Properties

Label 567.2.h.h.352.2
Level $567$
Weight $2$
Character 567.352
Analytic conductor $4.528$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [567,2,Mod(298,567)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(567, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("567.298");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 567 = 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 567.h (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.52751779461\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.309123.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 189)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 352.2
Root \(0.500000 + 1.41036i\) of defining polynomial
Character \(\chi\) \(=\) 567.352
Dual form 567.2.h.h.298.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.760877 q^{2} -1.42107 q^{4} +(1.59097 + 2.75564i) q^{5} +(0.710533 + 2.54856i) q^{7} +2.60301 q^{8} +(-1.21053 - 2.09671i) q^{10} +(1.11956 - 1.93914i) q^{11} +(-1.85185 + 3.20750i) q^{13} +(-0.540628 - 1.93914i) q^{14} +0.861564 q^{16} +(-2.80150 - 4.85235i) q^{17} +(-2.21053 + 3.82876i) q^{19} +(-2.26088 - 3.91595i) q^{20} +(-0.851848 + 1.47544i) q^{22} +(-0.471410 - 0.816506i) q^{23} +(-2.56238 + 4.43818i) q^{25} +(1.40903 - 2.44051i) q^{26} +(-1.00972 - 3.62167i) q^{28} +(5.06238 + 8.76830i) q^{29} -5.70370 q^{31} -5.86156 q^{32} +(2.13160 + 3.69204i) q^{34} +(-5.89248 + 6.01266i) q^{35} +(-1.56238 + 2.70612i) q^{37} +(1.68194 - 2.91321i) q^{38} +(4.14132 + 7.17297i) q^{40} +(1.99316 - 3.45226i) q^{41} +(1.64132 + 2.84284i) q^{43} +(-1.59097 + 2.75564i) q^{44} +(0.358685 + 0.621261i) q^{46} +0.225450 q^{47} +(-5.99028 + 3.62167i) q^{49} +(1.94966 - 3.37690i) q^{50} +(2.63160 - 4.55806i) q^{52} +(5.33009 + 9.23200i) q^{53} +7.12476 q^{55} +(1.84953 + 6.63392i) q^{56} +(-3.85185 - 6.67160i) q^{58} +2.05718 q^{59} -5.84213 q^{61} +4.33981 q^{62} +2.73680 q^{64} -11.7850 q^{65} +7.42107 q^{67} +(3.98113 + 6.89551i) q^{68} +(4.48345 - 4.57489i) q^{70} -7.26320 q^{71} +(-3.77975 - 6.54672i) q^{73} +(1.18878 - 2.05903i) q^{74} +(3.14132 - 5.44092i) q^{76} +(5.73749 + 1.47544i) q^{77} -6.82846 q^{79} +(1.37072 + 2.37416i) q^{80} +(-1.51655 + 2.62674i) q^{82} +(-4.05555 - 7.02441i) q^{83} +(8.91423 - 15.4399i) q^{85} +(-1.24884 - 2.16305i) q^{86} +(2.91423 - 5.04759i) q^{88} +(4.86389 - 8.42450i) q^{89} +(-9.49028 - 2.44051i) q^{91} +(0.669905 + 1.16031i) q^{92} -0.171540 q^{94} -14.0676 q^{95} +(-0.421067 - 0.729309i) q^{97} +(4.55787 - 2.75564i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 4 q^{2} + 8 q^{4} + q^{5} - 4 q^{7} - 18 q^{8} + q^{10} + 7 q^{11} - 2 q^{13} + 13 q^{14} + 20 q^{16} - 5 q^{19} - 13 q^{20} + 4 q^{22} + 6 q^{23} + 2 q^{25} + 17 q^{26} - 30 q^{28} + 13 q^{29}+ \cdots - 49 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/567\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.760877 −0.538021 −0.269011 0.963137i \(-0.586697\pi\)
−0.269011 + 0.963137i \(0.586697\pi\)
\(3\) 0 0
\(4\) −1.42107 −0.710533
\(5\) 1.59097 + 2.75564i 0.711504 + 1.23236i 0.964292 + 0.264840i \(0.0853191\pi\)
−0.252788 + 0.967522i \(0.581348\pi\)
\(6\) 0 0
\(7\) 0.710533 + 2.54856i 0.268556 + 0.963264i
\(8\) 2.60301 0.920303
\(9\) 0 0
\(10\) −1.21053 2.09671i −0.382804 0.663036i
\(11\) 1.11956 1.93914i 0.337561 0.584672i −0.646413 0.762988i \(-0.723732\pi\)
0.983973 + 0.178316i \(0.0570649\pi\)
\(12\) 0 0
\(13\) −1.85185 + 3.20750i −0.513610 + 0.889599i 0.486265 + 0.873811i \(0.338359\pi\)
−0.999875 + 0.0157878i \(0.994974\pi\)
\(14\) −0.540628 1.93914i −0.144489 0.518256i
\(15\) 0 0
\(16\) 0.861564 0.215391
\(17\) −2.80150 4.85235i −0.679465 1.17687i −0.975142 0.221580i \(-0.928879\pi\)
0.295678 0.955288i \(-0.404455\pi\)
\(18\) 0 0
\(19\) −2.21053 + 3.82876i −0.507131 + 0.878377i 0.492835 + 0.870123i \(0.335961\pi\)
−0.999966 + 0.00825398i \(0.997373\pi\)
\(20\) −2.26088 3.91595i −0.505547 0.875634i
\(21\) 0 0
\(22\) −0.851848 + 1.47544i −0.181615 + 0.314566i
\(23\) −0.471410 0.816506i −0.0982958 0.170253i 0.812684 0.582705i \(-0.198006\pi\)
−0.910979 + 0.412452i \(0.864672\pi\)
\(24\) 0 0
\(25\) −2.56238 + 4.43818i −0.512476 + 0.887635i
\(26\) 1.40903 2.44051i 0.276333 0.478623i
\(27\) 0 0
\(28\) −1.00972 3.62167i −0.190818 0.684431i
\(29\) 5.06238 + 8.76830i 0.940061 + 1.62823i 0.765351 + 0.643613i \(0.222565\pi\)
0.174709 + 0.984620i \(0.444101\pi\)
\(30\) 0 0
\(31\) −5.70370 −1.02441 −0.512207 0.858862i \(-0.671172\pi\)
−0.512207 + 0.858862i \(0.671172\pi\)
\(32\) −5.86156 −1.03619
\(33\) 0 0
\(34\) 2.13160 + 3.69204i 0.365566 + 0.633180i
\(35\) −5.89248 + 6.01266i −0.996010 + 1.01632i
\(36\) 0 0
\(37\) −1.56238 + 2.70612i −0.256854 + 0.444884i −0.965397 0.260783i \(-0.916019\pi\)
0.708543 + 0.705667i \(0.249353\pi\)
\(38\) 1.68194 2.91321i 0.272847 0.472585i
\(39\) 0 0
\(40\) 4.14132 + 7.17297i 0.654799 + 1.13415i
\(41\) 1.99316 3.45226i 0.311280 0.539152i −0.667360 0.744735i \(-0.732576\pi\)
0.978640 + 0.205583i \(0.0659090\pi\)
\(42\) 0 0
\(43\) 1.64132 + 2.84284i 0.250298 + 0.433529i 0.963608 0.267320i \(-0.0861380\pi\)
−0.713310 + 0.700849i \(0.752805\pi\)
\(44\) −1.59097 + 2.75564i −0.239848 + 0.415429i
\(45\) 0 0
\(46\) 0.358685 + 0.621261i 0.0528852 + 0.0915999i
\(47\) 0.225450 0.0328853 0.0164426 0.999865i \(-0.494766\pi\)
0.0164426 + 0.999865i \(0.494766\pi\)
\(48\) 0 0
\(49\) −5.99028 + 3.62167i −0.855755 + 0.517381i
\(50\) 1.94966 3.37690i 0.275723 0.477566i
\(51\) 0 0
\(52\) 2.63160 4.55806i 0.364937 0.632090i
\(53\) 5.33009 + 9.23200i 0.732145 + 1.26811i 0.955965 + 0.293482i \(0.0948139\pi\)
−0.223820 + 0.974631i \(0.571853\pi\)
\(54\) 0 0
\(55\) 7.12476 0.960703
\(56\) 1.84953 + 6.63392i 0.247153 + 0.886495i
\(57\) 0 0
\(58\) −3.85185 6.67160i −0.505772 0.876024i
\(59\) 2.05718 0.267822 0.133911 0.990993i \(-0.457246\pi\)
0.133911 + 0.990993i \(0.457246\pi\)
\(60\) 0 0
\(61\) −5.84213 −0.748009 −0.374004 0.927427i \(-0.622015\pi\)
−0.374004 + 0.927427i \(0.622015\pi\)
\(62\) 4.33981 0.551156
\(63\) 0 0
