Properties

Label 567.2.h.b.298.1
Level $567$
Weight $2$
Character 567.298
Analytic conductor $4.528$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [567,2,Mod(298,567)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(567, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("567.298");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 567 = 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 567.h (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.52751779461\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 189)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 298.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 567.298
Dual form 567.2.h.b.352.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -1.00000 q^{4} +(-2.00000 + 3.46410i) q^{5} +(-2.50000 + 0.866025i) q^{7} +3.00000 q^{8} +(2.00000 - 3.46410i) q^{10} +(1.00000 + 1.73205i) q^{11} +(-0.500000 - 0.866025i) q^{13} +(2.50000 - 0.866025i) q^{14} -1.00000 q^{16} +(-3.00000 + 5.19615i) q^{17} +(-2.00000 - 3.46410i) q^{19} +(2.00000 - 3.46410i) q^{20} +(-1.00000 - 1.73205i) q^{22} +(3.00000 - 5.19615i) q^{23} +(-5.50000 - 9.52628i) q^{25} +(0.500000 + 0.866025i) q^{26} +(2.50000 - 0.866025i) q^{28} +(1.00000 - 1.73205i) q^{29} +3.00000 q^{31} -5.00000 q^{32} +(3.00000 - 5.19615i) q^{34} +(2.00000 - 10.3923i) q^{35} +(-1.50000 - 2.59808i) q^{37} +(2.00000 + 3.46410i) q^{38} +(-6.00000 + 10.3923i) q^{40} +(-1.00000 - 1.73205i) q^{41} +(0.500000 - 0.866025i) q^{43} +(-1.00000 - 1.73205i) q^{44} +(-3.00000 + 5.19615i) q^{46} -6.00000 q^{47} +(5.50000 - 4.33013i) q^{49} +(5.50000 + 9.52628i) q^{50} +(0.500000 + 0.866025i) q^{52} +(-3.00000 + 5.19615i) q^{53} -8.00000 q^{55} +(-7.50000 + 2.59808i) q^{56} +(-1.00000 + 1.73205i) q^{58} -6.00000 q^{59} -5.00000 q^{61} -3.00000 q^{62} +7.00000 q^{64} +4.00000 q^{65} +7.00000 q^{67} +(3.00000 - 5.19615i) q^{68} +(-2.00000 + 10.3923i) q^{70} +(3.00000 - 5.19615i) q^{73} +(1.50000 + 2.59808i) q^{74} +(2.00000 + 3.46410i) q^{76} +(-4.00000 - 3.46410i) q^{77} +11.0000 q^{79} +(2.00000 - 3.46410i) q^{80} +(1.00000 + 1.73205i) q^{82} +(3.00000 - 5.19615i) q^{83} +(-12.0000 - 20.7846i) q^{85} +(-0.500000 + 0.866025i) q^{86} +(3.00000 + 5.19615i) q^{88} +(-2.00000 - 3.46410i) q^{89} +(2.00000 + 1.73205i) q^{91} +(-3.00000 + 5.19615i) q^{92} +6.00000 q^{94} +16.0000 q^{95} +(-4.50000 + 7.79423i) q^{97} +(-5.50000 + 4.33013i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} - 2 q^{4} - 4 q^{5} - 5 q^{7} + 6 q^{8} + 4 q^{10} + 2 q^{11} - q^{13} + 5 q^{14} - 2 q^{16} - 6 q^{17} - 4 q^{19} + 4 q^{20} - 2 q^{22} + 6 q^{23} - 11 q^{25} + q^{26} + 5 q^{28} + 2 q^{29}+ \cdots - 11 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/567\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107 −0.353553 0.935414i \(-0.615027\pi\)
−0.353553 + 0.935414i \(0.615027\pi\)
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) −2.00000 + 3.46410i −0.894427 + 1.54919i −0.0599153 + 0.998203i \(0.519083\pi\)
−0.834512 + 0.550990i \(0.814250\pi\)
\(6\) 0 0
\(7\) −2.50000 + 0.866025i −0.944911 + 0.327327i
\(8\) 3.00000 1.06066
\(9\) 0 0
\(10\) 2.00000 3.46410i 0.632456 1.09545i
\(11\) 1.00000 + 1.73205i 0.301511 + 0.522233i 0.976478 0.215615i \(-0.0691756\pi\)
−0.674967 + 0.737848i \(0.735842\pi\)
\(12\) 0 0
\(13\) −0.500000 0.866025i −0.138675 0.240192i 0.788320 0.615265i \(-0.210951\pi\)
−0.926995 + 0.375073i \(0.877618\pi\)
\(14\) 2.50000 0.866025i 0.668153 0.231455i
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) −3.00000 + 5.19615i −0.727607 + 1.26025i 0.230285 + 0.973123i \(0.426034\pi\)
−0.957892 + 0.287129i \(0.907299\pi\)
\(18\) 0 0
\(19\) −2.00000 3.46410i −0.458831 0.794719i 0.540068 0.841621i \(-0.318398\pi\)
−0.998899 + 0.0469020i \(0.985065\pi\)
\(20\) 2.00000 3.46410i 0.447214 0.774597i
\(21\) 0 0
\(22\) −1.00000 1.73205i −0.213201 0.369274i
\(23\) 3.00000 5.19615i 0.625543 1.08347i −0.362892 0.931831i \(-0.618211\pi\)
0.988436 0.151642i \(-0.0484560\pi\)
\(24\) 0 0
\(25\) −5.50000 9.52628i −1.10000 1.90526i
\(26\) 0.500000 + 0.866025i 0.0980581 + 0.169842i
\(27\) 0 0
\(28\) 2.50000 0.866025i 0.472456 0.163663i
\(29\) 1.00000 1.73205i 0.185695 0.321634i −0.758115 0.652121i \(-0.773880\pi\)
0.943811 + 0.330487i \(0.107213\pi\)
\(30\) 0 0
\(31\) 3.00000 0.538816 0.269408 0.963026i \(-0.413172\pi\)
0.269408 + 0.963026i \(0.413172\pi\)
\(32\) −5.00000 −0.883883
\(33\) 0 0
\(34\) 3.00000 5.19615i 0.514496 0.891133i
\(35\) 2.00000 10.3923i 0.338062 1.75662i
\(36\) 0 0
\(37\) −1.50000 2.59808i −0.246598 0.427121i 0.715981 0.698119i \(-0.245980\pi\)
−0.962580 + 0.270998i \(0.912646\pi\)
\(38\) 2.00000 + 3.46410i 0.324443 + 0.561951i
\(39\) 0 0
\(40\) −6.00000 + 10.3923i −0.948683 + 1.64317i
\(41\) −1.00000 1.73205i −0.156174 0.270501i 0.777312 0.629115i \(-0.216583\pi\)
−0.933486 + 0.358614i \(0.883249\pi\)
\(42\) 0 0
\(43\) 0.500000 0.866025i 0.0762493 0.132068i −0.825380 0.564578i \(-0.809039\pi\)
0.901629 + 0.432511i \(0.142372\pi\)
\(44\) −1.00000 1.73205i −0.150756 0.261116i
\(45\) 0 0
\(46\) −3.00000 + 5.19615i −0.442326 + 0.766131i
\(47\) −6.00000 −0.875190 −0.437595 0.899172i \(-0.644170\pi\)
−0.437595 + 0.899172i \(0.644170\pi\)
\(48\) 0 0
\(49\) 5.50000 4.33013i 0.785714 0.618590i
\(50\) 5.50000 + 9.52628i 0.777817 + 1.34722i
\(51\) 0 0
\(52\) 0.500000 + 0.866025i 0.0693375 + 0.120096i
\(53\) −3.00000 + 5.19615i −0.412082 + 0.713746i −0.995117 0.0987002i \(-0.968532\pi\)
0.583036 + 0.812447i \(0.301865\pi\)
\(54\) 0 0
\(55\) −8.00000 −1.07872
\(56\) −7.50000 + 2.59808i −1.00223 + 0.347183i
\(57\) 0 0
\(58\) −1.00000 + 1.73205i −0.131306 + 0.227429i
\(59\) −6.00000 −0.781133 −0.390567 0.920575i \(-0.627721\pi\)
−0.390567 + 0.920575i \(0.627721\pi\)
\(60\) 0 0
\(61\) −5.00000 −0.640184 −0.320092 0.947386i \(-0.603714\pi\)
−0.320092 + 0.947386i \(0.603714\pi\)
\(62\) −3.00000 −0.381000
\(63\) 0 0
\(64\) 7.00000 0.875000
