Properties

Label 567.2.g.l.541.6
Level $567$
Weight $2$
Character 567.541
Analytic conductor $4.528$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [567,2,Mod(109,567)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(567, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("567.109"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 567 = 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 567.g (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,-6,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.52751779461\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4x^{14} + 14x^{12} - 39x^{10} + 77x^{8} - 156x^{6} + 224x^{4} - 256x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{5} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 541.6
Root \(-0.776749 + 1.18180i\) of defining polynomial
Character \(\chi\) \(=\) 567.541
Dual form 567.2.g.l.109.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.635098 + 1.10002i) q^{2} +(0.193301 - 0.334806i) q^{4} +1.55350 q^{5} +(2.63869 - 0.193156i) q^{7} +3.03145 q^{8} +(0.986623 + 1.70888i) q^{10} -3.21001 q^{11} +(-2.39335 - 4.14540i) q^{13} +(1.88830 + 2.77995i) q^{14} +(1.53867 + 2.66505i) q^{16} +(1.05918 + 1.83456i) q^{17} +(2.43201 - 4.21237i) q^{19} +(0.300292 - 0.520121i) q^{20} +(-2.03867 - 3.53108i) q^{22} +3.70758 q^{23} -2.58665 q^{25} +(3.04002 - 5.26547i) q^{26} +(0.445391 - 0.920788i) q^{28} +(-3.68972 + 6.39078i) q^{29} +(-2.75209 + 4.76676i) q^{31} +(1.07704 - 1.86549i) q^{32} +(-1.34537 + 2.33025i) q^{34} +(4.09920 - 0.300067i) q^{35} +(0.0932782 - 0.161563i) q^{37} +6.17827 q^{38} +4.70935 q^{40} +(5.39860 + 9.35065i) q^{41} +(-2.43458 + 4.21681i) q^{43} +(-0.620496 + 1.07473i) q^{44} +(2.35468 + 4.07842i) q^{46} +(-0.885937 - 1.53449i) q^{47} +(6.92538 - 1.01936i) q^{49} +(-1.64277 - 2.84537i) q^{50} -1.85054 q^{52} +(-0.834432 - 1.44528i) q^{53} -4.98674 q^{55} +(7.99907 - 0.585543i) q^{56} -9.37334 q^{58} +(-2.91297 + 5.04541i) q^{59} +(-3.43865 - 5.95591i) q^{61} -6.99139 q^{62} +8.89078 q^{64} +(-3.71806 - 6.43986i) q^{65} +(-6.11868 + 10.5979i) q^{67} +0.818961 q^{68} +(2.93347 + 4.31864i) q^{70} -13.8101 q^{71} +(-5.93201 - 10.2745i) q^{73} +0.236963 q^{74} +(-0.940219 - 1.62851i) q^{76} +(-8.47021 + 0.620031i) q^{77} +(0.654632 + 1.13386i) q^{79} +(2.39032 + 4.14015i) q^{80} +(-6.85728 + 11.8772i) q^{82} +(0.173244 - 0.300067i) q^{83} +(1.64544 + 2.84998i) q^{85} -6.18478 q^{86} -9.73098 q^{88} +(8.70319 - 15.0744i) q^{89} +(-7.11601 - 10.4761i) q^{91} +(0.716677 - 1.24132i) q^{92} +(1.12531 - 1.94910i) q^{94} +(3.77813 - 6.54391i) q^{95} +(5.28413 - 9.15238i) q^{97} +(5.51961 + 6.97068i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{4} - 14 q^{10} - 6 q^{13} - 6 q^{16} - 24 q^{19} - 2 q^{22} - 26 q^{28} - 20 q^{31} + 4 q^{37} + 72 q^{40} - 10 q^{43} + 36 q^{46} + 4 q^{49} + 68 q^{52} + 8 q^{55} - 44 q^{58} - 36 q^{61} + 76 q^{64}+ \cdots - 14 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/567\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.635098 + 1.10002i 0.449082 + 0.777833i 0.998327 0.0578286i \(-0.0184177\pi\)
−0.549244 + 0.835662i \(0.685084\pi\)
\(3\) 0 0
\(4\) 0.193301 0.334806i 0.0966503 0.167403i
\(5\) 1.55350 0.694745 0.347373 0.937727i \(-0.387074\pi\)
0.347373 + 0.937727i \(0.387074\pi\)
\(6\) 0 0
\(7\) 2.63869 0.193156i 0.997331 0.0730060i
\(8\) 3.03145 1.07178
\(9\) 0 0
\(10\) 0.986623 + 1.70888i 0.311998 + 0.540396i
\(11\) −3.21001 −0.967853 −0.483927 0.875109i \(-0.660790\pi\)
−0.483927 + 0.875109i \(0.660790\pi\)
\(12\) 0 0
\(13\) −2.39335 4.14540i −0.663795 1.14973i −0.979611 0.200905i \(-0.935612\pi\)
0.315816 0.948820i \(-0.397722\pi\)
\(14\) 1.88830 + 2.77995i 0.504670 + 0.742972i
\(15\) 0 0
\(16\) 1.53867 + 2.66505i 0.384667 + 0.666263i
\(17\) 1.05918 + 1.83456i 0.256889 + 0.444945i 0.965407 0.260748i \(-0.0839691\pi\)
−0.708518 + 0.705693i \(0.750636\pi\)
\(18\) 0 0
\(19\) 2.43201 4.21237i 0.557942 0.966384i −0.439726 0.898132i \(-0.644924\pi\)
0.997668 0.0682523i \(-0.0217423\pi\)
\(20\) 0.300292 0.520121i 0.0671473 0.116303i
\(21\) 0 0
\(22\) −2.03867 3.53108i −0.434646 0.752828i
\(23\) 3.70758 0.773084 0.386542 0.922272i \(-0.373670\pi\)
0.386542 + 0.922272i \(0.373670\pi\)
\(24\) 0 0
\(25\) −2.58665 −0.517329
\(26\) 3.04002 5.26547i 0.596197 1.03264i
\(27\) 0 0
\(28\) 0.445391 0.920788i 0.0841709 0.174013i
\(29\) −3.68972 + 6.39078i −0.685164 + 1.18674i 0.288222 + 0.957564i \(0.406936\pi\)
−0.973385 + 0.229175i \(0.926397\pi\)
\(30\) 0 0
\(31\) −2.75209 + 4.76676i −0.494290 + 0.856135i −0.999978 0.00658088i \(-0.997905\pi\)
0.505688 + 0.862716i \(0.331239\pi\)
\(32\) 1.07704 1.86549i 0.190396 0.329775i
\(33\) 0 0
\(34\) −1.34537 + 2.33025i −0.230729 + 0.399634i
\(35\) 4.09920 0.300067i 0.692891 0.0507206i
\(36\) 0 0
\(37\) 0.0932782 0.161563i 0.0153348 0.0265607i −0.858256 0.513222i \(-0.828452\pi\)
0.873591 + 0.486661i \(0.161785\pi\)
\(38\) 6.17827 1.00225
\(39\) 0 0
\(40\) 4.70935 0.744614
\(41\) 5.39860 + 9.35065i 0.843120 + 1.46033i 0.887244 + 0.461300i \(0.152617\pi\)
−0.0441242 + 0.999026i \(0.514050\pi\)
\(42\) 0 0
\(43\) −2.43458 + 4.21681i −0.371270 + 0.643058i −0.989761 0.142734i \(-0.954411\pi\)
0.618491 + 0.785792i \(0.287744\pi\)
\(44\) −0.620496 + 1.07473i −0.0935433 + 0.162022i
\(45\) 0 0
\(46\) 2.35468 + 4.07842i 0.347178 + 0.601330i
\(47\) −0.885937 1.53449i −0.129227 0.223828i 0.794150 0.607722i \(-0.207916\pi\)
−0.923377 + 0.383893i \(0.874583\pi\)
\(48\) 0 0
\(49\) 6.92538 1.01936i 0.989340 0.145622i
\(50\) −1.64277 2.84537i −0.232323 0.402396i
\(51\) 0 0
\(52\) −1.85054 −0.256624
\(53\) −0.834432 1.44528i −0.114618 0.198524i 0.803009 0.595967i \(-0.203231\pi\)
−0.917627 + 0.397443i \(0.869898\pi\)
\(54\) 0 0
\(55\) −4.98674 −0.672411
\(56\) 7.99907 0.585543i 1.06892 0.0782464i
\(57\) 0 0
\(58\) −9.37334 −1.23078
\(59\) −2.91297 + 5.04541i −0.379236 + 0.656857i −0.990951 0.134221i \(-0.957147\pi\)
0.611715 + 0.791078i \(0.290480\pi\)
\(60\) 0 0
\(61\) −3.43865 5.95591i −0.440274 0.762576i 0.557436 0.830220i \(-0.311785\pi\)