\(64\) 2.73680 0.342100
\(65\) −11.7850 −1.46174
\(66\) 0 0
\(67\) 7.42107 0.906628 0.453314 0.891351i \(-0.350242\pi\)
0.453314 + 0.891351i \(0.350242\pi\)
\(68\) 3.98113 + 6.89551i 0.482782 + 0.836204i
\(69\) 0 0
\(70\) 4.48345 4.57489i 0.535875 0.546804i
\(71\) −7.26320 −0.861983 −0.430992 0.902356i \(-0.641836\pi\)
−0.430992 + 0.902356i \(0.641836\pi\)
\(72\) 0 0
\(73\) −3.77975 6.54672i −0.442386 0.766236i 0.555480 0.831530i \(-0.312535\pi\)
−0.997866 + 0.0652944i \(0.979201\pi\)
\(74\) 1.18878 2.05903i 0.138193 0.239357i
\(75\) 0 0
\(76\) 3.14132 5.44092i 0.360334 0.624116i
\(77\) 5.73749 + 1.47544i 0.653847 + 0.168143i
\(78\) 0 0
\(79\) −6.82846 −0.768262 −0.384131 0.923279i \(-0.625499\pi\)
−0.384131 + 0.923279i \(0.625499\pi\)
\(80\) 1.37072 + 2.37416i 0.153252 + 0.265439i
\(81\) 0 0
\(82\) −1.51655 + 2.62674i −0.167475 + 0.290075i
\(83\) −4.05555 7.02441i −0.445154 0.771029i 0.552909 0.833242i \(-0.313518\pi\)
−0.998063 + 0.0622124i \(0.980184\pi\)
\(84\) 0 0
\(85\) 8.91423 15.4399i 0.966884 1.67469i
\(86\) −1.24884 2.16305i −0.134666 0.233248i
\(87\) 0 0
\(88\) 2.91423 5.04759i 0.310658 0.538075i
\(89\) 4.86389 8.42450i 0.515571 0.892995i −0.484266 0.874921i \(-0.660913\pi\)
0.999837 0.0180741i \(-0.00575348\pi\)
\(90\) 0 0
\(91\) −9.49028 2.44051i −0.994852 0.255835i
\(92\) 0.669905 + 1.16031i 0.0698424 + 0.120971i
\(93\) 0 0
\(94\) −0.171540 −0.0176930
\(95\) −14.0676 −1.44330
\(96\) 0 0
\(97\) −0.421067 0.729309i −0.0427528 0.0740501i 0.843857 0.536568i \(-0.180279\pi\)
−0.886610 + 0.462518i \(0.846946\pi\)
\(98\) 4.55787 2.75564i 0.460414 0.278362i
\(99\) 0 0
\(100\) 3.64132 6.30694i 0.364132 0.630694i
\(101\) −3.87360 + 6.70928i −0.385438 + 0.667598i −0.991830 0.127568i \(-0.959283\pi\)
0.606392 + 0.795166i \(0.292616\pi\)
\(102\) 0 0
\(103\) 1.21737 + 2.10855i 0.119951 + 0.207761i 0.919748 0.392509i \(-0.128393\pi\)
−0.799797 + 0.600271i \(0.795060\pi\)
\(104\) −4.82038 + 8.34914i −0.472677 + 0.818701i
\(105\) 0 0
\(106\) −4.05555 7.02441i −0.393909 0.682271i
\(107\) 5.73229 9.92861i 0.554161 0.959835i −0.443807 0.896122i \(-0.646372\pi\)
0.997968 0.0637128i \(-0.0202942\pi\)
\(108\) 0 0
\(109\) 9.12476 + 15.8046i 0.873994 + 1.51380i 0.857831 + 0.513932i \(0.171812\pi\)
0.0161631 + 0.999869i \(0.494855\pi\)
\(110\) −5.42107 −0.516878
\(111\) 0 0
\(112\) 0.612170 + 2.19574i 0.0578446 + 0.207478i
\(113\) −2.62476 + 4.54622i −0.246917 + 0.427673i −0.962669 0.270682i \(-0.912751\pi\)
0.715752 + 0.698355i \(0.246084\pi\)
\(114\) 0 0
\(115\) 1.50000 2.59808i 0.139876 0.242272i
\(116\) −7.19398 12.4603i −0.667944 1.15691i
\(117\) 0 0
\(118\) −1.56526 −0.144094
\(119\) 10.3759 10.5876i 0.951159 0.970559i
\(120\) 0 0
\(121\) 2.99316 + 5.18431i 0.272106 + 0.471301i
\(122\) 4.44514 0.402444
\(123\) 0 0
\(124\) 8.10533 0.727880
\(125\) −0.396990 −0.0355079
\(126\) 0 0
\(127\) 20.1053 1.78406 0.892030 0.451976i \(-0.149281\pi\)
0.892030 + 0.451976i \(0.149281\pi\)
\(128\) 9.64076 0.852131
\(129\) 0 0
\(130\) 8.96690 0.786449
\(131\) −2.04063 3.53447i −0.178291 0.308808i 0.763005 0.646393i \(-0.223723\pi\)
−0.941295 + 0.337585i \(0.890390\pi\)
\(132\) 0 0
\(133\) −11.3285 2.91321i −0.982302 0.252607i
\(134\) −5.64652 −0.487785
\(135\) 0 0
\(136\) −7.29235 12.6307i −0.625313 1.08307i
\(137\) −0.942820 + 1.63301i −0.0805506 + 0.139518i −0.903487 0.428616i \(-0.859001\pi\)
0.822936 + 0.568134i \(0.192335\pi\)
\(138\) 0 0
\(139\) 6.39768 11.0811i 0.542644 0.939887i −0.456107 0.889925i \(-0.650757\pi\)
0.998751 0.0499621i \(-0.0159101\pi\)
\(140\) 8.37360 8.54439i 0.707699 0.722133i
\(141\) 0 0
\(142\) 5.52640 0.463765
\(143\) 4.14652 + 7.18198i 0.346749 + 0.600587i
\(144\) 0 0
\(145\) −16.1082 + 27.9002i −1.33771 + 2.31699i
\(146\) 2.87592 + 4.98125i 0.238013 + 0.412251i
\(147\) 0 0
\(148\) 2.22025 3.84558i 0.182503 0.316105i
\(149\) 4.02859 + 6.97772i 0.330035 + 0.571637i 0.982518 0.186166i \(-0.0596061\pi\)
−0.652483 + 0.757803i \(0.726273\pi\)
\(150\) 0 0
\(151\) 3.14132 5.44092i 0.255637 0.442776i −0.709432 0.704774i \(-0.751048\pi\)
0.965068 + 0.261999i \(0.0843816\pi\)
\(152\) −5.75404 + 9.96629i −0.466714 + 0.808373i
\(153\) 0 0
\(154\) −4.36552 1.12263i −0.351784 0.0904642i
\(155\) −9.07442 15.7174i −0.728875 1.26245i
\(156\) 0 0
\(157\) 0.703697 0.0561611 0.0280806 0.999606i \(-0.491061\pi\)
0.0280806 + 0.999606i \(0.491061\pi\)
\(158\) 5.19562 0.413341
\(159\) 0 0
\(160\) −9.32558 16.1524i −0.737252 1.27696i
\(161\) 1.74596 1.78157i 0.137601 0.140407i
\(162\) 0 0
\(163\) 9.61793 16.6587i 0.753334 1.30481i −0.192864 0.981225i \(-0.561778\pi\)
0.946198 0.323588i \(-0.104889\pi\)
\(164\) −2.83242 + 4.90589i −0.221175 + 0.383086i
\(165\) 0 0
\(166\) 3.08577 + 5.34471i 0.239502 + 0.414830i
\(167\) 11.6940 20.2546i 0.904907 1.56735i 0.0838661 0.996477i \(-0.473273\pi\)
0.821041 0.570869i \(-0.193393\pi\)
\(168\) 0 0
\(169\) −0.358685 0.621261i −0.0275911 0.0477893i
\(170\) −6.78263 + 11.7479i −0.520204 + 0.901020i
\(171\) 0 0
\(172\) −2.33242 4.03987i −0.177845 0.308037i
\(173\) 8.23912 0.626409 0.313204 0.949686i \(-0.398597\pi\)
0.313204 + 0.949686i \(0.398597\pi\)
\(174\) 0 0
\(175\) −13.1316 3.37690i −0.992656 0.255270i
\(176\) 0.964574 1.67069i 0.0727075 0.125933i
\(177\) 0 0
\(178\) −3.70082 + 6.41001i −0.277388 + 0.480450i
\(179\) 4.95486 + 8.58207i 0.370344 + 0.641454i 0.989618 0.143721i \(-0.0459066\pi\)
−0.619275 + 0.785174i \(0.712573\pi\)
\(180\) 0 0
\(181\) −9.38796 −0.697802 −0.348901 0.937160i \(-0.613445\pi\)
−0.348901 + 0.937160i \(0.613445\pi\)
\(182\) 7.22094 + 1.85693i 0.535251 + 0.137645i
\(183\) 0 0
\(184\) −1.22708 2.12537i −0.0904619 0.156685i
\(185\) −9.94282 −0.731011
\(186\) 0 0
\(187\) −12.5458 −0.917442
\(188\) −0.320380 −0.0233661
\(189\) 0 0
\(190\) 10.7037 0.776528
\(191\) 24.7382 1.78999 0.894996 0.446075i \(-0.147178\pi\)
0.894996 + 0.446075i \(0.147178\pi\)
\(192\) 0 0
\(193\) −0.828460 −0.0596339 −0.0298169 0.999555i \(-0.509492\pi\)
−0.0298169 + 0.999555i \(0.509492\pi\)
\(194\) 0.320380 + 0.554914i 0.0230019 + 0.0398405i