\(65\) 4.00000 0.496139
\(66\) 0 0
\(67\) 7.00000 0.855186 0.427593 0.903971i \(-0.359362\pi\)
0.427593 + 0.903971i \(0.359362\pi\)
\(68\) 3.00000 5.19615i 0.363803 0.630126i
\(69\) 0 0
\(70\) −2.00000 + 10.3923i −0.239046 + 1.24212i
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 3.00000 5.19615i 0.351123 0.608164i −0.635323 0.772246i \(-0.719133\pi\)
0.986447 + 0.164083i \(0.0524664\pi\)
\(74\) 1.50000 + 2.59808i 0.174371 + 0.302020i
\(75\) 0 0
\(76\) 2.00000 + 3.46410i 0.229416 + 0.397360i
\(77\) −4.00000 3.46410i −0.455842 0.394771i
\(78\) 0 0
\(79\) 11.0000 1.23760 0.618798 0.785550i \(-0.287620\pi\)
0.618798 + 0.785550i \(0.287620\pi\)
\(80\) 2.00000 3.46410i 0.223607 0.387298i
\(81\) 0 0
\(82\) 1.00000 + 1.73205i 0.110432 + 0.191273i
\(83\) 3.00000 5.19615i 0.329293 0.570352i −0.653079 0.757290i \(-0.726523\pi\)
0.982372 + 0.186938i \(0.0598564\pi\)
\(84\) 0 0
\(85\) −12.0000 20.7846i −1.30158 2.25441i
\(86\) −0.500000 + 0.866025i −0.0539164 + 0.0933859i
\(87\) 0 0
\(88\) 3.00000 + 5.19615i 0.319801 + 0.553912i
\(89\) −2.00000 3.46410i −0.212000 0.367194i 0.740341 0.672232i \(-0.234664\pi\)
−0.952340 + 0.305038i \(0.901331\pi\)
\(90\) 0 0
\(91\) 2.00000 + 1.73205i 0.209657 + 0.181568i
\(92\) −3.00000 + 5.19615i −0.312772 + 0.541736i
\(93\) 0 0
\(94\) 6.00000 0.618853
\(95\) 16.0000 1.64157
\(96\) 0 0
\(97\) −4.50000 + 7.79423i −0.456906 + 0.791384i −0.998796 0.0490655i \(-0.984376\pi\)
0.541890 + 0.840450i \(0.317709\pi\)
\(98\) −5.50000 + 4.33013i −0.555584 + 0.437409i
\(99\) 0 0
\(100\) 5.50000 + 9.52628i 0.550000 + 0.952628i
\(101\) −4.00000 6.92820i −0.398015 0.689382i 0.595466 0.803380i \(-0.296967\pi\)
−0.993481 + 0.113998i \(0.963634\pi\)
\(102\) 0 0
\(103\) −8.50000 + 14.7224i −0.837530 + 1.45064i 0.0544240 + 0.998518i \(0.482668\pi\)
−0.891954 + 0.452126i \(0.850666\pi\)
\(104\) −1.50000 2.59808i −0.147087 0.254762i
\(105\) 0 0
\(106\) 3.00000 5.19615i 0.291386 0.504695i
\(107\) 1.00000 + 1.73205i 0.0966736 + 0.167444i 0.910306 0.413936i \(-0.135846\pi\)
−0.813632 + 0.581380i \(0.802513\pi\)
\(108\) 0 0
\(109\) −4.50000 + 7.79423i −0.431022 + 0.746552i −0.996962 0.0778949i \(-0.975180\pi\)
0.565940 + 0.824447i \(0.308513\pi\)
\(110\) 8.00000 0.762770
\(111\) 0 0
\(112\) 2.50000 0.866025i 0.236228 0.0818317i
\(113\) −8.00000 13.8564i −0.752577 1.30350i −0.946570 0.322498i \(-0.895477\pi\)
0.193993 0.981003i \(-0.437856\pi\)
\(114\) 0 0
\(115\) 12.0000 + 20.7846i 1.11901 + 1.93817i
\(116\) −1.00000 + 1.73205i −0.0928477 + 0.160817i
\(117\) 0 0
\(118\) 6.00000 0.552345
\(119\) 3.00000 15.5885i 0.275010 1.42899i
\(120\) 0 0
\(121\) 3.50000 6.06218i 0.318182 0.551107i
\(122\) 5.00000 0.452679
\(123\) 0 0
\(124\) −3.00000 −0.269408
\(125\) 24.0000 2.14663
\(126\) 0 0
\(127\) −9.00000 −0.798621 −0.399310 0.916816i \(-0.630750\pi\)
−0.399310 + 0.916816i \(0.630750\pi\)
\(128\) 3.00000 0.265165
\(129\) 0 0
\(130\) −4.00000 −0.350823
\(131\) −2.00000 + 3.46410i −0.174741 + 0.302660i −0.940072 0.340977i \(-0.889242\pi\)
0.765331 + 0.643637i \(0.222575\pi\)
\(132\) 0 0
\(133\) 8.00000 + 6.92820i 0.693688 + 0.600751i
\(134\) −7.00000 −0.604708
\(135\) 0 0
\(136\) −9.00000 + 15.5885i −0.771744 + 1.33670i
\(137\) 9.00000 + 15.5885i 0.768922 + 1.33181i 0.938148 + 0.346235i \(0.112540\pi\)
−0.169226 + 0.985577i \(0.554127\pi\)
\(138\) 0 0
\(139\) −4.50000 7.79423i −0.381685 0.661098i 0.609618 0.792695i \(-0.291323\pi\)
−0.991303 + 0.131597i \(0.957989\pi\)
\(140\) −2.00000 + 10.3923i −0.169031 + 0.878310i
\(141\) 0 0
\(142\) 0 0
\(143\) 1.00000 1.73205i 0.0836242 0.144841i
\(144\) 0 0
\(145\) 4.00000 + 6.92820i 0.332182 + 0.575356i
\(146\) −3.00000 + 5.19615i −0.248282 + 0.430037i
\(147\) 0 0
\(148\) 1.50000 + 2.59808i 0.123299 + 0.213561i
\(149\) −12.0000 + 20.7846i −0.983078 + 1.70274i −0.332896 + 0.942964i \(0.608026\pi\)
−0.650183 + 0.759778i \(0.725308\pi\)
\(150\) 0 0
\(151\) −2.50000 4.33013i −0.203447 0.352381i 0.746190 0.665733i \(-0.231881\pi\)
−0.949637 + 0.313353i \(0.898548\pi\)
\(152\) −6.00000 10.3923i −0.486664 0.842927i
\(153\) 0 0
\(154\) 4.00000 + 3.46410i 0.322329 + 0.279145i
\(155\) −6.00000 + 10.3923i −0.481932 + 0.834730i
\(156\) 0 0
\(157\) 10.0000 0.798087 0.399043 0.916932i \(-0.369342\pi\)
0.399043 + 0.916932i \(0.369342\pi\)
\(158\) −11.0000 −0.875113
\(159\) 0 0
\(160\) 10.0000 17.3205i 0.790569 1.36931i
\(161\) −3.00000 + 15.5885i −0.236433 + 1.22854i
\(162\) 0 0
\(163\) −9.50000 16.4545i −0.744097 1.28881i −0.950615 0.310372i \(-0.899546\pi\)
0.206518 0.978443i \(-0.433787\pi\)
\(164\) 1.00000 + 1.73205i 0.0780869 + 0.135250i
\(165\) 0 0
\(166\) −3.00000 + 5.19615i −0.232845 + 0.403300i
\(167\) 7.00000 + 12.1244i 0.541676 + 0.938211i 0.998808 + 0.0488118i \(0.0155435\pi\)
−0.457132 + 0.889399i \(0.651123\pi\)
\(168\) 0 0
\(169\) 6.00000 10.3923i 0.461538 0.799408i
\(170\) 12.0000 + 20.7846i 0.920358 + 1.59411i
\(171\) 0 0
\(172\) −0.500000 + 0.866025i −0.0381246 + 0.0660338i
\(173\) −16.0000 −1.21646 −0.608229 0.793762i \(-0.708120\pi\)
−0.608229 + 0.793762i \(0.708120\pi\)
\(174\) 0 0
\(175\) 22.0000 + 19.0526i 1.66304 + 1.44024i
\(176\) −1.00000 1.73205i −0.0753778 0.130558i
\(177\) 0 0
\(178\) 2.00000 + 3.46410i 0.149906 + 0.259645i
\(179\) 2.00000 3.46410i 0.149487 0.258919i −0.781551 0.623841i \(-0.785571\pi\)
0.931038 + 0.364922i \(0.118904\pi\)
\(180\) 0 0
\(181\) −2.00000 −0.148659 −0.0743294 0.997234i \(-0.523682\pi\)
−0.0743294 + 0.997234i \(0.523682\pi\)
\(182\) −2.00000 1.73205i −0.148250 0.128388i
\(183\) 0 0
\(184\) 9.00000 15.5885i 0.663489 1.14920i
\(185\) 12.0000 0.882258
\(186\) 0 0
\(187\) −12.0000 −0.877527
\(188\) 6.00000 0.437595
\(189\) 0 0
\(190\) −16.0000 −1.16076
\(191\) 4.00000 0.289430 0.144715 0.989473i \(-0.453773\pi\)
0.144715 + 0.989473i \(0.453773\pi\)
\(192\) 0 0
\(193\) −25.0000 −1.79954 −0.899770 0.436365i \(-0.856266\pi\)
−0.899770 + 0.436365i \(0.856266\pi\)