−0.997710 + 0.0676438i \(0.978452\pi\)
\(62\) −6.99139 −0.887907
\(63\) 0 0
\(64\) 8.89078 1.11135
\(65\) −3.71806 6.43986i −0.461168 0.798766i
\(66\) 0 0
\(67\) −6.11868 + 10.5979i −0.747516 + 1.29474i 0.201494 + 0.979490i \(0.435420\pi\)
−0.949010 + 0.315246i \(0.897913\pi\)
\(68\) 0.818961 0.0993136
\(69\) 0 0
\(70\) 2.93347 + 4.31864i 0.350617 + 0.516176i
\(71\) −13.8101 −1.63895 −0.819477 0.573112i \(-0.805736\pi\)
−0.819477 + 0.573112i \(0.805736\pi\)
\(72\) 0 0
\(73\) −5.93201 10.2745i −0.694290 1.20255i −0.970420 0.241425i \(-0.922385\pi\)
0.276130 0.961120i \(-0.410948\pi\)
\(74\) 0.236963 0.0275464
\(75\) 0 0
\(76\) −0.940219 1.62851i −0.107851 0.186803i
\(77\) −8.47021 + 0.620031i −0.965270 + 0.0706591i
\(78\) 0 0
\(79\) 0.654632 + 1.13386i 0.0736518 + 0.127569i 0.900499 0.434858i \(-0.143201\pi\)
−0.826847 + 0.562426i \(0.809868\pi\)
\(80\) 2.39032 + 4.14015i 0.267246 + 0.462883i
\(81\) 0 0
\(82\) −6.85728 + 11.8772i −0.757260 + 1.31161i
\(83\) 0.173244 0.300067i 0.0190160 0.0329366i −0.856361 0.516378i \(-0.827280\pi\)
0.875377 + 0.483441i \(0.160613\pi\)
\(84\) 0 0
\(85\) 1.64544 + 2.84998i 0.178473 + 0.309123i
\(86\) −6.18478 −0.666922
\(87\) 0 0
\(88\) −9.73098 −1.03733
\(89\) 8.70319 15.0744i 0.922537 1.59788i 0.127061 0.991895i \(-0.459446\pi\)
0.795476 0.605985i \(-0.207221\pi\)
\(90\) 0 0
\(91\) −7.11601 10.4761i −0.745960 1.09820i
\(92\) 0.716677 1.24132i 0.0747187 0.129417i
\(93\) 0 0
\(94\) 1.12531 1.94910i 0.116067 0.201035i
\(95\) 3.77813 6.54391i 0.387628 0.671391i
\(96\) 0 0
\(97\) 5.28413 9.15238i 0.536522 0.929283i −0.462566 0.886585i \(-0.653071\pi\)
0.999088 0.0426982i \(-0.0135954\pi\)
\(98\) 5.51961 + 6.97068i 0.557565 + 0.704145i
\(99\) 0 0
\(100\) −0.500000 + 0.866025i −0.0500000 + 0.0866025i
\(101\) −2.03394 −0.202384 −0.101192 0.994867i \(-0.532266\pi\)
−0.101192 + 0.994867i \(0.532266\pi\)
\(102\) 0 0
\(103\) 19.9816 1.96885 0.984423 0.175816i \(-0.0562562\pi\)
0.984423 + 0.175816i \(0.0562562\pi\)
\(104\) −7.25531 12.5666i −0.711442 1.23225i
\(105\) 0 0
\(106\) 1.05989 1.83579i 0.102946 0.178307i
\(107\) −8.45322 + 14.6414i −0.817204 + 1.41544i 0.0905308 + 0.995894i \(0.471144\pi\)
−0.907735 + 0.419545i \(0.862190\pi\)
\(108\) 0 0
\(109\) 5.34955 + 9.26569i 0.512394 + 0.887492i 0.999897 + 0.0143707i \(0.00457451\pi\)
−0.487503 + 0.873121i \(0.662092\pi\)
\(110\) −3.16707 5.48552i −0.301968 0.523024i
\(111\) 0 0
\(112\) 4.57484 + 6.73505i 0.432282 + 0.636402i
\(113\) −4.29236 7.43458i −0.403791 0.699386i 0.590389 0.807119i \(-0.298974\pi\)
−0.994180 + 0.107733i \(0.965641\pi\)
\(114\) 0 0
\(115\) 5.75971 0.537096
\(116\) 1.42645 + 2.47068i 0.132442 + 0.229397i
\(117\) 0 0
\(118\) −7.40009 −0.681233
\(119\) 3.14921 + 4.63624i 0.288687 + 0.425003i
\(120\) 0 0
\(121\) −0.695865 −0.0632604
\(122\) 4.36776 7.56518i 0.395438 0.684919i
\(123\) 0 0
\(124\) 1.06396 + 1.84283i 0.0955465 + 0.165491i
\(125\) −11.7858 −1.05416
\(126\) 0 0
\(127\) 1.95162 0.173178 0.0865892 0.996244i \(-0.472403\pi\)
0.0865892 + 0.996244i \(0.472403\pi\)
\(128\) 3.49244 + 6.04908i 0.308691 + 0.534668i
\(129\) 0 0
\(130\) 4.72266 8.17989i 0.414205 0.717424i
\(131\) −11.7443 −1.02610 −0.513051 0.858358i \(-0.671485\pi\)
−0.513051 + 0.858358i \(0.671485\pi\)
\(132\) 0 0
\(133\) 5.60369 11.5849i 0.485902 1.00454i
\(134\) −15.5439 −1.34278
\(135\) 0 0
\(136\) 3.21086 + 5.56137i 0.275329 + 0.476883i
\(137\) −16.1321 −1.37826 −0.689128 0.724639i \(-0.742006\pi\)
−0.689128 + 0.724639i \(0.742006\pi\)
\(138\) 0 0
\(139\) −6.72127 11.6416i −0.570091 0.987426i −0.996556 0.0829220i \(-0.973575\pi\)
0.426465 0.904504i \(-0.359759\pi\)
\(140\) 0.691913 1.43044i 0.0584773 0.120894i
\(141\) 0 0
\(142\) −8.77075 15.1914i −0.736025 1.27483i
\(143\) 7.68265 + 13.3067i 0.642456 + 1.11277i
\(144\) 0 0
\(145\) −5.73197 + 9.92806i −0.476014 + 0.824481i
\(146\) 7.53482 13.0507i 0.623586 1.08008i
\(147\) 0 0
\(148\) −0.0360614 0.0624602i −0.00296423 0.00513420i
\(149\) −3.21174 −0.263116 −0.131558 0.991308i \(-0.541998\pi\)
−0.131558 + 0.991308i \(0.541998\pi\)
\(150\) 0 0
\(151\) 17.0322 1.38606 0.693030 0.720909i \(-0.256275\pi\)
0.693030 + 0.720909i \(0.256275\pi\)
\(152\) 7.37253 12.7696i 0.597991 1.03575i
\(153\) 0 0
\(154\) −6.06147 8.92364i −0.488447 0.719088i
\(155\) −4.27536 + 7.40515i −0.343406 + 0.594796i
\(156\) 0 0
\(157\) −4.71709 + 8.17024i −0.376465 + 0.652056i −0.990545 0.137188i \(-0.956194\pi\)
0.614080 + 0.789243i \(0.289527\pi\)
\(158\) −0.831511 + 1.44022i −0.0661515 + 0.114578i
\(159\) 0 0
\(160\) 1.67318 2.89803i 0.132276 0.229110i
\(161\) 9.78315 0.716140i 0.771021 0.0564398i
\(162\) 0 0
\(163\) −1.83874 + 3.18478i −0.144021 + 0.249452i −0.929007 0.370062i \(-0.879337\pi\)
0.784986 + 0.619513i \(0.212670\pi\)
\(164\) 4.17421 0.325951
\(165\) 0 0
\(166\) 0.440107 0.0341590
\(167\) −0.805085 1.39445i −0.0622994 0.107906i 0.833193 0.552982i \(-0.186510\pi\)
−0.895493 + 0.445076i \(0.853177\pi\)
\(168\) 0 0
\(169\) −4.95620 + 8.58440i −0.381246 + 0.660338i
\(170\) −2.09003 + 3.62003i −0.160298 + 0.277644i
\(171\) 0 0
\(172\) 0.941210 + 1.63022i 0.0717666 + 0.124303i
\(173\) −8.09213 14.0160i −0.615233 1.06562i −0.990344 0.138635i \(-0.955728\pi\)
0.375110 0.926980i \(-0.377605\pi\)
\(174\) 0 0
\(175\) −6.82536 + 0.499626i −0.515949 + 0.0377682i
\(176\) −4.93914 8.55483i −0.372301 0.644845i
\(177\) 0 0
\(178\) 22.1095 1.65718
\(179\) −8.70319 15.0744i −0.650507 1.12671i −0.983000 0.183606i \(-0.941223\pi\)
0.332493 0.943106i \(-0.392110\pi\)
\(180\) 0 0
\(181\) 8.89591 0.661228 0.330614 0.943766i \(-0.392744\pi\)
0.330614 + 0.943766i \(0.392744\pi\)
\(182\) 7.00461 14.4811i 0.519217 1.07341i
\(183\) 0 0
\(184\) 11.2393 0.828576
\(185\) 0.144907 0.250987i 0.0106538 0.0184529i
\(186\) 0 0
\(187\) −3.39998 5.88893i −0.248631 0.430642i
\(188\) −0.685009 −0.0499594
\(189\) 0 0
\(190\) 9.59793 0.696307
\(191\) 7.39609 + 12.8104i 0.535163 + 0.926929i 0.999155 + 0.0410898i \(0.0130830\pi\)
−0.463993 + 0.885839i \(0.653584\pi\)
\(192\) 0 0