\(195\) 0 0
\(196\) 8.51259 5.14663i 0.608042 0.367617i
\(197\) −5.86156 −0.417619 −0.208810 0.977956i \(-0.566959\pi\)
−0.208810 + 0.977956i \(0.566959\pi\)
\(198\) 0 0
\(199\) 4.62476 + 8.01033i 0.327841 + 0.567837i 0.982083 0.188448i \(-0.0603457\pi\)
−0.654242 + 0.756285i \(0.727012\pi\)
\(200\) −6.66991 + 11.5526i −0.471634 + 0.816893i
\(201\) 0 0
\(202\) 2.94733 5.10493i 0.207374 0.359182i
\(203\) −18.7495 + 19.1319i −1.31596 + 1.34280i
\(204\) 0 0
\(205\) 12.6843 0.885908
\(206\) −0.926268 1.60434i −0.0645362 0.111780i
\(207\) 0 0
\(208\) −1.59549 + 2.76346i −0.110627 + 0.191612i
\(209\) 4.94966 + 8.57306i 0.342375 + 0.593011i
\(210\) 0 0
\(211\) 6.27975 10.8768i 0.432316 0.748793i −0.564756 0.825258i \(-0.691030\pi\)
0.997072 + 0.0764645i \(0.0243632\pi\)
\(212\) −7.57442 13.1193i −0.520213 0.901036i
\(213\) 0 0
\(214\) −4.36156 + 7.55445i −0.298150 + 0.516412i
\(215\) −5.22257 + 9.04576i −0.356176 + 0.616916i
\(216\) 0 0
\(217\) −4.05267 14.5362i −0.275113 0.986781i
\(218\) −6.94282 12.0253i −0.470227 0.814457i
\(219\) 0 0
\(220\) −10.1248 −0.682611
\(221\) 20.7518 1.39592
\(222\) 0 0
\(223\) 10.6940 + 18.5225i 0.716122 + 1.24036i 0.962525 + 0.271192i \(0.0874179\pi\)
−0.246403 + 0.969167i \(0.579249\pi\)
\(224\) −4.16484 14.9385i −0.278275 0.998122i
\(225\) 0 0
\(226\) 1.99712 3.45912i 0.132847 0.230097i
\(227\) −6.31122 + 10.9314i −0.418890 + 0.725539i −0.995828 0.0912487i \(-0.970914\pi\)
0.576938 + 0.816788i \(0.304248\pi\)
\(228\) 0 0
\(229\) 14.4601 + 25.0456i 0.955548 + 1.65506i 0.733110 + 0.680110i \(0.238068\pi\)
0.222438 + 0.974947i \(0.428599\pi\)
\(230\) −1.14132 + 1.97682i −0.0752561 + 0.130347i
\(231\) 0 0
\(232\) 13.1774 + 22.8240i 0.865141 + 1.49847i
\(233\) 10.7255 18.5770i 0.702648 1.21702i −0.264886 0.964280i \(-0.585334\pi\)
0.967534 0.252742i \(-0.0813323\pi\)
\(234\) 0 0
\(235\) 0.358685 + 0.621261i 0.0233980 + 0.0405266i
\(236\) −2.92339 −0.190296
\(237\) 0 0
\(238\) −7.89480 + 8.05582i −0.511744 + 0.522181i
\(239\) −3.86840 + 6.70027i −0.250226 + 0.433404i −0.963588 0.267392i \(-0.913838\pi\)
0.713362 + 0.700796i \(0.247172\pi\)
\(240\) 0 0
\(241\) −3.04583 + 5.27553i −0.196199 + 0.339827i −0.947293 0.320369i \(-0.896193\pi\)
0.751094 + 0.660195i \(0.229527\pi\)
\(242\) −2.27743 3.94462i −0.146399 0.253570i
\(243\) 0 0
\(244\) 8.30206 0.531485
\(245\) −19.5104 10.7451i −1.24647 0.686480i
\(246\) 0 0
\(247\) −8.18715 14.1806i −0.520936 0.902287i
\(248\) −14.8468 −0.942771
\(249\) 0 0
\(250\) 0.302060 0.0191040
\(251\) 1.40164 0.0884705 0.0442352 0.999021i \(-0.485915\pi\)
0.0442352 + 0.999021i \(0.485915\pi\)
\(252\) 0 0
\(253\) −2.11109 −0.132723
\(254\) −15.2977 −0.959862
\(255\) 0 0
\(256\) −12.8090 −0.800564
\(257\) −8.97825 15.5508i −0.560048 0.970031i −0.997492 0.0707853i \(-0.977449\pi\)
0.437444 0.899246i \(-0.355884\pi\)
\(258\) 0 0
\(259\) −8.00684 2.05903i −0.497521 0.127942i
\(260\) 16.7472 1.03862
\(261\) 0 0
\(262\) 1.55267 + 2.68930i 0.0959241 + 0.166145i
\(263\) −3.58809 + 6.21476i −0.221251 + 0.383218i −0.955188 0.295999i \(-0.904347\pi\)
0.733937 + 0.679218i \(0.237681\pi\)
\(264\) 0 0
\(265\) −16.9601 + 29.3757i −1.04185 + 1.80453i
\(266\) 8.61956 + 2.21659i 0.528499 + 0.135908i
\(267\) 0 0
\(268\) −10.5458 −0.644189
\(269\) 1.69850 + 2.94188i 0.103559 + 0.179370i 0.913149 0.407627i \(-0.133644\pi\)
−0.809590 + 0.586996i \(0.800310\pi\)
\(270\) 0 0
\(271\) 5.11793 8.86451i 0.310892 0.538481i −0.667664 0.744463i \(-0.732706\pi\)
0.978556 + 0.205982i \(0.0660389\pi\)
\(272\) −2.41367 4.18061i −0.146351 0.253487i
\(273\) 0 0
\(274\) 0.717370 1.24252i 0.0433379 0.0750634i
\(275\) 5.73749 + 9.93762i 0.345984 + 0.599261i
\(276\) 0 0
\(277\) 1.77975 3.08262i 0.106935 0.185217i −0.807592 0.589741i \(-0.799230\pi\)
0.914527 + 0.404525i \(0.132563\pi\)
\(278\) −4.86784 + 8.43135i −0.291954 + 0.505679i
\(279\) 0 0
\(280\) −15.3382 + 15.6510i −0.916631 + 0.935327i
\(281\) 3.49316 + 6.05034i 0.208385 + 0.360933i 0.951206 0.308557i \(-0.0998461\pi\)
−0.742821 + 0.669490i \(0.766513\pi\)
\(282\) 0 0
\(283\) −30.2164 −1.79618 −0.898090 0.439812i \(-0.855045\pi\)
−0.898090 + 0.439812i \(0.855045\pi\)
\(284\) 10.3215 0.612468
\(285\) 0 0
\(286\) −3.15499 5.46460i −0.186558 0.323129i
\(287\) 10.2145 + 2.62674i 0.602942 + 0.155052i
\(288\) 0 0
\(289\) −7.19686 + 12.4653i −0.423345 + 0.733255i
\(290\) 12.2564 21.2286i 0.719718 1.24659i
\(291\) 0 0
\(292\) 5.37128 + 9.30333i 0.314330 + 0.544436i
\(293\) −7.61793 + 13.1946i −0.445044 + 0.770839i −0.998055 0.0623349i \(-0.980145\pi\)
0.553011 + 0.833174i \(0.313479\pi\)
\(294\) 0 0
\(295\) 3.27292 + 5.66886i 0.190556 + 0.330054i
\(296\) −4.06690 + 7.04407i −0.236383 + 0.409428i
\(297\) 0 0
\(298\) −3.06526 5.30919i −0.177566 0.307553i
\(299\) 3.49192 0.201943
\(300\) 0 0
\(301\) −6.07893 + 6.20292i −0.350384 + 0.357530i
\(302\) −2.39015 + 4.13987i −0.137538 + 0.238223i
\(303\) 0 0
\(304\) −1.90451 + 3.29872i −0.109231 + 0.189194i
\(305\) −9.29467 16.0988i −0.532211 0.921817i
\(306\) 0 0
\(307\) −1.03310 −0.0589623 −0.0294812 0.999565i \(-0.509386\pi\)
−0.0294812 + 0.999565i \(0.509386\pi\)
\(308\) −8.15335 2.09671i −0.464580 0.119471i
\(309\) 0 0
\(310\) 6.90451 + 11.9590i 0.392150 + 0.679224i
\(311\) 9.32038 0.528510 0.264255 0.964453i \(-0.414874\pi\)
0.264255 + 0.964453i \(0.414874\pi\)
\(312\) 0 0
\(313\) 6.09166 0.344321 0.172160 0.985069i \(-0.444925\pi\)
0.172160 + 0.985069i \(0.444925\pi\)
\(314\) −0.535426 −0.0302159
\(315\) 0 0
\(316\) 9.70370 0.545876
\(317\) −23.3009 −1.30871 −0.654356 0.756187i \(-0.727060\pi\)
−0.654356 + 0.756187i \(0.727060\pi\)
\(318\) 0 0
\(319\) 22.6706 1.26931
\(320\) 4.35417 + 7.54165i 0.243406 + 0.421591i
\(321\) 0 0
\(322\) −1.32846 + 1.35556i −0.0740322 + 0.0755421i
\(323\) 24.7713 1.37831
\(324\) 0 0
\(325\) −9.49028 16.4377i −0.526426 0.911797i
\(326\) −7.31806 + 12.6752i −0.405310 + 0.702017i
\(327\) 0 0
\(328\) 5.18822 8.98627i 0.286472 0.496184i
\(329\) 0.160190 + 0.574573i 0.00883155 + 0.0316772i
\(330\) 0 0