\(194\) 4.50000 7.79423i 0.323081 0.559593i
\(195\) 0 0
\(196\) −5.50000 + 4.33013i −0.392857 + 0.309295i
\(197\) −20.0000 −1.42494 −0.712470 0.701702i \(-0.752424\pi\)
−0.712470 + 0.701702i \(0.752424\pi\)
\(198\) 0 0
\(199\) 4.50000 7.79423i 0.318997 0.552518i −0.661282 0.750137i \(-0.729987\pi\)
0.980279 + 0.197619i \(0.0633208\pi\)
\(200\) −16.5000 28.5788i −1.16673 2.02083i
\(201\) 0 0
\(202\) 4.00000 + 6.92820i 0.281439 + 0.487467i
\(203\) −1.00000 + 5.19615i −0.0701862 + 0.364698i
\(204\) 0 0
\(205\) 8.00000 0.558744
\(206\) 8.50000 14.7224i 0.592223 1.02576i
\(207\) 0 0
\(208\) 0.500000 + 0.866025i 0.0346688 + 0.0600481i
\(209\) 4.00000 6.92820i 0.276686 0.479234i
\(210\) 0 0
\(211\) 2.50000 + 4.33013i 0.172107 + 0.298098i 0.939156 0.343490i \(-0.111609\pi\)
−0.767049 + 0.641588i \(0.778276\pi\)
\(212\) 3.00000 5.19615i 0.206041 0.356873i
\(213\) 0 0
\(214\) −1.00000 1.73205i −0.0683586 0.118401i
\(215\) 2.00000 + 3.46410i 0.136399 + 0.236250i
\(216\) 0 0
\(217\) −7.50000 + 2.59808i −0.509133 + 0.176369i
\(218\) 4.50000 7.79423i 0.304778 0.527892i
\(219\) 0 0
\(220\) 8.00000 0.539360
\(221\) 6.00000 0.403604
\(222\) 0 0
\(223\) −8.00000 + 13.8564i −0.535720 + 0.927894i 0.463409 + 0.886145i \(0.346626\pi\)
−0.999128 + 0.0417488i \(0.986707\pi\)
\(224\) 12.5000 4.33013i 0.835191 0.289319i
\(225\) 0 0
\(226\) 8.00000 + 13.8564i 0.532152 + 0.921714i
\(227\) 9.00000 + 15.5885i 0.597351 + 1.03464i 0.993210 + 0.116331i \(0.0371134\pi\)
−0.395860 + 0.918311i \(0.629553\pi\)
\(228\) 0 0
\(229\) 3.50000 6.06218i 0.231287 0.400600i −0.726900 0.686743i \(-0.759040\pi\)
0.958187 + 0.286143i \(0.0923732\pi\)
\(230\) −12.0000 20.7846i −0.791257 1.37050i
\(231\) 0 0
\(232\) 3.00000 5.19615i 0.196960 0.341144i
\(233\) −12.0000 20.7846i −0.786146 1.36165i −0.928312 0.371802i \(-0.878740\pi\)
0.142166 0.989843i \(-0.454593\pi\)
\(234\) 0 0
\(235\) 12.0000 20.7846i 0.782794 1.35584i
\(236\) 6.00000 0.390567
\(237\) 0 0
\(238\) −3.00000 + 15.5885i −0.194461 + 1.01045i
\(239\) −6.00000 10.3923i −0.388108 0.672222i 0.604087 0.796918i \(-0.293538\pi\)
−0.992195 + 0.124696i \(0.960204\pi\)
\(240\) 0 0
\(241\) −8.50000 14.7224i −0.547533 0.948355i −0.998443 0.0557856i \(-0.982234\pi\)
0.450910 0.892570i \(-0.351100\pi\)
\(242\) −3.50000 + 6.06218i −0.224989 + 0.389692i
\(243\) 0 0
\(244\) 5.00000 0.320092
\(245\) 4.00000 + 27.7128i 0.255551 + 1.77051i
\(246\) 0 0
\(247\) −2.00000 + 3.46410i −0.127257 + 0.220416i
\(248\) 9.00000 0.571501
\(249\) 0 0
\(250\) −24.0000 −1.51789
\(251\) −26.0000 −1.64111 −0.820553 0.571571i \(-0.806334\pi\)
−0.820553 + 0.571571i \(0.806334\pi\)
\(252\) 0 0
\(253\) 12.0000 0.754434
\(254\) 9.00000 0.564710
\(255\) 0 0
\(256\) −17.0000 −1.06250
\(257\) 5.00000 8.66025i 0.311891 0.540212i −0.666880 0.745165i \(-0.732371\pi\)
0.978772 + 0.204953i \(0.0657041\pi\)
\(258\) 0 0
\(259\) 6.00000 + 5.19615i 0.372822 + 0.322873i
\(260\) −4.00000 −0.248069
\(261\) 0 0
\(262\) 2.00000 3.46410i 0.123560 0.214013i
\(263\) 1.00000 + 1.73205i 0.0616626 + 0.106803i 0.895209 0.445647i \(-0.147026\pi\)
−0.833546 + 0.552450i \(0.813693\pi\)
\(264\) 0 0
\(265\) −12.0000 20.7846i −0.737154 1.27679i
\(266\) −8.00000 6.92820i −0.490511 0.424795i
\(267\) 0 0
\(268\) −7.00000 −0.427593
\(269\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(270\) 0 0
\(271\) 5.50000 + 9.52628i 0.334101 + 0.578680i 0.983312 0.181928i \(-0.0582339\pi\)
−0.649211 + 0.760609i \(0.724901\pi\)
\(272\) 3.00000 5.19615i 0.181902 0.315063i
\(273\) 0 0
\(274\) −9.00000 15.5885i −0.543710 0.941733i
\(275\) 11.0000 19.0526i 0.663325 1.14891i
\(276\) 0 0
\(277\) −6.50000 11.2583i −0.390547 0.676448i 0.601975 0.798515i \(-0.294381\pi\)
−0.992522 + 0.122068i \(0.961047\pi\)
\(278\) 4.50000 + 7.79423i 0.269892 + 0.467467i
\(279\) 0 0
\(280\) 6.00000 31.1769i 0.358569 1.86318i
\(281\) 8.00000 13.8564i 0.477240 0.826604i −0.522420 0.852688i \(-0.674971\pi\)
0.999660 + 0.0260845i \(0.00830391\pi\)
\(282\) 0 0
\(283\) −5.00000 −0.297219 −0.148610 0.988896i \(-0.547480\pi\)
−0.148610 + 0.988896i \(0.547480\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) −1.00000 + 1.73205i −0.0591312 + 0.102418i
\(287\) 4.00000 + 3.46410i 0.236113 + 0.204479i
\(288\) 0 0
\(289\) −9.50000 16.4545i −0.558824 0.967911i
\(290\) −4.00000 6.92820i −0.234888 0.406838i
\(291\) 0 0
\(292\) −3.00000 + 5.19615i −0.175562 + 0.304082i
\(293\) 11.0000 + 19.0526i 0.642627 + 1.11306i 0.984844 + 0.173442i \(0.0554888\pi\)
−0.342217 + 0.939621i \(0.611178\pi\)
\(294\) 0 0
\(295\) 12.0000 20.7846i 0.698667 1.21013i
\(296\) −4.50000 7.79423i −0.261557 0.453030i
\(297\) 0 0
\(298\) 12.0000 20.7846i 0.695141 1.20402i
\(299\) −6.00000 −0.346989
\(300\) 0 0
\(301\) −0.500000 + 2.59808i −0.0288195 + 0.149751i
\(302\) 2.50000 + 4.33013i 0.143859 + 0.249171i
\(303\) 0 0
\(304\) 2.00000 + 3.46410i 0.114708 + 0.198680i
\(305\) 10.0000 17.3205i 0.572598 0.991769i
\(306\) 0 0
\(307\) 25.0000 1.42683 0.713413 0.700744i \(-0.247149\pi\)
0.713413 + 0.700744i \(0.247149\pi\)
\(308\) 4.00000 + 3.46410i 0.227921 + 0.197386i
\(309\) 0 0
\(310\) 6.00000 10.3923i 0.340777 0.590243i
\(311\) −24.0000 −1.36092 −0.680458 0.732787i \(-0.738219\pi\)
−0.680458 + 0.732787i \(0.738219\pi\)
\(312\) 0 0
\(313\) −22.0000 −1.24351 −0.621757 0.783210i \(-0.713581\pi\)
−0.621757 + 0.783210i \(0.713581\pi\)
\(314\) −10.0000 −0.564333
\(315\) 0 0
\(316\) −11.0000 −0.618798
\(317\) −30.0000 −1.68497 −0.842484 0.538721i \(-0.818908\pi\)
−0.842484 + 0.538721i \(0.818908\pi\)
\(318\) 0 0
\(319\) 4.00000 0.223957
\(320\) −14.0000 + 24.2487i −0.782624 + 1.35554i
\(321\) 0 0
\(322\) 3.00000 15.5885i 0.167183 0.868711i
\(323\) 24.0000 1.33540
\(324\) 0 0
\(325\) −5.50000 + 9.52628i −0.305085 + 0.528423i
\(326\) 9.50000 + 16.4545i 0.526156 + 0.911330i
\(327\) 0 0
\(328\) −3.00000 5.19615i −0.165647 0.286910i
\(329\) 15.0000 5.19615i 0.826977 0.286473i
\(330\) 0 0