\(193\) −0.910790 + 1.57753i −0.0655601 + 0.113553i −0.896942 0.442148i \(-0.854217\pi\)
0.831382 + 0.555701i \(0.187550\pi\)
\(194\) 13.4238 0.963770
\(195\) 0 0
\(196\) 0.997393 2.51570i 0.0712423 0.179693i
\(197\) −7.71970 −0.550006 −0.275003 0.961443i \(-0.588679\pi\)
−0.275003 + 0.961443i \(0.588679\pi\)
\(198\) 0 0
\(199\) −1.10665 1.91678i −0.0784487 0.135877i 0.824132 0.566398i \(-0.191663\pi\)
−0.902581 + 0.430521i \(0.858330\pi\)
\(200\) −7.84129 −0.554463
\(201\) 0 0
\(202\) −1.29175 2.23738i −0.0908872 0.157421i
\(203\) −8.50161 + 17.5760i −0.596696 + 1.23359i
\(204\) 0 0
\(205\) 8.38671 + 14.5262i 0.585753 + 1.01455i
\(206\) 12.6903 + 21.9802i 0.884174 + 1.53143i
\(207\) 0 0
\(208\) 7.36513 12.7568i 0.510680 0.884524i
\(209\) −7.80678 + 13.5217i −0.540006 + 0.935318i
\(210\) 0 0
\(211\) 0.906722 + 1.57049i 0.0624213 + 0.108117i 0.895547 0.444967i \(-0.146784\pi\)
−0.833126 + 0.553083i \(0.813451\pi\)
\(212\) −0.645185 −0.0443115
\(213\) 0 0
\(214\) −21.4745 −1.46797
\(215\) −3.78211 + 6.55081i −0.257938 + 0.446761i
\(216\) 0 0
\(217\) −6.34119 + 13.1096i −0.430468 + 0.889937i
\(218\) −6.79498 + 11.7692i −0.460214 + 0.797114i
\(219\) 0 0
\(220\) −0.963939 + 1.66959i −0.0649887 + 0.112564i
\(221\) 5.06997 8.78145i 0.341043 0.590704i
\(222\) 0 0
\(223\) −4.75308 + 8.23258i −0.318290 + 0.551294i −0.980131 0.198350i \(-0.936442\pi\)
0.661841 + 0.749644i \(0.269775\pi\)
\(224\) 2.48165 5.13049i 0.165812 0.342795i
\(225\) 0 0
\(226\) 5.45213 9.44337i 0.362671 0.628164i
\(227\) 10.8329 0.719006 0.359503 0.933144i \(-0.382946\pi\)
0.359503 + 0.933144i \(0.382946\pi\)
\(228\) 0 0
\(229\) 12.5197 0.827322 0.413661 0.910431i \(-0.364250\pi\)
0.413661 + 0.910431i \(0.364250\pi\)
\(230\) 3.65798 + 6.33581i 0.241200 + 0.417771i
\(231\) 0 0
\(232\) −11.1852 + 19.3733i −0.734345 + 1.27192i
\(233\) 7.64044 13.2336i 0.500542 0.866964i −0.499458 0.866338i \(-0.666467\pi\)
1.00000 0.000625732i \(-0.000199177\pi\)
\(234\) 0 0
\(235\) −1.37630 2.38382i −0.0897800 0.155504i
\(236\) 1.12616 + 1.95056i 0.0733066 + 0.126971i
\(237\) 0 0
\(238\) −3.09991 + 6.40867i −0.200937 + 0.415412i
\(239\) 5.35791 + 9.28017i 0.346574 + 0.600284i 0.985638 0.168869i \(-0.0540115\pi\)
−0.639064 + 0.769153i \(0.720678\pi\)
\(240\) 0 0
\(241\) −15.0002 −0.966249 −0.483125 0.875552i \(-0.660498\pi\)
−0.483125 + 0.875552i \(0.660498\pi\)
\(242\) −0.441942 0.765467i −0.0284091 0.0492061i
\(243\) 0 0
\(244\) −2.65877 −0.170210
\(245\) 10.7586 1.58357i 0.687339 0.101170i
\(246\) 0 0
\(247\) −23.2826 −1.48144
\(248\) −8.34283 + 14.4502i −0.529770 + 0.917589i
\(249\) 0 0
\(250\) −7.48516 12.9647i −0.473403 0.819958i
\(251\) 16.5665 1.04567 0.522833 0.852435i \(-0.324875\pi\)
0.522833 + 0.852435i \(0.324875\pi\)
\(252\) 0 0
\(253\) −11.9013 −0.748231
\(254\) 1.23947 + 2.14683i 0.0777714 + 0.134704i
\(255\) 0 0
\(256\) 4.45470 7.71576i 0.278419 0.482235i
\(257\) 22.5772 1.40833 0.704163 0.710038i \(-0.251322\pi\)
0.704163 + 0.710038i \(0.251322\pi\)
\(258\) 0 0
\(259\) 0.214926 0.444331i 0.0133548 0.0276094i
\(260\) −2.87481 −0.178288
\(261\) 0 0
\(262\) −7.45877 12.9190i −0.460804 0.798136i
\(263\) 22.3461 1.37792 0.688959 0.724800i \(-0.258068\pi\)
0.688959 + 0.724800i \(0.258068\pi\)
\(264\) 0 0
\(265\) −1.29629 2.24524i −0.0796303 0.137924i
\(266\) 16.3025 1.19337i 0.999573 0.0731702i
\(267\) 0 0
\(268\) 2.36549 + 4.09715i 0.144495 + 0.250273i
\(269\) −13.9475 24.1577i −0.850392 1.47292i −0.880855 0.473387i \(-0.843031\pi\)
0.0304623 0.999536i \(-0.490302\pi\)
\(270\) 0 0
\(271\) −4.93714 + 8.55138i −0.299910 + 0.519459i −0.976115 0.217254i \(-0.930290\pi\)
0.676205 + 0.736713i \(0.263623\pi\)
\(272\) −3.25946 + 5.64555i −0.197634 + 0.342312i
\(273\) 0 0
\(274\) −10.2455 17.7457i −0.618951 1.07205i
\(275\) 8.30315 0.500699
\(276\) 0 0
\(277\) −8.71457 −0.523608 −0.261804 0.965121i \(-0.584317\pi\)
−0.261804 + 0.965121i \(0.584317\pi\)
\(278\) 8.53733 14.7871i 0.512035 0.886871i
\(279\) 0 0
\(280\) 12.4265 0.909639i 0.742627 0.0543613i
\(281\) 3.10321 5.37491i 0.185122 0.320640i −0.758496 0.651678i \(-0.774065\pi\)
0.943618 + 0.331038i \(0.107399\pi\)
\(282\) 0 0
\(283\) −9.82943 + 17.0251i −0.584299 + 1.01204i 0.410664 + 0.911787i \(0.365297\pi\)
−0.994962 + 0.100248i \(0.968036\pi\)
\(284\) −2.66949 + 4.62370i −0.158405 + 0.274366i
\(285\) 0 0
\(286\) −9.75848 + 16.9022i −0.577031 + 0.999447i
\(287\) 16.0514 + 23.6307i 0.947483 + 1.39488i
\(288\) 0 0
\(289\) 6.25627 10.8362i 0.368016 0.637422i
\(290\) −14.5615 −0.855078
\(291\) 0 0
\(292\) −4.58665 −0.268413
\(293\) 7.24841 + 12.5546i 0.423456 + 0.733448i 0.996275 0.0862342i \(-0.0274833\pi\)
−0.572818 + 0.819682i \(0.694150\pi\)
\(294\) 0 0
\(295\) −4.52529 + 7.83804i −0.263473 + 0.456348i
\(296\) 0.282768 0.489769i 0.0164356 0.0284672i
\(297\) 0 0
\(298\) −2.03977 3.53299i −0.118161 0.204661i
\(299\) −8.87352 15.3694i −0.513169 0.888834i
\(300\) 0 0
\(301\) −5.60960 + 11.5971i −0.323332 + 0.668447i
\(302\) 10.8171 + 18.7358i 0.622455 + 1.07812i
\(303\) 0 0
\(304\) 14.9683 0.858488
\(305\) −5.34193 9.25249i −0.305878 0.529796i
\(306\) 0 0
\(307\) 22.2776 1.27145 0.635725 0.771916i \(-0.280701\pi\)
0.635725 + 0.771916i \(0.280701\pi\)
\(308\) −1.42971 + 2.95573i −0.0814651 + 0.168419i
\(309\) 0 0
\(310\) −10.8611 −0.616869
\(311\) −8.70027 + 15.0693i −0.493347 + 0.854502i −0.999971 0.00766509i \(-0.997560\pi\)
0.506623 + 0.862167i \(0.330893\pi\)
\(312\) 0 0
\(313\) 0.100022 + 0.173244i 0.00565360 + 0.00979232i 0.868838 0.495096i \(-0.164867\pi\)
−0.863185 + 0.504888i \(0.831534\pi\)
\(314\) −11.9833 −0.676254
\(315\) 0 0
\(316\) 0.506163 0.0284739
\(317\) −4.11706 7.13096i −0.231237 0.400514i 0.726935 0.686706i \(-0.240944\pi\)
−0.958172 + 0.286192i \(0.907611\pi\)
\(318\) 0 0
\(319\) 11.8440 20.5144i 0.663138 1.14859i
\(320\) 13.8118 0.772103
\(321\) 0 0
\(322\) 7.00103 + 10.3069i 0.390152 + 0.574379i
\(323\) 10.3038 0.573317
\(324\) 0 0
\(325\) 6.19074 + 10.7227i 0.343400 + 0.594787i
\(326\) −4.67111 −0.258709
\(327\) 0 0
\(328\) 16.3656 + 28.3461i 0.903639 + 1.56515i