\(331\) 14.6764 0.806685 0.403343 0.915049i \(-0.367848\pi\)
0.403343 + 0.915049i \(0.367848\pi\)
\(332\) 5.76320 + 9.98215i 0.316297 + 0.547842i
\(333\) 0 0
\(334\) −8.89768 + 15.4112i −0.486859 + 0.843265i
\(335\) 11.8067 + 20.4498i 0.645069 + 1.11729i
\(336\) 0 0
\(337\) −12.8119 + 22.1909i −0.697909 + 1.20881i 0.271281 + 0.962500i \(0.412553\pi\)
−0.969190 + 0.246314i \(0.920781\pi\)
\(338\) 0.272915 + 0.472703i 0.0148446 + 0.0257116i
\(339\) 0 0
\(340\) −12.6677 + 21.9411i −0.687003 + 1.18992i
\(341\) −6.38564 + 11.0603i −0.345802 + 0.598946i
\(342\) 0 0
\(343\) −13.4863 12.6933i −0.728193 0.685372i
\(344\) 4.27236 + 7.39994i 0.230350 + 0.398978i
\(345\) 0 0
\(346\) −6.26896 −0.337021
\(347\) 11.2930 0.606242 0.303121 0.952952i \(-0.401971\pi\)
0.303121 + 0.952952i \(0.401971\pi\)
\(348\) 0 0
\(349\) 5.64815 + 9.78289i 0.302339 + 0.523666i 0.976665 0.214767i \(-0.0688993\pi\)
−0.674327 + 0.738433i \(0.735566\pi\)
\(350\) 9.99153 + 2.56941i 0.534070 + 0.137341i
\(351\) 0 0
\(352\) −6.56238 + 11.3664i −0.349776 + 0.605830i
\(353\) 9.25116 16.0235i 0.492390 0.852844i −0.507572 0.861609i \(-0.669457\pi\)
0.999962 + 0.00876550i \(0.00279018\pi\)
\(354\) 0 0
\(355\) −11.5555 20.0148i −0.613305 1.06227i
\(356\) −6.91191 + 11.9718i −0.366330 + 0.634503i
\(357\) 0 0
\(358\) −3.77004 6.52989i −0.199253 0.345116i
\(359\) −9.94802 + 17.2305i −0.525037 + 0.909390i 0.474538 + 0.880235i \(0.342615\pi\)
−0.999575 + 0.0291551i \(0.990718\pi\)
\(360\) 0 0
\(361\) −0.272915 0.472703i −0.0143639 0.0248791i
\(362\) 7.14308 0.375432
\(363\) 0 0
\(364\) 13.4863 + 3.46813i 0.706876 + 0.181779i
\(365\) 12.0270 20.8313i 0.629520 1.09036i
\(366\) 0 0
\(367\) −2.87524 + 4.98006i −0.150086 + 0.259957i −0.931259 0.364358i \(-0.881288\pi\)
0.781173 + 0.624315i \(0.214622\pi\)
\(368\) −0.406150 0.703472i −0.0211720 0.0366710i
\(369\) 0 0
\(370\) 7.56526 0.393299
\(371\) −19.7411 + 20.1437i −1.02490 + 1.04581i
\(372\) 0 0
\(373\) −1.00000 1.73205i −0.0517780 0.0896822i 0.838975 0.544170i \(-0.183156\pi\)
−0.890753 + 0.454488i \(0.849822\pi\)
\(374\) 9.54583 0.493603
\(375\) 0 0
\(376\) 0.586849 0.0302644
\(377\) −37.4991 −1.93130
\(378\) 0 0
\(379\) 8.95322 0.459896 0.229948 0.973203i \(-0.426144\pi\)
0.229948 + 0.973203i \(0.426144\pi\)
\(380\) 19.9910 1.02552
\(381\) 0 0
\(382\) −18.8227 −0.963053
\(383\) −10.0825 17.4634i −0.515192 0.892338i −0.999845 0.0176316i \(-0.994387\pi\)
0.484653 0.874707i \(-0.338946\pi\)
\(384\) 0 0
\(385\) 5.06238 + 18.1579i 0.258003 + 0.925410i
\(386\) 0.630356 0.0320843
\(387\) 0 0
\(388\) 0.598364 + 1.03640i 0.0303773 + 0.0526151i
\(389\) 16.7999 29.0982i 0.851787 1.47534i −0.0278066 0.999613i \(-0.508852\pi\)
0.879594 0.475725i \(-0.157814\pi\)
\(390\) 0 0
\(391\) −2.64132 + 4.57489i −0.133577 + 0.231362i
\(392\) −15.5928 + 9.42724i −0.787554 + 0.476148i
\(393\) 0 0
\(394\) 4.45993 0.224688
\(395\) −10.8639 18.8168i −0.546621 0.946776i
\(396\) 0 0
\(397\) 2.06922 3.58399i 0.103851 0.179875i −0.809417 0.587234i \(-0.800217\pi\)
0.913268 + 0.407359i \(0.133550\pi\)
\(398\) −3.51887 6.09487i −0.176385 0.305508i
\(399\) 0 0
\(400\) −2.20765 + 3.82377i −0.110383 + 0.191189i
\(401\) −7.73461 13.3967i −0.386248 0.669001i 0.605693 0.795698i \(-0.292896\pi\)
−0.991941 + 0.126697i \(0.959562\pi\)
\(402\) 0 0
\(403\) 10.5624 18.2946i 0.526150 0.911318i
\(404\) 5.50465 9.53433i 0.273866 0.474350i
\(405\) 0 0
\(406\) 14.2661 14.5570i 0.708014 0.722454i
\(407\) 3.49837 + 6.05935i 0.173408 + 0.300351i
\(408\) 0 0
\(409\) 27.3937 1.35453 0.677266 0.735738i \(-0.263165\pi\)
0.677266 + 0.735738i \(0.263165\pi\)
\(410\) −9.65116 −0.476637
\(411\) 0 0
\(412\) −1.72996 2.99638i −0.0852292 0.147621i
\(413\) 1.46169 + 5.24284i 0.0719253 + 0.257983i
\(414\) 0 0
\(415\) 12.9045 22.3513i 0.633458 1.09718i
\(416\) 10.8547 18.8009i 0.532197 0.921792i
\(417\) 0 0
\(418\) −3.76608 6.52304i −0.184205 0.319052i
\(419\) 10.5000 18.1865i 0.512959 0.888470i −0.486928 0.873442i \(-0.661883\pi\)
0.999887 0.0150285i \(-0.00478389\pi\)
\(420\) 0 0
\(421\) −9.97949 17.2850i −0.486371 0.842419i 0.513507 0.858086i \(-0.328346\pi\)
−0.999877 + 0.0156670i \(0.995013\pi\)
\(422\) −4.77812 + 8.27594i −0.232595 + 0.402867i
\(423\) 0 0
\(424\) 13.8743 + 24.0310i 0.673795 + 1.16705i
\(425\) 28.7141 1.39284
\(426\) 0 0
\(427\) −4.15103 14.8890i −0.200882 0.720530i
\(428\) −8.14596 + 14.1092i −0.393750 + 0.681995i
\(429\) 0 0
\(430\) 3.97373 6.88271i 0.191630 0.331914i
\(431\) −10.0647 17.4326i −0.484800 0.839698i 0.515048 0.857162i \(-0.327774\pi\)
−0.999847 + 0.0174637i \(0.994441\pi\)
\(432\) 0 0
\(433\) 11.8558 0.569754 0.284877 0.958564i \(-0.408047\pi\)
0.284877 + 0.958564i \(0.408047\pi\)
\(434\) 3.08358 + 11.0603i 0.148017 + 0.530909i
\(435\) 0 0
\(436\) −12.9669 22.4593i −0.621002 1.07561i
\(437\) 4.16827 0.199395
\(438\) 0 0
\(439\) −2.15787 −0.102989 −0.0514947 0.998673i \(-0.516399\pi\)
−0.0514947 + 0.998673i \(0.516399\pi\)
\(440\) 18.5458 0.884138
\(441\) 0 0
\(442\) −15.7896 −0.751035
\(443\) 1.96225 0.0932293 0.0466147 0.998913i \(-0.485157\pi\)
0.0466147 + 0.998913i \(0.485157\pi\)
\(444\) 0 0
\(445\) 30.9532 1.46732
\(446\) −8.13680 14.0934i −0.385289 0.667340i
\(447\) 0 0
\(448\) 1.94459 + 6.97489i 0.0918731 + 0.329533i
\(449\) −2.15211 −0.101564 −0.0507822 0.998710i \(-0.516171\pi\)
−0.0507822 + 0.998710i \(0.516171\pi\)
\(450\) 0 0
\(451\) −4.46294 7.73004i −0.210152 0.363993i
\(452\) 3.72996 6.46049i 0.175443 0.303876i
\(453\) 0 0
\(454\) 4.80206 8.31741i 0.225372 0.390356i
\(455\) −8.37360 30.0346i −0.392561 1.40804i
\(456\) 0 0
\(457\) −13.1053 −0.613042 −0.306521 0.951864i \(-0.599165\pi\)
−0.306521 + 0.951864i \(0.599165\pi\)
\(458\) −11.0023 19.0566i −0.514105 0.890456i
\(459\) 0 0
\(460\) −2.13160 + 3.69204i −0.0993864 + 0.172142i
\(461\) −2.74364 4.75212i −0.127784 0.221328i 0.795034 0.606565i \(-0.207453\pi\)
−0.922818 + 0.385237i \(0.874120\pi\)
\(462\) 0 0
\(463\) 10.2495 17.7527i 0.476336 0.825038i −0.523296 0.852151i \(-0.675298\pi\)
0.999632 + 0.0271127i \(0.00863130\pi\)
