Properties

Label 567.2.h.h.352.1
Level $567$
Weight $2$
Character 567.352
Analytic conductor $4.528$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [567,2,Mod(298,567)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(567, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("567.298");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 567 = 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 567.h (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.52751779461\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.309123.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 189)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 352.1
Root \(0.500000 - 0.224437i\) of defining polynomial
Character \(\chi\) \(=\) 567.352
Dual form 567.2.h.h.298.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.69963 q^{2} +5.28799 q^{4} +(-0.794182 - 1.37556i) q^{5} +(-2.64400 + 0.0963576i) q^{7} -8.87636 q^{8} +(2.14400 + 3.71351i) q^{10} +(0.150186 - 0.260130i) q^{11} +(-1.40545 + 2.43430i) q^{13} +(7.13781 - 0.260130i) q^{14} +13.3869 q^{16} +(2.93818 + 5.08907i) q^{17} +(1.14400 - 1.98146i) q^{19} +(-4.19963 - 7.27397i) q^{20} +(-0.405446 + 0.702253i) q^{22} +(0.944368 + 1.63569i) q^{23} +(1.23855 - 2.14523i) q^{25} +(3.79418 - 6.57172i) q^{26} +(-13.9814 + 0.509538i) q^{28} +(1.26145 + 2.18490i) q^{29} -4.81089 q^{31} -18.3869 q^{32} +(-7.93199 - 13.7386i) q^{34} +(2.23236 + 3.56046i) q^{35} +(2.23855 - 3.87728i) q^{37} +(-3.08836 + 5.34920i) q^{38} +(7.04944 + 12.2100i) q^{40} +(4.45489 - 7.71609i) q^{41} +(4.54944 + 7.87987i) q^{43} +(0.794182 - 1.37556i) q^{44} +(-2.54944 - 4.41576i) q^{46} +3.21015 q^{47} +(6.98143 - 0.509538i) q^{49} +(-3.34362 + 5.79133i) q^{50} +(-7.43199 + 12.8726i) q^{52} +(1.00619 + 1.74277i) q^{53} -0.477100 q^{55} +(23.4691 - 0.855304i) q^{56} +(-3.40545 - 5.89841i) q^{58} +4.88874 q^{59} +7.57598 q^{61} +12.9876 q^{62} +22.8640 q^{64} +4.46472 q^{65} +0.712008 q^{67} +(15.5371 + 26.9110i) q^{68} +(-6.02654 - 9.61192i) q^{70} +12.8640 q^{71} +(5.83743 + 10.1107i) q^{73} +(-6.04325 + 10.4672i) q^{74} +(6.04944 - 10.4779i) q^{76} +(-0.372026 + 0.702253i) q^{77} +1.66621 q^{79} +(-10.6316 - 18.4145i) q^{80} +(-12.0265 + 20.8306i) q^{82} +(-2.71634 - 4.70484i) q^{83} +(4.66690 - 8.08330i) q^{85} +(-12.2818 - 21.2727i) q^{86} +(-1.33310 + 2.30900i) q^{88} +(-4.67673 + 8.10033i) q^{89} +(3.48143 - 6.57172i) q^{91} +(4.99381 + 8.64953i) q^{92} -8.66621 q^{94} -3.63416 q^{95} +(6.28799 + 10.8911i) q^{97} +(-18.8473 + 1.37556i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 4 q^{2} + 8 q^{4} + q^{5} - 4 q^{7} - 18 q^{8} + q^{10} + 7 q^{11} - 2 q^{13} + 13 q^{14} + 20 q^{16} - 5 q^{19} - 13 q^{20} + 4 q^{22} + 6 q^{23} + 2 q^{25} + 17 q^{26} - 30 q^{28} + 13 q^{29}+ \cdots - 49 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/567\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.69963 −1.90893 −0.954463 0.298330i \(-0.903570\pi\)
−0.954463 + 0.298330i \(0.903570\pi\)
\(3\) 0 0
\(4\) 5.28799 2.64400
\(5\) −0.794182 1.37556i −0.355169 0.615171i 0.631978 0.774986i \(-0.282243\pi\)
−0.987147 + 0.159816i \(0.948910\pi\)
\(6\) 0 0
\(7\) −2.64400 + 0.0963576i −0.999337 + 0.0364197i
\(8\) −8.87636 −3.13827
\(9\) 0 0
\(10\) 2.14400 + 3.71351i 0.677991 + 1.17432i
\(11\) 0.150186 0.260130i 0.0452828 0.0784320i −0.842496 0.538703i \(-0.818914\pi\)
0.887778 + 0.460271i \(0.152248\pi\)
\(12\) 0 0
\(13\) −1.40545 + 2.43430i −0.389801 + 0.675154i −0.992422 0.122872i \(-0.960789\pi\)
0.602622 + 0.798027i \(0.294123\pi\)
\(14\) 7.13781 0.260130i 1.90766 0.0695226i
\(15\) 0 0
\(16\) 13.3869 3.34672
\(17\) 2.93818 + 5.08907i 0.712613 + 1.23428i 0.963873 + 0.266362i \(0.0858217\pi\)
−0.251260 + 0.967920i \(0.580845\pi\)
\(18\) 0 0
\(19\) 1.14400 1.98146i 0.262451 0.454578i −0.704442 0.709762i \(-0.748803\pi\)
0.966893 + 0.255184i \(0.0821360\pi\)
\(20\) −4.19963 7.27397i −0.939065 1.62651i
\(21\) 0 0
\(22\) −0.405446 + 0.702253i −0.0864414 + 0.149721i
\(23\) 0.944368 + 1.63569i 0.196914 + 0.341066i 0.947526 0.319678i \(-0.103575\pi\)
−0.750612 + 0.660743i \(0.770241\pi\)
\(24\) 0 0
\(25\) 1.23855 2.14523i 0.247710 0.429046i
\(26\) 3.79418 6.57172i 0.744100 1.28882i
\(27\) 0 0
\(28\) −13.9814 + 0.509538i −2.64224 + 0.0962937i
\(29\) 1.26145 + 2.18490i 0.234245 + 0.405725i 0.959053 0.283226i \(-0.0914047\pi\)
−0.724808 + 0.688951i \(0.758071\pi\)
\(30\) 0 0
\(31\) −4.81089 −0.864062 −0.432031 0.901859i \(-0.642203\pi\)
−0.432031 + 0.901859i \(0.642203\pi\)
\(32\) −18.3869 −3.25037
\(33\) 0 0
\(34\) −7.93199 13.7386i −1.36032 2.35615i
\(35\) 2.23236 + 3.56046i 0.377338 + 0.601827i
\(36\) 0 0
\(37\) 2.23855 3.87728i 0.368015 0.637421i −0.621240 0.783620i \(-0.713371\pi\)
0.989255 + 0.146199i \(0.0467041\pi\)
\(38\) −3.08836 + 5.34920i −0.500999 + 0.867755i
\(39\) 0 0
\(40\) 7.04944 + 12.2100i 1.11461 + 1.93057i
\(41\) 4.45489 7.71609i 0.695737 1.20505i −0.274195 0.961674i \(-0.588411\pi\)
0.969932 0.243377i \(-0.0782553\pi\)
\(42\) 0 0
\(43\) 4.54944 + 7.87987i 0.693783 + 1.20167i 0.970589 + 0.240742i \(0.0773908\pi\)
−0.276806 + 0.960926i \(0.589276\pi\)
\(44\) 0.794182 1.37556i 0.119727 0.207374i
\(45\) 0 0
\(46\) −2.54944 4.41576i −0.375895 0.651069i
\(47\) 3.21015 0.468248 0.234124 0.972207i \(-0.424778\pi\)
0.234124 + 0.972207i \(0.424778\pi\)
\(48\) 0 0
\(49\) 6.98143 0.509538i 0.997347 0.0727912i
\(50\) −3.34362 + 5.79133i −0.472860 + 0.819017i
\(51\) 0 0
\(52\) −7.43199 + 12.8726i −1.03063 + 1.78511i
\(53\) 1.00619 + 1.74277i 0.138211 + 0.239388i 0.926819 0.375507i \(-0.122532\pi\)
−0.788609 + 0.614895i \(0.789198\pi\)
\(54\) 0 0
\(55\) −0.477100 −0.0643321
\(56\) 23.4691 0.855304i 3.13618 0.114295i
\(57\) 0 0
\(58\) −3.40545 5.89841i −0.447157 0.774499i
\(59\) 4.88874 0.636459 0.318230 0.948014i \(-0.396912\pi\)
0.318230 + 0.948014i \(0.396912\pi\)
\(60\) 0 0
\(61\) 7.57598 0.970005 0.485003 0.874513i \(-0.338819\pi\)
0.485003 + 0.874513i \(0.338819\pi\)
\(62\) 12.9876 1.64943
