Properties

Label 567.2.h.c
Level 567
Weight 2
Character orbit 567.h
Analytic conductor 4.528
Analytic rank 0
Dimension 2
CM discriminant -3
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 567 = 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 567.h (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.52751779461\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 63)
Sato-Tate group: $\mathrm{U}(1)[D_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -2 q^{4} + ( -1 - 2 \zeta_{6} ) q^{7} +O(q^{10})\) \( q -2 q^{4} + ( -1 - 2 \zeta_{6} ) q^{7} + 7 \zeta_{6} q^{13} + 4 q^{16} + 7 \zeta_{6} q^{19} + 5 \zeta_{6} q^{25} + ( 2 + 4 \zeta_{6} ) q^{28} -7 q^{31} + \zeta_{6} q^{37} + ( -5 + 5 \zeta_{6} ) q^{43} + ( -3 + 8 \zeta_{6} ) q^{49} -14 \zeta_{6} q^{52} + 14 q^{61} -8 q^{64} + 11 q^{67} + ( 7 - 7 \zeta_{6} ) q^{73} -14 \zeta_{6} q^{76} -13 q^{79} + ( 14 - 21 \zeta_{6} ) q^{91} + ( -14 + 14 \zeta_{6} ) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 4q^{4} - 4q^{7} + O(q^{10}) \) \( 2q - 4q^{4} - 4q^{7} + 7q^{13} + 8q^{16} + 7q^{19} + 5q^{25} + 8q^{28} - 14q^{31} + q^{37} - 5q^{43} + 2q^{49} - 14q^{52} + 28q^{61} - 16q^{64} + 22q^{67} + 7q^{73} - 14q^{76} - 26q^{79} + 7q^{91} - 14q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/567\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(-\zeta_{6}\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
298.1
0.500000 + 0.866025i
0.500000 0.866025i
0 0 −2.00000 0 0 −2.00000 1.73205i 0 0 0
352.1 0 0 −2.00000 0 0 −2.00000 + 1.73205i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)
63.h even 3 1 inner
63.j odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 567.2.h.c 2
3.b odd 2 1 CM 567.2.h.c 2
7.c even 3 1 567.2.g.d 2
9.c even 3 1 63.2.e.a 2
9.c even 3 1 567.2.g.d 2
9.d odd 6 1 63.2.e.a 2
9.d odd 6 1 567.2.g.d 2
21.h odd 6 1 567.2.g.d 2
36.f odd 6 1 1008.2.s.j 2
36.h even 6 1 1008.2.s.j 2
63.g even 3 1 63.2.e.a 2
63.h even 3 1 441.2.a.d 1
63.h even 3 1 inner 567.2.h.c 2
63.i even 6 1 441.2.a.e 1
63.j odd 6 1 441.2.a.d 1
63.j odd 6 1 inner 567.2.h.c 2
63.k odd 6 1 441.2.e.c 2
63.l odd 6 1 441.2.e.c 2
63.n odd 6 1 63.2.e.a 2
63.o even 6 1 441.2.e.c 2
63.s even 6 1 441.2.e.c 2
63.t odd 6 1 441.2.a.e 1
252.o even 6 1 1008.2.s.j 2
252.r odd 6 1 7056.2.a.bf 1
252.u odd 6 1 7056.2.a.y 1
252.bb even 6 1 7056.2.a.y 1
252.bj even 6 1 7056.2.a.bf 1
252.bl odd 6 1 1008.2.s.j 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
63.2.e.a 2 9.c even 3 1
63.2.e.a 2 9.d odd 6 1
63.2.e.a 2 63.g even 3 1
63.2.e.a 2 63.n odd 6 1
441.2.a.d 1 63.h even 3 1
441.2.a.d 1 63.j odd 6 1
441.2.a.e 1 63.i even 6 1
441.2.a.e 1 63.t odd 6 1
441.2.e.c 2 63.k odd 6 1
441.2.e.c 2 63.l odd 6 1
441.2.e.c 2 63.o even 6 1
441.2.e.c 2 63.s even 6 1
567.2.g.d 2 7.c even 3 1
567.2.g.d 2 9.c even 3 1
567.2.g.d 2 9.d odd 6 1
567.2.g.d 2 21.h odd 6 1
567.2.h.c 2 1.a even 1 1 trivial
567.2.h.c 2 3.b odd 2 1 CM
567.2.h.c 2 63.h even 3 1 inner
567.2.h.c 2 63.j odd 6 1 inner
1008.2.s.j 2 36.f odd 6 1
1008.2.s.j 2 36.h even 6 1
1008.2.s.j 2 252.o even 6 1
1008.2.s.j 2 252.bl odd 6 1
7056.2.a.y 1 252.u odd 6 1
7056.2.a.y 1 252.bb even 6 1
7056.2.a.bf 1 252.r odd 6 1
7056.2.a.bf 1 252.bj even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(567, [\chi])\):

\( T_{2} \)
\( T_{13}^{2} - 7 T_{13} + 49 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( ( 1 + 2 T^{2} )^{2} \)
$3$ 1
$5$ \( 1 - 5 T^{2} + 25 T^{4} \)
$7$ \( 1 + 4 T + 7 T^{2} \)
$11$ \( 1 - 11 T^{2} + 121 T^{4} \)
$13$ \( ( 1 - 5 T + 13 T^{2} )( 1 - 2 T + 13 T^{2} ) \)
$17$ \( 1 - 17 T^{2} + 289 T^{4} \)
$19$ \( ( 1 - 8 T + 19 T^{2} )( 1 + T + 19 T^{2} ) \)
$23$ \( 1 - 23 T^{2} + 529 T^{4} \)
$29$ \( 1 - 29 T^{2} + 841 T^{4} \)
$31$ \( ( 1 + 7 T + 31 T^{2} )^{2} \)
$37$ \( ( 1 - 11 T + 37 T^{2} )( 1 + 10 T + 37 T^{2} ) \)
$41$ \( 1 - 41 T^{2} + 1681 T^{4} \)
$43$ \( ( 1 - 8 T + 43 T^{2} )( 1 + 13 T + 43 T^{2} ) \)
$47$ \( ( 1 + 47 T^{2} )^{2} \)
$53$ \( 1 - 53 T^{2} + 2809 T^{4} \)
$59$ \( ( 1 + 59 T^{2} )^{2} \)
$61$ \( ( 1 - 14 T + 61 T^{2} )^{2} \)
$67$ \( ( 1 - 11 T + 67 T^{2} )^{2} \)
$71$ \( ( 1 + 71 T^{2} )^{2} \)
$73$ \( ( 1 - 17 T + 73 T^{2} )( 1 + 10 T + 73 T^{2} ) \)
$79$ \( ( 1 + 13 T + 79 T^{2} )^{2} \)
$83$ \( 1 - 83 T^{2} + 6889 T^{4} \)
$89$ \( 1 - 89 T^{2} + 7921 T^{4} \)
$97$ \( ( 1 - 5 T + 97 T^{2} )( 1 + 19 T + 97 T^{2} ) \)
show more
show less