\(329\) −2.63411 3.87792i −0.145223 0.213797i
\(330\) 0 0
\(331\) 8.31616 + 14.4040i 0.457098 + 0.791716i 0.998806 0.0488501i \(-0.0155557\pi\)
−0.541708 + 0.840566i \(0.682222\pi\)
\(332\) −0.0669762 0.116006i −0.00367580 0.00636667i
\(333\) 0 0
\(334\) 1.02262 1.77122i 0.0559551 0.0969170i
\(335\) −9.50536 + 16.4638i −0.519333 + 0.899511i
\(336\) 0 0
\(337\) −7.95474 13.7780i −0.433322 0.750536i 0.563835 0.825888i \(-0.309326\pi\)
−0.997157 + 0.0753513i \(0.975992\pi\)
\(338\) −12.5907 −0.684844
\(339\) 0 0
\(340\) 1.27225 0.0689977
\(341\) 8.83422 15.3013i 0.478400 0.828613i
\(342\) 0 0
\(343\) 18.0770 4.02745i 0.976069 0.217462i
\(344\) −7.38031 + 12.7831i −0.397919 + 0.689217i
\(345\) 0 0
\(346\) 10.2786 17.8031i 0.552581 0.957098i
\(347\) −3.14462 + 5.44665i −0.168812 + 0.292391i −0.938003 0.346628i \(-0.887326\pi\)
0.769190 + 0.639020i \(0.220660\pi\)
\(348\) 0 0
\(349\) −0.809776 + 1.40257i −0.0433463 + 0.0750781i −0.886885 0.461991i \(-0.847135\pi\)
0.843538 + 0.537069i \(0.180469\pi\)
\(350\) −4.88437 7.19074i −0.261081 0.384361i
\(351\) 0 0
\(352\) −3.45731 + 5.98823i −0.184275 + 0.319174i
\(353\) 32.5118 1.73043 0.865213 0.501405i \(-0.167183\pi\)
0.865213 + 0.501405i \(0.167183\pi\)
\(354\) 0 0
\(355\) −21.4539 −1.13866
\(356\) −3.36466 5.82777i −0.178327 0.308871i
\(357\) 0 0
\(358\) 11.0548 19.1474i 0.584262 1.01197i
\(359\) −5.59588 + 9.69235i −0.295339 + 0.511543i −0.975064 0.221925i \(-0.928766\pi\)
0.679724 + 0.733468i \(0.262099\pi\)
\(360\) 0 0
\(361\) −2.32938 4.03461i −0.122599 0.212348i
\(362\) 5.64978 + 9.78570i 0.296946 + 0.514325i
\(363\) 0 0
\(364\) −4.88300 + 0.357443i −0.255939 + 0.0187351i
\(365\) −9.21537 15.9615i −0.482354 0.835462i
\(366\) 0 0
\(367\) −5.18678 −0.270748 −0.135374 0.990795i \(-0.543224\pi\)
−0.135374 + 0.990795i \(0.543224\pi\)
\(368\) 5.70474 + 9.88089i 0.297380 + 0.515077i
\(369\) 0 0
\(370\) 0.368122 0.0191377
\(371\) −2.48097 3.65247i −0.128806 0.189627i
\(372\) 0 0
\(373\) 32.8643 1.70165 0.850825 0.525448i \(-0.176102\pi\)
0.850825 + 0.525448i \(0.176102\pi\)
\(374\) 4.31864 7.48010i 0.223312 0.386787i
\(375\) 0 0
\(376\) −2.68568 4.65173i −0.138503 0.239895i
\(377\) 35.3231 1.81923
\(378\) 0 0
\(379\) 13.9362 0.715856 0.357928 0.933749i \(-0.383483\pi\)
0.357928 + 0.933749i \(0.383483\pi\)
\(380\) −1.46063 2.52988i −0.0749286 0.129780i
\(381\) 0 0
\(382\) −9.39449 + 16.2717i −0.480664 + 0.832534i
\(383\) −1.71520 −0.0876427 −0.0438214 0.999039i \(-0.513953\pi\)
−0.0438214 + 0.999039i \(0.513953\pi\)
\(384\) 0 0
\(385\) −13.1585 + 0.963217i −0.670617 + 0.0490901i
\(386\) −2.31376 −0.117768
\(387\) 0 0
\(388\) −2.04285 3.53832i −0.103710 0.179631i
\(389\) −3.14856 −0.159638 −0.0798191 0.996809i \(-0.525434\pi\)
−0.0798191 + 0.996809i \(0.525434\pi\)
\(390\) 0 0
\(391\) 3.92700 + 6.80176i 0.198597 + 0.343980i
\(392\) 20.9940 3.09013i 1.06036 0.156075i
\(393\) 0 0
\(394\) −4.90277 8.49184i −0.246998 0.427813i
\(395\) 1.01697 + 1.76144i 0.0511693 + 0.0886277i
\(396\) 0 0
\(397\) −13.7172 + 23.7590i −0.688449 + 1.19243i 0.283891 + 0.958857i \(0.408375\pi\)
−0.972340 + 0.233572i \(0.924959\pi\)
\(398\) 1.40567 2.43469i 0.0704598 0.122040i
\(399\) 0 0
\(400\) −3.97999 6.89355i −0.199000 0.344677i
\(401\) 29.0370 1.45004 0.725020 0.688728i \(-0.241830\pi\)
0.725020 + 0.688728i \(0.241830\pi\)
\(402\) 0 0
\(403\) 26.3468 1.31243
\(404\) −0.393161 + 0.680975i −0.0195605 + 0.0338798i
\(405\) 0 0
\(406\) −24.7333 + 1.81051i −1.22750 + 0.0898543i
\(407\) −0.299423 + 0.518617i −0.0148419 + 0.0257069i
\(408\) 0 0
\(409\) 13.8650 24.0149i 0.685581 1.18746i −0.287673 0.957729i \(-0.592882\pi\)
0.973254 0.229732i \(-0.0737851\pi\)
\(410\) −10.6528 + 18.4511i −0.526103 + 0.911237i
\(411\) 0 0
\(412\) 3.86246 6.68997i 0.190290 0.329591i
\(413\) −6.71188 + 13.8759i −0.330270 + 0.682791i
\(414\) 0 0
\(415\) 0.269134 0.466153i 0.0132113 0.0228826i
\(416\) −10.3109 −0.505534
\(417\) 0 0
\(418\) −19.8323 −0.970029
\(419\) −15.1799 26.2924i −0.741586 1.28447i −0.951773 0.306804i \(-0.900740\pi\)
0.210186 0.977661i \(-0.432593\pi\)
\(420\) 0 0
\(421\) 13.8868 24.0526i 0.676799 1.17225i −0.299140 0.954209i \(-0.596700\pi\)
0.975940 0.218041i \(-0.0699668\pi\)
\(422\) −1.15171 + 1.99483i −0.0560646 + 0.0971067i
\(423\) 0 0
\(424\) −2.52954 4.38129i −0.122845 0.212774i
\(425\) −2.73973 4.74535i −0.132896 0.230183i
\(426\) 0 0
\(427\) −10.2239 15.0516i −0.494771 0.728399i
\(428\) 3.26802 + 5.66038i 0.157966 + 0.273605i
\(429\) 0 0
\(430\) −9.60805 −0.463341
\(431\) 3.62965 + 6.28673i 0.174834 + 0.302821i 0.940104 0.340888i \(-0.110728\pi\)
−0.765270 + 0.643710i \(0.777394\pi\)
\(432\) 0 0
\(433\) 15.0375 0.722658 0.361329 0.932438i \(-0.382323\pi\)
0.361329 + 0.932438i \(0.382323\pi\)
\(434\) −18.4481 + 1.35043i −0.885538 + 0.0648226i
\(435\) 0 0
\(436\) 4.13628 0.198092
\(437\) 9.01688 15.6177i 0.431336 0.747096i
\(438\) 0 0
\(439\) −0.770595 1.33471i −0.0367785 0.0637022i 0.847050 0.531513i \(-0.178376\pi\)
−0.883829 + 0.467811i \(0.845043\pi\)
\(440\) −15.1170 −0.720677
\(441\) 0 0
\(442\) 12.8797 0.612626
\(443\) 10.1689 + 17.6131i 0.483141 + 0.836824i 0.999813 0.0193593i \(-0.00616265\pi\)
−0.516672 + 0.856183i \(0.672829\pi\)
\(444\) 0 0
\(445\) 13.5204 23.4180i 0.640928 1.11012i
\(446\) −12.0747 −0.571753
\(447\) 0 0
\(448\) 23.4600 1.71731i 1.10838 0.0811351i
\(449\) −26.4527 −1.24838 −0.624190 0.781272i \(-0.714571\pi\)
−0.624190 + 0.781272i \(0.714571\pi\)
\(450\) 0 0
\(451\) −17.3295 30.0156i −0.816016 1.41338i
\(452\) −3.31886 −0.156106
\(453\) 0 0
\(454\) 6.87997 + 11.9165i 0.322893 + 0.559267i
\(455\) −11.0547 16.2746i −0.518252 0.762967i
\(456\) 0 0
\(457\) 3.24681 + 5.62363i 0.151879 + 0.263063i 0.931918 0.362668i \(-0.118134\pi\)
−0.780039 + 0.625731i \(0.784801\pi\)
\(458\) 7.95121 + 13.7719i 0.371536 + 0.643518i
\(459\) 0 0
\(460\) 1.11336 1.92839i 0.0519105 0.0899116i
\(461\) 7.79582 13.5028i 0.363088 0.628886i −0.625380 0.780321i \(-0.715056\pi\)
0.988467 + 0.151434i \(0.0483892\pi\)
\(462\) 0 0
\(463\) −3.82792 6.63016i −0.177899 0.308130i 0.763262 0.646089i \(-0.223597\pi\)