\(63\) 0 0
\(64\) 22.8640 2.85800
\(65\) 4.46472 0.553780
\(66\) 0 0
\(67\) 0.712008 0.0869856 0.0434928 0.999054i \(-0.486151\pi\)
0.0434928 + 0.999054i \(0.486151\pi\)
\(68\) 15.5371 + 26.9110i 1.88415 + 3.26344i
\(69\) 0 0
\(70\) −6.02654 9.61192i −0.720310 1.14884i
\(71\) 12.8640 1.52667 0.763337 0.646001i \(-0.223560\pi\)
0.763337 + 0.646001i \(0.223560\pi\)
\(72\) 0 0
\(73\) 5.83743 + 10.1107i 0.683220 + 1.18337i 0.973993 + 0.226580i \(0.0727543\pi\)
−0.290773 + 0.956792i \(0.593912\pi\)
\(74\) −6.04325 + 10.4672i −0.702514 + 1.21679i
\(75\) 0 0
\(76\) 6.04944 10.4779i 0.693919 1.20190i
\(77\) −0.372026 + 0.702253i −0.0423962 + 0.0800292i
\(78\) 0 0
\(79\) 1.66621 0.187463 0.0937315 0.995598i \(-0.470120\pi\)
0.0937315 + 0.995598i \(0.470120\pi\)
\(80\) −10.6316 18.4145i −1.18865 2.05880i
\(81\) 0 0
\(82\) −12.0265 + 20.8306i −1.32811 + 2.30035i
\(83\) −2.71634 4.70484i −0.298157 0.516423i 0.677557 0.735470i \(-0.263039\pi\)
−0.975714 + 0.219047i \(0.929705\pi\)
\(84\) 0 0
\(85\) 4.66690 8.08330i 0.506196 0.876757i
\(86\) −12.2818 21.2727i −1.32438 2.29389i
\(87\) 0 0
\(88\) −1.33310 + 2.30900i −0.142109 + 0.246141i
\(89\) −4.67673 + 8.10033i −0.495732 + 0.858633i −0.999988 0.00492107i \(-0.998434\pi\)
0.504256 + 0.863554i \(0.331767\pi\)
\(90\) 0 0
\(91\) 3.48143 6.57172i 0.364953 0.688903i
\(92\) 4.99381 + 8.64953i 0.520641 + 0.901776i
\(93\) 0 0
\(94\) −8.66621 −0.893851
\(95\) −3.63416 −0.372857
\(96\) 0 0
\(97\) 6.28799 + 10.8911i 0.638449 + 1.10583i 0.985773 + 0.168081i \(0.0537570\pi\)
−0.347324 + 0.937745i \(0.612910\pi\)
\(98\) −18.8473 + 1.37556i −1.90386 + 0.138953i
\(99\) 0 0
\(100\) 6.54944 11.3440i 0.654944 1.13440i
\(101\) −7.30470 + 12.6521i −0.726845 + 1.25893i 0.231365 + 0.972867i \(0.425681\pi\)
−0.958210 + 0.286066i \(0.907652\pi\)
\(102\) 0 0
\(103\) −4.59888 7.96550i −0.453142 0.784864i 0.545438 0.838151i \(-0.316363\pi\)
−0.998579 + 0.0532872i \(0.983030\pi\)
\(104\) 12.4752 21.6078i 1.22330 2.11881i
\(105\) 0 0
\(106\) −2.71634 4.70484i −0.263834 0.456974i
\(107\) 6.25526 10.8344i 0.604719 1.04740i −0.387377 0.921921i \(-0.626619\pi\)
0.992096 0.125482i \(-0.0400478\pi\)
\(108\) 0 0
\(109\) 1.52290 + 2.63774i 0.145867 + 0.252650i 0.929696 0.368327i \(-0.120069\pi\)
−0.783829 + 0.620977i \(0.786736\pi\)
\(110\) 1.28799 0.122805
\(111\) 0 0
\(112\) −35.3948 + 1.28993i −3.34450 + 0.121887i
\(113\) 4.97710 8.62059i 0.468206 0.810957i −0.531134 0.847288i \(-0.678234\pi\)
0.999340 + 0.0363312i \(0.0115671\pi\)
\(114\) 0 0
\(115\) 1.50000 2.59808i 0.139876 0.242272i
\(116\) 6.67054 + 11.5537i 0.619344 + 1.07274i
\(117\) 0 0
\(118\) −13.1978 −1.21495
\(119\) −8.25890 13.1724i −0.757092 1.20751i
\(120\) 0 0
\(121\) 5.45489 + 9.44814i 0.495899 + 0.858922i
\(122\) −20.4523 −1.85167
\(123\) 0 0
\(124\) −25.4400 −2.28458
\(125\) −11.8764 −1.06225
\(126\) 0 0
\(127\) −13.4400 −1.19260 −0.596302 0.802760i \(-0.703364\pi\)
−0.596302 + 0.802760i \(0.703364\pi\)
\(128\) −24.9505 −2.20533
\(129\) 0 0
\(130\) −12.0531 −1.05713
\(131\) 5.63781 + 9.76497i 0.492577 + 0.853169i 0.999963 0.00854976i \(-0.00272151\pi\)
−0.507386 + 0.861719i \(0.669388\pi\)
\(132\) 0 0
\(133\) −2.83379 + 5.34920i −0.245721 + 0.463835i
\(134\) −1.92216 −0.166049
\(135\) 0 0
\(136\) −26.0803 45.1724i −2.23637 3.87350i
\(137\) 1.88874 3.27139i 0.161366 0.279493i −0.773993 0.633194i \(-0.781744\pi\)
0.935359 + 0.353701i \(0.115077\pi\)
\(138\) 0 0
\(139\) −8.35965 + 14.4793i −0.709056 + 1.22812i 0.256152 + 0.966637i \(0.417545\pi\)
−0.965208 + 0.261484i \(0.915788\pi\)
\(140\) 11.8047 + 18.8277i 0.997679 + 1.59123i
\(141\) 0 0
\(142\) −34.7280 −2.91431
\(143\) 0.422156 + 0.731196i 0.0353025 + 0.0611457i
\(144\) 0 0
\(145\) 2.00364 3.47041i 0.166393 0.288202i
\(146\) −15.7589 27.2952i −1.30422 2.25897i
\(147\) 0 0
\(148\) 11.8374 20.5030i 0.973031 1.68534i
\(149\) 5.44437 + 9.42992i 0.446020 + 0.772529i 0.998123 0.0612468i \(-0.0195077\pi\)
−0.552103 + 0.833776i \(0.686174\pi\)
\(150\) 0 0
\(151\) 6.04944 10.4779i 0.492297 0.852683i −0.507664 0.861555i \(-0.669491\pi\)
0.999961 + 0.00887237i \(0.00282420\pi\)
\(152\) −10.1545 + 17.5881i −0.823640 + 1.42659i
\(153\) 0 0
\(154\) 1.00433 1.89582i 0.0809313 0.152770i
\(155\) 3.82072 + 6.61769i 0.306888 + 0.531546i
\(156\) 0 0
\(157\) −0.189108 −0.0150924 −0.00754622 0.999972i \(-0.502402\pi\)
−0.00754622 + 0.999972i \(0.502402\pi\)
\(158\) −4.49814 −0.357853
\(159\) 0 0
\(160\) 14.6025 + 25.2923i 1.15443 + 1.99953i
\(161\) −2.65452 4.23377i −0.209205 0.333668i
\(162\) 0 0
\(163\) 4.47779 7.75576i 0.350727 0.607478i −0.635650 0.771978i \(-0.719268\pi\)
0.986377 + 0.164500i \(0.0526010\pi\)
\(164\) 23.5574 40.8026i 1.83953 3.18615i
\(165\) 0 0
\(166\) 7.33310 + 12.7013i 0.569159 + 0.985813i
\(167\) −2.17054 + 3.75948i −0.167961 + 0.290917i −0.937703 0.347438i \(-0.887052\pi\)
0.769742 + 0.638356i \(0.220385\pi\)
\(168\) 0 0
\(169\) 2.54944 + 4.41576i 0.196111 + 0.339674i
\(170\) −12.5989 + 21.8219i −0.966290 + 1.67366i
\(171\) 0 0
\(172\) 24.0574 + 41.6687i 1.83436 + 3.17721i
\(173\) 6.30037 0.479008 0.239504 0.970895i \(-0.423015\pi\)
0.239504 + 0.970895i \(0.423015\pi\)
\(174\) 0 0
\(175\) −3.06801 + 5.79133i −0.231920 + 0.437783i
\(176\) 2.01052 3.48232i 0.151549 0.262490i
\(177\) 0 0
\(178\) 12.6254 21.8679i 0.946316 1.63907i
\(179\) −6.97091 12.0740i −0.521030 0.902451i −0.999701 0.0244564i \(-0.992215\pi\)
0.478671 0.877995i \(-0.341119\pi\)
\(180\) 0 0
\(181\) 18.3411 1.36328 0.681641 0.731687i \(-0.261267\pi\)
0.681641 + 0.731687i \(0.261267\pi\)
\(182\) −9.39857 + 17.7412i −0.696668 + 1.31506i
\(183\) 0 0
\(184\) −8.38255 14.5190i −0.617969 1.07035i
\(185\) −7.11126 −0.522831
\(186\) 0 0
\(187\) 1.76509 0.129076
\(188\) 16.9752 1.23805
\(189\) 0 0
\(190\) 9.81089 0.711757
\(191\) −7.60803 −0.550498 −0.275249 0.961373i \(-0.588760\pi\)
−0.275249 + 0.961373i \(0.588760\pi\)
\(192\) 0 0
\(193\) 7.66621 0.551826 0.275913 0.961183i \(-0.411020\pi\)
0.275913 + 0.961183i \(0.411020\pi\)