\(331\) −28.0000 −1.53902 −0.769510 0.638635i \(-0.779499\pi\)
−0.769510 + 0.638635i \(0.779499\pi\)
\(332\) −3.00000 + 5.19615i −0.164646 + 0.285176i
\(333\) 0 0
\(334\) −7.00000 12.1244i −0.383023 0.663415i
\(335\) −14.0000 + 24.2487i −0.764902 + 1.32485i
\(336\) 0 0
\(337\) −5.00000 8.66025i −0.272367 0.471754i 0.697100 0.716974i \(-0.254473\pi\)
−0.969468 + 0.245220i \(0.921140\pi\)
\(338\) −6.00000 + 10.3923i −0.326357 + 0.565267i
\(339\) 0 0
\(340\) 12.0000 + 20.7846i 0.650791 + 1.12720i
\(341\) 3.00000 + 5.19615i 0.162459 + 0.281387i
\(342\) 0 0
\(343\) −10.0000 + 15.5885i −0.539949 + 0.841698i
\(344\) 1.50000 2.59808i 0.0808746 0.140079i
\(345\) 0 0
\(346\) 16.0000 0.860165
\(347\) −16.0000 −0.858925 −0.429463 0.903085i \(-0.641297\pi\)
−0.429463 + 0.903085i \(0.641297\pi\)
\(348\) 0 0
\(349\) 2.50000 4.33013i 0.133822 0.231786i −0.791325 0.611396i \(-0.790608\pi\)
0.925147 + 0.379610i \(0.123942\pi\)
\(350\) −22.0000 19.0526i −1.17595 1.01840i
\(351\) 0 0
\(352\) −5.00000 8.66025i −0.266501 0.461593i
\(353\) −14.0000 24.2487i −0.745145 1.29063i −0.950127 0.311863i \(-0.899047\pi\)
0.204982 0.978766i \(-0.434286\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 2.00000 + 3.46410i 0.106000 + 0.183597i
\(357\) 0 0
\(358\) −2.00000 + 3.46410i −0.105703 + 0.183083i
\(359\) 11.0000 + 19.0526i 0.580558 + 1.00556i 0.995413 + 0.0956683i \(0.0304988\pi\)
−0.414855 + 0.909887i \(0.636168\pi\)
\(360\) 0 0
\(361\) 1.50000 2.59808i 0.0789474 0.136741i
\(362\) 2.00000 0.105118
\(363\) 0 0
\(364\) −2.00000 1.73205i −0.104828 0.0907841i
\(365\) 12.0000 + 20.7846i 0.628109 + 1.08792i
\(366\) 0 0
\(367\) −6.00000 10.3923i −0.313197 0.542474i 0.665855 0.746081i \(-0.268067\pi\)
−0.979053 + 0.203607i \(0.934733\pi\)
\(368\) −3.00000 + 5.19615i −0.156386 + 0.270868i
\(369\) 0 0
\(370\) −12.0000 −0.623850
\(371\) 3.00000 15.5885i 0.155752 0.809312i
\(372\) 0 0
\(373\) −13.0000 + 22.5167i −0.673114 + 1.16587i 0.303902 + 0.952703i \(0.401711\pi\)
−0.977016 + 0.213165i \(0.931623\pi\)
\(374\) 12.0000 0.620505
\(375\) 0 0
\(376\) −18.0000 −0.928279
\(377\) −2.00000 −0.103005
\(378\) 0 0
\(379\) −9.00000 −0.462299 −0.231149 0.972918i \(-0.574249\pi\)
−0.231149 + 0.972918i \(0.574249\pi\)
\(380\) −16.0000 −0.820783
\(381\) 0 0
\(382\) −4.00000 −0.204658
\(383\) −9.00000 + 15.5885i −0.459879 + 0.796533i −0.998954 0.0457244i \(-0.985440\pi\)
0.539076 + 0.842257i \(0.318774\pi\)
\(384\) 0 0
\(385\) 20.0000 6.92820i 1.01929 0.353094i
\(386\) 25.0000 1.27247
\(387\) 0 0
\(388\) 4.50000 7.79423i 0.228453 0.395692i
\(389\) −6.00000 10.3923i −0.304212 0.526911i 0.672874 0.739758i \(-0.265060\pi\)
−0.977086 + 0.212847i \(0.931726\pi\)
\(390\) 0 0
\(391\) 18.0000 + 31.1769i 0.910299 + 1.57668i
\(392\) 16.5000 12.9904i 0.833376 0.656113i
\(393\) 0 0
\(394\) 20.0000 1.00759
\(395\) −22.0000 + 38.1051i −1.10694 + 1.91728i
\(396\) 0 0
\(397\) 16.5000 + 28.5788i 0.828111 + 1.43433i 0.899518 + 0.436884i \(0.143918\pi\)
−0.0714068 + 0.997447i \(0.522749\pi\)
\(398\) −4.50000 + 7.79423i −0.225565 + 0.390689i
\(399\) 0 0
\(400\) 5.50000 + 9.52628i 0.275000 + 0.476314i
\(401\) 15.0000 25.9808i 0.749064 1.29742i −0.199207 0.979957i \(-0.563837\pi\)
0.948272 0.317460i \(-0.102830\pi\)
\(402\) 0 0
\(403\) −1.50000 2.59808i −0.0747203 0.129419i
\(404\) 4.00000 + 6.92820i 0.199007 + 0.344691i
\(405\) 0 0
\(406\) 1.00000 5.19615i 0.0496292 0.257881i
\(407\) 3.00000 5.19615i 0.148704 0.257564i
\(408\) 0 0
\(409\) 5.00000 0.247234 0.123617 0.992330i \(-0.460551\pi\)
0.123617 + 0.992330i \(0.460551\pi\)
\(410\) −8.00000 −0.395092
\(411\) 0 0
\(412\) 8.50000 14.7224i 0.418765 0.725322i
\(413\) 15.0000 5.19615i 0.738102 0.255686i
\(414\) 0 0
\(415\) 12.0000 + 20.7846i 0.589057 + 1.02028i
\(416\) 2.50000 + 4.33013i 0.122573 + 0.212302i
\(417\) 0 0
\(418\) −4.00000 + 6.92820i −0.195646 + 0.338869i
\(419\) −6.00000 10.3923i −0.293119 0.507697i 0.681426 0.731887i \(-0.261360\pi\)
−0.974546 + 0.224189i \(0.928027\pi\)
\(420\) 0 0
\(421\) 5.00000 8.66025i 0.243685 0.422075i −0.718076 0.695965i \(-0.754977\pi\)
0.961761 + 0.273890i \(0.0883103\pi\)
\(422\) −2.50000 4.33013i −0.121698 0.210787i
\(423\) 0 0
\(424\) −9.00000 + 15.5885i −0.437079 + 0.757042i
\(425\) 66.0000 3.20147
\(426\) 0 0
\(427\) 12.5000 4.33013i 0.604917 0.209550i
\(428\) −1.00000 1.73205i −0.0483368 0.0837218i
\(429\) 0 0
\(430\) −2.00000 3.46410i −0.0964486 0.167054i
\(431\) 9.00000 15.5885i 0.433515 0.750870i −0.563658 0.826008i \(-0.690607\pi\)
0.997173 + 0.0751385i \(0.0239399\pi\)
\(432\) 0 0
\(433\) −17.0000 −0.816968 −0.408484 0.912766i \(-0.633942\pi\)
−0.408484 + 0.912766i \(0.633942\pi\)
\(434\) 7.50000 2.59808i 0.360012 0.124712i
\(435\) 0 0
\(436\) 4.50000 7.79423i 0.215511 0.373276i
\(437\) −24.0000 −1.14808
\(438\) 0 0
\(439\) 24.0000 1.14546 0.572729 0.819745i \(-0.305885\pi\)
0.572729 + 0.819745i \(0.305885\pi\)
\(440\) −24.0000 −1.14416
\(441\) 0 0
\(442\) −6.00000 −0.285391
\(443\) 24.0000 1.14027 0.570137 0.821549i \(-0.306890\pi\)
0.570137 + 0.821549i \(0.306890\pi\)
\(444\) 0 0
\(445\) 16.0000 0.758473
\(446\) 8.00000 13.8564i 0.378811 0.656120i
\(447\) 0 0
\(448\) −17.5000 + 6.06218i −0.826797 + 0.286411i
\(449\) 36.0000 1.69895 0.849473 0.527633i \(-0.176920\pi\)
0.849473 + 0.527633i \(0.176920\pi\)
\(450\) 0 0
\(451\) 2.00000 3.46410i 0.0941763 0.163118i
\(452\) 8.00000 + 13.8564i 0.376288 + 0.651751i
\(453\) 0 0
\(454\) −9.00000 15.5885i −0.422391 0.731603i
\(455\) −10.0000 + 3.46410i −0.468807 + 0.162400i
\(456\) 0 0
\(457\) 13.0000 0.608114 0.304057 0.952654i \(-0.401659\pi\)
0.304057 + 0.952654i \(0.401659\pi\)
\(458\) −3.50000 + 6.06218i −0.163544 + 0.283267i
\(459\) 0 0
\(460\) −12.0000 20.7846i −0.559503 0.969087i
\(461\) −1.00000 + 1.73205i −0.0465746 + 0.0806696i −0.888373 0.459123i \(-0.848164\pi\)
0.841798 + 0.539792i \(0.181497\pi\)
\(462\) 0 0