−0.941161 + 0.337960i \(0.890263\pi\)
\(464\) −22.7090 −1.05424
\(465\) 0 0
\(466\) 19.4097 0.899138
\(467\) −20.8137 + 36.0503i −0.963142 + 1.66821i −0.248615 + 0.968602i \(0.579976\pi\)
−0.714526 + 0.699608i \(0.753358\pi\)
\(468\) 0 0
\(469\) −14.0983 + 29.1464i −0.650998 + 1.34585i
\(470\) 1.74817 3.02792i 0.0806372 0.139668i
\(471\) 0 0
\(472\) −8.83053 + 15.2949i −0.406458 + 0.704006i
\(473\) 7.81501 13.5360i 0.359335 0.622386i
\(474\) 0 0
\(475\) −6.29076 + 10.8959i −0.288640 + 0.499939i
\(476\) 2.16099 0.158187i 0.0990486 0.00725050i
\(477\) 0 0
\(478\) −6.80560 + 11.7876i −0.311281 + 0.539154i
\(479\) −2.31579 −0.105811 −0.0529055 0.998600i \(-0.516848\pi\)
−0.0529055 + 0.998600i \(0.516848\pi\)
\(480\) 0 0
\(481\) −0.892987 −0.0407167
\(482\) −9.52662 16.5006i −0.433925 0.751581i
\(483\) 0 0
\(484\) −0.134511 + 0.232980i −0.00611414 + 0.0105900i
\(485\) 8.20888 14.2182i 0.372746 0.645615i
\(486\) 0 0
\(487\) −9.06396 15.6992i −0.410727 0.711401i 0.584242 0.811579i \(-0.301392\pi\)
−0.994969 + 0.100179i \(0.968058\pi\)
\(488\) −10.4241 18.0551i −0.471876 0.817314i
\(489\) 0 0
\(490\) 8.57470 + 10.8289i 0.387366 + 0.489202i
\(491\) −10.7972 18.7013i −0.487271 0.843978i 0.512622 0.858614i \(-0.328674\pi\)
−0.999893 + 0.0146364i \(0.995341\pi\)
\(492\) 0 0
\(493\) −15.6323 −0.704045
\(494\) −14.7867 25.6114i −0.665287 1.15231i
\(495\) 0 0
\(496\) −16.9382 −0.760549
\(497\) −36.4405 + 2.66750i −1.63458 + 0.119654i
\(498\) 0 0
\(499\) 27.1654 1.21609 0.608045 0.793903i \(-0.291954\pi\)
0.608045 + 0.793903i \(0.291954\pi\)
\(500\) −2.27821 + 3.94597i −0.101885 + 0.176469i
\(501\) 0 0
\(502\) 10.5213 + 18.2235i 0.469590 + 0.813354i
\(503\) 11.8850 0.529927 0.264964 0.964258i \(-0.414640\pi\)
0.264964 + 0.964258i \(0.414640\pi\)
\(504\) 0 0
\(505\) −3.15972 −0.140606
\(506\) −7.55852 13.0917i −0.336017 0.581999i
\(507\) 0 0
\(508\) 0.377250 0.653415i 0.0167377 0.0289906i
\(509\) −41.4595 −1.83766 −0.918829 0.394656i \(-0.870864\pi\)
−0.918829 + 0.394656i \(0.870864\pi\)
\(510\) 0 0
\(511\) −17.6373 25.9656i −0.780230 1.14865i
\(512\) 25.2864 1.11751
\(513\) 0 0
\(514\) 14.3387 + 24.8354i 0.632455 + 1.09544i
\(515\) 31.0414 1.36785
\(516\) 0 0
\(517\) 2.84386 + 4.92572i 0.125073 + 0.216633i
\(518\) 0.625273 0.0457708i 0.0274729 0.00201105i
\(519\) 0 0
\(520\) −11.2711 19.5221i −0.494271 0.856102i
\(521\) −1.65221 2.86171i −0.0723846 0.125374i 0.827561 0.561375i \(-0.189728\pi\)
−0.899946 + 0.436002i \(0.856394\pi\)
\(522\) 0 0
\(523\) 1.24483 2.15611i 0.0544327 0.0942803i −0.837525 0.546399i \(-0.815998\pi\)
0.891958 + 0.452119i \(0.149332\pi\)
\(524\) −2.27017 + 3.93206i −0.0991730 + 0.171773i
\(525\) 0 0
\(526\) 14.1920 + 24.5812i 0.618798 + 1.07179i
\(527\) −11.6598 −0.507911
\(528\) 0 0
\(529\) −9.25386 −0.402342
\(530\) 1.64654 2.85189i 0.0715211 0.123878i
\(531\) 0 0
\(532\) −2.79550 4.11552i −0.121200 0.178430i
\(533\) 25.8414 44.7587i 1.11932 1.93871i
\(534\) 0 0
\(535\) −13.1321 + 22.7454i −0.567748 + 0.983369i
\(536\) −18.5485 + 32.1269i −0.801173 + 1.38767i
\(537\) 0 0
\(538\) 17.7160 30.6851i 0.763792 1.32293i
\(539\) −22.2305 + 3.27214i −0.957536 + 0.140941i
\(540\) 0 0
\(541\) 11.2397 19.4677i 0.483233 0.836984i −0.516582 0.856238i \(-0.672796\pi\)
0.999815 + 0.0192542i \(0.00612919\pi\)
\(542\) −12.5423 −0.538737
\(543\) 0 0
\(544\) 4.56312 0.195642
\(545\) 8.31051 + 14.3942i 0.355983 + 0.616581i
\(546\) 0 0
\(547\) 7.27727 12.6046i 0.311154 0.538934i −0.667459 0.744647i \(-0.732618\pi\)
0.978612 + 0.205713i \(0.0659513\pi\)
\(548\) −3.11834 + 5.40112i −0.133209 + 0.230725i
\(549\) 0 0
\(550\) 5.27331 + 9.13365i 0.224855 + 0.389460i
\(551\) 17.9469 + 31.0849i 0.764564 + 1.32426i
\(552\) 0 0
\(553\) 1.94638 + 2.86545i 0.0827686 + 0.121851i
\(554\) −5.53461 9.58622i −0.235143 0.407279i
\(555\) 0 0
\(556\) −5.19690 −0.220398
\(557\) −7.77331 13.4638i −0.329366 0.570478i 0.653021 0.757340i \(-0.273502\pi\)
−0.982386 + 0.186862i \(0.940168\pi\)
\(558\) 0 0
\(559\) 23.3071 0.985787
\(560\) 7.10701 + 10.4629i 0.300326 + 0.442137i
\(561\) 0 0
\(562\) 7.88336 0.332539
\(563\) 7.36914 12.7637i 0.310572 0.537927i −0.667914 0.744238i \(-0.732813\pi\)
0.978486 + 0.206312i \(0.0661461\pi\)
\(564\) 0 0
\(565\) −6.66816 11.5496i −0.280532 0.485895i
\(566\) −24.9706 −1.04959
\(567\) 0 0
\(568\) −41.8646 −1.75660
\(569\) −6.48539 11.2330i −0.271882 0.470913i 0.697462 0.716622i \(-0.254313\pi\)
−0.969344 + 0.245709i \(0.920979\pi\)
\(570\) 0 0
\(571\) −6.42929 + 11.1359i −0.269058 + 0.466021i −0.968619 0.248551i \(-0.920046\pi\)
0.699561 + 0.714573i \(0.253379\pi\)
\(572\) 5.94024 0.248374
\(573\) 0 0
\(574\) −15.8001 + 32.6647i −0.659484 + 1.36340i
\(575\) −9.59019 −0.399939
\(576\) 0 0
\(577\) 5.26279 + 9.11542i 0.219093 + 0.379480i 0.954531 0.298112i \(-0.0963569\pi\)
−0.735438 + 0.677592i \(0.763024\pi\)
\(578\) 15.8934 0.661078
\(579\) 0 0
\(580\) 2.21599 + 3.83820i 0.0920138 + 0.159373i
\(581\) 0.399177 0.825247i 0.0165607 0.0342370i
\(582\) 0 0
\(583\) 2.67853 + 4.63935i 0.110933 + 0.192142i
\(584\) −17.9826 31.1468i −0.744126 1.28886i
\(585\) 0 0
\(586\) −9.20690 + 15.9468i −0.380334 + 0.658757i
\(587\) 3.10009 5.36951i 0.127954 0.221624i −0.794930 0.606702i \(-0.792492\pi\)
0.922884 + 0.385078i \(0.125826\pi\)
\(588\) 0 0
\(589\) 13.3862 + 23.1857i 0.551571 + 0.955348i
\(590\) −11.4960 −0.473284
\(591\) 0 0
\(592\) 0.574097 0.0235952
\(593\) −18.7629 + 32.4984i −0.770502 + 1.33455i 0.166787 + 0.985993i \(0.446661\pi\)
−0.937288 + 0.348555i \(0.886673\pi\)
\(594\) 0 0
\(595\) 4.89229 + 7.20239i 0.200564 + 0.295269i
\(596\) −0.620832 + 1.07531i −0.0254302 + 0.0440465i
\(597\) 0 0
\(598\) 11.2711 19.5221i 0.460910 0.798319i
\(599\) 17.5460 30.3905i 0.716909 1.24172i −0.245309 0.969445i \(-0.578889\pi\)
0.962218 0.272279i \(-0.0877773\pi\)
\(600\) 0 0
\(601\) −13.1171 + 22.7195i −0.535058 + 0.926748i 0.464102 + 0.885782i \(0.346377\pi\)
−0.999161 + 0.0409662i \(0.986956\pi\)
\(602\) −16.3197 + 1.19463i −0.665143 + 0.0486894i
\(603\) 0 0
