\(832\) 16.7022 28.9291i 0.579046 1.00294i
\(833\) −1.03882 1.60687i −0.0359930 0.0556748i
\(834\) 0 0
\(835\) −5.31438 −0.183912
\(836\) −0.850874 1.47376i −0.0294281 0.0509709i
\(837\) 0 0
\(838\) 15.3353 26.5615i 0.529749 0.917553i
\(839\) −4.91955 8.52091i −0.169842 0.294174i 0.768522 0.639823i \(-0.220992\pi\)
−0.938364 + 0.345649i \(0.887659\pi\)
\(840\) 0 0
\(841\) 14.4379 25.0072i 0.497860 0.862318i
\(842\) −18.0287 31.2266i −0.621310 1.07614i
\(843\) 0 0
\(844\) 1.07227 1.85723i 0.0369091 0.0639285i
\(845\) 2.19076 3.79450i 0.0753643 0.130535i
\(846\) 0 0
\(847\) −20.0811 + 12.2773i −0.689996 + 0.421854i
\(848\) 24.0620 + 41.6765i 0.826291 + 1.43118i
\(849\) 0 0
\(850\) −1.85546 −0.0636416
\(851\) −33.5979 −1.15172
\(852\) 0 0
\(853\) 27.7434 + 48.0529i 0.949915 + 1.64530i 0.745597 + 0.666397i \(0.232164\pi\)
0.204318 + 0.978905i \(0.434502\pi\)
\(854\) −0.265670 10.5606i −0.00909104 0.361377i
\(855\) 0 0
\(856\) −1.39728 + 2.42016i −0.0477581 + 0.0827195i
\(857\) −28.1732 + 48.7975i −0.962380 + 1.66689i −0.245884 + 0.969299i \(0.579078\pi\)
−0.716496 + 0.697591i \(0.754255\pi\)
\(858\) 0 0
\(859\) −21.9626 38.0404i −0.749356 1.29792i −0.948132 0.317877i \(-0.897030\pi\)
0.198776 0.980045i \(-0.436303\pi\)
\(860\) 0.133553 0.231321i 0.00455413 0.00788799i
\(861\) 0 0
\(862\) −3.99806 6.92484i −0.136174 0.235861i
\(863\) 5.66372 9.80984i 0.192795 0.333931i −0.753380 0.657585i \(-0.771578\pi\)
0.946175 + 0.323654i \(0.104911\pi\)
\(864\) 0 0
\(865\) −3.10457 5.37727i −0.105559 0.182833i
\(866\) −34.5117 −1.17275
\(867\) 0 0
\(868\) −0.0222652 0.885061i −0.000755730 0.0300409i
\(869\) −24.8946 + 43.1188i −0.844493 + 1.46270i
\(870\) 0 0
\(871\) 13.2434 22.9382i 0.448735 0.777231i
\(872\) −1.76595 3.05872i −0.0598028 0.103581i
\(873\) 0 0
\(874\) −21.1623 −0.715824
\(875\) −0.381036 15.1465i −0.0128814 0.512045i
\(876\) 0 0
\(877\) 23.2307 + 40.2368i 0.784446 + 1.35870i 0.929329 + 0.369252i \(0.120386\pi\)
−0.144883 + 0.989449i \(0.546281\pi\)
\(878\) 7.69124 0.259567
\(879\) 0 0
\(880\) 11.2484 0.379185
\(881\) −21.6578 −0.729669 −0.364835 0.931072i \(-0.618874\pi\)
−0.364835 + 0.931072i \(0.618874\pi\)
\(882\) 0 0
\(883\) 11.4868 0.386560 0.193280 0.981144i \(-0.438087\pi\)
0.193280 + 0.981144i \(0.438087\pi\)
\(884\) 0.164220 0.00552332
\(885\) 0 0
\(886\) −8.81616 −0.296185
\(887\) 8.92101 + 15.4516i 0.299538 + 0.518815i 0.976030 0.217634i \(-0.0698341\pi\)
−0.676492 + 0.736450i \(0.736501\pi\)
\(888\) 0 0
\(889\) −0.820712 32.6240i −0.0275258 1.09418i
\(890\) −4.65913 −0.156174
\(891\) 0 0
\(892\) 0.462641 + 0.801318i 0.0154904 + 0.0268301i
\(893\) −17.8260 + 30.8755i −0.596523 + 1.03321i
\(894\) 0 0
\(895\) −2.66158 + 4.60999i −0.0889668 + 0.154095i