\(463\) 16.0000 + 27.7128i 0.743583 + 1.28792i 0.950854 + 0.309640i \(0.100209\pi\)
−0.207271 + 0.978284i \(0.566458\pi\)
\(464\) −1.00000 + 1.73205i −0.0464238 + 0.0804084i
\(465\) 0 0
\(466\) 12.0000 + 20.7846i 0.555889 + 0.962828i
\(467\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(468\) 0 0
\(469\) −17.5000 + 6.06218i −0.808075 + 0.279925i
\(470\) −12.0000 + 20.7846i −0.553519 + 0.958723i
\(471\) 0 0
\(472\) −18.0000 −0.828517
\(473\) 2.00000 0.0919601
\(474\) 0 0
\(475\) −22.0000 + 38.1051i −1.00943 + 1.74838i
\(476\) −3.00000 + 15.5885i −0.137505 + 0.714496i
\(477\) 0 0
\(478\) 6.00000 + 10.3923i 0.274434 + 0.475333i
\(479\) 8.00000 + 13.8564i 0.365529 + 0.633115i 0.988861 0.148842i \(-0.0475547\pi\)
−0.623332 + 0.781958i \(0.714221\pi\)
\(480\) 0 0
\(481\) −1.50000 + 2.59808i −0.0683941 + 0.118462i
\(482\) 8.50000 + 14.7224i 0.387164 + 0.670588i
\(483\) 0 0
\(484\) −3.50000 + 6.06218i −0.159091 + 0.275554i
\(485\) −18.0000 31.1769i −0.817338 1.41567i
\(486\) 0 0
\(487\) −8.00000 + 13.8564i −0.362515 + 0.627894i −0.988374 0.152042i \(-0.951415\pi\)
0.625859 + 0.779936i \(0.284748\pi\)
\(488\) −15.0000 −0.679018
\(489\) 0 0
\(490\) −4.00000 27.7128i −0.180702 1.25194i
\(491\) 17.0000 + 29.4449i 0.767199 + 1.32883i 0.939076 + 0.343710i \(0.111684\pi\)
−0.171877 + 0.985118i \(0.554983\pi\)
\(492\) 0 0
\(493\) 6.00000 + 10.3923i 0.270226 + 0.468046i
\(494\) 2.00000 3.46410i 0.0899843 0.155857i
\(495\) 0 0
\(496\) −3.00000 −0.134704
\(497\) 0 0
\(498\) 0 0
\(499\) 8.50000 14.7224i 0.380512 0.659067i −0.610623 0.791921i \(-0.709081\pi\)
0.991136 + 0.132855i \(0.0424144\pi\)
\(500\) −24.0000 −1.07331
\(501\) 0 0
\(502\) 26.0000 1.16044
\(503\) −6.00000 −0.267527 −0.133763 0.991013i \(-0.542706\pi\)
−0.133763 + 0.991013i \(0.542706\pi\)
\(504\) 0 0
\(505\) 32.0000 1.42398
\(506\) −12.0000 −0.533465
\(507\) 0 0
\(508\) 9.00000 0.399310
\(509\) 11.0000 19.0526i 0.487566 0.844490i −0.512331 0.858788i \(-0.671218\pi\)
0.999898 + 0.0142980i \(0.00455136\pi\)
\(510\) 0 0
\(511\) −3.00000 + 15.5885i −0.132712 + 0.689593i
\(512\) 11.0000 0.486136
\(513\) 0 0
\(514\) −5.00000 + 8.66025i −0.220541 + 0.381987i
\(515\) −34.0000 58.8897i −1.49822 2.59499i
\(516\) 0 0
\(517\) −6.00000 10.3923i −0.263880 0.457053i
\(518\) −6.00000 5.19615i −0.263625 0.228306i
\(519\) 0 0
\(520\) 12.0000 0.526235
\(521\) 9.00000 15.5885i 0.394297 0.682943i −0.598714 0.800963i \(-0.704321\pi\)
0.993011 + 0.118020i \(0.0376547\pi\)
\(522\) 0 0
\(523\) 8.50000 + 14.7224i 0.371679 + 0.643767i 0.989824 0.142297i \(-0.0454489\pi\)
−0.618145 + 0.786064i \(0.712116\pi\)
\(524\) 2.00000 3.46410i 0.0873704 0.151330i
\(525\) 0 0
\(526\) −1.00000 1.73205i −0.0436021 0.0755210i
\(527\) −9.00000 + 15.5885i −0.392046 + 0.679044i
\(528\) 0 0
\(529\) −6.50000 11.2583i −0.282609 0.489493i
\(530\) 12.0000 + 20.7846i 0.521247 + 0.902826i
\(531\) 0 0
\(532\) −8.00000 6.92820i −0.346844 0.300376i
\(533\) −1.00000 + 1.73205i −0.0433148 + 0.0750234i
\(534\) 0 0
\(535\) −8.00000 −0.345870
\(536\) 21.0000 0.907062
\(537\) 0 0
\(538\) 0 0
\(539\) 13.0000 + 5.19615i 0.559950 + 0.223814i
\(540\) 0 0
\(541\) 5.00000 + 8.66025i 0.214967 + 0.372333i 0.953262 0.302144i \(-0.0977023\pi\)
−0.738296 + 0.674477i \(0.764369\pi\)
\(542\) −5.50000 9.52628i −0.236245 0.409189i
\(543\) 0 0
\(544\) 15.0000 25.9808i 0.643120 1.11392i
\(545\) −18.0000 31.1769i −0.771035 1.33547i
\(546\) 0 0
\(547\) −21.5000 + 37.2391i −0.919274 + 1.59223i −0.118753 + 0.992924i \(0.537890\pi\)
−0.800521 + 0.599305i \(0.795444\pi\)
\(548\) −9.00000 15.5885i −0.384461 0.665906i
\(549\) 0 0
\(550\) −11.0000 + 19.0526i −0.469042 + 0.812404i
\(551\) −8.00000 −0.340811
\(552\) 0 0
\(553\) −27.5000 + 9.52628i −1.16942 + 0.405099i
\(554\) 6.50000 + 11.2583i 0.276159 + 0.478321i
\(555\) 0 0
\(556\) 4.50000 + 7.79423i 0.190843 + 0.330549i
\(557\) −14.0000 + 24.2487i −0.593199 + 1.02745i 0.400599 + 0.916253i \(0.368802\pi\)
−0.993798 + 0.111198i \(0.964531\pi\)
\(558\) 0 0
\(559\) −1.00000 −0.0422955
\(560\) −2.00000 + 10.3923i −0.0845154 + 0.439155i
\(561\) 0 0
\(562\) −8.00000 + 13.8564i −0.337460 + 0.584497i
\(563\) 10.0000 0.421450 0.210725 0.977545i \(-0.432418\pi\)
0.210725 + 0.977545i \(0.432418\pi\)
\(564\) 0 0
\(565\) 64.0000 2.69250
\(566\) 5.00000 0.210166
\(567\) 0 0
\(568\) 0 0
\(569\) −32.0000 −1.34151 −0.670755 0.741679i \(-0.734030\pi\)
−0.670755 + 0.741679i \(0.734030\pi\)
\(570\) 0 0
\(571\) −16.0000 −0.669579 −0.334790 0.942293i \(-0.608665\pi\)
−0.334790 + 0.942293i \(0.608665\pi\)
\(572\) −1.00000 + 1.73205i −0.0418121 + 0.0724207i
\(573\) 0 0
\(574\) −4.00000 3.46410i −0.166957 0.144589i
\(575\) −66.0000 −2.75239
\(576\) 0 0
\(577\) 8.50000 14.7224i 0.353860 0.612903i −0.633062 0.774101i \(-0.718202\pi\)
0.986922 + 0.161198i \(0.0515357\pi\)
\(578\) 9.50000 + 16.4545i 0.395148 + 0.684416i
\(579\) 0 0
\(580\) −4.00000 6.92820i −0.166091 0.287678i
\(581\) −3.00000 + 15.5885i −0.124461 + 0.646718i
\(582\) 0 0
\(583\) −12.0000 −0.496989
\(584\) 9.00000 15.5885i 0.372423 0.645055i
\(585\) 0 0
\(586\) −11.0000 19.0526i −0.454406 0.787054i
\(587\) −14.0000 + 24.2487i −0.577842 + 1.00085i 0.417885 + 0.908500i \(0.362772\pi\)
−0.995726 + 0.0923513i \(0.970562\pi\)
\(588\) 0 0
\(589\) −6.00000 10.3923i −0.247226 0.428207i
\(590\) −12.0000 + 20.7846i −0.494032 + 0.855689i
\(591\) 0 0
\(592\) 1.50000 + 2.59808i 0.0616496 + 0.106780i
\(593\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(594\) 0 0
\(595\) 48.0000 + 41.5692i 1.96781 + 1.70417i
\(596\) 12.0000 20.7846i 0.491539 0.851371i
\(597\) 0 0
\(598\) 6.00000 0.245358
\(599\) −12.0000 −0.490307 −0.245153 0.969484i \(-0.578838\pi\)
−0.245153 + 0.969484i \(0.578838\pi\)
\(600\) 0 0
\(601\) 16.5000 28.5788i 0.673049 1.16576i −0.303986 0.952676i \(-0.598318\pi\)
0.977035 0.213079i \(-0.0683491\pi\)
\(602\) 0.500000 2.59808i 0.0203785 0.105890i
\(603\) 0 0
\(604\) 2.50000 + 4.33013i 0.101724 + 0.176190i