\(194\) −16.9752 29.4020i −1.21875 2.11094i
\(195\) 0 0
\(196\) 36.9177 2.69443i 2.63698 0.192460i
\(197\) −18.3869 −1.31001 −0.655005 0.755624i \(-0.727334\pi\)
−0.655005 + 0.755624i \(0.727334\pi\)
\(198\) 0 0
\(199\) −2.97710 5.15649i −0.211041 0.365534i 0.741000 0.671505i \(-0.234352\pi\)
−0.952041 + 0.305972i \(0.901019\pi\)
\(200\) −10.9938 + 19.0418i −0.777380 + 1.34646i
\(201\) 0 0
\(202\) 19.7200 34.1560i 1.38749 2.40321i
\(203\) −3.54580 5.65531i −0.248866 0.396925i
\(204\) 0 0
\(205\) −14.1520 −0.988416
\(206\) 12.4153 + 21.5039i 0.865013 + 1.49825i
\(207\) 0 0
\(208\) −18.8145 + 32.5877i −1.30455 + 2.25955i
\(209\) −0.343624 0.595175i −0.0237690 0.0411691i
\(210\) 0 0
\(211\) −3.33743 + 5.78061i −0.229758 + 0.397953i −0.957736 0.287647i \(-0.907127\pi\)
0.727978 + 0.685601i \(0.240460\pi\)
\(212\) 5.32072 + 9.21576i 0.365429 + 0.632941i
\(213\) 0 0
\(214\) −16.8869 + 29.2489i −1.15436 + 1.99942i
\(215\) 7.22617 12.5161i 0.492821 0.853591i
\(216\) 0 0
\(217\) 12.7200 0.463566i 0.863489 0.0314689i
\(218\) −4.11126 7.12092i −0.278450 0.482289i
\(219\) 0 0
\(220\) −2.52290 −0.170094
\(221\) −16.5178 −1.11111
\(222\) 0 0
\(223\) −3.17054 5.49153i −0.212315 0.367740i 0.740124 0.672471i \(-0.234767\pi\)
−0.952439 + 0.304731i \(0.901434\pi\)
\(224\) 48.6148 1.77172i 3.24821 0.118378i
\(225\) 0 0
\(226\) −13.4363 + 23.2724i −0.893771 + 1.54806i
\(227\) −13.5433 + 23.4576i −0.898897 + 1.55694i −0.0699913 + 0.997548i \(0.522297\pi\)
−0.828906 + 0.559388i \(0.811036\pi\)
\(228\) 0 0
\(229\) −4.09820 7.09828i −0.270816 0.469068i 0.698255 0.715849i \(-0.253960\pi\)
−0.969071 + 0.246782i \(0.920627\pi\)
\(230\) −4.04944 + 7.01384i −0.267012 + 0.462479i
\(231\) 0 0
\(232\) −11.1971 19.3939i −0.735124 1.27327i
\(233\) 13.7101 23.7467i 0.898182 1.55570i 0.0683649 0.997660i \(-0.478222\pi\)
0.829817 0.558036i \(-0.188445\pi\)
\(234\) 0 0
\(235\) −2.54944 4.41576i −0.166307 0.288053i
\(236\) 25.8516 1.68280
\(237\) 0 0
\(238\) 22.2960 + 35.5605i 1.44523 + 2.30505i
\(239\) −13.9320 + 24.1309i −0.901185 + 1.56090i −0.0752280 + 0.997166i \(0.523968\pi\)
−0.825957 + 0.563733i \(0.809365\pi\)
\(240\) 0 0
\(241\) 11.2651 19.5117i 0.725648 1.25686i −0.233058 0.972463i \(-0.574873\pi\)
0.958707 0.284397i \(-0.0917934\pi\)
\(242\) −14.7262 25.5065i −0.946634 1.63962i
\(243\) 0 0
\(244\) 40.0617 2.56469
\(245\) −6.24543 9.19874i −0.399006 0.587686i
\(246\) 0 0
\(247\) 3.21565 + 5.56967i 0.204607 + 0.354390i
\(248\) 42.7032 2.71166
\(249\) 0 0
\(250\) 32.0617 2.02776
\(251\) −31.2509 −1.97254 −0.986268 0.165152i \(-0.947189\pi\)
−0.986268 + 0.165152i \(0.947189\pi\)
\(252\) 0 0
\(253\) 0.567323 0.0356673
\(254\) 36.2829 2.27659
\(255\) 0 0
\(256\) 21.6291 1.35182
\(257\) −5.10074 8.83475i −0.318176 0.551096i 0.661932 0.749564i \(-0.269737\pi\)
−0.980107 + 0.198468i \(0.936404\pi\)
\(258\) 0 0
\(259\) −5.54511 + 10.4672i −0.344556 + 0.650401i
\(260\) 23.6094 1.46419
\(261\) 0 0
\(262\) −15.2200 26.3618i −0.940294 1.62864i
\(263\) 14.2305 24.6480i 0.877490 1.51986i 0.0234042 0.999726i \(-0.492550\pi\)
0.854086 0.520132i \(-0.174117\pi\)
\(264\) 0 0
\(265\) 1.59820 2.76816i 0.0981764 0.170046i
\(266\) 7.65019 14.4409i 0.469063 0.885426i
\(267\) 0 0
\(268\) 3.76509 0.229990
\(269\) 7.43818 + 12.8833i 0.453514 + 0.785509i 0.998601 0.0528702i \(-0.0168370\pi\)
−0.545088 + 0.838379i \(0.683504\pi\)
\(270\) 0 0
\(271\) −0.0222115 + 0.0384714i −0.00134925 + 0.00233697i −0.866699 0.498831i \(-0.833763\pi\)
0.865350 + 0.501168i \(0.167096\pi\)
\(272\) 39.3330 + 68.1268i 2.38492 + 4.13079i
\(273\) 0 0
\(274\) −5.09888 + 8.83153i −0.308035 + 0.533532i
\(275\) −0.372026 0.644367i −0.0224340 0.0388568i
\(276\) 0 0
\(277\) −7.83743 + 13.5748i −0.470906 + 0.815633i −0.999446 0.0332754i \(-0.989406\pi\)
0.528540 + 0.848908i \(0.322739\pi\)
\(278\) 22.5679 39.0888i 1.35353 2.34439i
\(279\) 0 0
\(280\) −19.8152 31.6039i −1.18419 1.88869i
\(281\) 5.95489 + 10.3142i 0.355239 + 0.615292i 0.987159 0.159742i \(-0.0510662\pi\)
−0.631920 + 0.775034i \(0.717733\pi\)
\(282\) 0 0
\(283\) 6.00728 0.357096 0.178548 0.983931i \(-0.442860\pi\)
0.178548 + 0.983931i \(0.442860\pi\)
\(284\) 68.0246 4.03652
\(285\) 0 0
\(286\) −1.13967 1.97396i −0.0673898 0.116723i
\(287\) −11.0352 + 20.8306i −0.651387 + 1.22959i
\(288\) 0 0
\(289\) −8.76578 + 15.1828i −0.515634 + 0.893105i
\(290\) −5.40909 + 9.36882i −0.317633 + 0.550156i
\(291\) 0 0
\(292\) 30.8683 + 53.4655i 1.80643 + 3.12883i
\(293\) −2.47779 + 4.29166i −0.144754 + 0.250721i −0.929281 0.369373i \(-0.879572\pi\)
0.784527 + 0.620094i \(0.212906\pi\)
\(294\) 0 0
\(295\) −3.88255 6.72477i −0.226051 0.391531i
\(296\) −19.8702 + 34.4161i −1.15493 + 2.00040i
\(297\) 0 0
\(298\) −14.6978 25.4573i −0.851419 1.47470i
\(299\) −5.30903 −0.307029
\(300\) 0 0
\(301\) −12.7880 20.3960i −0.737088 1.17560i
\(302\) −16.3312 + 28.2865i −0.939758 + 1.62771i
\(303\) 0 0
\(304\) 15.3145 26.5256i 0.878349 1.52134i
\(305\) −6.01671 10.4212i −0.344516 0.596719i
\(306\) 0 0
\(307\) −22.0531 −1.25864 −0.629318 0.777148i \(-0.716666\pi\)
−0.629318 + 0.777148i \(0.716666\pi\)
\(308\) −1.96727 + 3.71351i −0.112096 + 0.211597i
\(309\) 0 0
\(310\) −10.3145 17.8653i −0.585826 1.01468i
\(311\) −7.97524 −0.452234 −0.226117 0.974100i \(-0.572603\pi\)
−0.226117 + 0.974100i \(0.572603\pi\)
\(312\) 0 0
\(313\) −22.5302 −1.27348 −0.636741 0.771078i \(-0.719718\pi\)
−0.636741 + 0.771078i \(0.719718\pi\)
\(314\) 0.510520 0.0288103
\(315\) 0 0
\(316\) 8.81089 0.495651
\(317\) 19.9381 1.11984 0.559918 0.828548i \(-0.310833\pi\)
0.559918 + 0.828548i \(0.310833\pi\)
\(318\) 0 0
\(319\) 0.757808 0.0424291
\(320\) −18.1582 31.4509i −1.01507 1.75816i
\(321\) 0 0
\(322\) 7.16621 + 11.4296i 0.399357 + 0.636947i
\(323\) 13.4451 0.748103
\(324\) 0 0
\(325\) 3.48143 + 6.03001i 0.193115 + 0.334485i
\(326\) −12.0884 + 20.9377i −0.669513 + 1.15963i
\(327\) 0 0
\(328\) −39.5432 + 68.4908i −2.18341 + 3.78177i
\(329\) −8.48762 + 0.309322i −0.467938 + 0.0170535i