\(896\) 0.819055 + 32.5582i 0.0273627 + 1.08769i
\(897\) 0 0
\(898\) −32.3422 −1.07927
\(899\) −0.442991 0.767282i −0.0147746 0.0255903i
\(900\) 0 0
\(901\) 1.54815 2.68148i 0.0515765 0.0893331i
\(902\) −35.4918 61.4736i −1.18175 2.04685i
\(903\) 0 0
\(904\) −19.4892 + 33.7563i −0.648201 + 1.12272i
\(905\) 1.49786 + 2.59438i 0.0497907 + 0.0862400i
\(906\) 0 0
\(907\) 25.9253 44.9039i 0.860835 1.49101i −0.0102894 0.999947i \(-0.503275\pi\)
0.871124 0.491063i \(-0.163391\pi\)
\(908\) 0.352052 0.609772i 0.0116833 0.0202360i
\(909\) 0 0
\(910\) 0.260414 + 10.3517i 0.00863265 + 0.343155i
\(911\) −3.24338 5.61770i −0.107458 0.186123i 0.807282 0.590166i \(-0.200938\pi\)
−0.914740 + 0.404044i \(0.867604\pi\)
\(912\) 0 0
\(913\) 73.7936 2.44221
\(914\) 7.79125 0.257712
\(915\) 0 0
\(916\) −0.780065 1.35111i −0.0257741 0.0446420i
\(917\) 7.21060 4.40847i 0.238115 0.145580i
\(918\) 0 0
\(919\) 5.84221 10.1190i 0.192717 0.333795i −0.753433 0.657525i \(-0.771603\pi\)
0.946150 + 0.323730i \(0.104937\pi\)
\(920\) 4.08998 7.08405i 0.134843 0.233554i
\(921\) 0 0
\(922\) −21.6845 37.5587i −0.714142 1.23693i
\(923\) 5.87072 10.1684i 0.193237 0.334696i
\(924\) 0 0
\(925\) −15.4481 26.7568i −0.507929 0.879759i
\(926\) 13.5759 23.5141i 0.446131 0.772721i
\(927\) 0 0
\(928\) −0.132401 0.229325i −0.00434627 0.00752797i
\(929\) −1.46050 −0.0479176 −0.0239588 0.999713i \(-0.507627\pi\)
−0.0239588 + 0.999713i \(0.507627\pi\)
\(930\) 0 0
\(931\) 9.14766 17.8624i 0.299803 0.585415i
\(932\) 0.257579 0.446140i 0.00843727 0.0146138i
\(933\) 0 0
\(934\) −17.9734 + 31.1309i −0.588109 + 1.01863i
\(935\) −0.361864 0.626767i −0.0118342 0.0204975i
\(936\) 0 0
\(937\) 9.87451 0.322586 0.161293 0.986907i \(-0.448434\pi\)
0.161293 + 0.986907i \(0.448434\pi\)
\(938\) 0.570136 + 22.6634i 0.0186156 + 0.739987i
\(939\) 0 0
\(940\) 0.491146 + 0.850689i 0.0160194 + 0.0277464i
\(941\) 54.1944 1.76669 0.883343 0.468728i \(-0.155287\pi\)
0.883343 + 0.468728i \(0.155287\pi\)
\(942\) 0 0
\(943\) −55.0698 −1.79332
\(944\) 34.2173 1.11368
\(945\) 0 0
\(946\) −22.0292 −0.716230
\(947\) −54.8903 −1.78369 −0.891847 0.452338i \(-0.850590\pi\)
−0.891847 + 0.452338i \(0.850590\pi\)
\(948\) 0 0
\(949\) −50.1813 −1.62895
\(950\) −9.73025 16.8533i −0.315691 0.546793i
\(951\) 0 0
\(952\) 1.68241 1.02860i 0.0545271 0.0333372i
\(953\) −27.0406 −0.875932 −0.437966 0.898991i \(-0.644301\pi\)
−0.437966 + 0.898991i \(0.644301\pi\)
\(954\) 0 0
\(955\) 3.60010 + 6.23556i 0.116497 + 0.201778i
\(956\) 0.825010 1.42896i 0.0266827 0.0462158i
\(957\) 0 0
\(958\) 0.260414 0.451051i 0.00841360 0.0145728i
\(959\) 23.4897 + 12.7852i 0.758521 + 0.412854i
\(960\) 0 0
\(961\) −24.6768 −0.796027
\(962\) 21.9159 + 37.9595i 0.706599 + 1.22386i
\(963\) 0 0