\(604\) 3.29233 5.70249i 0.133963 0.232031i
\(605\) −1.08102 −0.0439499
\(606\) 0 0
\(607\) −2.21866 −0.0900527 −0.0450263 0.998986i \(-0.514337\pi\)
−0.0450263 + 0.998986i \(0.514337\pi\)
\(608\) −5.23876 9.07379i −0.212460 0.367991i
\(609\) 0 0
\(610\) 6.78530 11.7525i 0.274729 0.475844i
\(611\) −4.24071 + 7.34512i −0.171561 + 0.297152i
\(612\) 0 0
\(613\) −7.43312 12.8745i −0.300221 0.519998i 0.675965 0.736934i \(-0.263727\pi\)
−0.976186 + 0.216936i \(0.930394\pi\)
\(614\) 14.1485 + 24.5059i 0.570986 + 0.988976i
\(615\) 0 0
\(616\) −25.6770 + 1.87960i −1.03456 + 0.0757311i
\(617\) 11.6023 + 20.0958i 0.467091 + 0.809024i 0.999293 0.0375925i \(-0.0119689\pi\)
−0.532203 + 0.846617i \(0.678636\pi\)
\(618\) 0 0
\(619\) −8.31125 −0.334057 −0.167029 0.985952i \(-0.553417\pi\)
−0.167029 + 0.985952i \(0.553417\pi\)
\(620\) 1.65286 + 2.86284i 0.0663805 + 0.114974i
\(621\) 0 0
\(622\) −22.1021 −0.886214
\(623\) 20.0533 41.4577i 0.803420 1.66097i
\(624\) 0 0
\(625\) −5.37603 −0.215041
\(626\) −0.127048 + 0.220054i −0.00507786 + 0.00879511i
\(627\) 0 0
\(628\) 1.82363 + 3.15862i 0.0727708 + 0.126043i
\(629\) 0.395194 0.0157574
\(630\) 0 0
\(631\) −24.5415 −0.976982 −0.488491 0.872569i \(-0.662452\pi\)
−0.488491 + 0.872569i \(0.662452\pi\)
\(632\) 1.98448 + 3.43723i 0.0789386 + 0.136726i
\(633\) 0 0
\(634\) 5.22947 9.05771i 0.207689 0.359728i
\(635\) 3.03184 0.120315
\(636\) 0 0
\(637\) −20.8005 26.2688i −0.824145 1.04081i
\(638\) 30.0885 1.19121
\(639\) 0 0
\(640\) 5.42549 + 9.39723i 0.214461 + 0.371458i
\(641\) −7.97525 −0.315003 −0.157502 0.987519i \(-0.550344\pi\)
−0.157502 + 0.987519i \(0.550344\pi\)
\(642\) 0 0
\(643\) 1.56140 + 2.70442i 0.0615755 + 0.106652i 0.895170 0.445725i \(-0.147054\pi\)
−0.833594 + 0.552377i \(0.813721\pi\)
\(644\) 1.65132 3.41389i 0.0650711 0.134526i
\(645\) 0 0
\(646\) 6.54391 + 11.3344i 0.257467 + 0.445945i
\(647\) −6.13273 10.6222i −0.241102 0.417602i 0.719926 0.694051i \(-0.244176\pi\)
−0.961029 + 0.276449i \(0.910842\pi\)
\(648\) 0 0
\(649\) 9.35065 16.1958i 0.367045 0.635741i
\(650\) −7.86345 + 13.6199i −0.308430 + 0.534216i
\(651\) 0 0
\(652\) 0.710857 + 1.23124i 0.0278393 + 0.0482191i
\(653\) −16.5095 −0.646067 −0.323034 0.946387i \(-0.604703\pi\)
−0.323034 + 0.946387i \(0.604703\pi\)
\(654\) 0 0
\(655\) −18.2447 −0.712879
\(656\) −16.6133 + 28.7751i −0.648641 + 1.12348i
\(657\) 0 0
\(658\) 2.59288 5.36044i 0.101081 0.208972i
\(659\) 5.36940 9.30007i 0.209162 0.362279i −0.742289 0.670080i \(-0.766260\pi\)
0.951451 + 0.307801i \(0.0995931\pi\)
\(660\) 0 0
\(661\) 6.68817 11.5843i 0.260140 0.450575i −0.706139 0.708073i \(-0.749565\pi\)
0.966279 + 0.257498i \(0.0828980\pi\)
\(662\) −10.5632 + 18.2959i −0.410549 + 0.711092i
\(663\) 0 0
\(664\) 0.525180 0.909639i 0.0203810 0.0353008i
\(665\) 8.70532 17.9971i 0.337578 0.697898i
\(666\) 0 0
\(667\) −13.6799 + 23.6943i −0.529689 + 0.917448i
\(668\) −0.622494 −0.0240850
\(669\) 0 0
\(670\) −24.1473 −0.932893
\(671\) 11.0381 + 19.1185i 0.426120 + 0.738062i
\(672\) 0 0
\(673\) −20.4493 + 35.4193i −0.788264 + 1.36531i 0.138766 + 0.990325i \(0.455686\pi\)
−0.927030 + 0.374987i \(0.877647\pi\)
\(674\) 10.1041 17.5008i 0.389195 0.674105i
\(675\) 0 0
\(676\) 1.91607 + 3.31874i 0.0736951 + 0.127644i
\(677\) −10.6250 18.4031i −0.408353 0.707288i 0.586353 0.810056i \(-0.300563\pi\)
−0.994705 + 0.102768i \(0.967230\pi\)
\(678\) 0 0
\(679\) 12.1753 25.1710i 0.467247 0.965972i
\(680\) 4.98806 + 8.63957i 0.191283 + 0.331312i
\(681\) 0 0
\(682\) 22.4424 0.859364
\(683\) 20.6708 + 35.8029i 0.790948 + 1.36996i 0.925381 + 0.379039i \(0.123745\pi\)
−0.134433 + 0.990923i \(0.542921\pi\)
\(684\) 0 0
\(685\) −25.0612 −0.957537
\(686\) 15.9110 + 17.3273i 0.607484 + 0.661561i
\(687\) 0 0
\(688\) −14.9840 −0.571261
\(689\) −3.99417 + 6.91810i −0.152166 + 0.263559i
\(690\) 0 0
\(691\) 0.760183 + 1.31668i 0.0289187 + 0.0500887i 0.880123 0.474747i \(-0.157460\pi\)
−0.851204 + 0.524835i \(0.824127\pi\)
\(692\) −6.25685 −0.237850
\(693\) 0 0
\(694\) −7.98858 −0.303242
\(695\) −10.4415 18.0852i −0.396068 0.686009i
\(696\) 0 0
\(697\) −11.4362 + 19.8081i −0.433177 + 0.750284i
\(698\) −2.05715 −0.0778643
\(699\) 0 0
\(700\) −1.15207 + 2.38175i −0.0435441 + 0.0900217i
\(701\) 32.5344 1.22881 0.614404 0.788991i \(-0.289396\pi\)
0.614404 + 0.788991i \(0.289396\pi\)
\(702\) 0 0
\(703\) −0.453708 0.785845i −0.0171119 0.0296387i
\(704\) −28.5395 −1.07562
\(705\) 0 0
\(706\) 20.6482 + 35.7637i 0.777104 + 1.34598i
\(707\) −5.36693 + 0.392867i −0.201844 + 0.0147753i
\(708\) 0 0
\(709\) −11.2810 19.5394i −0.423669 0.733816i 0.572626 0.819816i \(-0.305925\pi\)
−0.996295 + 0.0860007i \(0.972591\pi\)
\(710\) −13.6253 23.5998i −0.511350 0.885684i
\(711\) 0 0
\(712\) 26.3833 45.6972i 0.988756 1.71258i
\(713\) −10.2036 + 17.6731i −0.382127 + 0.661864i
\(714\) 0 0
\(715\) 11.9350 + 20.6720i 0.446343 + 0.773089i
\(716\) −6.72933 −0.251487
\(717\) 0 0
\(718\) −14.2157 −0.530527
\(719\) −3.25084 + 5.63062i −0.121236 + 0.209987i −0.920255 0.391319i \(-0.872019\pi\)
0.799019 + 0.601305i \(0.205352\pi\)
\(720\) 0 0
\(721\) 52.7253 3.85956i 1.96359 0.143738i
\(722\) 2.95878 5.12475i 0.110114 0.190723i
\(723\) 0 0
\(724\) 1.71958 2.97841i 0.0639078 0.110692i
\(725\) 9.54400 16.5307i 0.354455 0.613934i
\(726\) 0 0
\(727\) 3.91607 6.78284i 0.145239 0.251562i −0.784223 0.620479i \(-0.786938\pi\)
0.929462 + 0.368918i \(0.120272\pi\)
\(728\) −21.5718 31.7579i −0.799505 1.17703i
\(729\) 0 0
\(730\) 11.7053 20.2742i 0.433234 0.750383i
\(731\) −10.3146 −0.381501
\(732\) 0 0
\(733\) −7.49560 −0.276856 −0.138428 0.990372i \(-0.544205\pi\)
−0.138428 + 0.990372i \(0.544205\pi\)
\(734\) −3.29411 5.70557i −0.121588 0.210597i
\(735\) 0 0
\(736\) 3.99321 6.91645i 0.147192 0.254944i
\(737\) 19.6410 34.0192i 0.723486 1.25311i
\(738\) 0 0
\(739\) −12.0480 20.8678i −0.443194 0.767634i 0.554731 0.832030i \(-0.312821\pi\)
−0.997924 + 0.0643961i \(0.979488\pi\)
\(740\) −0.0560213 0.0970318i −0.00205939 0.00356696i
\(741\) 0 0
\(742\) 2.44214 5.04880i 0.0896536 0.185347i