\(330\) 0 0
\(331\) 23.6304 1.29885 0.649423 0.760427i \(-0.275010\pi\)
0.649423 + 0.760427i \(0.275010\pi\)
\(332\) −14.3640 24.8791i −0.788326 1.36542i
\(333\) 0 0
\(334\) 5.85965 10.1492i 0.320626 0.555340i
\(335\) −0.565464 0.979412i −0.0308946 0.0535110i
\(336\) 0 0
\(337\) 6.19275 10.7262i 0.337341 0.584291i −0.646591 0.762837i \(-0.723806\pi\)
0.983932 + 0.178546i \(0.0571393\pi\)
\(338\) −6.88255 11.9209i −0.374361 0.648413i
\(339\) 0 0
\(340\) 24.6785 42.7444i 1.33838 2.31814i
\(341\) −0.722528 + 1.25146i −0.0391271 + 0.0677701i
\(342\) 0 0
\(343\) −18.4098 + 2.01993i −0.994035 + 0.109066i
\(344\) −40.3825 69.9445i −2.17728 3.77115i
\(345\) 0 0
\(346\) −17.0087 −0.914391
\(347\) 3.84431 0.206374 0.103187 0.994662i \(-0.467096\pi\)
0.103187 + 0.994662i \(0.467096\pi\)
\(348\) 0 0
\(349\) 6.09455 + 10.5561i 0.326234 + 0.565054i 0.981761 0.190118i \(-0.0608869\pi\)
−0.655527 + 0.755171i \(0.727554\pi\)
\(350\) 8.28249 15.6344i 0.442718 0.835695i
\(351\) 0 0
\(352\) −2.76145 + 4.78297i −0.147186 + 0.254933i
\(353\) −1.78180 + 3.08617i −0.0948358 + 0.164260i −0.909540 0.415616i \(-0.863566\pi\)
0.814704 + 0.579877i \(0.196899\pi\)
\(354\) 0 0
\(355\) −10.2163 17.6952i −0.542227 0.939165i
\(356\) −24.7305 + 42.8345i −1.31071 + 2.27022i
\(357\) 0 0
\(358\) 18.8189 + 32.5952i 0.994608 + 1.72271i
\(359\) −0.483978 + 0.838275i −0.0255434 + 0.0442425i −0.878515 0.477716i \(-0.841465\pi\)
0.852971 + 0.521958i \(0.174798\pi\)
\(360\) 0 0
\(361\) 6.88255 + 11.9209i 0.362239 + 0.627417i
\(362\) −49.5141 −2.60240
\(363\) 0 0
\(364\) 18.4098 34.7512i 0.964934 1.82146i
\(365\) 9.27197 16.0595i 0.485317 0.840594i
\(366\) 0 0
\(367\) −10.4771 + 18.1469i −0.546900 + 0.947259i 0.451585 + 0.892228i \(0.350859\pi\)
−0.998485 + 0.0550305i \(0.982474\pi\)
\(368\) 12.6421 + 21.8968i 0.659017 + 1.14145i
\(369\) 0 0
\(370\) 19.1978 0.998044
\(371\) −2.82829 4.51093i −0.146838 0.234196i
\(372\) 0 0
\(373\) −1.00000 1.73205i −0.0517780 0.0896822i 0.838975 0.544170i \(-0.183156\pi\)
−0.890753 + 0.454488i \(0.849822\pi\)
\(374\) −4.76509 −0.246397
\(375\) 0 0
\(376\) −28.4944 −1.46949
\(377\) −7.09160 −0.365236
\(378\) 0 0
\(379\) −7.14331 −0.366927 −0.183464 0.983027i \(-0.558731\pi\)
−0.183464 + 0.983027i \(0.558731\pi\)
\(380\) −19.2174 −0.985833
\(381\) 0 0
\(382\) 20.5388 1.05086
\(383\) −5.98831 10.3721i −0.305988 0.529987i 0.671493 0.741011i \(-0.265654\pi\)
−0.977481 + 0.211024i \(0.932320\pi\)
\(384\) 0 0
\(385\) 1.26145 0.0459722i 0.0642894 0.00234296i
\(386\) −20.6959 −1.05339
\(387\) 0 0
\(388\) 33.2509 + 57.5922i 1.68806 + 2.92380i
\(389\) 6.88942 11.9328i 0.349308 0.605019i −0.636819 0.771013i \(-0.719750\pi\)
0.986127 + 0.165995i \(0.0530835\pi\)
\(390\) 0 0
\(391\) −5.54944 + 9.61192i −0.280647 + 0.486095i
\(392\) −61.9697 + 4.52284i −3.12994 + 0.228438i
\(393\) 0 0
\(394\) 49.6377 2.50071
\(395\) −1.32327 2.29197i −0.0665810 0.115322i
\(396\) 0 0
\(397\) −4.19344 + 7.26325i −0.210463 + 0.364532i −0.951859 0.306535i \(-0.900830\pi\)
0.741397 + 0.671067i \(0.234164\pi\)
\(398\) 8.03706 + 13.9206i 0.402862 + 0.697777i
\(399\) 0 0
\(400\) 16.5803 28.7179i 0.829016 1.43590i
\(401\) 13.8083 + 23.9168i 0.689556 + 1.19435i 0.971982 + 0.235057i \(0.0755275\pi\)
−0.282426 + 0.959289i \(0.591139\pi\)
\(402\) 0 0
\(403\) 6.76145 11.7112i 0.336812 0.583375i
\(404\) −38.6272 + 66.9043i −1.92178 + 3.32861i
\(405\) 0 0
\(406\) 9.57234 + 15.2672i 0.475067 + 0.757699i
\(407\) −0.672397 1.16463i −0.0333295 0.0577284i
\(408\) 0 0
\(409\) 30.5316 1.50969 0.754844 0.655904i \(-0.227712\pi\)
0.754844 + 0.655904i \(0.227712\pi\)
\(410\) 38.2051 1.88681
\(411\) 0 0
\(412\) −24.3189 42.1215i −1.19810 2.07518i
\(413\) −12.9258 + 0.471067i −0.636037 + 0.0231797i
\(414\) 0 0
\(415\) −4.31453 + 7.47299i −0.211792 + 0.366835i
\(416\) 25.8418 44.7592i 1.26700 2.19450i
\(417\) 0 0
\(418\) 0.927658 + 1.60675i 0.0453732 + 0.0785887i
\(419\) 10.5000 18.1865i 0.512959 0.888470i −0.486928 0.873442i \(-0.661883\pi\)
0.999887 0.0150285i \(-0.00478389\pi\)
\(420\) 0 0
\(421\) −17.3647 30.0765i −0.846302 1.46584i −0.884486 0.466567i \(-0.845491\pi\)
0.0381837 0.999271i \(-0.487843\pi\)
\(422\) 9.00983 15.6055i 0.438592 0.759663i
\(423\) 0 0
\(424\) −8.93130 15.4695i −0.433742 0.751264i
\(425\) 14.5563 0.706085
\(426\) 0 0
\(427\) −20.0309 + 0.730004i −0.969362 + 0.0353273i
\(428\) 33.0778 57.2924i 1.59887 2.76933i
\(429\) 0 0
\(430\) −19.5080 + 33.7888i −0.940758 + 1.62944i
\(431\) 15.8022 + 27.3701i 0.761163 + 1.31837i 0.942251 + 0.334906i \(0.108705\pi\)
−0.181088 + 0.983467i \(0.557962\pi\)
\(432\) 0 0
\(433\) −6.48576 −0.311686 −0.155843 0.987782i \(-0.549809\pi\)
−0.155843 + 0.987782i \(0.549809\pi\)
\(434\) −34.3392 + 1.25146i −1.64834 + 0.0600718i
\(435\) 0 0
\(436\) 8.05308 + 13.9484i 0.385673 + 0.668005i
\(437\) 4.32141 0.206721
\(438\) 0 0
\(439\) −15.5760 −0.743401 −0.371701 0.928353i \(-0.621225\pi\)
−0.371701 + 0.928353i \(0.621225\pi\)
\(440\) 4.23491 0.201891
\(441\) 0 0
\(442\) 44.5919 2.12102
\(443\) 25.0741 1.19131 0.595654 0.803241i \(-0.296893\pi\)
0.595654 + 0.803241i \(0.296893\pi\)
\(444\) 0 0
\(445\) 14.8567 0.704275
\(446\) 8.55927 + 14.8251i 0.405293 + 0.701989i
\(447\) 0 0
\(448\) −60.4523 + 2.20312i −2.85610 + 0.104088i
\(449\) 15.2967 0.721894 0.360947 0.932586i \(-0.382454\pi\)
0.360947 + 0.932586i \(0.382454\pi\)
\(450\) 0 0
\(451\) −1.33812 2.31770i −0.0630098 0.109136i
\(452\) 26.3189 45.5856i 1.23794 2.14417i
\(453\) 0 0
\(454\) 36.5617 63.3268i 1.71593 2.97207i
\(455\) −11.8047 + 0.430210i −0.553413 + 0.0201685i
\(456\) 0 0
\(457\) 20.4400 0.956141 0.478071 0.878321i \(-0.341336\pi\)
0.478071 + 0.878321i \(0.341336\pi\)
\(458\) 11.0636 + 19.1627i 0.516968 + 0.895415i
\(459\) 0 0
\(460\) 7.93199 13.7386i 0.369831 0.640566i
\(461\) −20.4091 35.3496i −0.950546 1.64639i −0.744246 0.667905i \(-0.767191\pi\)
−0.206300 0.978489i \(-0.566142\pi\)
\(462\) 0 0
\(463\) −4.95420 + 8.58093i −0.230241 + 0.398789i −0.957879 0.287172i \(-0.907285\pi\)