\(464\) 4.36156 + 7.55445i 0.202481 + 0.350707i
\(465\) 0 0
\(466\) −8.16075 + 14.1348i −0.378039 + 0.654783i
\(467\) 19.6758 34.0795i 0.910487 1.57701i 0.0971099 0.995274i \(-0.469040\pi\)
0.813377 0.581736i \(-0.197626\pi\)
\(468\) 0 0
\(469\) 5.27292 + 18.9130i 0.243481 + 0.873322i
\(470\) −0.272915 0.472703i −0.0125886 0.0218041i
\(471\) 0 0
\(472\) 5.35486 0.246477
\(473\) 7.35021 0.337963
\(474\) 0 0
\(475\) −11.3285 19.6215i −0.519785 0.900295i
\(476\) −14.7449 + 15.0456i −0.675830 + 0.689615i
\(477\) 0 0
\(478\) 2.94338 5.09808i 0.134627 0.233181i
\(479\) −8.37360 + 14.5035i −0.382600 + 0.662682i −0.991433 0.130616i \(-0.958304\pi\)
0.608833 + 0.793298i \(0.291638\pi\)
\(480\) 0 0
\(481\) −5.78659 10.0227i −0.263846 0.456994i
\(482\) 2.31750 4.01403i 0.105559 0.182834i
\(483\) 0 0
\(484\) −4.25348 7.36725i −0.193340 0.334875i
\(485\) 1.33981 2.32062i 0.0608376 0.105374i
\(486\) 0 0
\(487\) −2.00288 3.46909i −0.0907591 0.157199i 0.817072 0.576536i \(-0.195596\pi\)
−0.907831 + 0.419337i \(0.862263\pi\)
\(488\) −15.2071 −0.688394
\(489\) 0 0
\(490\) 14.8450 + 8.17571i 0.670629 + 0.369341i
\(491\) −12.3256 + 21.3485i −0.556246 + 0.963446i 0.441560 + 0.897232i \(0.354425\pi\)
−0.997805 + 0.0662140i \(0.978908\pi\)
\(492\) 0 0
\(493\) 28.3646 49.1289i 1.27748 2.21265i
\(494\) 6.22941 + 10.7897i 0.280274 + 0.485449i
\(495\) 0 0
\(496\) −4.91410 −0.220649
\(497\) −5.16075 18.5107i −0.231491 0.830317i
\(498\) 0 0
\(499\) 12.2798 + 21.2692i 0.549717 + 0.952138i 0.998294 + 0.0583936i \(0.0185978\pi\)
−0.448576 + 0.893744i \(0.648069\pi\)
\(500\) 0.564149 0.0252295
\(501\) 0 0
\(502\) −1.06647 −0.0475990
\(503\) −12.3743 −0.551742 −0.275871 0.961195i \(-0.588966\pi\)
−0.275871 + 0.961195i \(0.588966\pi\)
\(504\) 0 0
\(505\) −24.6512 −1.09696
\(506\) 1.60628 0.0714078
\(507\) 0 0
\(508\) −28.5710 −1.26763
\(509\) 5.59781 + 9.69569i 0.248118 + 0.429754i 0.963004 0.269488i \(-0.0868544\pi\)
−0.714885 + 0.699242i \(0.753521\pi\)
\(510\) 0 0
\(511\) 13.9991 14.2846i 0.619282 0.631912i
\(512\) −9.53543 −0.421410
\(513\) 0 0
\(514\) 6.83134 + 11.8322i 0.301317 + 0.521897i
\(515\) −3.87360 + 6.70928i −0.170691 + 0.295646i
\(516\) 0 0
\(517\) 0.252405 0.437179i 0.0111008 0.0192271i
\(518\) 6.09222 + 1.56667i 0.267677 + 0.0688353i
\(519\) 0 0
\(520\) −30.6764 −1.34525
\(521\) 15.8096 + 27.3830i 0.692631 + 1.19967i 0.970973 + 0.239189i \(0.0768817\pi\)
−0.278342 + 0.960482i \(0.589785\pi\)
\(522\) 0 0
\(523\) 14.1179 24.4530i 0.617334 1.06925i −0.372636 0.927977i \(-0.621546\pi\)
0.989970 0.141276i \(-0.0451205\pi\)
\(524\) 2.89987 + 5.02272i 0.126681 + 0.219419i
\(525\) 0 0
\(526\) 2.73010 4.72867i 0.119038 0.206180i
\(527\) 15.9789 + 27.6763i 0.696053 + 1.20560i
\(528\) 0 0
\(529\) 11.0555 19.1488i 0.480676 0.832555i
\(530\) 12.9045 22.3513i 0.560536 0.970877i
\(531\) 0 0
\(532\) 16.0985 + 4.13987i 0.697958 + 0.179486i
\(533\) 7.38207 + 12.7861i 0.319753 + 0.553829i
\(534\) 0 0
\(535\) 36.4796 1.57715
\(536\) 19.3171 0.834372
\(537\) 0 0
\(538\) −1.29235 2.23841i −0.0557170 0.0965046i
\(539\) 0.316422 + 15.6707i 0.0136293 + 0.674983i
\(540\) 0 0
\(541\) −21.4045 + 37.0737i −0.920252 + 1.59392i −0.121227 + 0.992625i \(0.538683\pi\)
−0.799025 + 0.601298i \(0.794650\pi\)
\(542\) −3.89411 + 6.74480i −0.167266 + 0.289714i
\(543\) 0 0
\(544\) 16.4212 + 28.4424i 0.704053 + 1.21946i
\(545\) −29.0345 + 50.2892i −1.24370 + 2.15415i
\(546\) 0 0
\(547\) −6.77579 11.7360i −0.289712 0.501796i 0.684029 0.729455i \(-0.260226\pi\)
−0.973741 + 0.227659i \(0.926893\pi\)
\(548\) 1.33981 2.32062i 0.0572339 0.0991319i
\(549\) 0 0
\(550\) −4.36552 7.56130i −0.186146 0.322415i
\(551\) −44.7623 −1.90694
\(552\) 0 0
\(553\) −4.85185 17.4027i −0.206322 0.740039i
\(554\) −1.35417 + 2.34549i −0.0575332 + 0.0996505i
\(555\) 0 0
\(556\) −9.09153 + 15.7470i −0.385567 + 0.667821i
\(557\) 16.3925 + 28.3926i 0.694572 + 1.20303i 0.970325 + 0.241805i \(0.0777394\pi\)
−0.275753 + 0.961228i \(0.588927\pi\)
\(558\) 0 0
\(559\) −12.1579 −0.514223
\(560\) −5.07674 + 5.18029i −0.214532 + 0.218907i
\(561\) 0 0
\(562\) −2.65787 4.60356i −0.112115 0.194189i
\(563\) 17.1546 0.722980 0.361490 0.932376i \(-0.382268\pi\)
0.361490 + 0.932376i \(0.382268\pi\)
\(564\) 0 0
\(565\) −16.7037 −0.702730
\(566\) 22.9910 0.966383
\(567\) 0 0
\(568\) −18.9062 −0.793286
\(569\) −12.8993 −0.540767 −0.270384 0.962753i \(-0.587151\pi\)
−0.270384 + 0.962753i \(0.587151\pi\)
\(570\) 0 0
\(571\) −0.282630 −0.0118277 −0.00591385 0.999983i \(-0.501882\pi\)
−0.00591385 + 0.999983i \(0.501882\pi\)
\(572\) −5.89248 10.2061i −0.246377 0.426737i
\(573\) 0 0
\(574\) −7.77197 1.99863i −0.324396 0.0834212i
\(575\) 4.83173 0.201497
\(576\) 0 0
\(577\) 1.08289 + 1.87562i 0.0450814 + 0.0780832i 0.887686 0.460450i \(-0.152312\pi\)
−0.842604 + 0.538533i \(0.818979\pi\)
\(578\) 5.47592 9.48458i 0.227768 0.394506i
\(579\) 0 0
\(580\) 22.8908 39.6481i 0.950490 1.64630i
\(581\) 15.0205 15.3269i 0.623156 0.635866i
\(582\) 0 0
\(583\) 23.8695 0.988573
\(584\) −9.83873 17.0412i −0.407130 0.705169i
\(585\) 0 0
\(586\) 5.79630 10.0395i 0.239443 0.414728i
\(587\) −8.38796 14.5284i −0.346208 0.599650i 0.639364 0.768904i \(-0.279198\pi\)
−0.985573 + 0.169254i \(0.945864\pi\)
\(588\) 0 0
\(589\) 12.6082 21.8381i 0.519512 0.899822i
\(590\) −2.49028 4.31330i −0.102523 0.177576i
\(591\) 0 0
\(592\) −1.34609 + 2.33150i −0.0553240 + 0.0958240i
\(593\) −12.5933 + 21.8122i −0.517145 + 0.895721i 0.482657 + 0.875809i \(0.339672\pi\)
−0.999802 + 0.0199114i \(0.993662\pi\)
\(594\) 0 0
\(595\) 45.6833 + 11.7479i 1.87283 + 0.481615i
\(596\) −5.72489 9.91581i −0.234501 0.406167i
\(597\) 0 0
\(598\) −2.65692 −0.108650
\(599\) −28.7324 −1.17397 −0.586987 0.809596i \(-0.699686\pi\)
−0.586987 + 0.809596i \(0.699686\pi\)
\(600\) 0 0
\(601\) 18.3977 + 31.8657i 0.750457 + 1.29983i 0.947601 + 0.319455i \(0.103500\pi\)
−0.197144 + 0.980374i \(0.563167\pi\)
\(602\) 4.62532 4.71966i 0.188514 0.192359i
\(603\) 0 0
\(604\) −4.46402 + 7.73191i −0.181638 + 0.314607i