\(964\) 1.10195 1.90864i 0.0354916 0.0614732i
\(965\) 5.09358 + 8.82234i 0.163968 + 0.284001i
\(966\) 0 0
\(967\) 6.75729 11.7040i 0.217300 0.376375i −0.736682 0.676240i \(-0.763608\pi\)
0.953982 + 0.299865i \(0.0969417\pi\)
\(968\) −12.1283 21.0068i −0.389818 0.675185i
\(969\) 0 0
\(970\) 0.982291 1.70138i 0.0315395 0.0546280i
\(971\) −6.46557 + 11.1987i −0.207490 + 0.359383i −0.950923 0.309427i \(-0.899863\pi\)
0.743433 + 0.668810i \(0.233196\pi\)
\(972\) 0 0
\(973\) 42.0057 + 22.8632i 1.34664 + 0.732961i
\(974\) −9.40448 16.2890i −0.301339 0.521934i
\(975\) 0 0
\(976\) 11.6146 0.371774
\(977\) −36.5979 −1.17087 −0.585435 0.810720i \(-0.699076\pi\)
−0.585435 + 0.810720i \(0.699076\pi\)
\(978\) 0 0
\(979\) 11.9861 + 20.7605i 0.383077 + 0.663509i
\(980\) −0.300194 0.464346i −0.00958933 0.0148330i
\(981\) 0 0
\(982\) −4.05574 + 7.02475i −0.129424 + 0.224169i
\(983\) 8.61896 14.9285i 0.274902 0.476145i −0.695208 0.718808i \(-0.744688\pi\)
0.970110 + 0.242664i \(0.0780212\pi\)
\(984\) 0 0
\(985\) 0.223055 + 0.386343i 0.00710713 + 0.0123099i
\(986\) −0.0703305 + 0.121816i −0.00223978 + 0.00387941i
\(987\) 0 0
\(988\) 0.861191 + 1.49163i 0.0273981 + 0.0474550i
\(989\) −8.54523 + 14.8008i −0.271722 + 0.470637i
\(990\) 0 0
\(991\) 7.67111 + 13.2867i 0.243681 + 0.422067i 0.961760 0.273894i \(-0.0883118\pi\)
−0.718079 + 0.695961i \(0.754978\pi\)
\(992\) 1.88986 0.0600032
\(993\) 0 0
\(994\) 0.252738 + 10.0466i 0.00801637 + 0.318658i
\(995\) 3.05555 5.29236i 0.0968673 0.167779i
\(996\) 0 0
\(997\) 17.0577 29.5448i 0.540222 0.935692i −0.458669 0.888607i \(-0.651674\pi\)
0.998891 0.0470850i \(-0.0149932\pi\)
\(998\) −20.5313 35.5613i −0.649907 1.12567i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 567.2.h.i.352.1 6
3.2 odd 2 567.2.h.h.352.3 6
7.4 even 3 567.2.g.h.109.3 6
9.2 odd 6 567.2.g.i.541.1 6
9.4 even 3 189.2.e.e.163.3 yes 6
9.5 odd 6 189.2.e.f.163.1 yes 6
9.7 even 3 567.2.g.h.541.3 6
21.11 odd 6 567.2.g.i.109.1 6
63.4 even 3 189.2.e.e.109.3 6
63.5 even 6 1323.2.a.y.1.3 3
63.11 odd 6 567.2.h.h.298.3 6
63.23 odd 6 1323.2.a.x.1.3 3
63.25 even 3 inner 567.2.h.i.298.1 6
63.32 odd 6 189.2.e.f.109.1 yes 6
63.40 odd 6 1323.2.a.z.1.1 3
63.58 even 3 1323.2.a.ba.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
189.2.e.e.109.3 6 63.4 even 3
189.2.e.e.163.3 yes 6 9.4 even 3
189.2.e.f.109.1 yes 6 63.32 odd 6
189.2.e.f.163.1 yes 6 9.5 odd 6
567.2.g.h.109.3 6 7.4 even 3
567.2.g.h.541.3 6 9.7 even 3
567.2.g.i.109.1 6 21.11 odd 6
567.2.g.i.541.1 6 9.2 odd 6
567.2.h.h.298.3 6 63.11 odd 6
567.2.h.h.352.3 6 3.2 odd 2
567.2.h.i.298.1 6 63.25 even 3 inner
567.2.h.i.352.1 6 1.1 even 1 trivial
1323.2.a.x.1.3 3 63.23 odd 6
1323.2.a.y.1.3 3 63.5 even 6
1323.2.a.z.1.1 3 63.40 odd 6
1323.2.a.ba.1.1 3 63.58 even 3