\(605\) 14.0000 + 24.2487i 0.569181 + 0.985850i
\(606\) 0 0
\(607\) 8.00000 13.8564i 0.324710 0.562414i −0.656744 0.754114i \(-0.728067\pi\)
0.981454 + 0.191700i \(0.0614000\pi\)
\(608\) 10.0000 + 17.3205i 0.405554 + 0.702439i
\(609\) 0 0
\(610\) −10.0000 + 17.3205i −0.404888 + 0.701287i
\(611\) 3.00000 + 5.19615i 0.121367 + 0.210214i
\(612\) 0 0
\(613\) −3.50000 + 6.06218i −0.141364 + 0.244849i −0.928010 0.372554i \(-0.878482\pi\)
0.786647 + 0.617403i \(0.211815\pi\)
\(614\) −25.0000 −1.00892
\(615\) 0 0
\(616\) −12.0000 10.3923i −0.483494 0.418718i
\(617\) −9.00000 15.5885i −0.362326 0.627568i 0.626017 0.779809i \(-0.284684\pi\)
−0.988343 + 0.152242i \(0.951351\pi\)
\(618\) 0 0
\(619\) 20.5000 + 35.5070i 0.823965 + 1.42715i 0.902708 + 0.430254i \(0.141576\pi\)
−0.0787435 + 0.996895i \(0.525091\pi\)
\(620\) 6.00000 10.3923i 0.240966 0.417365i
\(621\) 0 0
\(622\) 24.0000 0.962312
\(623\) 8.00000 + 6.92820i 0.320513 + 0.277573i
\(624\) 0 0
\(625\) −20.5000 + 35.5070i −0.820000 + 1.42028i
\(626\) 22.0000 0.879297
\(627\) 0 0
\(628\) −10.0000 −0.399043
\(629\) 18.0000 0.717707
\(630\) 0 0
\(631\) 5.00000 0.199047 0.0995234 0.995035i \(-0.468268\pi\)
0.0995234 + 0.995035i \(0.468268\pi\)
\(632\) 33.0000 1.31267
\(633\) 0 0
\(634\) 30.0000 1.19145
\(635\) 18.0000 31.1769i 0.714308 1.23722i
\(636\) 0 0
\(637\) −6.50000 2.59808i −0.257539 0.102940i
\(638\) −4.00000 −0.158362
\(639\) 0 0
\(640\) −6.00000 + 10.3923i −0.237171 + 0.410792i
\(641\) 3.00000 + 5.19615i 0.118493 + 0.205236i 0.919171 0.393860i \(-0.128860\pi\)
−0.800678 + 0.599095i \(0.795527\pi\)
\(642\) 0 0
\(643\) 12.5000 + 21.6506i 0.492952 + 0.853818i 0.999967 0.00811944i \(-0.00258453\pi\)
−0.507015 + 0.861937i \(0.669251\pi\)
\(644\) 3.00000 15.5885i 0.118217 0.614271i
\(645\) 0 0
\(646\) −24.0000 −0.944267
\(647\) 14.0000 24.2487i 0.550397 0.953315i −0.447849 0.894109i \(-0.647810\pi\)
0.998246 0.0592060i \(-0.0188569\pi\)
\(648\) 0 0
\(649\) −6.00000 10.3923i −0.235521 0.407934i
\(650\) 5.50000 9.52628i 0.215728 0.373651i
\(651\) 0 0
\(652\) 9.50000 + 16.4545i 0.372049 + 0.644407i
\(653\) 3.00000 5.19615i 0.117399 0.203341i −0.801337 0.598213i \(-0.795878\pi\)
0.918736 + 0.394872i \(0.129211\pi\)
\(654\) 0 0
\(655\) −8.00000 13.8564i −0.312586 0.541415i
\(656\) 1.00000 + 1.73205i 0.0390434 + 0.0676252i
\(657\) 0 0
\(658\) −15.0000 + 5.19615i −0.584761 + 0.202567i
\(659\) 6.00000 10.3923i 0.233727 0.404827i −0.725175 0.688565i \(-0.758241\pi\)
0.958902 + 0.283738i \(0.0915745\pi\)
\(660\) 0 0
\(661\) −14.0000 −0.544537 −0.272268 0.962221i \(-0.587774\pi\)
−0.272268 + 0.962221i \(0.587774\pi\)
\(662\) 28.0000 1.08825
\(663\) 0 0
\(664\) 9.00000 15.5885i 0.349268 0.604949i
\(665\) −40.0000 + 13.8564i −1.55113 + 0.537328i
\(666\) 0 0
\(667\) −6.00000 10.3923i −0.232321 0.402392i
\(668\) −7.00000 12.1244i −0.270838 0.469105i
\(669\) 0 0
\(670\) 14.0000 24.2487i 0.540867 0.936809i
\(671\) −5.00000 8.66025i −0.193023 0.334325i
\(672\) 0 0
\(673\) −11.0000 + 19.0526i −0.424019 + 0.734422i −0.996328 0.0856156i \(-0.972714\pi\)
0.572309 + 0.820038i \(0.306048\pi\)
\(674\) 5.00000 + 8.66025i 0.192593 + 0.333581i
\(675\) 0 0
\(676\) −6.00000 + 10.3923i −0.230769 + 0.399704i
\(677\) −12.0000 −0.461197 −0.230599 0.973049i \(-0.574068\pi\)
−0.230599 + 0.973049i \(0.574068\pi\)
\(678\) 0 0
\(679\) 4.50000 23.3827i 0.172694 0.897345i
\(680\) −36.0000 62.3538i −1.38054 2.39116i
\(681\) 0 0
\(682\) −3.00000 5.19615i −0.114876 0.198971i
\(683\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(684\) 0 0
\(685\) −72.0000 −2.75098
\(686\) 10.0000 15.5885i 0.381802 0.595170i
\(687\) 0 0
\(688\) −0.500000 + 0.866025i −0.0190623 + 0.0330169i
\(689\) 6.00000 0.228582
\(690\) 0 0
\(691\) 41.0000 1.55971 0.779857 0.625958i \(-0.215292\pi\)
0.779857 + 0.625958i \(0.215292\pi\)
\(692\) 16.0000 0.608229
\(693\) 0 0
\(694\) 16.0000 0.607352
\(695\) 36.0000 1.36556
\(696\) 0 0
\(697\) 12.0000 0.454532
\(698\) −2.50000 + 4.33013i −0.0946264 + 0.163898i
\(699\) 0 0
\(700\) −22.0000 19.0526i −0.831522 0.720119i
\(701\) −24.0000 −0.906467 −0.453234 0.891392i \(-0.649730\pi\)
−0.453234 + 0.891392i \(0.649730\pi\)
\(702\) 0 0
\(703\) −6.00000 + 10.3923i −0.226294 + 0.391953i
\(704\) 7.00000 + 12.1244i 0.263822 + 0.456954i
\(705\) 0 0
\(706\) 14.0000 + 24.2487i 0.526897 + 0.912612i
\(707\) 16.0000 + 13.8564i 0.601742 + 0.521124i
\(708\) 0 0
\(709\) 21.0000 0.788672 0.394336 0.918966i \(-0.370975\pi\)
0.394336 + 0.918966i \(0.370975\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −6.00000 10.3923i −0.224860 0.389468i
\(713\) 9.00000 15.5885i 0.337053 0.583792i
\(714\) 0 0
\(715\) 4.00000 + 6.92820i 0.149592 + 0.259100i
\(716\) −2.00000 + 3.46410i −0.0747435 + 0.129460i
\(717\) 0 0
\(718\) −11.0000 19.0526i −0.410516 0.711035i
\(719\) −24.0000 41.5692i −0.895049 1.55027i −0.833744 0.552151i \(-0.813807\pi\)
−0.0613050 0.998119i \(-0.519526\pi\)
\(720\) 0 0
\(721\) 8.50000 44.1673i 0.316557 1.64488i
\(722\) −1.50000 + 2.59808i −0.0558242 + 0.0966904i
\(723\) 0 0
\(724\) 2.00000 0.0743294
\(725\) −22.0000 −0.817059
\(726\) 0 0
\(727\) −20.5000 + 35.5070i −0.760303 + 1.31688i 0.182392 + 0.983226i \(0.441616\pi\)
−0.942694 + 0.333657i \(0.891717\pi\)
\(728\) 6.00000 + 5.19615i 0.222375 + 0.192582i
\(729\) 0 0
\(730\) −12.0000 20.7846i −0.444140 0.769273i
\(731\) 3.00000 + 5.19615i 0.110959 + 0.192187i
\(732\) 0 0
\(733\) −10.5000 + 18.1865i −0.387826 + 0.671735i −0.992157 0.124999i \(-0.960107\pi\)
0.604331 + 0.796734i \(0.293441\pi\)
\(734\) 6.00000 + 10.3923i 0.221464 + 0.383587i
\(735\) 0 0
\(736\) −15.0000 + 25.9808i −0.552907 + 0.957664i
\(737\) 7.00000 + 12.1244i 0.257848 + 0.446606i
\(738\) 0 0
\(739\) 4.50000 7.79423i 0.165535 0.286715i −0.771310 0.636460i \(-0.780398\pi\)
0.936845 + 0.349744i \(0.113732\pi\)
\(740\) −12.0000 −0.441129
\(741\) 0 0
\(742\) −3.00000 + 15.5885i −0.110133 + 0.572270i