\(605\) −9.52408 + 16.4962i −0.387209 + 0.670665i
\(606\) 0 0
\(607\) −18.9503 32.8230i −0.769171 1.33224i −0.938013 0.346600i \(-0.887336\pi\)
0.168842 0.985643i \(-0.445997\pi\)
\(608\) 12.9572 22.4425i 0.525483 0.910163i
\(609\) 0 0
\(610\) 7.07210 + 12.2492i 0.286341 + 0.495957i
\(611\) −0.417500 + 0.723131i −0.0168902 + 0.0292547i
\(612\) 0 0
\(613\) −19.0196 32.9428i −0.768193 1.33055i −0.938542 0.345165i \(-0.887823\pi\)
0.170349 0.985384i \(-0.445511\pi\)
\(614\) 0.786064 0.0317230
\(615\) 0 0
\(616\) 14.9347 + 3.84060i 0.601738 + 0.154742i
\(617\) 13.2632 22.9725i 0.533956 0.924839i −0.465257 0.885176i \(-0.654038\pi\)
0.999213 0.0396637i \(-0.0126287\pi\)
\(618\) 0 0
\(619\) −6.35185 + 11.0017i −0.255302 + 0.442197i −0.964978 0.262332i \(-0.915508\pi\)
0.709675 + 0.704529i \(0.248842\pi\)
\(620\) 12.8954 + 22.3354i 0.517890 + 0.897012i
\(621\) 0 0
\(622\) −7.09166 −0.284350
\(623\) 24.9263 + 6.41001i 0.998650 + 0.256811i
\(624\) 0 0
\(625\) 12.1803 + 21.0969i 0.487212 + 0.843877i
\(626\) −4.63500 −0.185252
\(627\) 0 0
\(628\) −1.00000 −0.0399043
\(629\) 17.5081 0.698093
\(630\) 0 0
\(631\) 20.6764 0.823113 0.411556 0.911384i \(-0.364985\pi\)
0.411556 + 0.911384i \(0.364985\pi\)
\(632\) −17.7745 −0.707034
\(633\) 0 0
\(634\) 17.7292 0.704114
\(635\) 31.9870 + 55.4031i 1.26937 + 2.19861i
\(636\) 0 0
\(637\) −0.523388 25.9206i −0.0207374 1.02701i
\(638\) −17.2495 −0.682915
\(639\) 0 0
\(640\) 15.3382 + 26.5665i 0.606295 + 1.05013i
\(641\) 13.9870 24.2262i 0.552454 0.956878i −0.445643 0.895211i \(-0.647025\pi\)
0.998097 0.0616674i \(-0.0196418\pi\)
\(642\) 0 0
\(643\) −13.9903 + 24.2319i −0.551723 + 0.955612i 0.446427 + 0.894820i \(0.352696\pi\)
−0.998150 + 0.0607924i \(0.980637\pi\)
\(644\) −2.48113 + 2.53173i −0.0977700 + 0.0997641i
\(645\) 0 0
\(646\) −18.8479 −0.741560
\(647\) −2.30834 3.99816i −0.0907503 0.157184i 0.817077 0.576529i \(-0.195593\pi\)
−0.907827 + 0.419345i \(0.862260\pi\)
\(648\) 0 0
\(649\) 2.30314 3.98916i 0.0904061 0.156588i
\(650\) 7.22094 + 12.5070i 0.283228 + 0.490566i
\(651\) 0 0
\(652\) −13.6677 + 23.6732i −0.535269 + 0.927113i
\(653\) −5.79016 10.0288i −0.226586 0.392459i 0.730208 0.683225i \(-0.239423\pi\)
−0.956794 + 0.290766i \(0.906090\pi\)
\(654\) 0 0
\(655\) 6.49316 11.2465i 0.253709 0.439437i
\(656\) 1.71724 2.97434i 0.0670468 0.116129i
\(657\) 0 0
\(658\) −0.121885 0.437179i −0.00475156 0.0170430i
\(659\) −2.36840 4.10219i −0.0922598 0.159799i 0.816202 0.577767i \(-0.196076\pi\)
−0.908462 + 0.417968i \(0.862742\pi\)
\(660\) 0 0
\(661\) −13.8227 −0.537641 −0.268820 0.963190i \(-0.586634\pi\)
−0.268820 + 0.963190i \(0.586634\pi\)
\(662\) −11.1669 −0.434014
\(663\) 0 0
\(664\) −10.5566 18.2846i −0.409676 0.709580i
\(665\) −9.99549 35.8520i −0.387608 1.39028i
\(666\) 0 0
\(667\) 4.77292 8.26693i 0.184808 0.320097i
\(668\) −16.6179 + 28.7831i −0.642967 + 1.11365i
\(669\) 0 0
\(670\) −8.98345 15.5598i −0.347061 0.601127i
\(671\) −6.54063 + 11.3287i −0.252498 + 0.437340i
\(672\) 0 0
\(673\) −3.01367 5.21983i −0.116169 0.201210i 0.802078 0.597220i \(-0.203728\pi\)
−0.918246 + 0.396010i \(0.870395\pi\)
\(674\) 9.74828 16.8845i 0.375490 0.650367i
\(675\) 0 0
\(676\) 0.509715 + 0.882853i 0.0196044 + 0.0339559i
\(677\) −22.8856 −0.879567 −0.439783 0.898104i \(-0.644945\pi\)
−0.439783 + 0.898104i \(0.644945\pi\)
\(678\) 0 0
\(679\) 1.55950 1.59131i 0.0598482 0.0610689i
\(680\) 23.2038 40.1902i 0.889826 1.54122i
\(681\) 0 0
\(682\) 4.85868 8.41549i 0.186049 0.322246i
\(683\) −5.14940 8.91901i −0.197036 0.341277i 0.750530 0.660836i \(-0.229798\pi\)
−0.947566 + 0.319560i \(0.896465\pi\)
\(684\) 0 0
\(685\) −6.00000 −0.229248
\(686\) 10.2614 + 9.65801i 0.391783 + 0.368745i
\(687\) 0 0
\(688\) 1.41410 + 2.44929i 0.0539120 + 0.0933782i
\(689\) −39.4821 −1.50415
\(690\) 0 0
\(691\) 29.0722 1.10596 0.552980 0.833195i \(-0.313491\pi\)
0.552980 + 0.833195i \(0.313491\pi\)
\(692\) −11.7083 −0.445084
\(693\) 0 0
\(694\) −8.59261 −0.326171
\(695\) 40.7141 1.54437
\(696\) 0 0
\(697\) −22.3354 −0.846015
\(698\) −4.29755 7.44357i −0.162665 0.281743i
\(699\) 0 0
\(700\) 18.6609 + 4.79881i 0.705315 + 0.181378i
\(701\) −27.4153 −1.03546 −0.517731 0.855543i \(-0.673223\pi\)
−0.517731 + 0.855543i \(0.673223\pi\)
\(702\) 0 0
\(703\) −6.90739 11.9640i −0.260517 0.451229i
\(704\) 3.06402 5.30703i 0.115479 0.200016i
\(705\) 0 0
\(706\) −7.03899 + 12.1919i −0.264916 + 0.458848i
\(707\) −19.8513 5.10493i −0.746585 0.191991i
\(708\) 0 0
\(709\) −36.9669 −1.38832 −0.694160 0.719820i \(-0.744224\pi\)
−0.694160 + 0.719820i \(0.744224\pi\)
\(710\) 8.79235 + 15.2288i 0.329971 + 0.571526i
\(711\) 0 0
\(712\) 12.6607 21.9291i 0.474481 0.821826i
\(713\) 2.68878 + 4.65710i 0.100696 + 0.174410i
\(714\) 0 0
\(715\) −13.1940 + 22.8526i −0.493427 + 0.854641i
\(716\) −7.04118 12.1957i −0.263141 0.455774i
\(717\) 0 0
\(718\) 7.56922 13.1103i 0.282481 0.489271i
\(719\) −20.2599 + 35.0912i −0.755568 + 1.30868i 0.189524 + 0.981876i \(0.439306\pi\)
−0.945092 + 0.326806i \(0.894028\pi\)
\(720\) 0 0
\(721\) −4.50877 + 4.60073i −0.167915 + 0.171340i
\(722\) 0.207655 + 0.359668i 0.00772811 + 0.0133855i
\(723\) 0 0
\(724\) 13.3409 0.495811
\(725\) −51.8870 −1.92704
\(726\) 0 0
\(727\) 7.62081 + 13.1996i 0.282640 + 0.489547i 0.972034 0.234840i \(-0.0754565\pi\)
−0.689394 + 0.724386i \(0.742123\pi\)
\(728\) −24.7033 6.35267i −0.915565 0.235446i
\(729\) 0 0
\(730\) −9.15103 + 15.8500i −0.338695 + 0.586637i
\(731\) 9.19630 15.9285i 0.340138 0.589136i
\(732\) 0 0
\(733\) −16.2895 28.2142i −0.601665 1.04211i −0.992569 0.121683i \(-0.961171\pi\)
0.390904 0.920432i \(-0.372163\pi\)
\(734\) 2.18770 3.78921i 0.0807495 0.139862i
\(735\) 0 0
\(736\) 2.76320 + 4.78600i 0.101853 + 0.176414i
\(737\) 8.30834 14.3905i 0.306042 0.530080i
\(738\) 0 0
\(739\) −3.50684 6.07402i −0.129001 0.223436i 0.794289 0.607540i \(-0.207844\pi\)
−0.923290 + 0.384104i \(0.874510\pi\)
\(740\) 14.1294 0.519407
\(741\) 0 0
\(742\) 15.0205 15.3269i 0.551420 0.562667i