0.727638 + 0.685962i \(0.240618\pi\)
\(464\) 16.8869 + 29.2489i 0.783954 + 1.35785i
\(465\) 0 0
\(466\) −37.0123 + 64.1072i −1.71456 + 2.96971i
\(467\) −8.86948 + 15.3624i −0.410430 + 0.710886i −0.994937 0.100503i \(-0.967955\pi\)
0.584506 + 0.811389i \(0.301288\pi\)
\(468\) 0 0
\(469\) −1.88255 + 0.0686074i −0.0869279 + 0.00316799i
\(470\) 6.88255 + 11.9209i 0.317468 + 0.549871i
\(471\) 0 0
\(472\) −43.3942 −1.99738
\(473\) 2.73305 0.125666
\(474\) 0 0
\(475\) −2.83379 4.90827i −0.130023 0.225207i
\(476\) −43.6730 69.6554i −2.00175 3.19265i
\(477\) 0 0
\(478\) 37.6112 65.1445i 1.72030 2.97964i
\(479\) −11.8047 + 20.4463i −0.539371 + 0.934217i 0.459567 + 0.888143i \(0.348004\pi\)
−0.998938 + 0.0460744i \(0.985329\pi\)
\(480\) 0 0
\(481\) 6.29232 + 10.8986i 0.286905 + 0.496934i
\(482\) −30.4116 + 52.6744i −1.38521 + 2.39925i
\(483\) 0 0
\(484\) 28.8454 + 49.9617i 1.31115 + 2.27099i
\(485\) 9.98762 17.2991i 0.453514 0.785510i
\(486\) 0 0
\(487\) −17.4363 30.2006i −0.790115 1.36852i −0.925895 0.377780i \(-0.876687\pi\)
0.135780 0.990739i \(-0.456646\pi\)
\(488\) −67.2471 −3.04413
\(489\) 0 0
\(490\) 16.8603 + 24.8332i 0.761672 + 1.12185i
\(491\) 11.6025 20.0962i 0.523615 0.906927i −0.476008 0.879441i \(-0.657916\pi\)
0.999622 0.0274860i \(-0.00875017\pi\)
\(492\) 0 0
\(493\) −7.41273 + 12.8392i −0.333853 + 0.578250i
\(494\) −8.68106 15.0360i −0.390579 0.676503i
\(495\) 0 0
\(496\) −64.4028 −2.89177
\(497\) −34.0123 + 1.23954i −1.52566 + 0.0556010i
\(498\) 0 0
\(499\) 2.66257 + 4.61170i 0.119193 + 0.206448i 0.919448 0.393212i \(-0.128636\pi\)
−0.800255 + 0.599660i \(0.795303\pi\)
\(500\) −62.8021 −2.80859
\(501\) 0 0
\(502\) 84.3657 3.76542
\(503\) 10.4313 0.465109 0.232554 0.972583i \(-0.425292\pi\)
0.232554 + 0.972583i \(0.425292\pi\)
\(504\) 0 0
\(505\) 23.2051 1.03261
\(506\) −1.53156 −0.0680862
\(507\) 0 0
\(508\) −71.0704 −3.15324
\(509\) 0.750930 + 1.30065i 0.0332844 + 0.0576502i 0.882188 0.470898i \(-0.156070\pi\)
−0.848903 + 0.528548i \(0.822737\pi\)
\(510\) 0 0
\(511\) −16.4084 26.1703i −0.725865 1.15770i
\(512\) −8.48948 −0.375186
\(513\) 0 0
\(514\) 13.7701 + 23.8505i 0.607374 + 1.05200i
\(515\) −7.30470 + 12.6521i −0.321884 + 0.557519i
\(516\) 0 0
\(517\) 0.482119 0.835055i 0.0212036 0.0367257i
\(518\) 14.9697 28.2576i 0.657733 1.24157i
\(519\) 0 0
\(520\) −39.6304 −1.73791
\(521\) 18.8709 + 32.6853i 0.826747 + 1.43197i 0.900577 + 0.434697i \(0.143145\pi\)
−0.0738295 + 0.997271i \(0.523522\pi\)
\(522\) 0 0
\(523\) 8.97779 15.5500i 0.392571 0.679953i −0.600217 0.799837i \(-0.704919\pi\)
0.992788 + 0.119884i \(0.0382523\pi\)
\(524\) 29.8127 + 51.6371i 1.30237 + 2.25578i
\(525\) 0 0
\(526\) −38.4171 + 66.5403i −1.67506 + 2.90129i
\(527\) −14.1353 24.4830i −0.615742 1.06650i
\(528\) 0 0
\(529\) 9.71634 16.8292i 0.422449 0.731704i
\(530\) −4.31453 + 7.47299i −0.187411 + 0.324606i
\(531\) 0 0
\(532\) −14.9851 + 28.2865i −0.649685 + 1.22638i
\(533\) 12.5222 + 21.6891i 0.542397 + 0.939459i
\(534\) 0 0
\(535\) −19.8713 −0.859109
\(536\) −6.32004 −0.272984
\(537\) 0 0
\(538\) −20.0803 34.7801i −0.865724 1.49948i
\(539\) 0.915967 1.89260i 0.0394535 0.0815202i
\(540\) 0 0
\(541\) −4.18547 + 7.24944i −0.179947 + 0.311678i −0.941862 0.335999i \(-0.890926\pi\)
0.761915 + 0.647677i \(0.224259\pi\)
\(542\) 0.0599627 0.103858i 0.00257562 0.00446110i
\(543\) 0 0
\(544\) −54.0239 93.5722i −2.31626 4.01187i
\(545\) 2.41892 4.18969i 0.103615 0.179467i
\(546\) 0 0
\(547\) −15.0538 26.0739i −0.643653 1.11484i −0.984611 0.174761i \(-0.944085\pi\)
0.340958 0.940079i \(-0.389249\pi\)
\(548\) 9.98762 17.2991i 0.426650 0.738979i
\(549\) 0 0
\(550\) 1.00433 + 1.73955i 0.0428248 + 0.0741747i
\(551\) 5.77238 0.245911
\(552\) 0 0
\(553\) −4.40545 + 0.160552i −0.187339 + 0.00682735i
\(554\) 21.1582 36.6470i 0.898924 1.55698i
\(555\) 0 0
\(556\) −44.2057 + 76.5666i −1.87474 + 3.24715i
\(557\) 8.26764 + 14.3200i 0.350311 + 0.606757i 0.986304 0.164938i \(-0.0527425\pi\)
−0.635993 + 0.771695i \(0.719409\pi\)
\(558\) 0 0
\(559\) −25.5760 −1.08175
\(560\) 29.8843 + 47.6634i 1.26284 + 2.01415i
\(561\) 0 0
\(562\) −16.0760 27.8444i −0.678124 1.17455i
\(563\) 22.2312 0.936933 0.468466 0.883481i \(-0.344807\pi\)
0.468466 + 0.883481i \(0.344807\pi\)
\(564\) 0 0
\(565\) −15.8109 −0.665169
\(566\) −16.2174 −0.681670
\(567\) 0 0
\(568\) −114.185 −4.79111
\(569\) −2.31275 −0.0969556 −0.0484778 0.998824i \(-0.515437\pi\)
−0.0484778 + 0.998824i \(0.515437\pi\)
\(570\) 0 0
\(571\) −6.09888 −0.255230 −0.127615 0.991824i \(-0.540732\pi\)
−0.127615 + 0.991824i \(0.540732\pi\)
\(572\) 2.23236 + 3.86656i 0.0933397 + 0.161669i
\(573\) 0 0
\(574\) 29.7909 56.2348i 1.24345 2.34720i
\(575\) 4.67859 0.195111
\(576\) 0 0
\(577\) −10.1032 17.4993i −0.420602 0.728505i 0.575396 0.817875i \(-0.304848\pi\)
−0.995998 + 0.0893702i \(0.971515\pi\)
\(578\) 23.6643 40.9879i 0.984307 1.70487i
\(579\) 0 0
\(580\) 10.5952 18.3515i 0.439944 0.762004i
\(581\) 7.63533 + 12.1778i 0.316767 + 0.505221i
\(582\) 0 0
\(583\) 0.604462 0.0250343
\(584\) −51.8151 89.7465i −2.14413 3.71374i
\(585\) 0 0
\(586\) 6.68911 11.5859i 0.276324 0.478608i
\(587\) 19.3411 + 33.4997i 0.798292 + 1.38268i 0.920728 + 0.390205i \(0.127596\pi\)
−0.122436 + 0.992476i \(0.539071\pi\)
\(588\) 0 0
\(589\) −5.50364 + 9.53259i −0.226774 + 0.392783i
\(590\) 10.4814 + 18.1544i 0.431514 + 0.747404i
\(591\) 0 0
\(592\) 29.9672 51.9047i 1.23164 2.13327i
\(593\) 11.8578 20.5383i 0.486941 0.843406i −0.512946 0.858421i \(-0.671446\pi\)
0.999887 + 0.0150142i \(0.00477936\pi\)
\(594\) 0 0
\(595\) −11.5604 + 21.8219i −0.473929 + 0.894611i
\(596\) 28.7898 + 49.8654i 1.17928 + 2.04256i
\(597\) 0 0
\(598\) 14.3324 0.586096
\(599\) 34.4807 1.40884 0.704421 0.709783i \(-0.251207\pi\)
0.704421 + 0.709783i \(0.251207\pi\)
\(600\) 0 0
\(601\) 3.64035 + 6.30528i 0.148493 + 0.257198i 0.930671 0.365858i \(-0.119224\pi\)
−0.782178 + 0.623056i \(0.785891\pi\)
\(602\) 34.5228 + 55.0615i 1.40705 + 2.24414i