\(743\) −21.0000 36.3731i −0.770415 1.33440i −0.937336 0.348428i \(-0.886716\pi\)
0.166920 0.985970i \(-0.446618\pi\)
\(744\) 0 0
\(745\) −48.0000 83.1384i −1.75858 3.04596i
\(746\) 13.0000 22.5167i 0.475964 0.824394i
\(747\) 0 0
\(748\) 12.0000 0.438763
\(749\) −4.00000 3.46410i −0.146157 0.126576i
\(750\) 0 0
\(751\) 4.00000 6.92820i 0.145962 0.252814i −0.783769 0.621052i \(-0.786706\pi\)
0.929731 + 0.368238i \(0.120039\pi\)
\(752\) 6.00000 0.218797
\(753\) 0 0
\(754\) 2.00000 0.0728357
\(755\) 20.0000 0.727875
\(756\) 0 0
\(757\) 17.0000 0.617876 0.308938 0.951082i \(-0.400027\pi\)
0.308938 + 0.951082i \(0.400027\pi\)
\(758\) 9.00000 0.326895
\(759\) 0 0
\(760\) 48.0000 1.74114
\(761\) −24.0000 + 41.5692i −0.869999 + 1.50688i −0.00800331 + 0.999968i \(0.502548\pi\)
−0.861996 + 0.506915i \(0.830786\pi\)
\(762\) 0 0
\(763\) 4.50000 23.3827i 0.162911 0.846510i
\(764\) −4.00000 −0.144715
\(765\) 0 0
\(766\) 9.00000 15.5885i 0.325183 0.563234i
\(767\) 3.00000 + 5.19615i 0.108324 + 0.187622i
\(768\) 0 0
\(769\) 5.00000 + 8.66025i 0.180305 + 0.312297i 0.941984 0.335657i \(-0.108958\pi\)
−0.761680 + 0.647954i \(0.775625\pi\)
\(770\) −20.0000 + 6.92820i −0.720750 + 0.249675i
\(771\) 0 0
\(772\) 25.0000 0.899770
\(773\) 8.00000 13.8564i 0.287740 0.498380i −0.685530 0.728044i \(-0.740429\pi\)
0.973270 + 0.229664i \(0.0737628\pi\)
\(774\) 0 0
\(775\) −16.5000 28.5788i −0.592697 1.02658i
\(776\) −13.5000 + 23.3827i −0.484622 + 0.839390i
\(777\) 0 0
\(778\) 6.00000 + 10.3923i 0.215110 + 0.372582i
\(779\) −4.00000 + 6.92820i −0.143315 + 0.248229i
\(780\) 0 0
\(781\) 0 0
\(782\) −18.0000 31.1769i −0.643679 1.11488i
\(783\) 0 0
\(784\) −5.50000 + 4.33013i −0.196429 + 0.154647i
\(785\) −20.0000 + 34.6410i −0.713831 + 1.23639i
\(786\) 0 0
\(787\) −47.0000 −1.67537 −0.837685 0.546154i \(-0.816091\pi\)
−0.837685 + 0.546154i \(0.816091\pi\)
\(788\) 20.0000 0.712470
\(789\) 0 0
\(790\) 22.0000 38.1051i 0.782725 1.35572i
\(791\) 32.0000 + 27.7128i 1.13779 + 0.985354i
\(792\) 0 0
\(793\) 2.50000 + 4.33013i 0.0887776 + 0.153767i
\(794\) −16.5000 28.5788i −0.585563 1.01423i
\(795\) 0 0
\(796\) −4.50000 + 7.79423i −0.159498 + 0.276259i
\(797\) 7.00000 + 12.1244i 0.247953 + 0.429467i 0.962958 0.269653i \(-0.0869089\pi\)
−0.715005 + 0.699119i \(0.753576\pi\)
\(798\) 0 0
\(799\) 18.0000 31.1769i 0.636794 1.10296i
\(800\) 27.5000 + 47.6314i 0.972272 + 1.68402i
\(801\) 0 0
\(802\) −15.0000 + 25.9808i −0.529668 + 0.917413i
\(803\) 12.0000 0.423471
\(804\) 0 0
\(805\) −48.0000 41.5692i −1.69178 1.46512i
\(806\) 1.50000 + 2.59808i 0.0528352 + 0.0915133i
\(807\) 0 0
\(808\) −12.0000 20.7846i −0.422159 0.731200i
\(809\) −15.0000 + 25.9808i −0.527372 + 0.913435i 0.472119 + 0.881535i \(0.343489\pi\)
−0.999491 + 0.0319002i \(0.989844\pi\)
\(810\) 0 0
\(811\) 32.0000 1.12367 0.561836 0.827249i \(-0.310095\pi\)
0.561836 + 0.827249i \(0.310095\pi\)
\(812\) 1.00000 5.19615i 0.0350931 0.182349i
\(813\) 0 0
\(814\) −3.00000 + 5.19615i −0.105150 + 0.182125i
\(815\) 76.0000 2.66216
\(816\) 0 0
\(817\) −4.00000 −0.139942
\(818\) −5.00000 −0.174821
\(819\) 0 0
\(820\) −8.00000 −0.279372
\(821\) −22.0000 −0.767805 −0.383903 0.923374i \(-0.625420\pi\)
−0.383903 + 0.923374i \(0.625420\pi\)
\(822\) 0 0
\(823\) 45.0000 1.56860 0.784301 0.620381i \(-0.213022\pi\)
0.784301 + 0.620381i \(0.213022\pi\)
\(824\) −25.5000 + 44.1673i −0.888335 + 1.53864i
\(825\) 0 0
\(826\) −15.0000 + 5.19615i −0.521917 + 0.180797i
\(827\) 12.0000 0.417281 0.208640 0.977992i \(-0.433096\pi\)
0.208640 + 0.977992i \(0.433096\pi\)
\(828\) 0 0
\(829\) 5.00000 8.66025i 0.173657 0.300783i −0.766039 0.642795i \(-0.777775\pi\)
0.939696 + 0.342012i \(0.111108\pi\)
\(830\) −12.0000 20.7846i −0.416526 0.721444i
\(831\) 0 0
\(832\) −3.50000 6.06218i −0.121341 0.210168i
\(833\) 6.00000 + 41.5692i 0.207888 + 1.44029i
\(834\) 0 0
\(835\) −56.0000 −1.93796
\(836\) −4.00000 + 6.92820i −0.138343 + 0.239617i
\(837\) 0 0
\(838\) 6.00000 + 10.3923i 0.207267 + 0.358996i
\(839\) 13.0000 22.5167i 0.448810 0.777361i −0.549499 0.835494i \(-0.685181\pi\)
0.998309 + 0.0581329i \(0.0185147\pi\)
\(840\) 0 0
\(841\) 12.5000 + 21.6506i 0.431034 + 0.746574i
\(842\) −5.00000 + 8.66025i −0.172311 + 0.298452i
\(843\) 0 0
\(844\) −2.50000 4.33013i −0.0860535 0.149049i
\(845\) 24.0000 + 41.5692i 0.825625 + 1.43002i
\(846\) 0 0
\(847\) −3.50000 + 18.1865i −0.120261 + 0.624897i
\(848\) 3.00000 5.19615i 0.103020 0.178437i
\(849\) 0 0
\(850\) −66.0000 −2.26378
\(851\) −18.0000 −0.617032
\(852\) 0 0
\(853\) −13.0000 + 22.5167i −0.445112 + 0.770956i −0.998060 0.0622597i \(-0.980169\pi\)
0.552948 + 0.833215i \(0.313503\pi\)
\(854\) −12.5000 + 4.33013i −0.427741 + 0.148174i
\(855\) 0 0
\(856\) 3.00000 + 5.19615i 0.102538 + 0.177601i
\(857\) −8.00000 13.8564i −0.273275 0.473326i 0.696424 0.717631i \(-0.254773\pi\)
−0.969698 + 0.244305i \(0.921440\pi\)
\(858\) 0 0
\(859\) 12.5000 21.6506i 0.426494 0.738710i −0.570064 0.821600i \(-0.693082\pi\)
0.996559 + 0.0828900i \(0.0264150\pi\)
\(860\) −2.00000 3.46410i −0.0681994 0.118125i
\(861\) 0 0
\(862\) −9.00000 + 15.5885i −0.306541 + 0.530945i
\(863\) 18.0000 + 31.1769i 0.612727 + 1.06127i 0.990779 + 0.135490i \(0.0432609\pi\)
−0.378052 + 0.925785i \(0.623406\pi\)
\(864\) 0 0
\(865\) 32.0000 55.4256i 1.08803 1.88453i
\(866\) 17.0000 0.577684
\(867\) 0 0
\(868\) 7.50000 2.59808i 0.254567 0.0881845i
\(869\) 11.0000 + 19.0526i 0.373149 + 0.646314i
\(870\) 0 0
\(871\) −3.50000 6.06218i −0.118593 0.205409i
\(872\) −13.5000 + 23.3827i −0.457168 + 0.791838i
\(873\) 0 0
\(874\) 24.0000 0.811812
\(875\) −60.0000 + 20.7846i −2.02837 + 0.702648i
\(876\) 0 0
\(877\) −3.50000 + 6.06218i −0.118187 + 0.204705i −0.919049 0.394143i \(-0.871041\pi\)
0.800862 + 0.598848i \(0.204375\pi\)
\(878\) −24.0000 −0.809961
\(879\) 0 0
\(880\) 8.00000 0.269680
\(881\) −6.00000 −0.202145 −0.101073 0.994879i \(-0.532227\pi\)
−0.101073 + 0.994879i \(0.532227\pi\)