\(743\) 17.5059 30.3211i 0.642229 1.11237i −0.342705 0.939443i \(-0.611343\pi\)
0.984934 0.172930i \(-0.0553234\pi\)
\(744\) 0 0
\(745\) −12.8187 + 22.2027i −0.469642 + 0.813445i
\(746\) 0.760877 + 1.31788i 0.0278577 + 0.0482509i
\(747\) 0 0
\(748\) 17.8285 0.651873
\(749\) 29.3766 + 7.55445i 1.07340 + 0.276034i
\(750\) 0 0
\(751\) 2.13844 + 3.70388i 0.0780327 + 0.135157i 0.902401 0.430897i \(-0.141803\pi\)
−0.824368 + 0.566054i \(0.808469\pi\)
\(752\) 0.194240 0.00708319
\(753\) 0 0
\(754\) 28.5322 1.03908
\(755\) 19.9910 0.727546
\(756\) 0 0
\(757\) −34.9611 −1.27068 −0.635342 0.772231i \(-0.719141\pi\)
−0.635342 + 0.772231i \(0.719141\pi\)
\(758\) −6.81230 −0.247434
\(759\) 0 0
\(760\) −36.6181 −1.32828
\(761\) 2.29179 + 3.96950i 0.0830773 + 0.143894i 0.904570 0.426324i \(-0.140192\pi\)
−0.821493 + 0.570219i \(0.806858\pi\)
\(762\) 0 0
\(763\) −33.7954 + 34.4846i −1.22347 + 1.24843i
\(764\) −35.1546 −1.27185
\(765\) 0 0
\(766\) 7.67154 + 13.2875i 0.277184 + 0.480097i
\(767\) −3.80959 + 6.59840i −0.137556 + 0.238254i
\(768\) 0 0
\(769\) −8.47949 + 14.6869i −0.305778 + 0.529623i −0.977434 0.211240i \(-0.932250\pi\)
0.671656 + 0.740863i \(0.265583\pi\)
\(770\) −3.85185 13.8159i −0.138811 0.497890i
\(771\) 0 0
\(772\) 1.17730 0.0423718
\(773\) 20.1420 + 34.8870i 0.724458 + 1.25480i 0.959197 + 0.282739i \(0.0912430\pi\)
−0.234739 + 0.972058i \(0.575424\pi\)
\(774\) 0 0
\(775\) 14.6150 25.3140i 0.524988 0.909306i
\(776\) −1.09604 1.89840i −0.0393456 0.0681485i
\(777\) 0 0
\(778\) −12.7826 + 22.1402i −0.458279 + 0.793763i
\(779\) 8.81191 + 15.2627i 0.315719 + 0.546842i
\(780\) 0 0
\(781\) −8.13160 + 14.0843i −0.290972 + 0.503977i
\(782\) 2.00972 3.48093i 0.0718673 0.124478i
\(783\) 0 0
\(784\) −5.16101 + 3.12030i −0.184322 + 0.111439i
\(785\) 1.11956 + 1.93914i 0.0399589 + 0.0692108i
\(786\) 0 0
\(787\) 47.2107 1.68288 0.841439 0.540352i \(-0.181709\pi\)
0.841439 + 0.540352i \(0.181709\pi\)
\(788\) 8.32967 0.296732
\(789\) 0 0
\(790\) 8.26608 + 14.3173i 0.294094 + 0.509386i
\(791\) −13.4513 3.45912i −0.478273 0.122992i
\(792\) 0 0
\(793\) 10.8187 18.7386i 0.384185 0.665428i
\(794\) −1.57442 + 2.72698i −0.0558741 + 0.0967767i
\(795\) 0 0
\(796\) −6.57210 11.3832i −0.232942 0.403467i
\(797\) −2.01367 + 3.48778i −0.0713280 + 0.123544i −0.899484 0.436955i \(-0.856057\pi\)
0.828156 + 0.560498i \(0.189390\pi\)
\(798\) 0 0
\(799\) −0.631600 1.09396i −0.0223444 0.0387016i
\(800\) 15.0196 26.0146i 0.531022 0.919757i
\(801\) 0 0
\(802\) 5.88508 + 10.1933i 0.207810 + 0.359937i
\(803\) −16.9267 −0.597329
\(804\) 0 0
\(805\) 7.68715 + 1.97682i 0.270936 + 0.0696736i
\(806\) −8.03667 + 13.9199i −0.283080 + 0.490308i
\(807\) 0 0
\(808\) −10.0830 + 17.4643i −0.354720 + 0.614392i
\(809\) 5.94119 + 10.2904i 0.208881 + 0.361792i 0.951362 0.308074i \(-0.0996845\pi\)
−0.742481 + 0.669867i \(0.766351\pi\)
\(810\) 0 0
\(811\) −21.1111 −0.741311 −0.370655 0.928770i \(-0.620867\pi\)
−0.370655 + 0.928770i \(0.620867\pi\)
\(812\) 26.6443 27.1878i 0.935033 0.954103i
\(813\) 0 0
\(814\) −2.66182 4.61042i −0.0932969 0.161595i
\(815\) 61.2074 2.14400
\(816\) 0 0
\(817\) −14.5127 −0.507736
\(818\) −20.8432 −0.728767
\(819\) 0 0
\(820\) −18.0252 −0.629467
\(821\) 37.2919 1.30150 0.650749 0.759293i \(-0.274455\pi\)
0.650749 + 0.759293i \(0.274455\pi\)
\(822\) 0 0
\(823\) −21.4523 −0.747779 −0.373890 0.927473i \(-0.621976\pi\)
−0.373890 + 0.927473i \(0.621976\pi\)
\(824\) 3.16883 + 5.48857i 0.110391 + 0.191203i
\(825\) 0 0
\(826\) −1.11217 3.98916i −0.0386973 0.138800i
\(827\) 28.6375 0.995823 0.497912 0.867228i \(-0.334100\pi\)
0.497912 + 0.867228i \(0.334100\pi\)
\(828\) 0 0
\(829\) 19.8646 + 34.4065i 0.689925 + 1.19499i 0.971862 + 0.235552i \(0.0756899\pi\)
−0.281936 + 0.959433i \(0.590977\pi\)
\(830\) −9.81875 + 17.0066i −0.340814 + 0.590306i
\(831\) 0 0
\(832\) −5.06814 + 8.77827i −0.175706 + 0.304332i
\(833\) 34.3554 + 18.9208i 1.19034 + 0.655568i
\(834\) 0 0
\(835\) 74.4192 2.57538
\(836\) −7.03379 12.1829i −0.243269 0.421354i
\(837\) 0 0
\(838\) −7.98921 + 13.8377i −0.275983 + 0.478016i
\(839\) −17.1803 29.7572i −0.593130 1.02733i −0.993808 0.111112i \(-0.964559\pi\)
0.400678 0.916219i \(-0.368775\pi\)
\(840\) 0 0
\(841\) −36.7554 + 63.6622i −1.26743 + 2.19525i
\(842\) 7.59316 + 13.1517i 0.261678 + 0.453239i
\(843\) 0 0
\(844\) −8.92395 + 15.4567i −0.307175 + 0.532042i
\(845\) 1.14132 1.97682i 0.0392624 0.0680045i
\(846\) 0 0
\(847\) −11.0858 + 11.3119i −0.380912 + 0.388681i
\(848\) 4.59222 + 7.95395i 0.157697 + 0.273140i
\(849\) 0 0
\(850\) −21.8479 −0.749376
\(851\) 2.94609 0.100991
\(852\) 0 0
\(853\) 0.757310 + 1.31170i 0.0259298 + 0.0449117i 0.878699 0.477376i \(-0.158412\pi\)
−0.852769 + 0.522288i \(0.825079\pi\)
\(854\) 3.15842 + 11.3287i 0.108079 + 0.387660i
\(855\) 0 0
\(856\) 14.9212 25.8443i 0.509996 0.883339i
\(857\) −2.25473 + 3.90530i −0.0770201 + 0.133403i −0.901963 0.431813i \(-0.857874\pi\)
0.824943 + 0.565216i \(0.191207\pi\)
\(858\) 0 0
\(859\) −6.30314 10.9174i −0.215060 0.372495i 0.738231 0.674548i \(-0.235661\pi\)
−0.953291 + 0.302053i \(0.902328\pi\)
\(860\) 7.42162 12.8546i 0.253075 0.438339i
\(861\) 0 0
\(862\) 7.65800 + 13.2640i 0.260833 + 0.451775i
\(863\) −5.33009 + 9.23200i −0.181439 + 0.314261i −0.942371 0.334571i \(-0.891409\pi\)
0.760932 + 0.648832i \(0.224742\pi\)
\(864\) 0 0
\(865\) 13.1082 + 22.7041i 0.445693 + 0.771962i
\(866\) −9.02081 −0.306540
\(867\) 0 0
\(868\) 5.75911 + 20.6569i 0.195477 + 0.701141i
\(869\) −7.64488 + 13.2413i −0.259335 + 0.449181i
\(870\) 0 0
\(871\) −13.7427 + 23.8030i −0.465653 + 0.806535i
\(872\) 23.7518 + 41.1394i 0.804339 + 1.39316i
\(873\) 0 0
\(874\) −3.17154 −0.107279
\(875\) −0.282075 1.01175i −0.00953586 0.0342035i
\(876\) 0 0
\(877\) 16.1190 + 27.9189i 0.544300 + 0.942756i 0.998651 + 0.0519325i \(0.0165381\pi\)
−0.454350 + 0.890823i \(0.650129\pi\)
\(878\) 1.64187 0.0554104
\(879\) 0 0
\(880\) 6.13844 0.206927
\(881\) 55.6375 1.87447 0.937237 0.348692i \(-0.113374\pi\)
0.937237 + 0.348692i \(0.113374\pi\)
\(882\) 0 0