\(743\) 9.64411 + 16.7041i 0.353808 + 0.612814i 0.986913 0.161252i \(-0.0515533\pi\)
−0.633105 + 0.774066i \(0.718220\pi\)
\(744\) 0 0
\(745\) −4.98943 −0.182799
\(746\) 20.8721 + 36.1515i 0.764181 + 1.32360i
\(747\) 0 0
\(748\) −2.62887 −0.0961210
\(749\) −19.4774 + 40.2669i −0.711688 + 1.47132i
\(750\) 0 0
\(751\) −33.2089 −1.21181 −0.605906 0.795536i \(-0.707189\pi\)
−0.605906 + 0.795536i \(0.707189\pi\)
\(752\) 2.72633 4.72214i 0.0994190 0.172199i
\(753\) 0 0
\(754\) 22.4336 + 38.8562i 0.816985 + 1.41506i
\(755\) 26.4595 0.962959
\(756\) 0 0
\(757\) 9.70935 0.352892 0.176446 0.984310i \(-0.443540\pi\)
0.176446 + 0.984310i \(0.443540\pi\)
\(758\) 8.85088 + 15.3302i 0.321478 + 0.556817i
\(759\) 0 0
\(760\) 11.4532 19.8375i 0.415452 0.719583i
\(761\) −2.72609 −0.0988207 −0.0494104 0.998779i \(-0.515734\pi\)
−0.0494104 + 0.998779i \(0.515734\pi\)
\(762\) 0 0
\(763\) 15.9055 + 23.4160i 0.575819 + 0.847716i
\(764\) 5.71868 0.206894
\(765\) 0 0
\(766\) −1.08932 1.88676i −0.0393588 0.0681714i
\(767\) 27.8870 1.00694
\(768\) 0 0
\(769\) −25.0230 43.3411i −0.902352 1.56292i −0.824432 0.565960i \(-0.808506\pi\)
−0.0779198 0.996960i \(-0.524828\pi\)
\(770\) −9.41647 13.8629i −0.339346 0.499583i
\(771\) 0 0
\(772\) 0.352112 + 0.609877i 0.0126728 + 0.0219499i
\(773\) 9.52030 + 16.4896i 0.342421 + 0.593091i 0.984882 0.173228i \(-0.0554197\pi\)
−0.642461 + 0.766319i \(0.722086\pi\)
\(774\) 0 0
\(775\) 7.11868 12.3299i 0.255711 0.442904i
\(776\) 16.0186 27.7450i 0.575033 0.995987i
\(777\) 0 0
\(778\) −1.99964 3.46348i −0.0716906 0.124172i
\(779\) 52.5179 1.88165
\(780\) 0 0
\(781\) 44.3304 1.58627
\(782\) −4.98806 + 8.63957i −0.178373 + 0.308950i
\(783\) 0 0
\(784\) 13.3725 + 16.8881i 0.477590 + 0.603145i
\(785\) −7.32798 + 12.6924i −0.261547 + 0.453013i
\(786\) 0 0
\(787\) 16.6011 28.7540i 0.591766 1.02497i −0.402228 0.915539i \(-0.631764\pi\)
0.993995 0.109430i \(-0.0349025\pi\)
\(788\) −1.49222 + 2.58460i −0.0531582 + 0.0920727i
\(789\) 0 0
\(790\) −1.29175 + 2.23738i −0.0459584 + 0.0796023i
\(791\) −12.7622 18.7885i −0.453773 0.668041i
\(792\) 0 0
\(793\) −16.4597 + 28.5091i −0.584502 + 1.01239i
\(794\) −34.8472 −1.23668
\(795\) 0 0
\(796\) −0.855668 −0.0303283
\(797\) 1.04472 + 1.80951i 0.0370059 + 0.0640961i 0.883935 0.467609i \(-0.154885\pi\)
−0.846929 + 0.531706i \(0.821551\pi\)
\(798\) 0 0
\(799\) 1.87674 3.25060i 0.0663942 0.114998i
\(800\) −2.78592 + 4.82536i −0.0984972 + 0.170602i
\(801\) 0 0
\(802\) 18.4414 + 31.9414i 0.651187 + 1.12789i
\(803\) 19.0418 + 32.9814i 0.671970 + 1.16389i
\(804\) 0 0
\(805\) 15.1981 1.11252i 0.535663 0.0392113i
\(806\) 16.7328 + 28.9821i 0.589388 + 1.02085i
\(807\) 0 0
\(808\) −6.16578 −0.216912
\(809\) 0.241404 + 0.418125i 0.00848732 + 0.0147005i 0.870238 0.492632i \(-0.163965\pi\)
−0.861751 + 0.507332i \(0.830632\pi\)
\(810\) 0 0
\(811\) 17.1671 0.602820 0.301410 0.953495i \(-0.402543\pi\)
0.301410 + 0.953495i \(0.402543\pi\)
\(812\) 4.24119 + 6.24384i 0.148836 + 0.219116i
\(813\) 0 0
\(814\) −0.760653 −0.0266609
\(815\) −2.85647 + 4.94755i −0.100058 + 0.173305i
\(816\) 0 0
\(817\) 11.8419 + 20.5107i 0.414294 + 0.717578i
\(818\) 35.2226 1.23153
\(819\) 0 0
\(820\) 6.48462 0.226453
\(821\) −6.41086 11.1039i −0.223741 0.387530i 0.732200 0.681089i \(-0.238493\pi\)
−0.955941 + 0.293559i \(0.905160\pi\)
\(822\) 0 0
\(823\) −12.2973 + 21.2995i −0.428655 + 0.742453i −0.996754 0.0805075i \(-0.974346\pi\)
0.568099 + 0.822961i \(0.307679\pi\)
\(824\) 60.5733 2.11017
\(825\) 0 0
\(826\) −19.5266 + 1.42937i −0.679416 + 0.0497342i
\(827\) −0.527165 −0.0183313 −0.00916567 0.999958i \(-0.502918\pi\)
−0.00916567 + 0.999958i \(0.502918\pi\)
\(828\) 0 0
\(829\) 23.1015 + 40.0130i 0.802348 + 1.38971i 0.918067 + 0.396426i \(0.129750\pi\)
−0.115718 + 0.993282i \(0.536917\pi\)
\(830\) 0.683706 0.0237318
\(831\) 0 0
\(832\) −21.2787 36.8558i −0.737707 1.27775i
\(833\) 9.20530 + 11.6253i 0.318945 + 0.402793i
\(834\) 0 0
\(835\) −1.25070 2.16627i −0.0432822 0.0749669i
\(836\) 3.01811 + 5.22752i 0.104383 + 0.180797i
\(837\) 0 0
\(838\) 19.2815 33.3965i 0.666067 1.15366i
\(839\) −5.41289 + 9.37540i −0.186874 + 0.323675i −0.944206 0.329355i \(-0.893169\pi\)
0.757333 + 0.653029i \(0.226502\pi\)
\(840\) 0 0
\(841\) −12.7281 22.0456i −0.438898 0.760194i
\(842\) 35.2778 1.21575
\(843\) 0 0
\(844\) 0.701079 0.0241321
\(845\) −7.69945 + 13.3358i −0.264869 + 0.458767i
\(846\) 0 0
\(847\) −1.83617 + 0.134410i −0.0630916 + 0.00461839i
\(848\) 2.56783 4.44761i 0.0881796 0.152732i
\(849\) 0 0
\(850\) 3.47999 6.02752i 0.119363 0.206742i
\(851\) 0.345836 0.599006i 0.0118551 0.0205337i
\(852\) 0 0
\(853\) 21.5961 37.4056i 0.739437 1.28074i −0.213313 0.976984i \(-0.568425\pi\)
0.952749 0.303758i \(-0.0982414\pi\)
\(854\) 10.0639 20.8058i 0.344380 0.711961i
\(855\) 0 0
\(856\) −25.6255 + 44.3847i −0.875863 + 1.51704i
\(857\) −1.57445 −0.0537822 −0.0268911 0.999638i \(-0.508561\pi\)
−0.0268911 + 0.999638i \(0.508561\pi\)
\(858\) 0 0
\(859\) 6.82180 0.232757 0.116378 0.993205i \(-0.462871\pi\)
0.116378 + 0.993205i \(0.462871\pi\)
\(860\) 1.46217 + 2.53255i 0.0498595 + 0.0863592i
\(861\) 0 0
\(862\) −4.61037 + 7.98539i −0.157030 + 0.271983i
\(863\) 4.51387 7.81825i 0.153654 0.266136i −0.778914 0.627131i \(-0.784229\pi\)
0.932568 + 0.360994i \(0.117563\pi\)
\(864\) 0 0
\(865\) −12.5711 21.7738i −0.427430 0.740331i
\(866\) 9.55032 + 16.5416i 0.324533 + 0.562108i
\(867\) 0 0
\(868\) 3.16342 + 4.65716i 0.107373 + 0.158074i
\(869\) −2.10137 3.63968i −0.0712841 0.123468i
\(870\) 0 0
\(871\) 58.5765 1.98479
\(872\) 16.2169 + 28.0885i 0.549174 + 0.951196i
\(873\) 0 0
\(874\) 22.9064 0.774821
\(875\) −31.0992 + 2.27650i −1.05134 + 0.0769598i
\(876\) 0 0
\(877\) 9.66920 0.326506 0.163253 0.986584i \(-0.447801\pi\)
0.163253 + 0.986584i \(0.447801\pi\)
\(878\) 0.978807 1.69534i 0.0330331 0.0572151i
\(879\) 0 0
\(880\) −7.67293 13.2899i −0.258655 0.448003i
\(881\) 21.4721 0.723415 0.361707 0.932292i \(-0.382194\pi\)
0.361707 + 0.932292i \(0.382194\pi\)
\(882\) 0 0
\(883\) −26.5380 −0.893076 −0.446538 0.894765i \(-0.647343\pi\)