\(603\) 0 0
\(604\) 31.9894 55.4073i 1.30163 2.25449i
\(605\) 8.66435 15.0071i 0.352256 0.610125i
\(606\) 0 0
\(607\) 12.5796 + 21.7886i 0.510591 + 0.884370i 0.999925 + 0.0122732i \(0.00390679\pi\)
−0.489333 + 0.872097i \(0.662760\pi\)
\(608\) −21.0345 + 36.4328i −0.853062 + 1.47755i
\(609\) 0 0
\(610\) 16.2429 + 28.1335i 0.657655 + 1.13909i
\(611\) −4.51169 + 7.81448i −0.182523 + 0.316140i
\(612\) 0 0
\(613\) 18.7731 + 32.5159i 0.758237 + 1.31330i 0.943749 + 0.330663i \(0.107272\pi\)
−0.185512 + 0.982642i \(0.559394\pi\)
\(614\) 59.5351 2.40264
\(615\) 0 0
\(616\) 3.30223 6.23345i 0.133051 0.251153i
\(617\) −6.86398 + 11.8888i −0.276333 + 0.478623i −0.970471 0.241219i \(-0.922453\pi\)
0.694137 + 0.719843i \(0.255786\pi\)
\(618\) 0 0
\(619\) −5.90545 + 10.2285i −0.237360 + 0.411119i −0.959956 0.280151i \(-0.909615\pi\)
0.722596 + 0.691271i \(0.242949\pi\)
\(620\) 20.2040 + 34.9943i 0.811411 + 1.40540i
\(621\) 0 0
\(622\) 21.5302 0.863282
\(623\) 11.5847 21.8679i 0.464132 0.876118i
\(624\) 0 0
\(625\) 3.23924 + 5.61053i 0.129570 + 0.224421i
\(626\) 60.8231 2.43098
\(627\) 0 0
\(628\) −1.00000 −0.0399043
\(629\) 26.3090 1.04901
\(630\) 0 0
\(631\) 29.6304 1.17957 0.589785 0.807561i \(-0.299213\pi\)
0.589785 + 0.807561i \(0.299213\pi\)
\(632\) −14.7899 −0.588309
\(633\) 0 0
\(634\) −53.8255 −2.13768
\(635\) 10.6738 + 18.4875i 0.423576 + 0.733655i
\(636\) 0 0
\(637\) −8.57165 + 17.7111i −0.339621 + 0.701737i
\(638\) −2.04580 −0.0809940
\(639\) 0 0
\(640\) 19.8152 + 34.3210i 0.783265 + 1.35666i
\(641\) −7.32623 + 12.6894i −0.289368 + 0.501201i −0.973659 0.228008i \(-0.926779\pi\)
0.684291 + 0.729209i \(0.260112\pi\)
\(642\) 0 0
\(643\) −1.01857 + 1.76421i −0.0401685 + 0.0695738i −0.885411 0.464810i \(-0.846123\pi\)
0.845242 + 0.534383i \(0.179456\pi\)
\(644\) −14.0371 22.3881i −0.553138 0.882216i
\(645\) 0 0
\(646\) −36.2967 −1.42807
\(647\) 5.89307 + 10.2071i 0.231680 + 0.401282i 0.958303 0.285755i \(-0.0922443\pi\)
−0.726622 + 0.687037i \(0.758911\pi\)
\(648\) 0 0
\(649\) 0.734219 1.27171i 0.0288206 0.0499188i
\(650\) −9.39857 16.2788i −0.368642 0.638507i
\(651\) 0 0
\(652\) 23.6785 41.0124i 0.927322 1.60617i
\(653\) 17.0920 + 29.6042i 0.668862 + 1.15850i 0.978223 + 0.207558i \(0.0665516\pi\)
−0.309361 + 0.950945i \(0.600115\pi\)
\(654\) 0 0
\(655\) 8.95489 15.5103i 0.349896 0.606038i
\(656\) 59.6370 103.294i 2.32844 4.03297i
\(657\) 0 0
\(658\) 22.9134 0.835055i 0.893258 0.0325538i
\(659\) −12.4320 21.5328i −0.484282 0.838800i 0.515555 0.856856i \(-0.327586\pi\)
−0.999837 + 0.0180560i \(0.994252\pi\)
\(660\) 0 0
\(661\) 25.5388 0.993346 0.496673 0.867938i \(-0.334555\pi\)
0.496673 + 0.867938i \(0.334555\pi\)
\(662\) −63.7934 −2.47940
\(663\) 0 0
\(664\) 24.1112 + 41.7618i 0.935696 + 1.62067i
\(665\) 9.60872 0.350179i 0.372610 0.0135794i
\(666\) 0 0
\(667\) −2.38255 + 4.12669i −0.0922525 + 0.159786i
\(668\) −11.4778 + 19.8801i −0.444089 + 0.769185i
\(669\) 0 0
\(670\) 1.52654 + 2.64405i 0.0589755 + 0.102149i
\(671\) 1.13781 1.97074i 0.0439245 0.0760795i
\(672\) 0 0
\(673\) 1.90978 + 3.30783i 0.0736165 + 0.127507i 0.900484 0.434890i \(-0.143213\pi\)
−0.826867 + 0.562397i \(0.809879\pi\)
\(674\) −16.7181 + 28.9566i −0.643958 + 1.11537i
\(675\) 0 0
\(676\) 13.4814 + 23.3505i 0.518517 + 0.898097i
\(677\) −17.2225 −0.661916 −0.330958 0.943646i \(-0.607372\pi\)
−0.330958 + 0.943646i \(0.607372\pi\)
\(678\) 0 0
\(679\) −17.6749 28.1902i −0.678299 1.08184i
\(680\) −41.4250 + 71.7503i −1.58858 + 2.75150i
\(681\) 0 0
\(682\) 1.95056 3.37847i 0.0746907 0.129368i
\(683\) −16.8585 29.1997i −0.645072 1.11730i −0.984285 0.176587i \(-0.943494\pi\)
0.339213 0.940709i \(-0.389839\pi\)
\(684\) 0 0
\(685\) −6.00000 −0.229248
\(686\) 49.6996 5.45306i 1.89754 0.208199i
\(687\) 0 0
\(688\) 60.9028 + 105.487i 2.32190 + 4.02165i
\(689\) −5.65658 −0.215499
\(690\) 0 0
\(691\) −25.4930 −0.969801 −0.484901 0.874569i \(-0.661144\pi\)
−0.484901 + 0.874569i \(0.661144\pi\)
\(692\) 33.3163 1.26650
\(693\) 0 0
\(694\) −10.3782 −0.393952
\(695\) 26.5563 1.00734
\(696\) 0 0
\(697\) 52.3570 1.98316
\(698\) −16.4530 28.4975i −0.622756 1.07865i
\(699\) 0 0
\(700\) −16.2236 + 30.6245i −0.613195 + 1.15750i
\(701\) 10.1606 0.383762 0.191881 0.981418i \(-0.438541\pi\)
0.191881 + 0.981418i \(0.438541\pi\)
\(702\) 0 0
\(703\) −5.12178 8.87119i −0.193172 0.334583i
\(704\) 3.43385 5.94760i 0.129418 0.224159i
\(705\) 0 0
\(706\) 4.81020 8.33152i 0.181034 0.313561i
\(707\) 18.0945 34.1560i 0.680513 1.28457i
\(708\) 0 0
\(709\) −15.9469 −0.598899 −0.299449 0.954112i \(-0.596803\pi\)
−0.299449 + 0.954112i \(0.596803\pi\)
\(710\) 27.5803 + 47.7705i 1.03507 + 1.79280i
\(711\) 0 0
\(712\) 41.5123 71.9014i 1.55574 2.69462i
\(713\) −4.54325 7.86914i −0.170146 0.294702i
\(714\) 0 0
\(715\) 0.670538 1.16141i 0.0250767 0.0434341i
\(716\) −36.8621 63.8471i −1.37760 2.38608i
\(717\) 0 0
\(718\) 1.30656 2.26303i 0.0487604 0.0844556i
\(719\) 8.20877 14.2180i 0.306136 0.530242i −0.671378 0.741115i \(-0.734297\pi\)
0.977513 + 0.210873i \(0.0676306\pi\)
\(720\) 0 0
\(721\) 12.9270 + 20.6176i 0.481425 + 0.767840i
\(722\) −18.5803 32.1820i −0.691488 1.19769i
\(723\) 0 0
\(724\) 96.9875 3.60451
\(725\) 6.24948 0.232100
\(726\) 0 0
\(727\) 17.9141 + 31.0281i 0.664397 + 1.15077i 0.979448 + 0.201695i \(0.0646451\pi\)
−0.315051 + 0.949075i \(0.602022\pi\)
\(728\) −30.9024 + 58.3329i −1.14532 + 2.16196i
\(729\) 0 0
\(730\) −25.0309 + 43.3547i −0.926434 + 1.60463i
\(731\) −26.7341 + 46.3049i −0.988798 + 1.71265i
\(732\) 0 0
\(733\) −19.6440 34.0244i −0.725568 1.25672i −0.958740 0.284284i \(-0.908244\pi\)
0.233172 0.972435i \(-0.425089\pi\)
\(734\) 28.2843 48.9898i 1.04399 1.80825i
\(735\) 0 0
\(736\) −17.3640 30.0753i −0.640045 1.10859i
\(737\) 0.106934 0.185214i 0.00393895 0.00682246i
\(738\) 0 0
\(739\) −1.04511 1.81019i −0.0384451 0.0665888i 0.846163 0.532925i \(-0.178907\pi\)
−0.884608 + 0.466336i \(0.845574\pi\)
\(740\) −37.6043 −1.38236
\(741\) 0 0