\(883\) −42.4854 −1.42975 −0.714873 0.699254i \(-0.753516\pi\)
−0.714873 + 0.699254i \(0.753516\pi\)
\(884\) −29.4898 −0.991848
\(885\) 0 0
\(886\) −1.49303 −0.0501593
\(887\) −4.47825 7.75655i −0.150365 0.260439i 0.780997 0.624535i \(-0.214711\pi\)
−0.931362 + 0.364096i \(0.881378\pi\)
\(888\) 0 0
\(889\) 14.2855 + 51.2396i 0.479121 + 1.71852i
\(890\) −23.5516 −0.789451
\(891\) 0 0
\(892\) −15.1969 26.3217i −0.508829 0.881317i
\(893\) −0.498365 + 0.863194i −0.0166772 + 0.0288857i
\(894\) 0 0
\(895\) −15.7661 + 27.3076i −0.527002 + 0.912794i
\(896\) 6.85008 + 24.5700i 0.228845 + 0.820827i
\(897\) 0 0
\(898\) 1.63749 0.0546437
\(899\) −28.8743 50.0117i −0.963011 1.66798i
\(900\) 0 0
\(901\) 29.8646 51.7270i 0.994933 1.72327i
\(902\) 3.39575 + 5.88160i 0.113066 + 0.195836i
\(903\) 0 0
\(904\) −6.83229 + 11.8339i −0.227238 + 0.393589i
\(905\) −14.9360 25.8699i −0.496489 0.859944i
\(906\) 0 0
\(907\) −5.39372 + 9.34220i −0.179096 + 0.310203i −0.941571 0.336815i \(-0.890650\pi\)
0.762475 + 0.647017i \(0.223984\pi\)
\(908\) 8.96866 15.5342i 0.297636 0.515520i
\(909\) 0 0
\(910\) 6.37128 + 22.8526i 0.211206 + 0.757558i
\(911\) −23.7427 41.1235i −0.786630 1.36248i −0.928020 0.372530i \(-0.878490\pi\)
0.141390 0.989954i \(-0.454843\pi\)
\(912\) 0 0
\(913\) −18.1617 −0.601066
\(914\) 9.97154 0.329829
\(915\) 0 0
\(916\) −20.5487 35.5914i −0.678948 1.17597i
\(917\) 7.55787 7.71202i 0.249583 0.254673i
\(918\) 0 0
\(919\) −28.1375 + 48.7356i −0.928170 + 1.60764i −0.141788 + 0.989897i \(0.545285\pi\)
−0.786382 + 0.617741i \(0.788048\pi\)
\(920\) 3.90451 6.76282i 0.128728 0.222964i
\(921\) 0 0
\(922\) 2.08757 + 3.61578i 0.0687504 + 0.119079i
\(923\) 13.4503 23.2967i 0.442723 0.766820i
\(924\) 0 0
\(925\) −8.00684 13.8682i −0.263263 0.455985i
\(926\) −7.79863 + 13.5076i −0.256279 + 0.443888i
\(927\) 0 0
\(928\) −29.6735 51.3960i −0.974079 1.68716i
\(929\) −0.760877 −0.0249636 −0.0124818 0.999922i \(-0.503973\pi\)
−0.0124818 + 0.999922i \(0.503973\pi\)
\(930\) 0 0
\(931\) −0.624763 30.9412i −0.0204758 1.01406i
\(932\) −15.2416 + 26.3992i −0.499255 + 0.864734i
\(933\) 0 0
\(934\) −14.9709 + 25.9303i −0.489861 + 0.848465i
\(935\) −19.9601 34.5718i −0.652764 1.13062i
\(936\) 0 0
\(937\) −30.3218 −0.990569 −0.495284 0.868731i \(-0.664936\pi\)
−0.495284 + 0.868731i \(0.664936\pi\)
\(938\) −4.01204 14.3905i −0.130998 0.469865i
\(939\) 0 0
\(940\) −0.509715 0.882853i −0.0166251 0.0287955i
\(941\) −55.0813 −1.79560 −0.897799 0.440406i \(-0.854835\pi\)
−0.897799 + 0.440406i \(0.854835\pi\)
\(942\) 0 0
\(943\) −3.75839 −0.122390
\(944\) 1.77239 0.0576864
\(945\) 0 0
\(946\) −5.59261 −0.181831
\(947\) −30.6205 −0.995034 −0.497517 0.867454i \(-0.665755\pi\)
−0.497517 + 0.867454i \(0.665755\pi\)
\(948\) 0 0
\(949\) 27.9981 0.908857
\(950\) 8.61956 + 14.9295i 0.279656 + 0.484378i
\(951\) 0 0
\(952\) 27.0086 27.5595i 0.875355 0.893209i
\(953\) −7.83422 −0.253775 −0.126888 0.991917i \(-0.540499\pi\)
−0.126888 + 0.991917i \(0.540499\pi\)
\(954\) 0 0
\(955\) 39.3577 + 68.1696i 1.27359 + 2.20592i
\(956\) 5.49725 9.52152i 0.177794 0.307948i
\(957\) 0 0
\(958\) 6.37128 11.0354i 0.205847 0.356537i
\(959\) −4.83173 1.24252i −0.156025 0.0401231i
\(960\) 0 0
\(961\) 1.53216 0.0494244
\(962\) 4.40288 + 7.62601i 0.141955 + 0.245872i
\(963\) 0 0
\(964\) 4.32833 7.49688i 0.139406 0.241458i
\(965\) −1.31806 2.28294i −0.0424297 0.0734905i
\(966\) 0 0
\(967\) 2.64815 4.58673i 0.0851588 0.147499i −0.820300 0.571933i \(-0.806194\pi\)
0.905459 + 0.424434i \(0.139527\pi\)
\(968\) 7.79123 + 13.4948i 0.250420 + 0.433740i
\(969\) 0 0
\(970\) −1.01943 + 1.76571i −0.0327319 + 0.0566934i
\(971\) 26.1202 45.2416i 0.838239 1.45187i −0.0531273 0.998588i \(-0.516919\pi\)
0.891366 0.453284i \(-0.149748\pi\)
\(972\) 0 0
\(973\) 32.7866 + 8.43135i 1.05109 + 0.270297i
\(974\) 1.52394 + 2.63955i 0.0488303 + 0.0845766i
\(975\) 0 0
\(976\) −5.03337 −0.161114
\(977\) 5.94609 0.190232 0.0951161 0.995466i \(-0.469678\pi\)
0.0951161 + 0.995466i \(0.469678\pi\)
\(978\) 0 0
\(979\) −10.8908 18.8635i −0.348073 0.602880i
\(980\) 27.7256 + 15.2695i 0.885661 + 0.487767i
\(981\) 0 0
\(982\) 9.37825 16.2436i 0.299272 0.518354i
\(983\) −9.28207 + 16.0770i −0.296052 + 0.512777i −0.975229 0.221197i \(-0.929004\pi\)
0.679177 + 0.733975i \(0.262337\pi\)
\(984\) 0 0
\(985\) −9.32558 16.1524i −0.297138 0.514658i
\(986\) −21.5819 + 37.3810i −0.687309 + 1.19045i
\(987\) 0 0
\(988\) 11.6345 + 20.1515i 0.370142 + 0.641105i
\(989\) 1.54746 2.68029i 0.0492065 0.0852282i
\(990\) 0 0
\(991\) −9.31875 16.1405i −0.296020 0.512721i 0.679202 0.733951i \(-0.262326\pi\)
−0.975222 + 0.221230i \(0.928993\pi\)
\(992\) 33.4326 1.06149
\(993\) 0 0
\(994\) 3.92669 + 14.0843i 0.124547 + 0.446728i
\(995\) −14.7157 + 25.4884i −0.466520 + 0.808037i
\(996\) 0 0
\(997\) 15.2798 26.4653i 0.483915 0.838165i −0.515915 0.856640i \(-0.672548\pi\)
0.999829 + 0.0184753i \(0.00588120\pi\)
\(998\) −9.34338 16.1832i −0.295759 0.512270i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 567.2.h.h.352.2 6
3.2 odd 2 567.2.h.i.352.2 6
7.4 even 3 567.2.g.i.109.2 6
9.2 odd 6 567.2.g.h.541.2 6
9.4 even 3 189.2.e.f.163.2 yes 6
9.5 odd 6 189.2.e.e.163.2 yes 6
9.7 even 3 567.2.g.i.541.2 6
21.11 odd 6 567.2.g.h.109.2 6
63.4 even 3 189.2.e.f.109.2 yes 6
63.5 even 6 1323.2.a.z.1.2 3
63.11 odd 6 567.2.h.i.298.2 6
63.23 odd 6 1323.2.a.ba.1.2 3
63.25 even 3 inner 567.2.h.h.298.2 6
63.32 odd 6 189.2.e.e.109.2 6
63.40 odd 6 1323.2.a.y.1.2 3
63.58 even 3 1323.2.a.x.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
189.2.e.e.109.2 6 63.32 odd 6
189.2.e.e.163.2 yes 6 9.5 odd 6
189.2.e.f.109.2 yes 6 63.4 even 3
189.2.e.f.163.2 yes 6 9.4 even 3
567.2.g.h.109.2 6 21.11 odd 6
567.2.g.h.541.2 6 9.2 odd 6
567.2.g.i.109.2 6 7.4 even 3
567.2.g.i.541.2 6 9.7 even 3
567.2.h.h.298.2 6 63.25 even 3 inner
567.2.h.h.352.2 6 1.1 even 1 trivial
567.2.h.i.298.2 6 63.11 odd 6
567.2.h.i.352.2 6 3.2 odd 2
1323.2.a.x.1.2 3 63.58 even 3
1323.2.a.y.1.2 3 63.40 odd 6
1323.2.a.z.1.2 3 63.5 even 6
1323.2.a.ba.1.2 3 63.23 odd 6