−0.446538 + 0.894765i \(0.647343\pi\)
\(884\) −1.96006 3.39492i −0.0659238 0.114183i
\(885\) 0 0
\(886\) −12.9165 + 22.3721i −0.433940 + 0.751606i
\(887\) −41.5223 −1.39418 −0.697091 0.716982i \(-0.745523\pi\)
−0.697091 + 0.716982i \(0.745523\pi\)
\(888\) 0 0
\(889\) 5.14973 0.376967i 0.172716 0.0126431i
\(890\) 34.3471 1.15132
\(891\) 0 0
\(892\) 1.83755 + 3.18272i 0.0615256 + 0.106565i
\(893\) −8.61845 −0.288405
\(894\) 0 0
\(895\) −13.5204 23.4180i −0.451937 0.782777i
\(896\) 10.3839 + 15.2871i 0.346901 + 0.510705i
\(897\) 0 0
\(898\) −16.8001 29.0986i −0.560626 0.971032i
\(899\) −20.3089 35.1760i −0.677339 1.17319i
\(900\) 0 0
\(901\) 1.76763 3.06162i 0.0588883 0.101997i
\(902\) 22.0119 38.1258i 0.732917 1.26945i
\(903\) 0 0
\(904\) −13.0121 22.5376i −0.432775 0.749588i
\(905\) 13.8198 0.459385
\(906\) 0 0
\(907\) −4.64361 −0.154188 −0.0770942 0.997024i \(-0.524564\pi\)
−0.0770942 + 0.997024i \(0.524564\pi\)
\(908\) 2.09401 3.62693i 0.0694921 0.120364i
\(909\) 0 0
\(910\) 10.8817 22.4964i 0.360723 0.745749i
\(911\) −0.674054 + 1.16750i −0.0223324 + 0.0386808i −0.876976 0.480535i \(-0.840443\pi\)
0.854643 + 0.519216i \(0.173776\pi\)
\(912\) 0 0
\(913\) −0.556114 + 0.963217i −0.0184047 + 0.0318778i
\(914\) −4.12408 + 7.14312i −0.136413 + 0.236273i
\(915\) 0 0
\(916\) 2.42006 4.19166i 0.0799609 0.138496i
\(917\) −30.9895 + 2.26848i −1.02336 + 0.0749116i
\(918\) 0 0
\(919\) 20.2472 35.0692i 0.667893 1.15682i −0.310599 0.950541i \(-0.600530\pi\)
0.978492 0.206284i \(-0.0661370\pi\)
\(920\) 17.4603 0.575649
\(921\) 0 0
\(922\) 19.8045 0.652225
\(923\) 33.0523 + 57.2482i 1.08793 + 1.88435i
\(924\) 0 0
\(925\) −0.241278 + 0.417905i −0.00793316 + 0.0137406i
\(926\) 4.86221 8.42160i 0.159782 0.276751i
\(927\) 0 0
\(928\) 7.94795 + 13.7663i 0.260904 + 0.451900i
\(929\) 11.1569 + 19.3243i 0.366046 + 0.634011i 0.988944 0.148293i \(-0.0473778\pi\)
−0.622897 + 0.782304i \(0.714044\pi\)
\(930\) 0 0
\(931\) 12.5487 31.6514i 0.411267 1.03733i
\(932\) −2.95380 5.11613i −0.0967550 0.167585i
\(933\) 0 0
\(934\) −52.8749 −1.73012
\(935\) −5.28186 9.14844i −0.172735 0.299186i
\(936\) 0 0
\(937\) −1.13943 −0.0372235 −0.0186117 0.999827i \(-0.505925\pi\)
−0.0186117 + 0.999827i \(0.505925\pi\)
\(938\) −41.0154 + 3.00239i −1.33920 + 0.0980314i
\(939\) 0 0
\(940\) −1.06416 −0.0347090
\(941\) 23.5938 40.8656i 0.769134 1.33218i −0.168898 0.985633i \(-0.554021\pi\)
0.938033 0.346546i \(-0.112646\pi\)
\(942\) 0 0
\(943\) 20.0157 + 34.6683i 0.651802 + 1.12895i
\(944\) −17.9284 −0.583519
\(945\) 0 0
\(946\) 19.8532 0.645483
\(947\) 12.3230 + 21.3441i 0.400444 + 0.693590i 0.993779 0.111366i \(-0.0355225\pi\)
−0.593335 + 0.804955i \(0.702189\pi\)
\(948\) 0 0
\(949\) −28.3947 + 49.1811i −0.921731 + 1.59649i
\(950\) −15.9810 −0.518492
\(951\) 0 0
\(952\) 9.54667 + 14.0545i 0.309409 + 0.455510i
\(953\) 56.2821 1.82316 0.911579 0.411125i \(-0.134864\pi\)
0.911579 + 0.411125i \(0.134864\pi\)
\(954\) 0 0
\(955\) 11.4898 + 19.9009i 0.371802 + 0.643979i
\(956\) 4.14275 0.133986
\(957\) 0 0
\(958\) −1.47075 2.54742i −0.0475178 0.0823033i
\(959\) −42.5676 + 3.11601i −1.37458 + 0.100621i
\(960\) 0 0
\(961\) 0.352001 + 0.609683i 0.0113549 + 0.0196672i
\(962\) −0.567135 0.982306i −0.0182852 0.0316708i
\(963\) 0 0
\(964\) −2.89955 + 5.02217i −0.0933883 + 0.161753i
\(965\) −1.41491 + 2.45070i −0.0455476 + 0.0788907i
\(966\) 0 0
\(967\) 29.2989 + 50.7471i 0.942188 + 1.63192i 0.761285 + 0.648417i \(0.224569\pi\)
0.180903 + 0.983501i \(0.442098\pi\)
\(968\) −2.10948 −0.0678013
\(969\) 0 0
\(970\) 20.8538 0.669574
\(971\) −3.04991 + 5.28260i −0.0978763 + 0.169527i −0.910805 0.412836i \(-0.864538\pi\)
0.812929 + 0.582363i \(0.197872\pi\)
\(972\) 0 0
\(973\) −19.9840 29.4203i −0.640657 0.943171i
\(974\) 11.5130 19.9411i 0.368901 0.638955i
\(975\) 0 0
\(976\) 10.5819 18.3283i 0.338718 0.586676i
\(977\) −2.57988 + 4.46849i −0.0825377 + 0.142960i −0.904339 0.426814i \(-0.859636\pi\)
0.821802 + 0.569774i \(0.192969\pi\)
\(978\) 0 0
\(979\) −27.9373 + 48.3888i −0.892880 + 1.54651i
\(980\) 1.54945 3.90814i 0.0494953 0.124841i
\(981\) 0 0
\(982\) 13.7146 23.7543i 0.437649 0.758031i
\(983\) −62.1071 −1.98091 −0.990455 0.137837i \(-0.955985\pi\)
−0.990455 + 0.137837i \(0.955985\pi\)
\(984\) 0 0
\(985\) −11.9925 −0.382114
\(986\) −9.92806 17.1959i −0.316174 0.547629i
\(987\) 0 0
\(988\) −4.50054 + 7.79516i −0.143181 + 0.247997i
\(989\) −9.02639 + 15.6342i −0.287022 + 0.497138i
\(990\) 0 0
\(991\) 10.8163 + 18.7343i 0.343590 + 0.595116i 0.985097 0.172002i \(-0.0550235\pi\)
−0.641506 + 0.767118i \(0.721690\pi\)
\(992\) 5.92823 + 10.2680i 0.188221 + 0.326009i
\(993\) 0 0
\(994\) −26.0776 38.3912i −0.827131 1.21770i
\(995\) −1.71919 2.97772i −0.0545018 0.0944000i
\(996\) 0 0
\(997\) −40.7362 −1.29013 −0.645064 0.764128i \(-0.723169\pi\)
−0.645064 + 0.764128i \(0.723169\pi\)
\(998\) 17.2527 + 29.8825i 0.546124 + 0.945915i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 567.2.g.l.541.6 16
3.2 odd 2 inner 567.2.g.l.541.3 16
7.4 even 3 567.2.h.l.298.3 16
9.2 odd 6 567.2.e.g.163.3 16
9.4 even 3 567.2.h.l.352.3 16
9.5 odd 6 567.2.h.l.352.6 16
9.7 even 3 567.2.e.g.163.6 yes 16
21.11 odd 6 567.2.h.l.298.6 16
63.2 odd 6 3969.2.a.bg.1.6 8
63.4 even 3 inner 567.2.g.l.109.6 16
63.11 odd 6 567.2.e.g.487.3 yes 16
63.16 even 3 3969.2.a.bg.1.3 8
63.25 even 3 567.2.e.g.487.6 yes 16
63.32 odd 6 inner 567.2.g.l.109.3 16
63.47 even 6 3969.2.a.bf.1.6 8
63.61 odd 6 3969.2.a.bf.1.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
567.2.e.g.163.3 16 9.2 odd 6
567.2.e.g.163.6 yes 16 9.7 even 3
567.2.e.g.487.3 yes 16 63.11 odd 6
567.2.e.g.487.6 yes 16 63.25 even 3
567.2.g.l.109.3 16 63.32 odd 6 inner
567.2.g.l.109.6 16 63.4 even 3 inner
567.2.g.l.541.3 16 3.2 odd 2 inner
567.2.g.l.541.6 16 1.1 even 1 trivial
567.2.h.l.298.3 16 7.4 even 3
567.2.h.l.298.6 16 21.11 odd 6
567.2.h.l.352.3 16 9.4 even 3
567.2.h.l.352.6 16 9.5 odd 6
3969.2.a.bf.1.3 8 63.61 odd 6
3969.2.a.bf.1.6 8 63.47 even 6
3969.2.a.bg.1.3 8 63.16 even 3
3969.2.a.bg.1.6 8 63.2 odd 6