\(742\) 7.63533 + 12.1778i 0.280302 + 0.447062i
\(743\) −15.3633 + 26.6100i −0.563624 + 0.976226i 0.433552 + 0.901129i \(0.357260\pi\)
−0.997176 + 0.0750974i \(0.976073\pi\)
\(744\) 0 0
\(745\) 8.64764 14.9781i 0.316825 0.548757i
\(746\) 2.69963 + 4.67589i 0.0988404 + 0.171197i
\(747\) 0 0
\(748\) 9.33379 0.341277
\(749\) −15.4949 + 29.2489i −0.566171 + 1.06873i
\(750\) 0 0
\(751\) −10.3869 17.9906i −0.379023 0.656486i 0.611898 0.790937i \(-0.290406\pi\)
−0.990920 + 0.134451i \(0.957073\pi\)
\(752\) 42.9739 1.56710
\(753\) 0 0
\(754\) 19.1447 0.697208
\(755\) −19.2174 −0.699394
\(756\) 0 0
\(757\) 16.9257 0.615176 0.307588 0.951520i \(-0.400478\pi\)
0.307588 + 0.951520i \(0.400478\pi\)
\(758\) 19.2843 0.700436
\(759\) 0 0
\(760\) 32.2581 1.17013
\(761\) −16.4196 28.4396i −0.595210 1.03093i −0.993517 0.113682i \(-0.963735\pi\)
0.398307 0.917252i \(-0.369598\pi\)
\(762\) 0 0
\(763\) −4.28071 6.82743i −0.154972 0.247170i
\(764\) −40.2312 −1.45551
\(765\) 0 0
\(766\) 16.1662 + 28.0007i 0.584109 + 1.01171i
\(767\) −6.87085 + 11.9007i −0.248092 + 0.429708i
\(768\) 0 0
\(769\) −15.8647 + 27.4784i −0.572094 + 0.990897i 0.424256 + 0.905542i \(0.360536\pi\)
−0.996351 + 0.0853545i \(0.972798\pi\)
\(770\) −3.40545 + 0.124108i −0.122724 + 0.00447254i
\(771\) 0 0
\(772\) 40.5388 1.45902
\(773\) −3.18656 5.51928i −0.114613 0.198515i 0.803012 0.595963i \(-0.203229\pi\)
−0.917625 + 0.397448i \(0.869896\pi\)
\(774\) 0 0
\(775\) −5.95853 + 10.3205i −0.214037 + 0.370722i
\(776\) −55.8145 96.6735i −2.00362 3.47038i
\(777\) 0 0
\(778\) −18.5989 + 32.2142i −0.666802 + 1.15494i
\(779\) −10.1927 17.6544i −0.365193 0.632533i
\(780\) 0 0
\(781\) 1.93199 3.34630i 0.0691320 0.119740i
\(782\) 14.9814 25.9486i 0.535735 0.927920i
\(783\) 0 0
\(784\) 93.4595 6.82112i 3.33784 0.243612i
\(785\) 0.150186 + 0.260130i 0.00536037 + 0.00928443i
\(786\) 0 0
\(787\) −19.8799 −0.708643 −0.354321 0.935124i \(-0.615288\pi\)
−0.354321 + 0.935124i \(0.615288\pi\)
\(788\) −97.2297 −3.46366
\(789\) 0 0
\(790\) 3.57234 + 6.18748i 0.127098 + 0.220141i
\(791\) −12.3288 + 23.2724i −0.438361 + 0.827471i
\(792\) 0 0
\(793\) −10.6476 + 18.4422i −0.378109 + 0.654903i
\(794\) 11.3207 19.6081i 0.401757 0.695864i
\(795\) 0 0
\(796\) −15.7429 27.2675i −0.557992 0.966470i
\(797\) 2.90978 5.03988i 0.103070 0.178522i −0.809878 0.586598i \(-0.800467\pi\)
0.912948 + 0.408076i \(0.133800\pi\)
\(798\) 0 0
\(799\) 9.43199 + 16.3367i 0.333680 + 0.577950i
\(800\) −22.7731 + 39.4441i −0.805149 + 1.39456i
\(801\) 0 0
\(802\) −37.2774 64.5663i −1.31631 2.27992i
\(803\) 3.50680 0.123752
\(804\) 0 0
\(805\) −3.71565 + 7.01384i −0.130959 + 0.247205i
\(806\) −18.2534 + 31.6158i −0.642949 + 1.11362i
\(807\) 0 0
\(808\) 64.8391 112.305i 2.28103 3.95087i
\(809\) −1.06113 1.83794i −0.0373075 0.0646184i 0.846769 0.531961i \(-0.178545\pi\)
−0.884076 + 0.467343i \(0.845211\pi\)
\(810\) 0 0
\(811\) −18.4327 −0.647259 −0.323629 0.946184i \(-0.604903\pi\)
−0.323629 + 0.946184i \(0.604903\pi\)
\(812\) −18.7502 29.9052i −0.658002 1.04947i
\(813\) 0 0
\(814\) 1.81522 + 3.14406i 0.0636235 + 0.110199i
\(815\) −14.2247 −0.498270
\(816\) 0 0
\(817\) 20.8182 0.728336
\(818\) −82.4239 −2.88188
\(819\) 0 0
\(820\) −74.8355 −2.61337
\(821\) −45.1555 −1.57594 −0.787969 0.615714i \(-0.788868\pi\)
−0.787969 + 0.615714i \(0.788868\pi\)
\(822\) 0 0
\(823\) 25.0517 0.873248 0.436624 0.899644i \(-0.356174\pi\)
0.436624 + 0.899644i \(0.356174\pi\)
\(824\) 40.8213 + 70.7046i 1.42208 + 2.46311i
\(825\) 0 0
\(826\) 34.8948 1.27171i 1.21415 0.0442483i
\(827\) −14.2953 −0.497095 −0.248548 0.968620i \(-0.579953\pi\)
−0.248548 + 0.968620i \(0.579953\pi\)
\(828\) 0 0
\(829\) −15.9127 27.5617i −0.552672 0.957256i −0.998081 0.0619285i \(-0.980275\pi\)
0.445409 0.895327i \(-0.353058\pi\)
\(830\) 11.6476 20.1743i 0.404295 0.700260i
\(831\) 0 0
\(832\) −32.1341 + 55.6579i −1.11405 + 1.92959i
\(833\) 23.1058 + 34.0319i 0.800567 + 1.17914i
\(834\) 0 0
\(835\) 6.89521 0.238619
\(836\) −1.81708 3.14728i −0.0628451 0.108851i
\(837\) 0 0
\(838\) −28.3461 + 49.0969i −0.979200 + 1.69602i
\(839\) −8.23924 14.2708i −0.284450 0.492682i 0.688026 0.725686i \(-0.258478\pi\)
−0.972476 + 0.233004i \(0.925144\pi\)
\(840\) 0 0
\(841\) 11.3175 19.6025i 0.390258 0.675947i
\(842\) 46.8781 + 81.1953i 1.61553 + 2.79818i
\(843\) 0 0
\(844\) −17.6483 + 30.5678i −0.607480 + 1.05219i
\(845\) 4.04944 7.01384i 0.139305 0.241283i
\(846\) 0 0
\(847\) −15.3331 24.4552i −0.526852 0.840292i
\(848\) 13.4697 + 23.3303i 0.462553 + 0.801165i
\(849\) 0 0
\(850\) −39.2967 −1.34786
\(851\) 8.45606 0.289870
\(852\) 0 0
\(853\) 13.4993 + 23.3815i 0.462208 + 0.800567i 0.999071 0.0431023i \(-0.0137242\pi\)
−0.536863 + 0.843669i \(0.680391\pi\)
\(854\) 54.0759 1.97074i 1.85044 0.0674373i
\(855\) 0 0
\(856\) −55.5239 + 96.1702i −1.89777 + 3.28703i
\(857\) 19.5815 33.9161i 0.668891 1.15855i −0.309324 0.950957i \(-0.600103\pi\)
0.978215 0.207596i \(-0.0665640\pi\)
\(858\) 0 0
\(859\) −4.73422 8.19991i −0.161529 0.279777i 0.773888 0.633323i \(-0.218309\pi\)
−0.935417 + 0.353545i \(0.884976\pi\)
\(860\) 38.2119 66.1850i 1.30302 2.25689i
\(861\) 0 0
\(862\) −42.6599 73.8892i −1.45300 2.51668i
\(863\) −1.00619 + 1.74277i −0.0342511 + 0.0593246i −0.882643 0.470044i \(-0.844238\pi\)
0.848392 + 0.529369i \(0.177571\pi\)
\(864\) 0 0
\(865\) −5.00364 8.66656i −0.170129 0.294672i
\(866\) 17.5091 0.594985
\(867\) 0 0
\(868\) 67.2632 2.45133i 2.28306 0.0832037i
\(869\) 0.250241 0.433430i 0.00848884 0.0147031i
\(870\) 0 0
\(871\) −1.00069 + 1.73324i −0.0339070 + 0.0587287i
\(872\) −13.5178 23.4135i −0.457771 0.792882i
\(873\) 0 0
\(874\) −11.6662 −0.394615
\(875\) 31.4010 1.14438i 1.06155 0.0386870i
\(876\) 0 0
\(877\) −22.3497 38.7109i −0.754697 1.30717i −0.945525 0.325550i \(-0.894451\pi\)
0.190828 0.981624i \(-0.438883\pi\)
\(878\) 42.0494 1.41910
\(879\) 0 0
\(880\) −6.38688 −0.215302
\(881\) 12.7047 0.428033 0.214017 0.976830i \(-0.431345\pi\)
0.214017 + 0.976830i \(0.431345\pi\)
\(882\) 0 0