\(882\) 0 0
\(883\) 8.00000 0.269221 0.134611 0.990899i \(-0.457022\pi\)
0.134611 + 0.990899i \(0.457022\pi\)
\(884\) −6.00000 −0.201802
\(885\) 0 0
\(886\) −24.0000 −0.806296
\(887\) 11.0000 19.0526i 0.369344 0.639722i −0.620119 0.784508i \(-0.712916\pi\)
0.989463 + 0.144785i \(0.0462491\pi\)
\(888\) 0 0
\(889\) 22.5000 7.79423i 0.754626 0.261410i
\(890\) −16.0000 −0.536321
\(891\) 0 0
\(892\) 8.00000 13.8564i 0.267860 0.463947i
\(893\) 12.0000 + 20.7846i 0.401565 + 0.695530i
\(894\) 0 0
\(895\) 8.00000 + 13.8564i 0.267411 + 0.463169i
\(896\) −7.50000 + 2.59808i −0.250557 + 0.0867956i
\(897\) 0 0
\(898\) −36.0000 −1.20134
\(899\) 3.00000 5.19615i 0.100056 0.173301i
\(900\) 0 0
\(901\) −18.0000 31.1769i −0.599667 1.03865i
\(902\) −2.00000 + 3.46410i −0.0665927 + 0.115342i
\(903\) 0 0
\(904\) −24.0000 41.5692i −0.798228 1.38257i
\(905\) 4.00000 6.92820i 0.132964 0.230301i
\(906\) 0 0
\(907\) 6.50000 + 11.2583i 0.215829 + 0.373827i 0.953529 0.301302i \(-0.0974213\pi\)
−0.737700 + 0.675129i \(0.764088\pi\)
\(908\) −9.00000 15.5885i −0.298675 0.517321i
\(909\) 0 0
\(910\) 10.0000 3.46410i 0.331497 0.114834i
\(911\) −9.00000 + 15.5885i −0.298183 + 0.516469i −0.975720 0.219020i \(-0.929714\pi\)
0.677537 + 0.735489i \(0.263047\pi\)
\(912\) 0 0
\(913\) 12.0000 0.397142
\(914\) −13.0000 −0.430002
\(915\) 0 0
\(916\) −3.50000 + 6.06218i −0.115643 + 0.200300i
\(917\) 2.00000 10.3923i 0.0660458 0.343184i
\(918\) 0 0
\(919\) −14.5000 25.1147i −0.478311 0.828459i 0.521380 0.853325i \(-0.325417\pi\)
−0.999691 + 0.0248659i \(0.992084\pi\)
\(920\) 36.0000 + 62.3538i 1.18688 + 2.05574i
\(921\) 0 0
\(922\) 1.00000 1.73205i 0.0329332 0.0570421i
\(923\) 0 0
\(924\) 0 0
\(925\) −16.5000 + 28.5788i −0.542517 + 0.939666i
\(926\) −16.0000 27.7128i −0.525793 0.910700i
\(927\) 0 0
\(928\) −5.00000 + 8.66025i −0.164133 + 0.284287i
\(929\) −4.00000 −0.131236 −0.0656179 0.997845i \(-0.520902\pi\)
−0.0656179 + 0.997845i \(0.520902\pi\)
\(930\) 0 0
\(931\) −26.0000 10.3923i −0.852116 0.340594i
\(932\) 12.0000 + 20.7846i 0.393073 + 0.680823i
\(933\) 0 0
\(934\) 0 0
\(935\) 24.0000 41.5692i 0.784884 1.35946i
\(936\) 0 0
\(937\) −21.0000 −0.686040 −0.343020 0.939328i \(-0.611450\pi\)
−0.343020 + 0.939328i \(0.611450\pi\)
\(938\) 17.5000 6.06218i 0.571395 0.197937i
\(939\) 0 0
\(940\) −12.0000 + 20.7846i −0.391397 + 0.677919i
\(941\) −46.0000 −1.49956 −0.749779 0.661689i \(-0.769840\pi\)
−0.749779 + 0.661689i \(0.769840\pi\)
\(942\) 0 0
\(943\) −12.0000 −0.390774
\(944\) 6.00000 0.195283
\(945\) 0 0
\(946\) −2.00000 −0.0650256
\(947\) 26.0000 0.844886 0.422443 0.906389i \(-0.361173\pi\)
0.422443 + 0.906389i \(0.361173\pi\)
\(948\) 0 0
\(949\) −6.00000 −0.194768
\(950\) 22.0000 38.1051i 0.713774 1.23629i
\(951\) 0 0
\(952\) 9.00000 46.7654i 0.291692 1.51567i
\(953\) 14.0000 0.453504 0.226752 0.973952i \(-0.427189\pi\)
0.226752 + 0.973952i \(0.427189\pi\)
\(954\) 0 0
\(955\) −8.00000 + 13.8564i −0.258874 + 0.448383i
\(956\) 6.00000 + 10.3923i 0.194054 + 0.336111i
\(957\) 0 0
\(958\) −8.00000 13.8564i −0.258468 0.447680i
\(959\) −36.0000 31.1769i −1.16250 1.00676i
\(960\) 0 0
\(961\) −22.0000 −0.709677
\(962\) 1.50000 2.59808i 0.0483619 0.0837653i
\(963\) 0 0
\(964\) 8.50000 + 14.7224i 0.273767 + 0.474178i
\(965\) 50.0000 86.6025i 1.60956 2.78783i
\(966\) 0 0
\(967\) 8.50000 + 14.7224i 0.273342 + 0.473441i 0.969715 0.244238i \(-0.0785377\pi\)
−0.696374 + 0.717679i \(0.745204\pi\)
\(968\) 10.5000 18.1865i 0.337483 0.584537i
\(969\) 0 0
\(970\) 18.0000 + 31.1769i 0.577945 + 1.00103i
\(971\) −6.00000 10.3923i −0.192549 0.333505i 0.753545 0.657396i \(-0.228342\pi\)
−0.946094 + 0.323891i \(0.895009\pi\)
\(972\) 0 0
\(973\) 18.0000 + 15.5885i 0.577054 + 0.499743i
\(974\) 8.00000 13.8564i 0.256337 0.443988i
\(975\) 0 0
\(976\) 5.00000 0.160046
\(977\) −6.00000 −0.191957 −0.0959785 0.995383i \(-0.530598\pi\)
−0.0959785 + 0.995383i \(0.530598\pi\)
\(978\) 0 0
\(979\) 4.00000 6.92820i 0.127841 0.221426i
\(980\) −4.00000 27.7128i −0.127775 0.885253i
\(981\) 0 0
\(982\) −17.0000 29.4449i −0.542492 0.939623i
\(983\) −18.0000 31.1769i −0.574111 0.994389i −0.996138 0.0878058i \(-0.972015\pi\)
0.422027 0.906583i \(-0.361319\pi\)
\(984\) 0 0
\(985\) 40.0000 69.2820i 1.27451 2.20751i
\(986\) −6.00000 10.3923i −0.191079 0.330958i
\(987\) 0 0
\(988\) 2.00000 3.46410i 0.0636285 0.110208i
\(989\) −3.00000 5.19615i −0.0953945 0.165228i
\(990\) 0 0
\(991\) 27.5000 47.6314i 0.873566 1.51306i 0.0152841 0.999883i \(-0.495135\pi\)
0.858282 0.513178i \(-0.171532\pi\)
\(992\) −15.0000 −0.476250
\(993\) 0 0
\(994\) 0 0
\(995\) 18.0000 + 31.1769i 0.570638 + 0.988375i
\(996\) 0 0
\(997\) 14.5000 + 25.1147i 0.459220 + 0.795392i 0.998920 0.0464655i \(-0.0147958\pi\)
−0.539700 + 0.841857i \(0.681462\pi\)
\(998\) −8.50000 + 14.7224i −0.269063 + 0.466030i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 567.2.h.b.298.1 2
3.2 odd 2 567.2.h.e.298.1 2
7.2 even 3 567.2.g.e.541.1 2
9.2 odd 6 189.2.e.a.109.1 2
9.4 even 3 567.2.g.e.109.1 2
9.5 odd 6 567.2.g.b.109.1 2
9.7 even 3 189.2.e.c.109.1 yes 2
21.2 odd 6 567.2.g.b.541.1 2
63.2 odd 6 189.2.e.a.163.1 yes 2
63.11 odd 6 1323.2.a.m.1.1 1
63.16 even 3 189.2.e.c.163.1 yes 2
63.23 odd 6 567.2.h.e.352.1 2
63.25 even 3 1323.2.a.g.1.1 1
63.38 even 6 1323.2.a.p.1.1 1
63.52 odd 6 1323.2.a.d.1.1 1
63.58 even 3 inner 567.2.h.b.352.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
189.2.e.a.109.1 2 9.2 odd 6
189.2.e.a.163.1 yes 2 63.2 odd 6
189.2.e.c.109.1 yes 2 9.7 even 3
189.2.e.c.163.1 yes 2 63.16 even 3
567.2.g.b.109.1 2 9.5 odd 6
567.2.g.b.541.1 2 21.2 odd 6
567.2.g.e.109.1 2 9.4 even 3
567.2.g.e.541.1 2 7.2 even 3
567.2.h.b.298.1 2 1.1 even 1 trivial
567.2.h.b.352.1 2 63.58 even 3 inner
567.2.h.e.298.1 2 3.2 odd 2
567.2.h.e.352.1 2 63.23 odd 6
1323.2.a.d.1.1 1 63.52 odd 6
1323.2.a.g.1.1 1 63.25 even 3
1323.2.a.m.1.1 1 63.11 odd 6
1323.2.a.p.1.1 1 63.38 even 6