\(883\) −17.0014 −0.572142 −0.286071 0.958208i \(-0.592349\pi\)
−0.286071 + 0.958208i \(0.592349\pi\)
\(884\) −87.3460 −2.93776
\(885\) 0 0
\(886\) −67.6908 −2.27412
\(887\) −0.600744 1.04052i −0.0201710 0.0349372i 0.855764 0.517367i \(-0.173088\pi\)
−0.875935 + 0.482430i \(0.839754\pi\)
\(888\) 0 0
\(889\) 35.5352 1.29504i 1.19181 0.0434343i
\(890\) −40.1075 −1.34441
\(891\) 0 0
\(892\) −16.7658 29.0392i −0.561360 0.972304i
\(893\) 3.67240 6.36078i 0.122892 0.212855i
\(894\) 0 0
\(895\) −11.0723 + 19.1779i −0.370108 + 0.641045i
\(896\) 65.9690 2.40417i 2.20387 0.0803176i
\(897\) 0 0
\(898\) −41.2953 −1.37804
\(899\) −6.06870 10.5113i −0.202402 0.350571i
\(900\) 0 0
\(901\) −5.91273 + 10.2411i −0.196982 + 0.341182i
\(902\) 3.61243 + 6.25692i 0.120281 + 0.208333i
\(903\) 0 0
\(904\) −44.1785 + 76.5194i −1.46936 + 2.54500i
\(905\) −14.5662 25.2293i −0.484195 0.838651i
\(906\) 0 0
\(907\) −8.53156 + 14.7771i −0.283286 + 0.490665i −0.972192 0.234185i \(-0.924758\pi\)
0.688906 + 0.724850i \(0.258091\pi\)
\(908\) −71.6166 + 124.044i −2.37668 + 4.11653i
\(909\) 0 0
\(910\) 31.8683 1.16141i 1.05642 0.0385002i
\(911\) −11.0007 19.0538i −0.364469 0.631279i 0.624222 0.781247i \(-0.285416\pi\)
−0.988691 + 0.149968i \(0.952083\pi\)
\(912\) 0 0
\(913\) −1.63182 −0.0540055
\(914\) −55.1803 −1.82520
\(915\) 0 0
\(916\) −21.6712 37.5357i −0.716037 1.24021i
\(917\) −15.8473 25.2753i −0.523323 0.834664i
\(918\) 0 0
\(919\) 14.7953 25.6262i 0.488051 0.845329i −0.511854 0.859072i \(-0.671041\pi\)
0.999906 + 0.0137429i \(0.00437462\pi\)
\(920\) −13.3145 + 23.0614i −0.438967 + 0.760313i
\(921\) 0 0
\(922\) 55.0969 + 95.4307i 1.81452 + 3.14284i
\(923\) −18.0796 + 31.3148i −0.595098 + 1.03074i
\(924\) 0 0
\(925\) −5.54511 9.60442i −0.182322 0.315791i
\(926\) 13.3745 23.1653i 0.439513 0.761259i
\(927\) 0 0
\(928\) −23.1941 40.1734i −0.761385 1.31876i
\(929\) −2.69963 −0.0885719 −0.0442860 0.999019i \(-0.514101\pi\)
−0.0442860 + 0.999019i \(0.514101\pi\)
\(930\) 0 0
\(931\) 6.97710 14.4163i 0.228665 0.472476i
\(932\) 72.4992 125.572i 2.37479 4.11325i
\(933\) 0 0
\(934\) 23.9443 41.4727i 0.783481 1.35703i
\(935\) −1.40180 2.42800i −0.0458439 0.0794040i
\(936\) 0 0
\(937\) 39.4472 1.28869 0.644343 0.764737i \(-0.277131\pi\)
0.644343 + 0.764737i \(0.277131\pi\)
\(938\) 5.08217 0.185214i 0.165939 0.00604746i
\(939\) 0 0
\(940\) −13.4814 23.3505i −0.439716 0.761610i
\(941\) −39.7244 −1.29498 −0.647489 0.762075i \(-0.724181\pi\)
−0.647489 + 0.762075i \(0.724181\pi\)
\(942\) 0 0
\(943\) 16.8282 0.548002
\(944\) 65.4449 2.13005
\(945\) 0 0
\(946\) −7.37822 −0.239886
\(947\) 15.7303 0.511166 0.255583 0.966787i \(-0.417733\pi\)
0.255583 + 0.966787i \(0.417733\pi\)
\(948\) 0 0
\(949\) −32.8168 −1.06528
\(950\) 7.65019 + 13.2505i 0.248205 + 0.429903i
\(951\) 0 0
\(952\) 73.3090 + 116.923i 2.37596 + 3.78949i
\(953\) −30.2064 −0.978482 −0.489241 0.872149i \(-0.662726\pi\)
−0.489241 + 0.872149i \(0.662726\pi\)
\(954\) 0 0
\(955\) 6.04216 + 10.4653i 0.195520 + 0.338650i
\(956\) −73.6722 + 127.604i −2.38273 + 4.12701i
\(957\) 0 0
\(958\) 31.8683 55.1975i 1.02962 1.78335i
\(959\) −4.67859 + 8.83153i −0.151079 + 0.285185i
\(960\) 0 0
\(961\) −7.85532 −0.253397
\(962\) −16.9869 29.4222i −0.547681 0.948611i
\(963\) 0 0
\(964\) 59.5697 103.178i 1.91861 3.32313i
\(965\) −6.08836 10.5454i −0.195991 0.339467i
\(966\) 0 0
\(967\) 3.09455 5.35992i 0.0995141 0.172364i −0.811970 0.583700i \(-0.801604\pi\)
0.911484 + 0.411336i \(0.134938\pi\)
\(968\) −48.4195 83.8651i −1.55626 2.69553i
\(969\) 0 0
\(970\) −26.9629 + 46.7010i −0.865725 + 1.49948i
\(971\) −1.08582 + 1.88069i −0.0348455 + 0.0603542i −0.882922 0.469519i \(-0.844427\pi\)
0.848077 + 0.529873i \(0.177761\pi\)
\(972\) 0 0
\(973\) 20.7077 39.0888i 0.663858 1.25313i
\(974\) 47.0716 + 81.5304i 1.50827 + 2.61240i
\(975\) 0 0
\(976\) 101.419 3.24634
\(977\) 11.4561 0.366512 0.183256 0.983065i \(-0.441336\pi\)
0.183256 + 0.983065i \(0.441336\pi\)
\(978\) 0 0
\(979\) 1.40476 + 2.43311i 0.0448962 + 0.0777626i
\(980\) −33.0258 48.6428i −1.05497 1.55384i
\(981\) 0 0
\(982\) −31.3225 + 54.2522i −0.999541 + 1.73126i
\(983\) 22.4010 38.7997i 0.714482 1.23752i −0.248677 0.968587i \(-0.579996\pi\)
0.963159 0.268933i \(-0.0866710\pi\)
\(984\) 0 0
\(985\) 14.6025 + 25.2923i 0.465275 + 0.805880i
\(986\) 20.0116 34.6611i 0.637300 1.10384i
\(987\) 0 0
\(988\) 17.0043 + 29.4524i 0.540980 + 0.937005i
\(989\) −8.59269 + 14.8830i −0.273232 + 0.473251i
\(990\) 0 0
\(991\) 12.1476 + 21.0403i 0.385882 + 0.668368i 0.991891 0.127090i \(-0.0405637\pi\)
−0.606009 + 0.795458i \(0.707230\pi\)
\(992\) 88.4573 2.80852
\(993\) 0 0
\(994\) 91.8206 3.34630i 2.91237 0.106138i
\(995\) −4.72872 + 8.19038i −0.149910 + 0.259653i
\(996\) 0 0
\(997\) 5.66257 9.80785i 0.179335 0.310618i −0.762318 0.647203i \(-0.775939\pi\)
0.941653 + 0.336585i \(0.109272\pi\)
\(998\) −7.18794 12.4499i −0.227530 0.394094i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 567.2.h.h.352.1 6
3.2 odd 2 567.2.h.i.352.3 6
7.4 even 3 567.2.g.i.109.3 6
9.2 odd 6 567.2.g.h.541.1 6
9.4 even 3 189.2.e.f.163.3 yes 6
9.5 odd 6 189.2.e.e.163.1 yes 6
9.7 even 3 567.2.g.i.541.3 6
21.11 odd 6 567.2.g.h.109.1 6
63.4 even 3 189.2.e.f.109.3 yes 6
63.5 even 6 1323.2.a.z.1.3 3
63.11 odd 6 567.2.h.i.298.3 6
63.23 odd 6 1323.2.a.ba.1.3 3
63.25 even 3 inner 567.2.h.h.298.1 6
63.32 odd 6 189.2.e.e.109.1 6
63.40 odd 6 1323.2.a.y.1.1 3
63.58 even 3 1323.2.a.x.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
189.2.e.e.109.1 6 63.32 odd 6
189.2.e.e.163.1 yes 6 9.5 odd 6
189.2.e.f.109.3 yes 6 63.4 even 3
189.2.e.f.163.3 yes 6 9.4 even 3
567.2.g.h.109.1 6 21.11 odd 6
567.2.g.h.541.1 6 9.2 odd 6
567.2.g.i.109.3 6 7.4 even 3
567.2.g.i.541.3 6 9.7 even 3
567.2.h.h.298.1 6 63.25 even 3 inner
567.2.h.h.352.1 6 1.1 even 1 trivial
567.2.h.i.298.3 6 63.11 odd 6
567.2.h.i.352.3 6 3.2 odd 2
1323.2.a.x.1.1 3 63.58 even 3
1323.2.a.y.1.1 3 63.40 odd 6
1323.2.a.z.1.3 3 63.5 even 6
1323.2.a.ba.1.3 3 63.23 odd 6